Movatterモバイル変換


[0]ホーム

URL:


CN105377167B - Cooling ducts for thermoelectric modules with coolant fluid cooling - Google Patents

Cooling ducts for thermoelectric modules with coolant fluid cooling
Download PDF

Info

Publication number
CN105377167B
CN105377167BCN201380076100.6ACN201380076100ACN105377167BCN 105377167 BCN105377167 BCN 105377167BCN 201380076100 ACN201380076100 ACN 201380076100ACN 105377167 BCN105377167 BCN 105377167B
Authority
CN
China
Prior art keywords
heat exchange
module
heat
hot side
catheter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380076100.6A
Other languages
Chinese (zh)
Other versions
CN105377167A (en
Inventor
亚伯拉罕·伯格
阿夫里尔·哈赞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERGER THERMAL RESEARCH Ltd
Original Assignee
BERGER THERMAL RESEARCH Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERGER THERMAL RESEARCH LtdfiledCriticalBERGER THERMAL RESEARCH Ltd
Priority claimed from PCT/IL2013/050363external-prioritypatent/WO2013164820A1/en
Publication of CN105377167ApublicationCriticalpatent/CN105377167A/en
Application grantedgrantedCritical
Publication of CN105377167BpublicationCriticalpatent/CN105377167B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

The freezing conduit comprises: an elongated flexible catheter member having a short rigid catheter tip for introduction to a treatment site; a thermoelectric module; and a heat exchange arrangement for freezing the catheter tip to a freezing temperature of from about-15 ℃ to about-30 ℃ to freeze human tissue at the treatment site.

Description

Translated fromChinese
具有冷却剂流体冷却的热电模块的冷却导管Cooling ducts for thermoelectric modules with coolant fluid cooling

技术领域technical field

本发明总的来说涉及导管,并且具体来说涉及用于在治疗部位进行冷冻疗法的冷冻导管(cryocatheter)。The present invention relates generally to catheters, and in particular to cryocatheters for cryotherapy at a treatment site.

背景技术Background technique

本发明涉及具有伸长柔性导管部件和短刚性导管尖端(catheter tip)的导管。根据预期临床应用而定,导管部件通常大约0.5m到1.5m长。刚性导管尖端通常大约0.8cm到1.5cm长。导管部件和导管尖端具有2.3mm到3.3mm的外径,对应于法式孔径计7-10。导管尖端在引导导管圆顶中收端,引导导管圆顶通常由例如铂、铱及其类似物的生物相容性材料形成。对于某些手术程序,在单次临床程序中,导管尖端意在经由可从外部接入的接入端口(操控将沿着人体内腔执行)引入到人体内腔中,到达治疗部位以在此处执行治疗,然后沿人体内腔拉回导管尖端,在接入端口处离开人体内腔。更具体地说,本发明针对用于在冷冻温度下在治疗部位执行冷冻疗法的冷冻导管,在本发明的情形下,冷冻温度是-10℃和更冷的零下尖端温度。The present invention relates to catheters having an elongate flexible catheter member and a short rigid catheter tip. Depending on the intended clinical application, the catheter member is typically about 0.5m to 1.5m long. Rigid catheter tips are typically about 0.8 cm to 1.5 cm long. The catheter part and catheter tip have an outer diameter of 2.3 mm to 3.3 mm, corresponding to a French bore gauge 7-10. The catheter tip terminates in a guide catheter dome, which is typically formed from a biocompatible material such as platinum, iridium, and the like. For certain surgical procedures, in a single clinical procedure, the catheter tip is intended to be introduced into the body lumen via an externally accessible access port (manipulation will be performed along the body lumen) to the treatment site to where The treatment is performed at the body cavity, and the catheter tip is then pulled back along the body lumen, exiting the body lumen at the access port. More specifically, the present invention is directed to cryocatheters for performing cryotherapy at a treatment site at cryogenic temperatures, which in the present case are -10°C and colder sub-zero tip temperatures.

目前利用焦耳-汤姆森效应实施冷冻导管,亦即,使得液体、气体或蒸汽制冷剂通过70巴到150巴的压力线,以通过导管尖端处的约束件离开,从而产生压力损失,随之产生热损失和快速冷却,以将导管尖端冷冻到冷冻温度。示范性的现有技术专利公开案尤其包含授予Wijkamp的名称为“冷冻消融导管(Cryo-Ablation Catheter)”的美国专利No.5,807,391、名称为“具有冷冻和电热消融的导管(Catheter with Cryogenic andElectrical Heating Ablation)”的美国专利申请公开案No.2011/0196359、名称为“尤其适合于经支气管镜活检的冷冻手术工具(Cryosurgical Instrument particularlysuitable for transbronchial biopsy)”的PCT国际公开案No.WO2010/121739等等。Cryoducts are currently implemented using the Joule-Thomson effect, that is, passing a liquid, gaseous or vapor refrigerant through a pressure line of 70 bar to 150 bar to exit through a constraint at the tip of the duct, thereby creating a pressure loss with consequent Heat loss and rapid cooling to freeze the catheter tip to cryogenic temperatures. Exemplary prior art patent publications include, inter alia, U.S. Patent No. 5,807,391 to Wijkamp, entitled "Cryo-Ablation Catheter," entitled "Catheter with Cryogenic and Electrical Heating Ablation), U.S. Patent Application Publication No.2011/0196359, PCT International Publication No.WO2010/121739 entitled "Cryosurgical Instrument particularly suitable for transbronchial biopsy (Cryosurgical Instrument particularly suitable for transbronchial biopsy)", etc. .

冷冻导管可以用几个商标名称从Medtronic CryoCath,Inc.www.cryocath.com购买到,其中尤其包含MAX心肌冷冻消融导管、和心肌冷冻消融导管。冷冻导管利用氧化亚氮或氩制冷剂,并且能够在4到5分钟时间从人体组织热传递几十瓦的热能,用于将导管尖端冷冻到-150℃那么低,以形成高达20mm直径的大小的所谓的冰球,以用于高冷冻能量目的,例如冷冻消融等等。冷冻导管还在部分冷冻能力下操作,以用于低冷冻能量和中等冷冻能量目的,例如在通常-10℃到-20℃的狭窄的温度范围下的冷冻标测程序等等。冷冻导管被认为比非冷冻导管更难操控,因为其构造能经受住高压,这样可能导致更难操控导管将其送到期望的治疗部位。此外,冷冻导管非常昂贵。Cryocatheters are commercially available from Medtronic CryoCath, Inc. www.cryocath.com under several trade names including, inter alia MAX Myocardial Cryoablation Catheter, and Myocardial cryoablation catheter. Cryocatheters utilize nitrous oxide or argon refrigerants and are capable of thermally transferring tens of watts of thermal energy from human tissue in 4 to 5 minutes for freezing the catheter tip to as low as -150°C to form sizes up to 20mm in diameter So-called pucks for high cryoenergy purposes such as cryoablation and the like. Cryocatheters are also operated at partial cryogenic capacity for low and medium cryogenic energy purposes, such as cryo-mapping procedures in a narrow temperature range of typically -10°C to -20°C, and the like. Cryocatheters are considered more difficult to maneuver than non-cryocatheters because they are constructed to withstand high pressures, which can make it more difficult to steer the catheter to the desired treatment site. Also, cryocatheters are very expensive.

发明内容Contents of the invention

本发明针对包含冷冻导管的冷冻导管系统,所述冷冻导管具有伸长柔性导管部件和短的刚性导管尖端,用于在治疗部位处执行冷冻疗法。在单个临床程序中,导管尖端通常经由可从外部接入的接入端口引入到人体内腔中,以沿人体内腔推到治疗部位,用于在这里执行冷冻疗法,然后沿人体内腔拉回,使其在接入端口离开人体内腔。本发明的冷冻导管包含至少一个热电模块,用于将导管尖端的外表面直接冷冻到紧邻37℃人体温度治疗部位的从-10℃到-30℃的冷冻温度,以便临时冷冻人体组织以执行冷冻程序,然后对导管尖端进行解冻,以准许从人体内腔去除冷冻导管。本发明的冷冻导管另外包含热交换布置,其与外部冷却剂流体源流连通,用于提供下游冷却剂流体流,以便使冷却剂流体流穿过其中,以冷却至少一个热电模块的热电模块热侧,以便冷冻导管尖端的外表面。The present invention is directed to a cryocatheter system comprising a cryocatheter having an elongate flexible catheter member and a short rigid catheter tip for performing cryotherapy at a treatment site. In a single clinical procedure, the catheter tip is usually introduced into a body lumen via an externally accessible access port, to be pushed along the body lumen to the treatment site, where cryotherapy is performed, and then pulled along the body lumen back so that it exits the body cavity at the access port. The cryocatheter of the present invention contains at least one thermoelectric module for directly freezing the outer surface of the catheter tip to a freezing temperature from -10°C to -30°C immediately adjacent to a 37°C human body temperature treatment site in order to temporarily freeze human tissue to perform cryotherapy procedure, the catheter tip is then thawed to permit removal of the frozen catheter from the body lumen. The cryoconduit of the present invention additionally comprises a heat exchange arrangement in flow communication with an external source of coolant fluid for providing a downstream coolant fluid flow for passing therethrough to cool the thermoelectric module hot side of at least one thermoelectric module , in order to freeze the outer surface of the catheter tip.

非冷冻导管长期以来一直使用热电模块来冷却和/或加热导管尖端以便在治疗部位执行治疗。示范性现有技术专利公开案尤其包含US 7,238 184,WO 94/19833,名称为“具有复热式热交换器的热电装置(Thermo electric Devices with Recuperative HeatExchangers)”,WO 02/080766,名称为“脂质池处理(Treatment of Lipid Pool)”等等。此类非冷冻导管采用一系列散热器技术将与热电模块的用于冷却其导管尖端的热电模块冷侧对置的热电模块的热电模块热侧冷却到人体温度以下,但是远远高于本发明的冷冻导管能实现的冷冻温度。散热器技术尤其包含导热实芯散热器,使用紧邻治疗部位的血池等等。Non-cryogenic catheters have long used thermoelectric modules to cool and/or heat the catheter tip to deliver therapy at the treatment site. Exemplary prior art patent publications include, inter alia, US 7,238 184, WO 94/19833 entitled "Thermo electric Devices with Recuperative Heat Exchangers", WO 02/080766 entitled " Lipid pool treatment (Treatment of Lipid Pool)" and so on. Such non-cryogenic conduits use a series of heat sink technology to cool the hot side of the thermoelectric module opposite the cold side of the thermoelectric module used to cool the tip of its conduit to below body temperature, but much higher than the present invention The freezing temperature that can be achieved by the cryocatheter. Heat sink technology includes, inter alia, thermally conductive solid core heat sinks, the use of blood pools in close proximity to the treatment site, etc.

WO 02/080766第6页第11行公开了一种导管组合件70,其具有“冷”底面200,用于固化或“冷冻”位于动脉100内的发炎且不稳定的脂质池110。WO 02/080766导管组合件70可以采用热电模块,例如,可以从德国柏林-阿德勒斯霍夫区的TEC Microsystems GmbH(www.tecmicrosystems.com)购买到。合适的热电模块尤其包含1MD03-008-4、1MD03-036-4及其类似物,其在其热电模块热侧和冷侧两端30℃到40℃温差下具有25%到30%的热效率。热电模块两端的较大温差会使其热效率严重降低,并且被视为不合实际。WO 02/080766导管组合件70通过血流冷却,因此可以显示,在比如15%到20%热效率下操作的前述热电模块能够将底面200冷却到比如大约10℃,这足以固化发炎或不稳定脂质池,但不能将底面200冷却到零下温度。WO 02/080766 page 6, line 11 discloses a catheter assembly 70 having a "cold" bottom surface 200 for solidifying or "freezing" an inflamed and unstable lipid pool 110 within an artery 100 . The WO 02/080766 conduit assembly 70 may employ thermoelectric modules, commercially available, for example, from TEC Microsystems GmbH, Berlin-Adlershof, Germany (www.tecmicrosystems.com). Suitable thermoelectric modules include, inter alia, 1MD03-008-4, 1MD03-036-4 and the like, which have a thermal efficiency of 25% to 30% at a temperature difference of 30°C to 40°C across the hot and cold sides of the thermoelectric module. A large temperature difference across a thermoelectric module severely degrades its thermal efficiency and is considered impractical. WO 02/080766 catheter assembly 70 is cooled by blood flow, so it can be shown that the aforementioned thermoelectric module operating at a thermal efficiency of, say, 15% to 20% can cool the bottom surface 200 to, say, about 10°C, which is sufficient to solidify inflamed or unstable lipids. pool, but cannot cool the bottom surface 200 to sub-zero temperatures.

本发明是基于如下认识:可以设计热交换布置,以便在3到4分钟的持续时间中从热电模块热侧进行充分的热传递,以在紧邻37℃人体温度治疗部位的区域将导管尖端的外表面冷冻到从-10℃到-30℃的冷冻温度,以便在治疗部位产生不同形状和不同尺寸的冷冻人体组织。此类冷冻能力能够冷冻人体组织以形成6.0mm到8.0mm直径的冰球,其适合于低和中等冷冻能量冷冻治疗程序,例如阻挡人体组织中的生物活性,提供50克的锚定力等等。本发明的冷冻导管不能供应与上文描述的焦耳-汤姆森冷冻导管相同的高冷冻能量,但是据设想,本发明的冷冻导管将比焦耳-汤姆森冷冻导管便宜很多,因此,是低和中等冷冻能量冷冻治疗程序的优选的选项。此外,本发明的基于热电模块的冷冻导管比焦耳-汤姆森效应冷冻导管更容易控制。The present invention is based on the realization that the heat exchange arrangement can be designed so that sufficient heat transfer occurs from the hot side of the thermoelectric module over a duration of 3 to 4 minutes to remove the outer surface of the catheter tip in the immediate vicinity of the 37°C body temperature treatment site. Surface freezing to freezing temperatures from -10°C to -30°C in order to produce frozen human tissues of different shapes and sizes at the treatment site. This type of freezing capacity is capable of freezing human tissue to form a 6.0mm to 8.0mm diameter ice ball, which is suitable for low and medium cryoenergy cryotherapy procedures, such as blocking biological activity in human tissue, providing 50 grams of anchoring force, etc. The cryocatheter of the present invention cannot supply the same high cryogenic energy as the Joule-Thomson cryocatheter described above, but it is envisaged that the cryocatheter of the present invention will be much cheaper than the Joule-Thomson cryocatheter and, therefore, is a low and medium The preferred option for cryoenergy cryotherapy procedures. Furthermore, the thermoelectric module based cryocatheter of the present invention is easier to control than the Joule-Thomson effect cryocatheter.

可以显示,在3到4分钟持续时间内需要从大约1.5瓦到大约2.0瓦热能的热传递以在37℃人体温度治疗部位处将局部人体组织冷冻到从大约-10℃到大约-25℃。因此,基于前述实际的30%热效率,需要本发明的热交换布置从至少一个热电模块的热电模块热侧热传递从大约6.5瓦到7.5瓦的热能。这个热能考虑到需要从有待冷冻的人体组织吸收的热能和经施加以操作至少一个热电模块的电能。为了让热电模块的热电模块冷侧具有大约-10℃到-30℃之间的冷冻温度,其热电模块热侧必须具有大约10℃的温度,如通过前述热电模块热侧与热电模块冷侧两端的30℃到40℃温差所指定。下游冷却剂流体流可以冷却到不低于接近比如大约3℃的冷冻温度,以防其可能在递送到导管尖端之前就发生冷冻。因此,下游冷却剂流体流在其递送到导管尖端之后具有比如平均大约5℃的下游温度,以在下游冷却剂流体流与热电模块热侧之间留下大约5℃温差。根据导管尖端中的热电模块的纵向或横向部署,其热电模块热侧具有20+10mm2的占用面积。热电模块的纵向和横向部署相应地与导管部件的纵轴共向或者横向于导管部件的纵轴。通常纵向热电模块的热侧占用面积比横向热电模块大。因此,本发明的热交换布置必须设计成能够从20+10mm2热电模块热侧吸收7.5W热能,这代表的是从大约250Kw/m2到750Kw/m2的相当大热密度的散热。It can be shown that heat transfer from about 1.5 watts to about 2.0 watts of thermal energy is required to freeze local body tissue from about -10°C to about -25°C at a 37°C body temperature treatment site over a 3 to 4 minute duration. Therefore, based on the aforementioned practical 30% thermal efficiency, the heat exchange arrangement of the present invention is required to thermally transfer from about 6.5 watts to 7.5 watts of thermal energy from the thermoelectric module hot side of at least one thermoelectric module. This thermal energy takes into account the thermal energy that needs to be absorbed from the body tissue to be frozen and the electrical energy applied to operate the at least one thermoelectric module. In order for the cold side of the thermoelectric module to have a freezing temperature between about -10°C and -30°C, the hot side of the thermoelectric module must have a temperature of about 10°C, such as through the aforementioned hot side of the thermoelectric module and the cold side of the thermoelectric module. Specified by a temperature difference of 30°C to 40°C at the end. The downstream coolant fluid flow may be cooled to no less than a freezing temperature close to, say, about 3°C, in case it may freeze before being delivered to the catheter tip. Thus, the downstream coolant fluid flow has a downstream temperature of, say, on average about 5°C after its delivery to the conduit tip, to leave a temperature differential of about 5°C between the downstream coolant fluid flow and the hot side of the thermoelectric module. Depending on the longitudinal or lateral deployment of the thermoelectric modules in the catheter tip, its thermoelectric module hot side has a footprint of 20+10 mm2 . The longitudinal and lateral deployment of the thermoelectric modules is co-directional or transverse to the longitudinal axis of the conduit part, respectively. Generally, the occupied area of the hot side of the longitudinal thermoelectric module is larger than that of the transverse thermoelectric module. Therefore, the heat exchange arrangement of the present invention must be designed to be able to absorb 7.5W of thermal energy from the hot side of a 20+10mm2 thermoelectric module, which represents a considerable thermal density dissipation from about 250Kw/m2 to 750Kw/m2 .

本发明包含两种类型的热交换布置以如下实现这样高的热传递程度:第一,所谓的散热器模块。以及第二,所谓的射流冲击模块。The present invention encompasses two types of heat exchange arrangements to achieve such a high degree of heat transfer as follows: First, so-called radiator modules. And the second, the so-called jet impact module.

前者包含与至少一个热电模块的热电模块热侧热能连接的散热器。散热器由高导热性材料制成,这类材料通常具有至少170w/m℃的导热系数。合适的材料尤其包含金属、碳基导热材料及其类似物。散热器设计成具有比热侧占用面积至少大四倍的总热交换面积,以便吸收大约7.5瓦的热能。本发明设想如下的散热片的几个不同的实施方案:鳍片式散热器。盘管散热器。导线网圆盘的散热器堆叠。多孔散热器。The former comprises a heat sink thermally connected to the thermoelectric module hot side of at least one thermoelectric module. The heat sink is made of high thermal conductivity material, which usually has a thermal conductivity of at least 170w/m°C. Suitable materials include metals, carbon-based thermally conductive materials, and the like, among others. The heat sink is designed to have a total heat exchange area at least four times larger than the hot side footprint in order to absorb approximately 7.5 watts of thermal energy. The present invention contemplates several different embodiments of heat sinks as follows: Finned heat sinks. Coil radiator. Heatsink stack of wire mesh pucks. Porous radiator.

后者采用冷却剂流体供给管,其提供一或多个冷却剂流体射流,冷却剂流体供给管优选地直接抵靠着热电模块热侧,以便从热电模块热侧热传递7.5瓦热能。关于使用射流进行热能散热的原理,请参照两篇射流冲击论文,这两篇论文以引用的方式并入本文中。射流冲击论文如下:“初始层流、过渡和紊流方案的到冲击液体射流的局部热传递(LocalHeat Transfer to Impinging Liquid Jet in the Initially Laminar,Transitionaland Turbulent Regimes)”,作者为B.Elison和B.W.Webb,《热和质量转移期刊(Journal ofHeat and Mass Transfer)》,1994年第8期,第37卷。“通过冲击圆形液体射流的对流热传递(Convective Heat Transfer by Impingement of Circular Liquid Jets)”,作者为X.Liu和J.H.Lienhard和J.S.Lombara,《热传递期刊(Journal of Heat Transfer)》,1991年8月,113/571卷。或者,热电模块热侧可以被冲击板覆盖,所述冲击板与其下伏热电模块直接热接触。The latter employs a coolant fluid supply tube that provides one or more coolant fluid jets, preferably directly against the thermoelectric module hot side, for thermal transfer of 7.5 watts of thermal energy from the thermoelectric module hot side. For the principles of thermal energy removal using jets, please refer to the two jet impingement papers, which are incorporated herein by reference. The jet impingement paper follows: "Local Heat Transfer to Impinging Liquid Jet in the Initially Laminar, Transitional and Turbulent Regimes" by B.Elison and B.W.Webb , "Journal of Heat and Mass Transfer", No. 8, Vol. 37, 1994. "Convective Heat Transfer by Impingement of Circular Liquid Jets" by X. Liu and J.H. Lienhard and J.S. Lombara, Journal of Heat Transfer, 1991 August, Vol. 113/571. Alternatively, the hot side of the thermoelectric module may be covered by an impingement plate in direct thermal contact with its underlying thermoelectric module.

本发明的冷冻导管系统可以实施为开放冲洗导管系统或循环导管系统。在前者中,冷却剂流体开放冲洗到治疗部位周围的人体内部,并且因此冷却剂流体必须是生物相容性液体,例如0.9%NaCl的生理盐水及其类似物。在后者中,冷冻导管包含冷却剂流体回流管,其与冷却剂流体供给管共同延伸,用于将冷却剂流体从导管尖端传输到外部冷却剂流体目标。冷却剂流体目标优选地连接到冷却剂流体源以便于再循环。冷却剂流体未必是生物相容性液体,并且其可以是气体,例如氧化亚氮、氩及其类似物。The cryocatheter system of the present invention may be implemented as an open irrigation catheter system or a circulation catheter system. In the former, the coolant fluid is open to flush into the interior of the body around the treatment site, and therefore the coolant fluid must be a biocompatible liquid, such as 0.9% NaCl saline and the like. In the latter, the cryocatheter contains a coolant fluid return tube coextensive with a coolant fluid supply tube for transporting coolant fluid from the catheter tip to an external coolant fluid target. The coolant fluid target is preferably connected to a coolant fluid source for recirculation. The coolant fluid need not be a biocompatible liquid, and it can be a gas, such as nitrous oxide, argon, and the like.

本发明的冷冻导管可以在导管尖端中部署纵向和/或横向的一或多个热电模块。根据本发明的冷冻导管的热电模块可包含单个帕尔贴装置或两个或更多个帕尔贴装置的堆叠,一个帕尔贴装置的热电模块热侧面朝另一帕尔贴装置的热电模块冷侧。The cryocatheter of the present invention may deploy one or more thermoelectric modules longitudinally and/or transversely in the catheter tip. The thermoelectric module of the cryocatheter according to the invention may comprise a single Peltier device or a stack of two or more Peltier devices, with the thermoelectric module of one Peltier device facing the thermoelectric module of the other Peltier device hot sideways cold side.

附图说明Description of drawings

为了理解本发明并且明白可以实际上如何执行本发明,现在将参看附图仅仅借助于非限制性实例描述优选实施例,其中用相同的编号表示类似的部分,并且其中:In order to understand the invention and to see how it may be carried out in practice, a preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which like parts are designated by like numerals, and in which:

图1是开放冲洗冷冻导管系统的框图,其包含开放冲洗冷冻导管,所述开放冲洗冷冻导管包含横向热电模块和热交换布置,用于在治疗部位形成冰球;Figure 1 is a block diagram of an open irrigation cryocatheter system comprising an open irrigate cryocatheter comprising a transverse thermoelectric module and a heat exchange arrangement for forming a puck at a treatment site;

图2是沿图1中的线A-A的图1的开放冲洗冷冻导管的横截面;Figure 2 is a cross-section of the open irrigation cryocatheter of Figure 1 along line A-A in Figure 1;

图3是循环冷冻导管系统的框图,所述循环冷冻导管系统包含循环冷冻导管,用于在治疗部位形成冰球;3 is a block diagram of a circulating cryocatheter system comprising a circulating cryocatheter for forming a puck at a treatment site;

图4是图3的循环冷冻导管沿图3中的线B-B的横截面;Figure 4 is a cross-section of the circulating refrigeration conduit of Figure 3 along line B-B in Figure 3;

图5是图1的导管尖端的纵截面,所述导管尖端包含纵向热电模块和散热器模块;FIG. 5 is a longitudinal section of the catheter tip of FIG. 1 comprising a longitudinal thermoelectric module and a heat sink module;

图6是图1的导管尖端的纵截面,所述导管尖端包含横向热电模块和盘管散热器;Figure 6 is a longitudinal section of the conduit tip of Figure 1 comprising a transverse thermoelectric module and a coil radiator;

图7是图6的盘管散热器的顶部正视图;Figure 7 is a top elevational view of the coil radiator of Figure 6;

图8是图1的导管尖端的纵截面,所述导管尖端包含纵向热电模块和多孔散热器;Figure 8 is a longitudinal section of the catheter tip of Figure 1 comprising a longitudinal thermoelectric module and a porous heat sink;

图9是图1的导管尖端的纵截面,所述导管尖端包含纵向热电模块和鳍片式散热器;Fig. 9 is a longitudinal section of the catheter tip of Fig. 1 comprising a longitudinal thermoelectric module and a finned heat sink;

图10是图9的鳍片式散热器沿图9中的C-C线的横截面;Fig. 10 is a cross-section of the finned radiator of Fig. 9 along line C-C in Fig. 9;

图11是图3的导管尖端的纵截面,所述导管尖端包含横向热电模块和替代盘管散热器;Figure 11 is a longitudinal section of the conduit tip of Figure 3 comprising a transverse thermoelectric module and an alternative coil heat sink;

图12是图1的盘管散热器的顶部正视图;Figure 12 is a top elevation view of the coil radiator of Figure 1;

图13是图3的导管尖端的纵截面,所述导管尖端包含横向热电模块和导线网盘的散热器堆叠;Figure 13 is a longitudinal section of the conduit tip of Figure 3 comprising a heat sink stack of transverse thermoelectric modules and wire grid trays;

图14是图13的散热器堆叠的导线网盘的顶部正视图;Fig. 14 is a top elevational view of the stacked wire grid tray of the radiator of Fig. 13;

图15是图1的导管尖端的透视截面图,所述导管尖端包含横向热电模块和具有单个喷嘴的射流冲击模块;15 is a perspective cross-sectional view of the catheter tip of FIG. 1 comprising a transverse thermoelectric module and a jet impingement module with a single nozzle;

图16A是图15的射流冲击模块的前正视图;16A is a front elevational view of the jet impingement module of FIG. 15;

图16B是热电模块热侧上的图15的射流冲击模块的喷嘴的冲击区的顶部正视图;16B is a top elevational view of the impingement zone of the nozzle of the jet impingement module of FIG. 15 on the hot side of the thermoelectric module;

图17是图1的导管尖端的纵截面,所述导管尖端包含纵向热电模块和具有三个喷嘴的射流冲击模块;17 is a longitudinal section of the catheter tip of FIG. 1 comprising a longitudinal thermoelectric module and a jet impingement module with three nozzles;

图18是图17的导管尖端的沿图17中的E-E线的横截面;Figure 18 is a cross-section of the catheter tip of Figure 17 along line E-E in Figure 17;

图19是图3的导管尖端的透视截面图,所述导管尖端包含横向热电模块和具有单个喷嘴的射流冲击模块;19 is a perspective cross-sectional view of the catheter tip of FIG. 3 comprising a transverse thermoelectric module and a jet impingement module with a single nozzle;

图20是图3的导管尖端的纵截面,所述导管尖端用于冷冻导管尖端的拖尾区部;Figure 20 is a longitudinal section of the catheter tip of Figure 3 for use in freezing the trailing region of the catheter tip;

图21是图1的导管尖端的纵截面,所述导管尖端包含纵向热电模块和横向热电模块和散热器模块;Fig. 21 is a longitudinal section of the catheter tip of Fig. 1, said catheter tip comprising a longitudinal thermoelectric module and a transverse thermoelectric module and a heat sink module;

图22是开放冲洗冷冻导管系统的框图,所述开放冲洗冷冻导管系统包含冷冻导管和用于在治疗部位执行RF消融的RF消融器;22 is a block diagram of an open irrigation cryocatheter system comprising a cryocatheter and an RF ablation device for performing RF ablation at a treatment site;

图23是图22的导管部件的沿图22中的F-F线的横截面;Figure 23 is a cross-section along line F-F in Figure 22 of the catheter component of Figure 22;

图24是开放冲洗冷冻导管系统的框图,所述开放冲洗冷冻导管系统包含具有导管尖端的冷冻导管,所述导管尖端具有传感器;24 is a block diagram of an open flush cryocatheter system comprising a cryocatheter having a catheter tip with a sensor;

图25是图24的导管部件的沿图24中的G-G线的横截面;Figure 25 is a cross-section along line G-G in Figure 24 of the catheter component of Figure 24;

图26是开放冲洗冷冻导管的纵截面,所述开放冲洗冷冻导管包含一对空管腔,用于在治疗部位引入手术工具;以及26 is a longitudinal section of an open irrigation cryocatheter comprising a pair of empty lumens for introducing surgical tools at the treatment site; and

图27是图26的导管部件的沿图26中的H-H线的横截面。FIG. 27 is a cross-section of the catheter component of FIG. 26 along line H-H in FIG. 26 .

具体实施方式Detailed ways

图1展示了开放冲洗冷冻导管系统100A,其与开放冲洗冷冻导管130A一起使用,开放冲洗冷冻导管130A包含开放冲洗伸长柔性导管部件131A和开放冲洗短刚性导管尖端132A,用于在治疗部位形成冰球IB。冷冻导管系统100A必须利用生物相容性液体以用于冷却目的,以便于在治疗部位开放式冲洗到人体内部组织。所述生物相容性液体优选是0.9%NaCl生理盐水及其类似物。1 illustrates an open irrigation cryocatheter system 100A for use with an open irrigate cryocatheter 130A comprising an open irrigate elongate flexible catheter member 131A and an open irrigate short rigid catheter tip 132A for forming Hockey IB. The cryocatheter system 100A must utilize a biocompatible fluid for cooling purposes to facilitate open irrigation to internal body tissues at the treatment site. The biocompatible liquid is preferably 0.9% NaCl physiological saline and the like.

导管部件131A具有大约0.5m到1.5m的长度,标示为E,这个长度取决于导管部件预期的冷冻疗法应用。导管尖端132A具有大约0.8cm到1.5cm的长度。导管部件131A和导管尖端132A具有大约2.3mm到3.3mm的外径。导管尖端132A在引导导管圆顶133收端。导管圆顶133可以具有光滑的球形形状。替代地,导管圆顶133可以形成为不同的饰面和形状,类似于市售RF消融导管和诊断导管。举例来说,Medtronic冷冻消融导管和St.JudeMedical的诊断导管具有不同形状的导管圆顶133。Catheter component 131A has a length, designated E, of approximately 0.5 m to 1.5 m, depending on the intended cryotherapy application of the catheter component. Catheter tip 132A has a length of approximately 0.8 cm to 1.5 cm. Catheter component 131A and catheter tip 132A have an outer diameter of approximately 2.3 mm to 3.3 mm. Catheter tip 132A terminates in guide catheter dome 133 . Conduit dome 133 may have a smooth spherical shape. Alternatively, catheter dome 133 may be formed in a different finish and shape, similar to commercially available RF ablation and diagnostic catheters. For example, Medtronic Cryoablation Catheters and St.JudeMedical's The diagnostic catheters have catheter domes 133 of different shapes.

导管尖端132A包含横向热电模块134,其横向于导管部件131A的纵轴。合适的热电模块134包含例如TEC Microsystems GmbH的零件编号1MD03-008-4,可以从德国柏林-阿德勒斯霍夫区的TEC Microsystems GmbH(www.tecmicrosystems.com)购买到。热电模块134在其冷冻导管尖端132A的操作期间具有热电模块热侧136和热电模块冷侧137。导管尖端132A包含热交换布置138,用于从热电模块热侧136进行热传递。导管尖端132A包含热敏电阻139,用于监视热电模块热侧136或热电模块冷侧137的温度。导管尖端132A包含一或多个冲洗孔141,用于使得来自导管尖端132A的冷却剂流体能够流到治疗部位周围的人体内部。导管尖端132A的热交换布置138可以实施为散热器模块或射流冲击模块,如下文所述。The catheter tip 132A contains a transverse thermoelectric module 134 that is transverse to the longitudinal axis of the catheter member 131A. A suitable thermoelectric module 134 includes, for example, part number 1MD03-008-4 from TEC Microsystems GmbH, commercially available from TEC Microsystems GmbH, Berlin-Adlershof, Germany (www.tecmicrosystems.com). The thermoelectric module 134 has a thermoelectric module hot side 136 and a thermoelectric module cold side 137 during operation of its cryocatheter tip 132A. The conduit tip 132A contains a heat exchange arrangement 138 for heat transfer from the thermoelectric module hot side 136 . Catheter tip 132A contains a thermistor 139 for monitoring the temperature of either the hot side 136 of the thermoelectric module or the cold side 137 of the thermoelectric module. Catheter tip 132A includes one or more irrigation holes 141 for enabling coolant fluid from catheter tip 132A to flow into the interior of the body surrounding the treatment site. The heat exchange arrangement 138 of the conduit tip 132A may be implemented as a heat sink module or a jet impingement module, as described below.

导管圆顶133与热电模块冷侧137高度导热接触,以便冷冻人体组织以形成冰球IB。导管圆顶133由生物相容性的高度导热材料形成,该材料的导热系数至少>50w/m℃,并且优选更高。合适的导管圆顶材料包含金属,例如铂、铱、金等和高导热性塑料。金尤其适合于一些应用,因为金的导热系数极高,k>250w/m℃。导管圆顶133优选地使用高导热性填充材料胶合到热电模块冷侧137上,以减少从热电模块冷侧137到导管圆顶133的温降。合适的市售高级别空隙填充材料具有大约10w/m℃的高导热系数k。The conduit dome 133 is in highly thermally conductive contact with the cold side 137 of the thermoelectric module for freezing human tissue to form the puck IB. Catheter dome 133 is formed from a biocompatible, highly thermally conductive material having a thermal conductivity of at least >50 w/m°C, and preferably higher. Suitable catheter dome materials include metals such as platinum, iridium, gold, etc. and high thermal conductivity plastics. Gold is especially suitable for some applications because of its extremely high thermal conductivity, k>250w/m°C. The conduit dome 133 is preferably glued to the thermoelectric module cold side 137 using a high thermal conductivity filler material to reduce the temperature drop from the thermoelectric module cold side 137 to the conduit dome 133 . Suitable commercially available high grade void filling materials have a high thermal conductivity k of about 10 w/m°C.

图2展示了导管部件131A具有挤出成型构造,其包含以下纵向管腔:第一,中心管腔142,用于容置冷却剂流体供给管143,其用于将下游冷却剂流体流传递到导管尖端132A。第二,一对对置管腔144,用于容置操控导线146,以帮助导管尖端132A通行到治疗部位。第三,管腔147,用于容置输电线对148,其连接到热电模块134。以及第四,管腔149,用于容置热敏电阻导线对151,其连接到热敏电阻139。管腔149还可以用于容置另外的控制导线。FIG. 2 illustrates conduit component 131A having an extruded configuration comprising the following longitudinal lumens: First, a central lumen 142 for housing a coolant fluid supply tube 143 for delivering downstream coolant fluid flow to Catheter tip 132A. Second, a pair of opposed lumens 144 are used to accommodate steering guide wires 146 to facilitate passage of catheter tip 132A to the treatment site. Third, a lumen 147 for accommodating a pair of power lines 148 connected to the thermoelectric module 134 . And fourth, a lumen 149 for accommodating a thermistor wire pair 151 connected to the thermistor 139 . Lumen 149 may also be used to house additional control wires.

冷冻导管系统100A包含:外部冷却剂流体源101,用于将生物相容性冷却剂流体传递到冷冻导管130A以便冷冻导管尖端132A;热电模块电源102,其连接到输电线对148;以及控制器103,用于控制外部冷却剂流体源101和热电模块电源102的操作。控制器103包含开/关切换器104、用于冷冻导管尖端132A的结冰控件106、以及用于给导管尖端132A解冻的解冻控件107、以及温度水平控件108,并且连接到热敏电阻导线对151。解冻控件107使输电线对148的极性反转,以便冷却热电模块热侧136和加热热电模块冷侧137。The cryocatheter system 100A comprises: an external coolant fluid source 101 for delivering a biocompatible coolant fluid to a cryocatheter 130A to cryocatheter tip 132A; a thermoelectric module power supply 102 connected to a pair of power lines 148; and a controller 103, for controlling the operation of the external coolant fluid source 101 and the thermoelectric module power supply 102. Controller 103 includes on/off switch 104, freeze control 106 for freezing catheter tip 132A, and defrost control 107 for defrosting catheter tip 132A, and temperature level control 108, and is connected to the thermistor wire pair 151. Thaw control 107 reverses the polarity of power line pair 148 to cool thermoelectric module hot side 136 and heat thermoelectric module cold side 137 .

外部冷却剂流体源101包含冷却剂流体储集器109,例如17℃到24℃环境温度下的0.9%NaCl生理盐水输液袋。外部冷却剂流体源101包含冷却装置111,用于冷却生理盐水使其优选地接近冷冻温度,比方说,3℃到4℃以确保生理盐水不会冷冻。冷冻导管系统100A可以在较高的冷却剂流体温度下操作,比方说10℃,但是这样会使其冷冻能力直线下降。外部冷却剂流体源101还包含蠕动泵112,用于以大约35cc/min的可接受的最高流速(考虑到对人体内部环境的开放冲洗)将下游冷却剂流体流传递到冷冻导管130A。The external coolant fluid source 101 comprises a coolant fluid reservoir 109, such as a 0.9% NaCl saline infusion bag at an ambient temperature of 17°C to 24°C. The external coolant fluid source 101 includes cooling means 111 for cooling the saline preferably to near freezing temperature, say, 3°C to 4°C to ensure that the saline does not freeze. The cryocatheter system 100A can operate at higher coolant fluid temperatures, say 10°C, but then its freezing capacity plummets. The external coolant fluid source 101 also includes a peristaltic pump 112 for delivering downstream coolant fluid flow to cryocatheter 130A at a maximum acceptable flow rate of about 35 cc/min (allowing for open flushing of the internal environment of the human body).

冷却剂流体供给管143具有0.4mm到0.7mm范围内的典型内径。冷却剂流体供应管143中的下游冷却剂流体流的流速大约是1.5-4.5m/s,使得其具有层流范围的大约700-1200的雷诺数。这个流速通常会引起高达40-70psi的压降,这接近标准医疗级导管组的最大允许值。The coolant fluid supply tube 143 has a typical inner diameter in the range of 0.4mm to 0.7mm. The flow velocity of the downstream coolant fluid flow in the coolant fluid supply pipe 143 is approximately 1.5-4.5 m/s such that it has a Reynolds number of approximately 700-1200 in the laminar flow range. This flow rate typically causes a pressure drop of up to 40-70 psi, which is close to the maximum allowable for a standard medical grade catheter set.

导管部件131A具有近端152,与引导导管尖端132A对置,近端152包含未端布置153。未端布置153可包含连接到操控导线146的手柄154、用于连接到外部冷却剂流体源101的鲁尔连接156和用于连接到控制器103的电接头157。Catheter component 131A has a proximal end 152 , opposite guide catheter tip 132A, comprising a terminal arrangement 153 . The terminal arrangement 153 may include a handle 154 connected to the steering wire 146 , a Luer connection 156 for connecting to the external coolant fluid source 101 and an electrical connector 157 for connecting to the controller 103 .

图3展示循环冷冻导管系统100B,其包含循环冷冻导管130B,循环冷冻导管130B具有循环导管部件131B和循环导管尖端132B,用于在治疗部位形成冰球IB。冷冻导管系统100B的构造和操作与冷冻导管系统100A类似并且因此用相同编号表示类似部分。循环冷冻导管系统100B可以利用气体、蒸汽或液体形式的冷却剂流体,这一点不同于开放冲洗冷冻导管系统100A。参照液体冷却剂描述本冷冻导管系统100B。由本系统可以容易修改出利用气体冷却剂的冷冻导管系统100B。基于气体的冷冻导管系统100B包含气体泵而不是蠕动泵。基于气体的冷冻导管系统100B在高压下操作,但是没有焦耳-汤姆森效应冷冻导管系统那么高。Figure 3 shows a circulating cryocatheter system 100B comprising a circulating cryocatheter 130B having a circulating catheter component 13 IB and a circulating catheter tip 132B for forming a puck IB at the treatment site. The cryocatheter system 100B is similar in construction and operation to the cryocatheter system 100A and thus like numbers are used to designate like parts. Unlike the open flush cryoduct system 100A, the circulating cryoduct system 100B may utilize a coolant fluid in gaseous, vapor, or liquid form. The present cryocatheter system 100B is described with reference to a liquid coolant. A cryogenic catheter system 100B utilizing a gaseous coolant can be easily modified from this system. The gas-based cryocatheter system 100B includes a gas pump instead of a peristaltic pump. The gas based cryocatheter system 100B operates at high pressure, but not as high as the Joule-Thomson effect cryocatheter system.

循环冷冻导管系统100B与开放冲洗冷冻导管系统100A的不同之处在于,循环冷冻导管系统100B包含冷却剂流体目标113。冷冻导管130B与冷冻导管130A的不同之处在于,冷冻导管130B的导管部件131B包含另一管腔158,用于容置冷却剂流体回流管159(参见图4)并且其导管尖端132B不具有冲洗孔。冷却剂流体回流管159连接到冷却剂流体目标113,冷却剂流体目标113又优选地连接到冷却剂流体储集器109。与冷冻导管130A的冷却剂流体供给管143相比,由于外部冷冻导管直径约束的缘故,冷却剂流体供给管143和冷却剂流体回流管159通常在冷冻导管130B中具有更小的横截面面积。导管尖端132B的热交换布置138可以实施为散热器模块或射流冲击模块,以便冷却热电模块热侧136,如下所述。The circulating cryocatheter system 100B differs from the open flush cryocatheter system 100A in that the circulatory cryocatheter system 100B includes a coolant fluid target 113 . Cryocatheter 130B differs from cryocatheter 130A in that catheter part 131B of cryocatheter 130B includes a further lumen 158 for accommodating a coolant fluid return tube 159 (see FIG. 4 ) and that its catheter tip 132B does not have an irrigation hole. The coolant fluid return line 159 is connected to the coolant fluid target 113 which in turn is preferably connected to the coolant fluid reservoir 109 . Coolant fluid supply tube 143 and coolant fluid return tube 159 generally have a smaller cross-sectional area in cryoconduit 130B than coolant fluid supply tube 143 of cryoconduit 130A due to outer cryoconduit diameter constraints. The heat exchange arrangement 138 of the conduit tip 132B may be implemented as a heat sink module or a jet impingement module to cool the thermoelectric module hot side 136 as described below.

冷冻导管系统100A的用法如下:The cryocatheter system 100A is used as follows:

外科医生经由可从外部接入的接入端口将导管尖端引入到人体内腔中。外科医生使导管尖端通行到治疗部位。外科医生将控制器切换成结冰模式,持续3到5分钟,以在治疗部位处冷冻导管尖端。导管尖端在导管尖端处冷冻人体组织,以形成冰球,冰球将人体组织结合到导管尖端。冻结过程本身可以是期望的冷冻疗法,或者外科医生可以执行另外的医疗程序。在医疗程序结束时,外科医生将控制器切换成解冻模式,持续大约30-60秒,以在导管尖端处解冻人体组织,以防在导管尖端仍然冰冻到人体组织上时从人体组织拉掉导管尖端的情况下人体组织发生组织撕裂,尤其是在脉管程序中。A surgeon introduces the catheter tip into a body lumen via an externally accessible access port. The surgeon passes the catheter tip to the treatment site. The surgeon switches the controller to freeze mode for 3 to 5 minutes to freeze the catheter tip at the treatment site. The catheter tip freezes body tissue at the catheter tip to form a puck that binds the body tissue to the catheter tip. The freezing process itself may be the desired cryotherapy, or the surgeon may perform an additional medical procedure. At the end of the medical procedure, the surgeon switches the controller into defrost mode for approximately 30-60 seconds to thaw the tissue at the catheter tip to prevent pulling the catheter from the tissue while the catheter tip is still frozen to the tissue Tissue tearing occurs in human tissue in tip cases, especially during vascular procedures.

热交换布置的热力学分析Thermodynamic Analysis of Heat Exchange Arrangement

热交换布置138具有传入的下游冷却剂流体流和传出的冷却剂流体流,这个流体流在开放冲洗冷冻导管系统100A中是流向人体内部环境,或者在循环冷冻导管系统100B中是流向冷却剂流体目标113。The heat exchange arrangement 138 has an incoming downstream coolant fluid flow and an outgoing coolant fluid flow, either to the internal environment of the human body in the case of the open flush cryoconduit system 100A, or to the cooling system in the case of the circulating cryocatheter system 100B. Agent fluid target 113.

热交换布置138具有以下规范:The heat exchange arrangement 138 has the following specifications:

h:热传递系数h: heat transfer coefficient

Ah:热交换面积Ah: heat exchange area

使用下面的符号:Use the following notation:

Q是进行从热电模块热侧到热交换布置中的冷却剂流体流的热传递所必需的总热能,亦即,大约7.5瓦。总热能Q=Q1+Q2,其中Q1是必需从有待冷冻的人体组织吸收的人体热能,而Q2是操作至少一个热电模块必需的电能。Q is the total thermal energy necessary for heat transfer from the hot side of the thermoelectric module to the coolant fluid flow in the heat exchange arrangement, ie approximately 7.5 Watts. Total thermal energy Q=Q1+Q2, where Q1 is the body heat energy that must be absorbed from the body tissue to be frozen, and Q2 is the electrical energy necessary to operate at least one thermoelectric module.

Tin是传入下游冷却剂流体流到达热交换布置138时的温度。基于Tin在引入到冷冻导管中之前初始冷却到比方说2℃到3℃以及在其沿导管部件行进过程中的随后加热,Tin估计在4℃到5℃。Tin is the temperature at which the incoming downstream coolant fluid stream reaches the heat exchange arrangement 138 . Based on the initial cooling of Tin to say 2°C to 3°C prior to introduction into the cryocatheter and subsequent heating as it travels along the catheter component, Tin is estimated to be at 4°C to 5°C.

Tout是传出冷却剂流体流离开热交换布置138时的温度。Tout在被热电模块热侧136直接或间接加热之后估计在6℃到9℃。Tout is the temperature at which the outgoing coolant fluid flow leaves the heat exchange arrangement 138 . Tout is estimated at 6°C to 9°C after being directly or indirectly heated by the thermoelectric module hot side 136 .

Thot是冷冻导管尖端的至少一个热电模块的热电模块热侧136的温度,其中Thot is the temperature of the thermoelectric module hot side 136 of the at least one thermoelectric module at the tip of the cryocatheter, where

(1)Thot=Tin+Δt1+Δt2+…+Δtn(1) Thot=Tin+Δt1+Δt2+...+Δtn

其中Δt1、Δt2…Δtn是温差,其取决于导管尖端与其热交换布置的构造where Δt1, Δt2...Δtn are the temperature differences depending on the configuration of the catheter tip and its heat exchange arrangement

Tcold是热电模块冷侧137的温度,其中出于实际考虑Tcold is the temperature of the cold side 137 of the thermoelectric module, where for practical considerations

(2)Tcold=Thot-35℃(2)Tcold=Thot-35℃

Δt1是穿过热交换布置138的冷却剂流体流与热交换面积Ah之间的对流温差,计算方式如下:Δt1 is the convective temperature difference between the coolant fluid flow through the heat exchange arrangement 138 and the heat exchange area Ah, calculated as follows:

热交换布置138必需能够产生从大约4℃到大约10℃的范围内的对流温差Δt1,使得热交换布置138能够从用于冷冻导管尖端133的外表面的热电模块热侧136到用于冷冻治疗部位处的人体组织的大约-15℃到大约-30℃之间的冷冻温度进行热传递。The heat exchange arrangement 138 must be capable of producing a convective temperature difference Δt1 in the range from about 4°C to about 10°C, so that the heat exchange arrangement 138 can move from the thermoelectric module hot side 136 for the outer surface of the cryocatheter tip 133 to the thermoelectric module hot side 136 for cryotherapy. The heat transfer is performed at freezing temperatures of between about -15°C and about -30°C of human tissue at the site.

本发明的热交换布置的散热器实施方案具有相对低的热传递系数h,并且因此设计成与热电模块热侧占用面积Af相比,具有较大的热交换面积Ah。本发明的热交换布置的射流冲击实施方案具有相对高的热传递系数h,并且因此可以设计成利用热电模块的可用的热侧占用面积Af作为热交换面积Ah,而不像按照散热器实施方案那样需要另外的热交换面积。The heat sink embodiment of the heat exchange arrangement of the present invention has a relatively low heat transfer coefficient h and is therefore designed to have a large heat exchange area Ah compared to the thermoelectric module hot side footprint Af. The jet impingement embodiment of the heat exchange arrangement of the invention has a relatively high heat transfer coefficient h and can therefore be designed to utilize the available hot side footprint Af of the thermoelectric module as the heat exchange area Ah unlike in accordance with the heat sink embodiment That requires additional heat exchange area.

热交换布置的散热器实施方案Radiator implementation of heat exchange arrangement

图5展示了开放冲洗导管尖端132A,其包含与导管部件131A的纵轴相同方向的纵向热电模块134,以及构成热交换布置138的散热器模块200。示范性热电模块134是TECMicrosystems GmbH的零件编号1MD03-036-4,其具有接近20mm2的热电模块热侧占用面积。FIG. 5 shows an open irrigation catheter tip 132A comprising longitudinal thermoelectric modules 134 oriented in the same direction as the longitudinal axis of catheter part 131A, and heat sink modules 200 constituting a heat exchange arrangement 138 . An exemplary thermoelectric module 134 is part number 1MD03-036-4 from TECMicrosystems GmbH, which has a thermoelectric module hot side footprint of approximately 20 mm2 .

导管尖端132A设计成能确保跨越邻近组件的最小温差以便于冷冻人体组织。因此,导管尖端132A利用高级别空隙填充材料,其具有大约10w/m℃范围内的导热系数k。合适的空隙填充材料尤其包含AI thecnologyInc的超高导热性环氧树脂糊状粘合剂ME7159,www.aithecnology.com。Catheter tip 132A is designed to ensure minimal temperature differential across adjacent components to facilitate freezing of human tissue. Accordingly, catheter tip 132A utilizes a high-grade void-fill material with a thermal conductivity k in the range of approximately 10 w/m°C. Suitable gap filling materials include AI thecnology Inc's Ultra High Thermal Conductivity Epoxy Paste Adhesive ME7159, www.aithecnology.com, among others.

导管尖端132A包含导管侧壁180,其具有纵向切口181,所述纵向切口181随导管侧壁180延伸,用于收纳纵向热电模块134和散热器模块200。热电模块134具有热电模块热侧136,其与热电模块冷侧137对置,热电模块冷侧137面朝导管侧壁180,以冷冻导管侧壁180,从而冷冻导管圆顶133。导管尖端132A包含:第一间隙填充材料层182,用于将热电模块冷侧137安装在导管侧壁180上;以及第二间隙填充材料层183,用于将散热器模块200安装在热电模块热侧136上。空隙填充材料层182和183具有厚度L,厚度L通常在50μm到100μm的范围内。散热器模块200具有面朝热电模块热侧136的最下壁201。Conduit tip 132A includes a conduit sidewall 180 having a longitudinal cutout 181 extending therewith for receiving longitudinal thermoelectric module 134 and heat sink module 200 . Thermoelectric module 134 has a thermoelectric module hot side 136 opposite a thermoelectric module cold side 137 that faces toward conduit sidewall 180 to freeze conduit sidewall 180 and thereby conduit dome 133 . Conduit tip 132A includes a first layer of gap-fill material 182 for mounting thermoelectric module cold side 137 on conduit sidewall 180, and a second layer of gap-fill material 183 for mounting heat sink module 200 on the thermoelectric module hot side. on side 136. The layers of void-fill material 182 and 183 have a thickness L, typically in the range of 50 μm to 100 μm. The heat sink module 200 has a lowermost wall 201 facing towards the hot side 136 of the thermoelectric module.

这个导管尖端构造引入两个额外温差Δt2和Δt3,使得热侧温度Thot的计算方式如下:This catheter tip configuration introduces two additional temperature differences Δt2 and Δt3, so that the hot side temperature Thot is calculated as follows:

(1) Thot=Tin+Δt1+Δt2+Δt3(1) Thot=Tin+Δt1+Δt2+Δt3

其中Δt2是第二间隙填充层183两端的温差,并且计算方式如下:where Δt2 is the temperature difference across the second gap-fill layer 183, and is calculated as follows:

并且其中Δt3是散热器模块200的最下表面201两端的温差,并且估计为3℃,这是由于从热电模块热侧136到最下壁201的大约400Kw/m2的非常高的热通量密度。and where Δt3 is the temperature difference across the lowermost surface 201 of the heat sink module 200 and is estimated to be3 °C due to the very high heat flux of about 400 Kw/m from the thermoelectric module hot side 136 to the lowermost wall 201 density.

假设散热器模块200具有热传递系数h=10000w/m2℃,并且热交换面积Ah等于热电模块的热侧占用面积20mm2=20×10-6m2,则根据等式(3)。Assuming that the heat sink module 200 has a heat transfer coefficient h=10000w/m2 °C, and the heat exchange area Ah is equal to the hot side occupied area of the thermoelectric module 20mm2 =20×10−6 m2 , then according to equation (3).

基于以上技术细节,Δt2的计算方式如下:Based on the above technical details, the calculation method of Δt2 is as follows:

将Tin、Δt1、Δt2和Δt3的值代入到等式(1)中后,热电模块热侧136具有如下热侧温度Thot:After substituting the values of Tin, Δt1, Δt2 and Δt3 into equation (1), the thermoelectric module hot side 136 has the following hot side temperature Thot:

Thot=Tin+Δt1+Δt2+Δt3=5℃+2℃+3℃+37℃=47℃Thot=Tin+Δt1+Δt2+Δt3=5°C+2°C+3°C+37°C=47°C

使得其热电模块冷侧137根据等式(2)具有高于冷冻温度:Such that its thermoelectric module cold side 137 has a temperature above freezing according to equation (2):

Tcold=Thot-35℃=47℃-35℃=+12℃Tcold=Thot-35℃=47℃-35℃=+12℃

出于说明性目的,为了将导管尖端132A冷冻到-17℃,热侧温度Thot必须止于18℃。可以通过提供散热器模块200实现这一点,散热器模块200具有94mm2的热交换面积Ah,使得对流温差Δt1是:For illustrative purposes, in order to freeze catheter tip 132A to -17°C, the hot side temperature Thot must stop at 18°C. This can be achieved by providing a radiator module 200 with a heat exchange area Ah of 94mm2 such that the convective temperature difference Δt1 is:

并且热侧温度Thot因此是:and the hot side temperature Thot is thus:

Thot=Tin+Δt1+Δt2+Δt3=5℃+2℃+3℃+8℃=18℃Thot=Tin+Δt1+Δt2+Δt3=5℃+2℃+3℃+8℃=18℃

从而得到期望的热电模块冷侧冷冻温度:Thus, the desired freezing temperature of the cold side of the thermoelectric module is obtained:

Tcold=Thot-35℃=18℃-35℃=-17℃Tcold=Thot-35℃=18℃-35℃=-17℃

将热电模块冷侧137安装在导管侧壁180上的第一间隙填充材料层182将有待吸收的人体热能Q1从有待冷冻的人体组织传递到热交换布置138。如上所述,Q1在大约1.5W与2W之间,这大约是必需从热电模块热侧136耗散到热交换布置138的热能Q的四分之一。第一间隙填充材料层182在其两端产生大约0.5℃的可忽略的温降,使得导管侧壁180和导管圆顶133的温度与热电模块冷侧137几乎相同。The first layer 182 of gap-filling material mounting the cold side 137 of the thermoelectric module on the conduit side wall 180 transfers the body thermal energy Q1 to be absorbed from the body tissue to be frozen to the heat exchange arrangement 138 . As mentioned above, Q1 is between about 1.5 W and 2 W, which is about a quarter of the thermal energy Q that must be dissipated from the hot side 136 of the thermoelectric module to the heat exchange arrangement 138 . The first gap-fill material layer 182 produces a negligible temperature drop of about 0.5° C. across it, so that the temperature of the conduit sidewall 180 and conduit dome 133 is nearly the same as the thermoelectric module cold side 137 .

图6到图14展示了五种不同的散热器模块200,其可以容易设计成具有比热电模块的热侧占用面积大至少四倍的热交换面积。Figures 6 to 14 illustrate five different heat sink modules 200 that can easily be designed with a heat exchange area at least four times larger than the hot side footprint of a thermoelectric module.

图6和图7展示了导管尖端132A,其具有横向热电模块和散热器模块200,散热器模块200实施为盘管散热器202。盘管散热器202包含盘管203,其盘绕在中心圆柱形芯体204上,中心圆柱形芯体204安装在热电模块热侧136上。盘管203具有大约2.5mm的平均直径AD1和整体管件长度LI,其中:FIGS. 6 and 7 illustrate a conduit tip 132A with a transverse thermoelectric module and a heat sink module 200 implemented as a coil heat sink 202 . The coil heat sink 202 comprises a coil 203 which is coiled around a central cylindrical core 204 which is mounted on the hot side 136 of the thermoelectric module. Coiled tubing 203 has an average diameter AD1 of approximately 2.5 mm and an overall tubing length LI, where:

L1=Πx AD1x NL1=Πx AD1x N

其中N是围绕芯体204的匝数。8匝的盘管散热器202具有热交换面积Ah=II×0.5×63=99mm2where N is the number of turns around the core 204 . The 8-turn coil radiator 202 has a heat exchange area Ah=II×0.5×63=99mm2 .

图8展示导管尖端132A,其具有纵向热电模块134和散热器模块200,散热器模块200实施为多孔散热器206。多孔散热器206可以由一系列导热材料形成,例如金属、碳基材料及其类似物。多孔散热器206具有通过其材料比面积(m2/gram)确定的热交换面积。FIG. 8 shows a conduit tip 132A with a longitudinal thermoelectric module 134 and a heat sink module 200 implemented as a porous heat sink 206 . Porous heat spreader 206 may be formed from a range of thermally conductive materials, such as metals, carbon-based materials, and the like. The porous heat sink 206 has a heat exchange area determined by its material specific area (m2 /gram).

图9和图10展示导管尖端132A,其具有纵向热电模块134和散热器模块200,散热器模块200实施为鳍片式散热器207。鳍片式散热器207包含底座部件208,其具有许多鳍片209。鳍片式散热器207具有热交换面积Ah,其中Ah=2×[NF×B+(NF-1)×S]×L,其中NF是鳍片数目,B是鳍片高度,S鳍片之间的间隔,并且L是鳍片长度。9 and 10 show a conduit tip 132A with a longitudinal thermoelectric module 134 and a heat sink module 200 implemented as a finned heat sink 207 . The finned heat sink 207 includes a base member 208 having a number of fins 209 . The finned heat sink 207 has a heat exchange area Ah, wherein Ah=2×[NF×B+(NF-1)×S]×L, wherein NF is the number of fins, B is the height of the fins, and the distance between the S fins is , and L is the fin length.

图11和图12展示了导管尖端132B,其具有横向热电模块134和散热器模块200,散热器模块200也实施为盘管散热器202。盘管散热器202包含盘管211,其具有两个或更多个绕组212,通过例如焊接的导热结合工艺安装在热电模块热侧136上。盘管211具有大约0.5mm的管件内径和大约40mm到60mm之间的整体管件长度,使得其热交换面积大约等于90mm2FIGS. 11 and 12 illustrate a conduit tip 132B with a transverse thermoelectric module 134 and a heat sink module 200 that is also implemented as a coil heat sink 202 . The coil heat sink 202 comprises a coil 211 having two or more windings 212 mounted on the thermoelectric module hot side 136 by a thermally conductive bonding process such as soldering. The coil 211 has a tube inner diameter of about 0.5 mm and an overall tube length of between about 40 mm and 60 mm such that its heat exchange area is approximately equal to 90 mm2 .

图13和图14展示导管尖端132B,其具有横向热电模块134和散热器模块200,散热器模块200实施为水平导线网部件214的散热器堆叠213。图13和图14展示导线网部件214,其采用导线网盘的形式,通常具有大约2mm到3mm的直径,并且是由0.11mm厚的金属形成。散热器堆叠213可包含同样竖直的导线网部件。导线网部件可以形成为不同形状,尤其包含矩形、椭圆形及其类似物。13 and 14 show a conduit tip 132B with a transverse thermoelectric module 134 and a heat sink module 200 implemented as a heat sink stack 213 of horizontal wire mesh members 214 . Figures 13 and 14 show a wire mesh member 214 in the form of a wire mesh disk, typically having a diameter of about 2 mm to 3 mm, and formed from 0.11 mm thick metal. The heat sink stack 213 may contain wire mesh components that are also vertical. The wire mesh components may be formed in different shapes including, inter alia, rectangles, ovals and the like.

导线网盘214通常具有每英寸100根导线的网状密度。举例来说,可以从美国加州伯克利94710的TWP,Inc.购买到铜制成的零件编号100x100C0022W48T。散热器堆叠213包含大约30个圆盘,总高度为3mm到3.5mm。散热器堆叠213具有通过N×AS确定的热交换面积,其中N是圆盘数目,AS是每一导线网盘的总表面积。Wire grid tray 214 typically has a mesh density of 100 wires per inch. For example, part number 100x100C0022W48T in copper can be purchased from TWP, Inc., Berkeley, CA 94710, USA. The heat sink stack 213 contains approximately 30 discs with a total height of 3mm to 3.5mm. The heat sink stack 213 has a heat exchange area determined by N x AS, where N is the number of disks and AS is the total surface area of each wire grid disk.

热交换布置的射流冲击实施方案Jet impingement implementation of heat exchange arrangement

射流冲击模块是基于一或多个冷却剂流体射流对冲击表面的冲击,以便提供比散热器模块更有效的热传递,从而使得射流冲击模块能够将导管尖端冷冻到比散热器模块更低的冷冻温度。The jet impingement module is based on the impact of one or more coolant fluid jets on the impingement surface in order to provide more efficient heat transfer than the radiator module, thus enabling the jet impingement module to freeze the tip of the conduit to a lower freezing than the radiator module temperature.

图15、图16A和图16B展示开放冲洗冷冻导管130A,其具有导管尖端132A,导管尖端132A具有横向热电模块134和射流冲击模块300,其构成热交换布置138,用于形成冰球IB。射流冲击模块300包含壳体301,其密封在热电模块134上以形成热交换空腔302。壳体301可以由非导热材料形成,例如生物塑料,其比例如铂、铱及其类似物的生物相容性材料便宜很多。壳体301可以通过适合于医疗零件的低成本工艺(例如微量注射模制)制造的。此外,壳体301可以由具有低热膨胀系数的与热电模块的陶瓷板相容的塑料以在操作期间减少热应力。Figures 15, 16A and 16B show an open irrigation cryocatheter 130A having a catheter tip 132A with a transverse thermoelectric module 134 and a jet impingement module 300 that constitute a heat exchange arrangement 138 for forming an ice puck IB. The jet impingement module 300 includes a housing 301 that is sealed to the thermoelectric module 134 to form a heat exchange cavity 302 . Housing 301 may be formed from a thermally non-conductive material, such as bioplastic, which is much less expensive than biocompatible materials such as platinum, iridium, and the like. The housing 301 can be manufactured by a low-cost process suitable for medical parts, such as microinjection molding. Additionally, the housing 301 may be made of a plastic with a low coefficient of thermal expansion that is compatible with the ceramic plates of the thermoelectric modules to reduce thermal stress during operation.

射流冲击模块300包含单个喷嘴303,用于优选地将冷却剂流体射流在冲击位点304处直接冲击到热电模块热侧136上,热电模块热侧136构成冲击表面。喷嘴303具有喷嘴内径D和与热电模块热侧136相距的冲击高度H。喷嘴通常具有0.3mm到大约0.7mm范围内的喷嘴内径D和从大约0.3mm到大约0.7mm的范围内的冲击高度H。The jet impingement module 300 comprises a single nozzle 303 for impinging a jet of coolant fluid, preferably at an impingement site 304, directly onto the thermoelectric module hot side 136, which constitutes the impingement surface. The nozzle 303 has a nozzle inner diameter D and an impingement height H from the thermoelectric module hot side 136 . The nozzle typically has a nozzle inner diameter D in the range of 0.3 mm to about 0.7 mm and an impact height H in the range of from about 0.3 mm to about 0.7 mm.

图16B展示每一冷却剂流体射流引起假想圆形冲击区306上的热传递,圆形冲击区306具有冲击区半径R,但是实际冲击区306的形状由壳体301限界。但是每一冷却剂流体射流具有有效的假想圆形冲击区307,其最大冲击区半径是喷嘴内径D的大小的两倍,超过这个半径,冲击区306与307之间的环状区域中的热传递会大幅减少。因此,如果R>3D,则添加喷嘴在热力学上是值得的,以优选地去掉超出冲击区307的任何环状区域。因此,射流冲击模块300可包含单个喷嘴303或m×n的喷嘴303的阵列,其中m和n中的至少一个>1,这取决于热电模块热侧136的大小和尺寸。16B shows that each coolant fluid jet causes heat transfer over an imaginary circular impact zone 306 having an impact zone radius R, but the shape of the actual impact zone 306 is bounded by the housing 301 . But each coolant fluid jet has an effectively imaginary circular impact zone 307 with a maximum impact zone radius twice the size of the nozzle inner diameter D, beyond which heat in the annular region between the impact zones 306 and 307 Transfers will be drastically reduced. Therefore, if R > 3D, it is thermodynamically worthwhile to add nozzles to preferably remove any annular region beyond the impingement zone 307 . Thus, the jet impingement module 300 may comprise a single nozzle 303 or an mxn array of nozzles 303 , where at least one of m and n >1, depending on the size and dimensions of the thermoelectric module hot side 136 .

射流冲击模块300具有热传递系数h,其取决于如下两个比率:The jet impingement module 300 has a heat transfer coefficient h which depends on the following two ratios:

第一,比率H/D,在最大体积流量为35cc/min并且具体特定的喷嘴直径的情况下,当从喷嘴303流出的冷却剂流体射流的速度在从大约1.5m/sec到大约7.0m/sec的范围时,比率H/D优选地在从大约0.5到大约1.5的范围内。First, the ratio H/D, at a maximum volumetric flow rate of 35 cc/min and a specific nozzle diameter, when the velocity of the coolant fluid jet flowing out of the nozzle 303 is from about 1.5 m/sec to about 7.0 m/sec sec, the ratio H/D is preferably in the range from about 0.5 to about 1.5.

第二,比率R/D,其优选地在2≤R/D≤4的范围内,因为喷嘴太接近彼此会让制造变得复杂,而且可能会导致其相应的冷却剂流体射流彼此干扰。Second, the ratio R/D, which is preferably in the range 2≦R/D≦4, since nozzles being too close to each other complicates manufacturing and may cause their respective coolant fluid jets to interfere with each other.

前述射流冲击论文阐述了射流冲击模块300具有根据下面等式的热传递系数h:The aforementioned jet impingement paper states that the jet impingement module 300 has a heat transfer coefficient h according to the following equation:

其中Nu是所谓的努赛尔数,k是射流冲击流体的导热系数,并且D是以米为单位的喷嘴内径。举例来说,0.9%NaCl生理盐水具有导热系数k≈0.58w/m℃。where Nu is the so-called Nusselt number, k is the thermal conductivity of the jet impinging on the fluid, and D is the inner diameter of the nozzle in meters. For example, 0.9% NaCl physiological saline has a thermal conductivity k≈0.58w/m°C.

前述射流冲击论文还陈述了根据等式(5)计算努赛尔数Nu:The aforementioned jet impingement paper also states that the Nusselt number Nu is calculated according to equation (5):

(5)Nu=0.75×Re1/2×Pr1/3(5) Nu=0.75×Re1 /2× Pr1/3

其中Re是雷诺数,Pr是普兰陀数。where Re is the Reynolds number and Pr is the Prandeau number.

根据本发明的射流冲击模块300具有从大约400到大约1400的范围内的雷诺数,从大约9到大约11的范围内的普兰陀数,以及从大约35,000w/m2℃到大约55,000w/m2℃的范围内的热传递系数h,这比散热器模块的热传递系数大三倍与六倍之间。The jet impingement module 300 according to the present invention has a Reynolds number in the range of from about 400 to about 1400, a Prandau number in the range of from about 9 to about 11, and a range of from about 35,000 w/m2 °C to about 55,000 w/ The heat transfer coefficient h in the range of m2 °C, which is between three and six times greater than that of the radiator module.

不同于散热器模块200,射流冲击模块300在热侧温度Thot与冷却剂流体之间具有单个温差,即对流温差Δt1使得Thot=Tin+Δt1。对流温降Δt1根据等式(3)计算,其中热交换面积A等于热侧占用面积。Unlike the radiator module 200, the jet impingement module 300 has a single temperature difference between the hot side temperature Thot and the coolant fluid, ie a convective temperature difference Δt1 such that Thot=Tin+Δt1. The convective temperature drop Δt1 is calculated according to equation (3), where the heat exchange area A is equal to the area occupied by the hot side.

图17和图18展示开放冲洗导管尖端132A,其包含射流冲击模块311,所述射流冲击模块311具有喷嘴313的1×3阵列312,用于从与图5的散热器模块200相同的TECMicrosystems GmbH零件编号1MD03-036-4热电模块314进行热传递。每一喷嘴313具有喷嘴内径D=0.40mm和冲击高度H=0.40mm,使得每一喷嘴313具有0.5<D/H<1.5范围内的比率D/H=1。TEC Microsystems GmbH零件编号1MD03-036-4具有2.8mm宽度、6.6mm长度和接近20mm2热侧占用面积。17 and 18 show an open irrigation conduit tip 132A comprising a jet impingement module 311 with a 1×3 array 312 of nozzles 313 for extraction from the same TECMicrosystems GmbH as the radiator module 200 of FIG. Part No. 1MD03-036-4 Thermoelectric Module 314 for heat transfer. Each nozzle 313 has a nozzle inner diameter D=0.40 mm and an impact height H=0.40 mm, so that each nozzle 313 has a ratio D/H=1 in the range of 0.5<D/H<1.5. TEC Microsystems GmbH part number1MD03-036-4 has a width of 2.8mm, a length of 6.6mm and a hot side footprint of approximately 20mm2.

射流冲击模块311需要三个喷嘴313以实际上沿热电模块314的长度进行热传递,如参看现在以下计算所解释:The jet impingement module 311 requires three nozzles 313 to actually transfer heat along the length of the thermoelectric module 314, as explained with reference now to the following calculations:

射流冲击模块311沿其长度具有三个等距隔开的喷嘴313,使得每一冲击区半径R=1.15,邻近喷嘴313间隔开2.3mm,并且两个末端喷嘴313各自与热电模块314的相反末端间隔开1.15mm。因此,比率R/D将为1.15/0.40=2.75,这在R/D的最优值范围内因此是可接受的。The jet impingement module 311 has three equally spaced nozzles 313 along its length such that each impingement zone radius R=1.15, adjacent nozzles 313 are spaced 2.3 mm apart, and the two end nozzles 313 are each connected to the opposite end of the thermoelectric module 314 spaced 1.15mm apart. Therefore, the ratio R/D will be 1.15/0.40 = 2.75, which is within the optimum value range for R/D and therefore acceptable.

射流冲击模块311可能利用单个喷嘴313沿热电模块314的宽度有效地进行热传递,如现在在下面的第二计算中所解释:The jet impingement module 311 may utilize a single nozzle 313 for efficient heat transfer along the width of the thermoelectric module 314, as now explained in the second calculation below:

射流冲击模块311沿其宽度具有单个中心喷嘴313,使得其冲击区半径R=2.8mm/2=1.4mm,并且比率R/D是1.4/0.40=3.5,这在可接受的R/D范围内。The jet impingement module 311 has a single central nozzle 313 along its width such that its impingement zone radius R=2.8mm/2=1.4mm and the ratio R/D is 1.4/0.40=3.5 which is within the acceptable range of R/D .

在射流冲击模块311的情况下,雷诺数具有410值,并且普兰陀数具有所有值,使得根据等式(5)Nu=34并且根据等式(4),其热传递系数h=34×0.58/0.4×10-3=49000w/m2℃。如已经限定的,在射流冲击冷却Ah=Af并且因此根据等式(3),射流冲击模块314具有对流温差Δt1:In the case of the jet impingement module 311, the Reynolds number has a value of 410 and the Prandot number has all values such that according to equation (5) Nu=34 and according to equation (4) its heat transfer coefficient h=34×0.58 /0.4×10-3 =49000w/m2 °C. As already defined, at jet impingement cooling Ah=Af and thus according to equation (3), the jet impingement module 314 has a convective temperature difference Δt1:

热电模块热侧136具有热侧温度Thot=Tin+Δt1=5℃+8℃=13℃,使得热电模块冷侧137具有冷侧温度Tcold=Thot-35℃=13℃-35℃=-22℃,这在预期的冷冻温度范围内。The hot side 136 of the thermoelectric module has a hot side temperature Thot=Tin+Δt1=5°C+8°C=13°C, so that the cold side 137 of the thermoelectric module has a cold side temperature Tcold=Thot-35°C=13°C-35°C=-22°C , which is within the expected freezing temperature range.

图19展示循环导管尖端132B,其具有横向热电模块134和具有单个喷嘴303的射流冲击模块300。FIG. 19 shows a circulation conduit tip 132B with a transverse thermoelectric module 134 and a jet impingement module 300 with a single nozzle 303 .

冷冻导管设计cryocatheter design

图20到图27展示了根据本发明的冷冻导管的不同特征。所述特征并不是相互排斥的,并且冷冻导管可包含一或多个特征的组合。此外,冷冻导管可包含纵向热电模块或横向热电模块。并且,冷冻导管可包含散热器模块或射流冲击模块。Figures 20 to 27 illustrate different features of a cryocatheter according to the invention. The features are not mutually exclusive, and a cryocatheter may comprise a combination of one or more features. Additionally, the cryocatheter may contain longitudinal thermoelectric modules or transverse thermoelectric modules. Also, the cryoduct may contain a radiator module or a jet impingement module.

图20是用于冷冻导管尖端132B的拖尾区部以便形成冰球IB的循环冷冻导管130B的纵截面,拖尾区部部署在其引导导管圆顶133后面。冷冻导管130B包含金属板160,其与热电模块冷侧137高导热接触。金属板160具有周边圆柱形表面160A,用于冷冻与其接触的人体组织。从金属板160延伸到导管圆顶133的导管尖端132B的长度优选地由例如聚酰胺的非高导热性材料制成。对于需要导电性的临床应用,导管圆顶133可以由金属制成。Figure 20 is a longitudinal section of a circulating cryoduct 130B for the trailing section of the cryoduct tip 132B to form the puck IB, the trailing section being deployed behind its guide duct dome 133. The cryoconduit 130B comprises a metal plate 160 in high thermal conductivity contact with the thermoelectric module cold side 137 . Metal plate 160 has a peripheral cylindrical surface 160A for freezing human tissue in contact therewith. The length of catheter tip 132B extending from metal plate 160 to catheter dome 133 is preferably made of a material that is not highly thermally conductive, such as polyamide. For clinical applications requiring electrical conductivity, catheter dome 133 may be made of metal.

图21是开放冲洗冷冻导管130A的纵截面,开放冲洗冷冻导管130A具有导管尖端132A,其包含纵向热电模块134A和横向热电模块134B以及热交换布置138,用于同时从这两个热电模块134A和134B进行热传递。热电模块134A和134B可以视为具有单个热侧,其热侧占用面积等于其各个热侧占用面积的总和。21 is a longitudinal section of an open irrigation cryocatheter 130A having a catheter tip 132A containing a longitudinal thermoelectric module 134A and a transverse thermoelectric module 134B and a heat exchange arrangement 138 for simultaneous flow from both thermoelectric modules 134A and 134B. 134B for heat transfer. Thermoelectric modules 134A and 134B may be considered to have a single hot side with a hot side footprint equal to the sum of their individual hot side footprints.

图22和图23展示了开放冲洗冷冻导管系统100A,其包含开放冲洗冷冻导管130A和RF消融器114,用于在治疗部位处执行RF消融,RF消融器114用导线150连接到圆顶133。22 and 23 illustrate open irrigation cryocatheter system 100A comprising open irrigation cryocatheter 130A and RF ablation device 114 connected to dome 133 with wire 150 for performing RF ablation at the treatment site.

图24和图25展示了开放冲洗冷冻导管系统100A,其包含开放冲洗冷冻导管130A,其具有导管尖端132A,导管尖端132A带有采集装置161,用于在治疗部位处采集患者信息。示范性采集装置161尤其包含用于感测生理参数的传感器、相机及其类似物。示范性传感器尤其包含超声波传感器、压力表及其类似物。控制器103通过信号线162连接到采集装置161。24 and 25 illustrate an open irrigation cryocatheter system 100A comprising an open irrigation cryocatheter 130A having a catheter tip 132A with a collection device 161 for collecting patient information at the treatment site. Exemplary acquisition devices 161 include, inter alia, sensors, cameras, and the like for sensing physiological parameters. Exemplary sensors include ultrasonic sensors, pressure gauges, and the like, among others. The controller 103 is connected to the acquisition device 161 through a signal line 162 .

图26和图27展示了循环冷冻导管系统100B,其包含空管腔163,用于在治疗部位引入手术工具。此类手术工具可以例如是连接到外部抽吸泵的活检针头165。Figures 26 and 27 illustrate a circulating cryocatheter system 100B comprising a hollow lumen 163 for introducing surgical tools at the treatment site. Such a surgical tool may be, for example, a biopsy needle 165 connected to an external aspiration pump.

虽然已相对于有限数目的实施例描述了本发明,但是应了解,在所附权利要求书的范围内可以进行本发明的许多变化、修改和其它应用。Although the invention has been described with respect to a limited number of embodiments, it should be understood that many variations, modifications and other applications of the invention may be made within the scope of the appended claims.

Claims (13)

CN201380076100.6A2013-04-302013-04-30 Cooling ducts for thermoelectric modules with coolant fluid coolingExpired - Fee RelatedCN105377167B (en)

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
PCT/IL2013/050363WO2013164820A1 (en)2012-04-302013-04-30Cyrocatheter with coolant fluid cooled thermoelectric module

Publications (2)

Publication NumberPublication Date
CN105377167A CN105377167A (en)2016-03-02
CN105377167Btrue CN105377167B (en)2018-11-09

Family

ID=55400961

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201380076100.6AExpired - Fee RelatedCN105377167B (en)2013-04-302013-04-30 Cooling ducts for thermoelectric modules with coolant fluid cooling

Country Status (1)

CountryLink
CN (1)CN105377167B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN111050709A (en)*2017-07-282020-04-21凯希特许有限公司System and method for temperature contrast therapy
US10756598B2 (en)2017-10-022020-08-25Ge Aviation Systems LlcMethod and apparatus for cooling a rotor assembly
CN110215275A (en)*2019-07-162019-09-10孙悦A kind of freezer unit for treating preauricular flstula
CN110215276A (en)*2019-07-162019-09-10孙悦A kind of refrigerating plant for treating preauricular flstula

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5139496A (en)*1990-12-201992-08-18Hed Aharon ZUltrasonic freeze ablation catheters and probes
US5254116A (en)*1991-09-061993-10-19Cryomedical Sciences, Inc.Cryosurgical instrument with vent holes and method using same
EP2632372A4 (en)*2010-10-272015-04-01Cryomedix LlcCryoablation apparatus with enhanced heat exchange area and related method

Also Published As

Publication numberPublication date
CN105377167A (en)2016-03-02

Similar Documents

PublicationPublication DateTitle
US11160596B2 (en)Catheter with jet impingement cooled thermoelectric module
US8298221B2 (en)Disposable sheath with replaceable console probes for cryosurgery
CN102843986B (en)There is the heat cryoprobe of fluid capacity of inside
US5254116A (en)Cryosurgical instrument with vent holes and method using same
US9554842B2 (en)Cryoprobe for low pressure systems
US5452582A (en)Cryo-probe
ES2928221T3 (en) Liquid-Based Near-Critical Endovascular Cryoablation Catheter
US5520682A (en)Cryosurgical instrument with vent means and method using same
US6451012B2 (en)Cryosurgical method for endometrial ablation
US8777936B2 (en)Cooling system for a catheter
JP7088478B2 (en) Cryoablation device and cryoablation method
US20080119839A1 (en)Cryosurgical Applicator
CN103228225B (en) Compatible cryogenic cooling systems
CN105228542A (en)Cryoablation treatment system
EP0925045A1 (en)Cryoprobe
CN105377167B (en) Cooling ducts for thermoelectric modules with coolant fluid cooling
JP2009545365A (en) Cryogenic probe for treating enlarged parts of tissue
CN101292897A (en) Hot and cold probe therapy system
US20080114347A1 (en)Closed Loop Cryosurgical System
CN102949235B (en)Probe for tumor cold and hot combined treatment
CN109481001A (en)A kind of cryogenic liquid formula cryoablation equipment
US8298220B2 (en)Cryoprobe with coaxial chambers
CN204618397U (en)A kind of cryotherapy probe
AU754411B2 (en)Cryoprobe

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20181109


[8]ページ先頭

©2009-2025 Movatter.jp