技术领域technical field
本发明涉及一种用于超薄半导体圆片的临时键合方法及去键合方法。The invention relates to a temporary bonding method and a debonding method for ultra-thin semiconductor wafers.
背景技术Background technique
随着半导体器件频率的不断攀升,芯片厚度对器件性能产生重要影响。薄芯片具有提高散热效率、机械性能与电性能,减小封装体积,减轻重量等优势,具有较大市场应用前景。半导体器件的背面工艺一般包括衬底减薄、通孔刻蚀、背面金属化、芯片划切等步骤。由于半导体圆片减薄后机械强度较弱,且由于应力的原因容易发生卷曲,导致圆片易碎,无法操作;当半导体圆片的衬底减薄至40um甚至更薄至20um时,圆片的裂片几率随半导体材料的厚度减少而呈几何倍数递增。As the frequency of semiconductor devices continues to rise, chip thickness has an important impact on device performance. Thin chips have the advantages of improving heat dissipation efficiency, mechanical properties and electrical properties, reducing packaging volume, reducing weight, etc., and have great market application prospects. The backside process of semiconductor devices generally includes steps such as substrate thinning, through hole etching, backside metallization, and chip dicing. Because the mechanical strength of the semiconductor wafer is weak after thinning, and it is prone to curling due to stress, the wafer is fragile and cannot be handled; when the substrate of the semiconductor wafer is thinned to 40um or even thinner to 20um, the wafer The probability of fragmentation increases geometrically as the thickness of the semiconductor material decreases.
因此半导体圆片需要在背面工艺过程中贴附机械强度好的载体片来控制裂片问题,目前行业内采用的晶圆键合方法一般是在在两块晶圆之间涂覆键合蜡,然后再采用键合机将两块晶圆键合在一起,以临时载片为依托进行后续工艺制作,可以提升超薄晶圆的强度。Therefore, semiconductor wafers need to attach a carrier sheet with good mechanical strength to control the cracking problem during the backside process. The wafer bonding method currently used in the industry is generally to apply bonding wax between two wafers, and then Then use a bonding machine to bond the two wafers together, and use the temporary carrier as the basis for subsequent process production, which can improve the strength of the ultra-thin wafer.
针对上述临时键合的晶圆进行分离一般有以下两种方法:第一种,利用溶剂从键合的两块晶圆的边缘溶解键合时的键合蜡,第二种就是采用热力剪切分离。第一种方法,溶解剂从晶圆边缘处慢慢溶解键合蜡,溶解剂到达晶圆中心的时间太长,分离效率太低;第二种方法,在热剪贴时半导体材料与金属材料热胀冷缩系数不一致,导致圆片分离后金属粘附力下降,且剪切时容易损坏晶圆,成品率较低。There are generally two methods for separating the temporarily bonded wafers above: the first method is to use a solvent to dissolve the bonding wax from the edges of the two bonded wafers; the second method is to use thermal shear separate. In the first method, the dissolving agent slowly dissolves the bonding wax from the edge of the wafer. The time for the dissolving agent to reach the center of the wafer is too long, and the separation efficiency is too low; The inconsistent expansion and contraction coefficients lead to a decrease in the metal adhesion after the wafer is separated, and the wafer is easily damaged during shearing, resulting in a low yield.
当半导体衬底减薄至40um甚至更薄时,上述2种分离方法在圆片分离后的圆片转移过程中,存在极高的裂片率,不适合超薄芯片的生产。且圆片与载体分离后还需要经历清洗、划切等工艺步骤,在此工艺过程中造成裂片率始终是业界的难题,严重阻碍超薄芯片在半导体行业的应用。When the semiconductor substrate is thinned to 40um or even thinner, the above two separation methods have a very high fragmentation rate in the wafer transfer process after wafer separation, which is not suitable for the production of ultra-thin chips. Moreover, after the wafer is separated from the carrier, it needs to undergo cleaning, scribing and other process steps. During this process, the fragmentation rate is always a problem in the industry, which seriously hinders the application of ultra-thin chips in the semiconductor industry.
发明内容Contents of the invention
发明目的:本发明的目的是提供一种能够降低超薄半导体圆片在工艺过程中的裂片率的用于超薄半导体圆片的临时键合方法及去键合方法。Purpose of the invention: The purpose of the present invention is to provide a temporary bonding method and debonding method for ultra-thin semiconductor wafers that can reduce the split rate of ultra-thin semiconductor wafers in the process.
技术方案:为达到此目的,本发明采用以下技术方案:Technical scheme: in order to achieve this goal, the present invention adopts following technical scheme:
本发明所述的用于超薄半导体圆片的临时键合方法及去键合方法,其中:Temporary bonding method and debonding method for ultra-thin semiconductor wafers according to the present invention, wherein:
所述键合方法包括以下的步骤:Described bonding method comprises the following steps:
S1:清洗半导体圆片和第一载体片的表面;S1: cleaning the surface of the semiconductor wafer and the first carrier sheet;
S2:将半导体圆片和第一载体片的正面涂覆第一键合剂,并进行热烘固化;S2: Coating the first bonding agent on the front side of the semiconductor wafer and the first carrier sheet, and performing heat curing;
S3:将半导体圆片和第一载体片正面相对,通过第一键合剂键合,形成半导体圆片与第一载体片的初步键合体;S3: facing the semiconductor wafer and the first carrier sheet face to face, and bonding the semiconductor wafer and the first carrier sheet through the first bonding agent to form a preliminary bonded body of the semiconductor wafer and the first carrier sheet;
S4:将半导体圆片与第一载体片的键合体浸泡在第一有机试剂中,去除半导体圆片边缘的第一键合剂,形成缝隙;S4: Soak the bonding body of the semiconductor wafer and the first carrier sheet in the first organic reagent, remove the first bonding agent on the edge of the semiconductor wafer, and form a gap;
S5:在步骤S4得到的半导体圆片背面涂覆第二键合剂,以填充步骤S4形成的缝隙,并进行固化,形成半导体圆片与第一载体片的最终键合体;S5: coating the second bonding agent on the back of the semiconductor wafer obtained in step S4 to fill the gap formed in step S4, and curing to form the final bonded body of the semiconductor wafer and the first carrier sheet;
所述去键合方法包括以下的步骤:The debonding method comprises the following steps:
S6:将半导体圆片与第一载体片的最终键合体浸泡在第二有机试剂中,去除半导体圆片边缘的第二键合剂,以露出缝隙;S6: Soak the final bonding body of the semiconductor wafer and the first carrier sheet in the second organic reagent, and remove the second bonding agent on the edge of the semiconductor wafer to expose the gap;
S7:将步骤S6得到的半导体圆片固定在第二载体上,并将第二载体放在可施加外力的平台上;S7: fixing the semiconductor wafer obtained in step S6 on the second carrier, and placing the second carrier on a platform on which external force can be applied;
S8:通过外力实现半导体圆片与第一载体片的分离;S8: Realizing the separation of the semiconductor wafer from the first carrier sheet by external force;
S9:使用第一有机试剂清洗步骤S8得到的半导体圆片,去除半导体圆片表面的第一键合剂,得到去键合后的半导体圆片。S9: cleaning the semiconductor wafer obtained in step S8 with the first organic reagent, removing the first bonding agent on the surface of the semiconductor wafer, and obtaining a debonded semiconductor wafer.
进一步,所述半导体圆片的材料为硅、砷化镓、磷化铟或者碳化硅中的任意一种。Further, the material of the semiconductor wafer is any one of silicon, gallium arsenide, indium phosphide or silicon carbide.
进一步,所述第一载体片不与第一键合剂、第二键合剂发生物理化学反应,并且第一载体片采用可重复使用的材料;所述第一键合剂、第二键合剂不与半导体圆片反应。Further, the first carrier sheet does not react physically and chemically with the first bonding agent and the second bonding agent, and the first carrier sheet adopts a reusable material; the first bonding agent and the second bonding agent do not interact with the semiconductor Disk reaction.
进一步,所述第一载体片的尺寸比半导体圆片的尺寸大。Further, the size of the first carrier sheet is larger than that of the semiconductor wafer.
进一步,所述第一键合剂的型号为SPACELIQUIDTR2-50482。Further, the model of the first bonding agent is SPACELIQUIDTR2-50482.
进一步,所述第二键合剂的型号为waferbondHT10.10。Further, the model of the second bonding agent is waferbondHT10.10.
进一步,所述第一有机试剂为第一键合剂的专用去除剂。Further, the first organic reagent is a special remover for the first bonding agent.
进一步,所述第二有机试剂为第二键合剂的专用去除剂。Further, the second organic reagent is a special remover for the second bonding agent.
进一步,所述第二载体采用平整、能够固定半导体圆片的材料。Further, the second carrier is made of a material that is flat and capable of fixing the semiconductor wafer.
有益效果:本发明提供的用于超薄半导体圆片的临时键合方法及去键合方法,能够降低超薄半导体圆片在工艺过程中的裂片率,芯片成品率高;半导体圆片的分离过程不用经过高温解蜡,半导体材料与背面金属间不存在热胀冷缩系数不同导致的粘附力下降的问题;半导体圆片的分离过程不用经过长时间浸泡溶解剂,圆片分离效率高,适合量产;为超薄芯片在半导体行业的推广奠定良好的工艺基础。Beneficial effects: the temporary bonding method and debonding method for ultra-thin semiconductor wafers provided by the present invention can reduce the splitting rate of ultra-thin semiconductor wafers in the process, and the chip yield is high; the separation of semiconductor wafers The process does not need to go through high-temperature dewaxing, and there is no problem of decreased adhesion caused by the difference in thermal expansion and contraction coefficients between the semiconductor material and the back metal; the separation process of the semiconductor wafer does not need to be soaked in a solvent for a long time, and the separation efficiency of the wafer is high. Suitable for mass production; it lays a good technological foundation for the promotion of ultra-thin chips in the semiconductor industry.
附图说明Description of drawings
图1为本发明的步骤S4得到的半导体圆片的结构示意图;Fig. 1 is the structural representation of the semiconductor wafer that step S4 of the present invention obtains;
图2为本发明的步骤S5得到的半导体圆片与第一载体片的最终键合体的结构示意图;2 is a schematic structural view of the final bonded body of the semiconductor wafer and the first carrier sheet obtained in step S5 of the present invention;
图3为本发明的半导体圆片与第一载体片的最终键合体经过圆片减薄、背面通孔及背面金属化后的结构示意图;3 is a schematic structural view of the final bonding body of the semiconductor wafer and the first carrier sheet of the present invention after wafer thinning, backside through holes and backside metallization;
图4为本发明的步骤S7中得到的固定在一起的半导体圆片和第二载体的结构示意图;4 is a schematic structural view of the semiconductor wafer and the second carrier fixed together obtained in step S7 of the present invention;
图5为本发明的步骤S8得到的分离后的半导体圆片的结构示意图;5 is a schematic structural view of the separated semiconductor wafer obtained in step S8 of the present invention;
图6为本发明的步骤S9得到的去键合后的半导体圆片经过划片后的结构示意图。FIG. 6 is a schematic diagram of the structure of the debonded semiconductor wafer obtained in step S9 of the present invention after dicing.
具体实施方式detailed description
本发明提供的用于超薄半导体圆片1的临时键合方法及去键合方法,其中:Temporary bonding method and debonding method for ultra-thin semiconductor wafer 1 provided by the present invention, wherein:
键合方法包括以下的步骤:The bonding method includes the following steps:
S1:清洗半导体圆片1和第一载体片4的表面;S1: cleaning the surfaces of the semiconductor wafer 1 and the first carrier sheet 4;
S2:将半导体圆片1和第一载体片4的正面涂覆第一键合剂2,并进行热烘固化;S2: Coating the front surface of the semiconductor wafer 1 and the first carrier sheet 4 with the first bonding agent 2, and performing heat curing;
S3:将半导体圆片1和第一载体片4正面相对,通过第一键合剂2键合,形成半导体圆片1与第一载体片4的初步键合体;S3: face the semiconductor wafer 1 and the first carrier sheet 4 facing each other, and bond the semiconductor wafer 1 and the first carrier sheet 4 through the first bonding agent 2 to form a preliminary bonded body of the semiconductor wafer 1 and the first carrier sheet 4;
S4:将半导体圆片1与第一载体片4的键合体浸泡在第一有机试剂中,去除半导体圆片1边缘的第一键合剂2,形成缝隙3;S4: Soak the bonding body of the semiconductor wafer 1 and the first carrier sheet 4 in the first organic reagent, remove the first bonding agent 2 on the edge of the semiconductor wafer 1, and form a gap 3;
S5:在步骤S4得到的半导体圆片1背面涂覆第二键合剂5,以填充步骤S4形成的缝隙3,并进行固化,形成半导体圆片1与第一载体片4的最终键合体;S5: coating the second bonding agent 5 on the back of the semiconductor wafer 1 obtained in step S4 to fill the gap 3 formed in step S4, and curing to form the final bonded body of the semiconductor wafer 1 and the first carrier sheet 4;
去键合方法包括以下的步骤:The debonding method includes the following steps:
S6:将半导体圆片1与第一载体片4的最终键合体浸泡在第二有机试剂中,去除半导体圆片1边缘的第二键合剂5,以露出缝隙3;S6: Soak the final bonding body of the semiconductor wafer 1 and the first carrier sheet 4 in the second organic reagent, and remove the second bonding agent 5 on the edge of the semiconductor wafer 1 to expose the gap 3;
S7:将步骤S6得到的半导体圆片1固定在第二载体7上,并将第二载体7放在可施加外力的平台上;S7: fixing the semiconductor wafer 1 obtained in step S6 on the second carrier 7, and placing the second carrier 7 on a platform on which an external force can be applied;
S8:通过外力实现半导体圆片1与第一载体片4的分离;S8: Realize the separation of the semiconductor wafer 1 and the first carrier sheet 4 by external force;
S9:使用第一有机试剂清洗步骤S8得到的半导体圆片1,去除半导体圆片1表面的第一键合剂2,得到去键合后的半导体圆片1。S9: Use the first organic reagent to clean the semiconductor wafer 1 obtained in step S8, remove the first bonding agent 2 on the surface of the semiconductor wafer 1, and obtain the semiconductor wafer 1 after debonding.
半导体圆片1的材料可以为硅、砷化镓、磷化铟或者碳化硅中的任意一种,本实施例中为砷化镓。The material of the semiconductor wafer 1 can be any one of silicon, gallium arsenide, indium phosphide or silicon carbide, and in this embodiment it is gallium arsenide.
第一载体片4的材料为蓝宝石或者玻璃片等机械强度好,不与第一键合剂2、第二键合剂5发生物理化学反应,可重复使用的材料。本实施例中为蓝宝石。The material of the first carrier sheet 4 is a reusable material with good mechanical strength, such as sapphire or glass sheet, which does not have physical and chemical reactions with the first bonding agent 2 and the second bonding agent 5 . In this embodiment, it is sapphire.
为方便后续的去键合工艺操作,第一载体片4的尺寸比半导体圆片1的尺寸大。本实施例中,蓝宝石的直径比砷化镓圆片大4mm-10mm。To facilitate subsequent debonding process operations, the size of the first carrier sheet 4 is larger than that of the semiconductor wafer 1 . In this embodiment, the diameter of the sapphire is 4mm-10mm larger than that of the gallium arsenide wafer.
第一键合剂2应当机械强度弱、粘性适中、易清洗、不与半导体圆片1及第一载体片4反应。本实施例中,第一键合剂2的型号为日化精工生产的SPACELIQUIDTR2-50482。The first bonding agent 2 should have weak mechanical strength, moderate viscosity, easy to clean, and not react with the semiconductor wafer 1 and the first carrier sheet 4 . In this embodiment, the model of the first bonding agent 2 is SPACELIQUIDTR2-50482 produced by Nichika Seiko.
第二键合剂5应当粘性强、密封性好,不与背面工艺常用化学试剂、半导体圆片1反应,能有效增加半导体圆片1与载体片键合后的牢固度,并保护好第一键合剂2。本实施例中,第二键合剂5的型号为waferbondHT10.10。The second bonding agent 5 should have strong viscosity and good sealing performance, and should not react with the chemical reagents commonly used in the back process and the semiconductor wafer 1, and can effectively increase the firmness of the semiconductor wafer 1 and the carrier sheet after bonding, and protect the first bond. Mixture 2. In this embodiment, the model of the second bonding agent 5 is waferbondHT10.10.
第一有机试剂是第一键合剂2的专用去除剂,不与半导体圆片1及载体片反应。本实施例中,第一有机试剂可以为异丙醇、丙酮或乙醇中的任意一种,但优选异丙醇,处理时间为60-300秒,腐蚀深度为1-5mm。异丙醇、丙酮。若第一键合剂发生改变,专有去除剂也相应地进行调整。The first organic reagent is a special remover for the first bonding agent 2 and does not react with the semiconductor wafer 1 and the carrier sheet. In this embodiment, the first organic reagent can be any one of isopropanol, acetone or ethanol, but preferably isopropanol, the treatment time is 60-300 seconds, and the corrosion depth is 1-5mm. Isopropyl Alcohol, Acetone. If the primary bonding agent is changed, the proprietary remover is adjusted accordingly.
第二载体7的材料采用平整、能够固定半导体圆片1并且方便后续工艺操作,例如采用UV膜、蓝膜或者真空吸盘等。本实施例中,第二载体7为UV膜。The material of the second carrier 7 is flat, capable of fixing the semiconductor wafer 1 and convenient for subsequent process operations, such as UV film, blue film or vacuum chuck. In this embodiment, the second carrier 7 is a UV film.
第二有机试剂是第二键合剂5的专用清洗剂,本实施例中,第二有机试剂可以为正十二烷、甲苯的任意一种,但优先正十二烷,处理时间120-900秒。The second organic reagent is a special cleaning agent for the second bonding agent 5. In the present embodiment, the second organic reagent can be any one of n-dodecane and toluene, but n-dodecane is preferred, and the treatment time is 120-900 seconds .
步骤S8中,在为半导体圆片1分离而施加外力的过程中通常以真空吸盘吸附第一载体片4,通过机械装置或者手工操作来控制力度,也可以使用楔形硬物嵌入第一键合剂2中辅助剥离第一载体片4。本实施例中,楔形硬物为单面刀片8。In step S8, in the process of applying an external force for the separation of the semiconductor wafer 1, the first carrier sheet 4 is usually adsorbed by a vacuum chuck, and the force is controlled by a mechanical device or manual operation, or a wedge-shaped hard object can be used to embed the first bonding agent 2 Assist in peeling off the first carrier sheet 4. In this embodiment, the wedge-shaped hard object is a single-sided blade 8 .
下面以一个具体实施例来对本发明的技术方案作进一步的介绍。The technical solution of the present invention will be further introduced below with a specific embodiment.
键合方法包括以下步骤:The bonding method includes the following steps:
步骤1:用丙酮清洗半导体圆片1和第一载体片4的表面;Step 1: cleaning the surfaces of the semiconductor wafer 1 and the first carrier sheet 4 with acetone;
步骤2:在半导体圆片1和第一载体片4的正面分别旋涂第一键合剂2作为临时键合粘接剂,转速1000rpm,时间60秒。然后,在热板上以115℃的温度烘烤90秒进行固化,单层TR2-50482的厚度约为14um;Step 2: Spin-coat the first bonding agent 2 on the front surfaces of the semiconductor wafer 1 and the first carrier sheet 4 respectively as a temporary bonding adhesive at a rotation speed of 1000 rpm for 60 seconds. Then, bake it on a hot plate at a temperature of 115°C for 90 seconds for curing, and the thickness of a single layer of TR2-50482 is about 14um;
步骤3:待半导体圆片1和第一载体片4在室温下自然冷却后,将半导体圆片1和第一载体片4的正面相对,在温度为120℃、真空度小于5mbar、压力大于2个大气压的条件下进行键合120秒,形成半导体圆片1与第一载体片4的初步键合体;Step 3: After the semiconductor wafer 1 and the first carrier sheet 4 are naturally cooled at room temperature, the fronts of the semiconductor wafer 1 and the first carrier sheet 4 face each other, and the temperature is 120°C, the vacuum degree is less than 5mbar, and the pressure is greater than 2 Carry out bonding under the condition of 1 atmospheric pressure for 120 seconds to form a preliminary bonded body of semiconductor wafer 1 and first carrier sheet 4;
步骤4:将半导体圆片1与第一载体片4的初步键合体浸泡在第一有机试剂中75秒,去除半导体圆片1边缘往里约2mm深的环形第一键合剂2,形成缝隙3,从而形成半导体圆片1与第一载体片4的最终键合体,如图1所示;Step 4: Soak the preliminary bonding body of the semiconductor wafer 1 and the first carrier sheet 4 in the first organic reagent for 75 seconds, remove the ring-shaped first bonding agent 2 about 2mm deep from the edge of the semiconductor wafer 1, and form a gap 3 , so as to form the final bonded body of the semiconductor wafer 1 and the first carrier sheet 4, as shown in FIG. 1 ;
步骤5:在半导体圆片1背面涂覆第二键合剂5,以填充步骤4中形成的细缝3,用来保护第一键合剂2并且增加半导体圆片1与第一载体片4的粘性,转速1500rpm,时间30秒。然后,在热板上以155℃的温度烘烤120秒进行固化,如图2所示;Step 5: Coating the second bonding agent 5 on the back of the semiconductor wafer 1 to fill the slit 3 formed in step 4 to protect the first bonding agent 2 and increase the adhesion between the semiconductor wafer 1 and the first carrier sheet 4 , speed 1500rpm, time 30 seconds. Then, bake on a hot plate at a temperature of 155°C for 120 seconds for curing, as shown in Figure 2;
步骤6:将半导体圆片1与第一载体片4的最终键合体减薄至40um后依次完成背面通孔、背面金属化以及背面划片槽腐蚀等工艺,如图3所示。Step 6: Thinning the final bonded body of the semiconductor wafer 1 and the first carrier sheet 4 to 40um, and then sequentially completing processes such as backside through hole, backside metallization, and backside scribing groove corrosion, as shown in FIG. 3 .
去键合方法包括以下步骤:The debonding method includes the following steps:
步骤7:将步骤6中得到的完成背面工艺的半导体圆片1与第一载体片4的最终键合体浸泡在第二有机试剂中10分钟,去除第二键合剂5,露出缝隙3;Step 7: soak the final bonding body of the semiconductor wafer 1 and the first carrier sheet 4 obtained in step 6 in the second organic reagent for 10 minutes, remove the second bonding agent 5, and expose the gap 3;
步骤8:将步骤7得到的半导体圆片1背面贴在固定好的第二载体7上,用工具轻压第二载体7使之与半导体圆片1充分接触,并在第二载体7与第一载体片4之间嵌入单面刀片8,然后平放在多孔平台9上,如图4、图5所示;Step 8: Paste the back of the semiconductor wafer 1 obtained in step 7 on the fixed second carrier 7, lightly press the second carrier 7 with a tool to make it fully contact with the semiconductor wafer 1, and place the second carrier 7 on the second carrier 7 and the second carrier 7. A single-sided blade 8 is embedded between a carrier sheet 4, and then placed flat on the porous platform 9, as shown in Figure 4 and Figure 5;
步骤9:开启真空对第二载体7产生向下的吸力,真空吸力转化为半导体圆片1向下的拉力,而单面刀片8阻止第一载体片4下沉,给第一载体片4向上的阻力,当向上的阻力与向下的拉力超出第一键合剂2的弹性范围时,第一键合剂2开裂,第一载体片4与半导体圆片1分离,如图5所示;Step 9: Turn on the vacuum to generate a downward suction force on the second carrier 7, and the vacuum suction is converted into a downward pulling force on the semiconductor wafer 1, while the single-sided blade 8 prevents the first carrier sheet 4 from sinking, and gives the first carrier sheet 4 an upward force. resistance, when the upward resistance and the downward pulling force exceed the elastic range of the first bonding agent 2, the first bonding agent 2 cracks, and the first carrier sheet 4 is separated from the semiconductor wafer 1, as shown in Figure 5;
步骤10:将分离好的半导体圆片1固定在清洗台上,用第一有机试剂清洗去除第一键合剂2,清洗后的半导体圆片1经划切形成划切细缝11,从而将半导体圆片1分割成独立的管芯,如图6所示。Step 10: Fix the separated semiconductor wafer 1 on the cleaning table, wash and remove the first bonding agent 2 with the first organic reagent, and cut the cleaned semiconductor wafer 1 to form slits 11, so that the semiconductor Wafer 1 is divided into individual dies, as shown in FIG. 6 .
经过以上步骤实现超薄半导体圆片1的临时键合与去键合,此方法可以有效减少超薄半导体圆片1在背面工艺过程中特别是圆片分离、清洗及芯片划切等步骤中的裂片率,芯片成品率高;半导体圆片1的分离过程不用经过高温解蜡,半导体材料与背面金属6间不存在热胀冷缩系数不同导致的粘附力下降的问题。Through the above steps, the temporary bonding and debonding of the ultra-thin semiconductor wafer 1 can be realized. This method can effectively reduce the friction of the ultra-thin semiconductor wafer 1 in the back process, especially in the steps of wafer separation, cleaning and chip dicing. Fragmentation rate and chip yield are high; the separation process of the semiconductor wafer 1 does not need to go through high-temperature dewaxing, and there is no problem of decreased adhesion caused by different coefficients of thermal expansion and contraction between the semiconductor material and the back metal 6 .
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510591118.0ACN105280541A (en) | 2015-09-16 | 2015-09-16 | Temporary bonding method and bonding-removing method for ultrathin semiconductor wafer |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510591118.0ACN105280541A (en) | 2015-09-16 | 2015-09-16 | Temporary bonding method and bonding-removing method for ultrathin semiconductor wafer |
| Publication Number | Publication Date |
|---|---|
| CN105280541Atrue CN105280541A (en) | 2016-01-27 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510591118.0APendingCN105280541A (en) | 2015-09-16 | 2015-09-16 | Temporary bonding method and bonding-removing method for ultrathin semiconductor wafer |
| Country | Link |
|---|---|
| CN (1) | CN105280541A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106449505A (en)* | 2016-08-22 | 2017-02-22 | 中国电子科技集团公司第五十五研究所 | A back process method for semiconductor ultra-thin devices |
| CN109494182A (en)* | 2018-11-26 | 2019-03-19 | 南京中电芯谷高频器件产业技术研究院有限公司 | A kind of holding method for ultra-thin semiconductor wafer in semiconductor integrated technique |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101925996A (en)* | 2008-01-24 | 2010-12-22 | 布鲁尔科技公司 | Method of reversibly mounting a device wafer on a carrier substrate |
| CN102326227A (en)* | 2009-02-26 | 2012-01-18 | 信越半导体股份有限公司 | Manufacturing method of SOI wafer |
| US20120034437A1 (en)* | 2010-08-06 | 2012-02-09 | Brewer Science Inc. | Multiple bonding layers for thin-wafer handling |
| CN102388431A (en)* | 2009-03-18 | 2012-03-21 | Ev集团有限责任公司 | Apparatus and method for separating a wafer from a carrier |
| US20120241920A1 (en)* | 2011-03-21 | 2012-09-27 | Polar Semiconductor, Inc. | Edge bead removal for polybenzoxazole (pbo) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101925996A (en)* | 2008-01-24 | 2010-12-22 | 布鲁尔科技公司 | Method of reversibly mounting a device wafer on a carrier substrate |
| CN102326227A (en)* | 2009-02-26 | 2012-01-18 | 信越半导体股份有限公司 | Manufacturing method of SOI wafer |
| CN102388431A (en)* | 2009-03-18 | 2012-03-21 | Ev集团有限责任公司 | Apparatus and method for separating a wafer from a carrier |
| US20120034437A1 (en)* | 2010-08-06 | 2012-02-09 | Brewer Science Inc. | Multiple bonding layers for thin-wafer handling |
| US20120241920A1 (en)* | 2011-03-21 | 2012-09-27 | Polar Semiconductor, Inc. | Edge bead removal for polybenzoxazole (pbo) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106449505A (en)* | 2016-08-22 | 2017-02-22 | 中国电子科技集团公司第五十五研究所 | A back process method for semiconductor ultra-thin devices |
| CN109494182A (en)* | 2018-11-26 | 2019-03-19 | 南京中电芯谷高频器件产业技术研究院有限公司 | A kind of holding method for ultra-thin semiconductor wafer in semiconductor integrated technique |
| Publication | Publication Date | Title |
|---|---|---|
| CN108493334B (en) | A kind of preparation method of thin film heterostructure | |
| US11097306B2 (en) | Support for bonding a workpiece and method thereof | |
| JP2023010701A (en) | Placing ultra-small or ultra-thin discrete components | |
| JP5027460B2 (en) | Wafer bonding method, thinning method, and peeling method | |
| US10186447B2 (en) | Method for bonding thin semiconductor chips to a substrate | |
| JPH0554262B2 (en) | ||
| WO2016090636A1 (en) | Temporary bonding and separation method for wafers | |
| TW200539302A (en) | Peeling device for chip detachment | |
| JP2008078430A (en) | Manufacturing method of electronic parts | |
| CN106611717A (en) | Procedure of processing workpiece and apparatus designed for procedure | |
| CN102751207B (en) | Wafer temporary bonding method | |
| KR101503326B1 (en) | A method for de-bonding of device wafer and carrier wafer and apparatus for de-bonding | |
| CN103617944A (en) | Temporary bonding and bonding-removing method based on photoresist | |
| CN114709132B (en) | Wafer cutting process | |
| CN110838439A (en) | Wafer slicing method and chip | |
| CN105244308A (en) | Method for holding thin wafer through temporary bonding of porous slide glass | |
| JP2018142630A (en) | Wafer temporary fixing wax and wafer temporary fixing method | |
| Jourdain et al. | Integration and manufacturing aspects of moving from WaferBOND HT-10.10 to ZoneBOND material in temporary wafer bonding and debonding for 3D applications | |
| TW200410304A (en) | Process for manufacturing thin semiconductor chip | |
| CN110176418A (en) | A kind of flexible chip pick-up method and pick device | |
| CN111326467A (en) | Flexible inorganic semiconductor film and preparation method thereof | |
| CN105280541A (en) | Temporary bonding method and bonding-removing method for ultrathin semiconductor wafer | |
| CN115424918A (en) | An Ultra-Thin Wafer Fabrication Process Bonding Silicon Carbide and Gallium Nitride | |
| CN103094094A (en) | Prepared method of ultrathin semiconductor chip | |
| CN106449505A (en) | A back process method for semiconductor ultra-thin devices |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20160127 | |
| RJ01 | Rejection of invention patent application after publication |