技术领域technical field
本发明属于太阳能电池技术领域,特别涉及一种钙钛矿太阳能电池(PSC,PerovskiteSolarCells)及其制备工艺。The invention belongs to the technical field of solar cells, in particular to a perovskite solar cell (PSC, Perovskite Solar Cells) and a preparation process thereof.
背景技术Background technique
近年来,钙钛矿太阳能电池作为一类新兴的太阳能电池得到快速发展,其光电转换效率已经超过20%。钙钛矿太阳能电池主要是利用类似ABX3(A=CH3NH3+等;B=Pb2+,Sn2+等;X=Cl-,Br-,I-等)具有钙钛矿结构的光伏材料来实现光电转换,具有原材料来源广泛、制作工艺简单、价格低、可制备成柔性电池等优点。钙钛矿太阳能电池的基本结构包括衬底、透明电极、电子传输材料、钙钛矿材料吸光层、空穴传输材料和金属电极。钙钛矿太阳能电池将光能转换成电能可以分为三个主要过程:(1)一定能量的光子被吸光层吸收并产生电子空穴对;(2)电子空穴对扩散至吸光材料的界面处时发生电荷分离;(3)电子沿电子传输材料经电极进入外电路,空穴沿空穴传输材料经电极进入外电路,通过负载完成光能向电能的转换。In recent years, perovskite solar cells have developed rapidly as a new type of solar cells, and their photoelectric conversion efficiency has exceeded 20%. Perovskite solar cells mainly use perovskite structures like ABX3 (A=CH3 NH3+ etc.; B=Pb2+ , Sn2+ , etc.; X=Cl- , Br- , I- etc.) Photovoltaic materials are used to realize photoelectric conversion, which has the advantages of wide source of raw materials, simple manufacturing process, low price, and can be prepared into flexible batteries. The basic structure of perovskite solar cells includes substrates, transparent electrodes, electron transport materials, light absorbing layers of perovskite materials, hole transport materials and metal electrodes. The conversion of light energy into electrical energy in perovskite solar cells can be divided into three main processes: (1) photons of a certain energy are absorbed by the light-absorbing layer and generate electron-hole pairs; (2) electron-hole pairs diffuse to the interface of the light-absorbing material (3) Electrons enter the external circuit along the electron transport material through the electrode, and holes enter the external circuit along the hole transport material through the electrode, and the conversion of light energy to electrical energy is completed through the load.
目前,要制备高转换效率的钙钛矿太阳能电池,主流的制备工艺是采用共蒸发制备吸光层,该制备工艺操作复杂、成本高、生产效率低。在电子传输层制备工艺中,存在需制备介孔状氧化钛层(TiO2作为电子传输层)或合成纳米颗粒状氧化锌(ZnO)等问题,介孔状TiO2层需进行高温(450℃以上)烧结处理环节,而合成的纳米颗粒状ZnO溶液不能长期存放。At present, in order to prepare perovskite solar cells with high conversion efficiency, the mainstream preparation process is to prepare the light-absorbing layer by co-evaporation, which is complicated to operate, high in cost and low in production efficiency. In the preparation process of the electron transport layer, there are problems such as the preparation of a mesoporous titanium oxide layer (TiO2 as an electron transport layer) or the synthesis of nano-particle zinc oxide (ZnO). above) sintering process, and the synthesized nanoparticle ZnO solution cannot be stored for a long time.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有技术的不足,提供一种可低温下进行、简化工艺流程、降低成本、提高电池制备效率、实现规模化生产的钙钛矿太阳能电池的制备工艺以及该工艺制备的钙钛矿太阳能电池。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art, to provide a preparation process of perovskite solar cells that can be carried out at low temperature, simplify the process flow, reduce costs, improve cell preparation efficiency, and realize large-scale production, and the Perovskite solar cells prepared by the process.
为解决上述技术问题,本发明采用以下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
一种钙钛矿太阳能电池,包括依次层叠的衬底、透明电极、空穴传输层、吸光层、电子传输层和顶电极,所述空穴传输层是由空穴传输材料构成,所述电子传输层是由电子传输材料构成,所述吸光层是由具有钙钛矿结构的光伏材料构成,所述空穴传输层、吸光层和电子传输层均采用溶液法于150℃以下(即≤150℃,优选60℃~150℃)的低温制备得到。A perovskite solar cell, comprising a sequentially stacked substrate, a transparent electrode, a hole transport layer, a light absorbing layer, an electron transport layer and a top electrode, the hole transport layer is composed of a hole transport material, and the electron The transport layer is composed of electron transport materials, and the light absorption layer is composed of photovoltaic materials with a perovskite structure. The hole transport layer, light absorption layer and electron transport layer are all prepared by solution method below 150°C (i.e. ≤150 °C, preferably 60 °C ~ 150 °C) low temperature preparation.
上述的钙钛矿太阳能电池中,优选的,所述空穴传输层的厚度为5nm~60nm;所述吸光层的厚度为100nm~500nm;所述电子传输层的厚度为10nm~100nm;所述顶电极的厚度为20nm~100nm。In the above-mentioned perovskite solar cell, preferably, the thickness of the hole transport layer is 5 nm to 60 nm; the thickness of the light absorption layer is 100 nm to 500 nm; the thickness of the electron transport layer is 10 nm to 100 nm; The thickness of the top electrode is 20nm˜100nm.
上述的钙钛矿太阳能电池中,优选的,所述空穴传输材料为有机材料和/或无机材料,所述有机材料包括PEDOT∶PSS或Spiro-MeOTAD,所述无机材料包括NiOx、MoOx或V2O5;所述具有钙钛矿结构的光伏材料为ABX3型晶体结构的有机无机杂化钙钛矿;所述电子传输材料为富勒烯衍生物,所述富勒烯衍生物为PCBM。In the above-mentioned perovskite solar cell, preferably, the hole transport material is an organic material and/or an inorganic material, the organic material includes PEDOT:PSS or Spiro-MeOTAD, and the inorganic material includes NiOx , MoOx or V2 O5 ; the photovoltaic material with a perovskite structure is an organic-inorganic hybrid perovskite with an ABX3 -type crystal structure; the electron transport material is a fullerene derivative, and the fullerene derivative for PCBM.
上述的钙钛矿太阳能电池中,优选的,所述衬底的构成材料包括玻璃或柔性塑料;所述透明电极的构成材料包括铟锡氧化物或氟锡氧化物;所述顶电极的构成材料为金属材料,所述金属材料包括金、银、铜或铝。In the above perovskite solar cell, preferably, the constituent material of the substrate includes glass or flexible plastic; the constituent material of the transparent electrode includes indium tin oxide or fluorine tin oxide; the constituent material of the top electrode It is a metal material, and the metal material includes gold, silver, copper or aluminum.
作为一个总的技术构思,本发明还提供一种上述的钙钛矿太阳能电池的制备工艺,包括在所述衬底上依次制备透明电极、空穴传输层、吸光层、电子传输层和顶电极,所述空穴传输层、吸光层和电子传输层均采用溶液法于150℃以下(即≤150℃,优选60℃~150℃)的低温制备得到。As a general technical idea, the present invention also provides a preparation process for the above-mentioned perovskite solar cell, including sequentially preparing a transparent electrode, a hole transport layer, a light-absorbing layer, an electron transport layer and a top electrode on the substrate , the hole transport layer, the light absorbing layer and the electron transport layer are prepared by a solution method at a low temperature below 150°C (ie ≤150°C, preferably 60°C to 150°C).
上述的钙钛矿太阳能电池的制备工艺中,优选的,所述空穴传输层的制备过程为:在所述透明电极上涂布用于制备空穴传输材料的溶液,然后在100℃~150℃的温度下进行加热,得到空穴传输层;In the preparation process of the above-mentioned perovskite solar cell, preferably, the preparation process of the hole transport layer is: coating the solution for preparing the hole transport material on the transparent electrode, and then Heating at a temperature of ℃ to obtain a hole transport layer;
所述吸光层的制备过程为:先在所述空穴传输层上涂布卤化铅溶液,于70℃~120℃烘干,然后置于CH3NH3I溶液中浸泡,当衬底颜色变为棕黑色时,取出并清洗,再于60℃~120℃下进行加热,得到吸光层;The preparation process of the light-absorbing layer is as follows: first coat the lead halide solution on the hole-transporting layer, dry it at 70°C to 120°C, and then soak it in CH3 NH3 I solution. When the color of the substrate changes When it is brown-black, take it out and wash it, and then heat it at 60°C to 120°C to obtain a light-absorbing layer;
所述电子传输层的制备过程为:在所述吸光层上涂布用于制备电子传输材料的溶液,然后在60℃~120℃的温度下进行加热,得到电子传输层。The preparation process of the electron transport layer is as follows: coating the solution for preparing the electron transport material on the light absorbing layer, and then heating at a temperature of 60° C. to 120° C. to obtain the electron transport layer.
上述的钙钛矿太阳能电池的制备工艺中,优选的,所述空穴传输层的制备过程中,加热时间为5min~30min;所述吸光层的制备过程中,加热时间为5min~20min;所述电子传输层的制备过程中,加热时间为5min~20min;所述空穴传输层、吸光层和电子传输层的制备过程均在空气环境下进行。In the preparation process of the above-mentioned perovskite solar cell, preferably, during the preparation process of the hole transport layer, the heating time is 5 min-30 min; during the preparation process of the light-absorbing layer, the heating time is 5 min-20 min; During the preparation process of the electron transport layer, the heating time is 5 minutes to 20 minutes; the preparation process of the hole transport layer, the light absorption layer and the electron transport layer are all carried out in the air environment.
上述的钙钛矿太阳能电池的制备工艺中,优选的,所述空穴传输材料为PEDOT∶PSS时,所述用于制备空穴传输材料的溶液为PEDOT∶PSS的水溶液,溶液中PEDOT∶PSS的质量分数为1%~5%;所述空穴传输材料为Spiro-MeOTAD时,所述用于制备空穴传输材料的溶液为Spiro-MeOTAD的氯苯/乙腈溶液,溶液中Spiro-MeOTAD的质量分数为10%~50%;所述空穴传输材料为NiOx时,所述用于制备空穴传输材料的溶液为四水醋酸镍的乙醇/乙醇胺溶液(溶剂中每升乙醇添加0.1摩尔乙醇胺),溶液中醋酸镍的质量分数为5%~40%。In the preparation process of the above-mentioned perovskite solar cell, preferably, when the hole transport material is PEDOT:PSS, the solution used to prepare the hole transport material is an aqueous solution of PEDOT:PSS, and PEDOT:PSS in the solution The mass fraction is 1% to 5%; when the hole transport material is Spiro-MeOTAD, the solution used to prepare the hole transport material is the chlorobenzene/acetonitrile solution of Spiro-MeOTAD, the Spiro-MeOTAD in the solution The mass fraction is 10% to 50%; when the hole transport material isNiOx , the solution used to prepare the hole transport material is an ethanol/ethanolamine solution of nickel acetate tetrahydrate (add 0.1 mole of ethanol per liter of ethanol in the solvent) ethanolamine), the mass fraction of nickel acetate in the solution is 5% to 40%.
上述的钙钛矿太阳能电池的制备工艺中,优选的,所述吸光层的制备过程中:所述卤化铅溶液为PbI2溶液时,所述PbI2溶液的浓度为1mol/L~5mol/L,溶剂为N,N-二甲基甲酰胺;所述CH3NH3I溶液的浓度为10mg/mL~20mg/mL,溶剂为异丙醇;所述浸泡的时间为30s~60s。In the preparation process of the above-mentioned perovskite solar cell, preferably, in the preparation process of the light-absorbing layer: when the lead halide solution is aPbI solution, the concentration of the PbI solution is 1mol/L to 5mol/L , the solvent is N,N-dimethylformamide; the concentration of the CH3 NH3 I solution is 10mg/mL-20mg/mL, and the solvent is isopropanol; the soaking time is 30s-60s.
上述的钙钛矿太阳能电池的制备工艺中,优选的,所述电子传输材料为PCBM时,所述用于制备电子传输材料的溶液为PCBM的氯苯溶液,溶液中PCBM的质量分数为1%~5%。In the preparation process of the above-mentioned perovskite solar cell, preferably, when the electron transport material is PCBM, the solution used to prepare the electron transport material is a chlorobenzene solution of PCBM, and the mass fraction of PCBM in the solution is 1%. ~5%.
本发明的钙钛矿太阳能电池中,衬底材料优选玻璃、柔性塑料(PEN,PET)等透明材料。透明电极的材料优选铟锡氧化物(ITO,IndiumTinOxide)、氟锡氧化物(FTO,FluorineDopedTinOxide)等透明电极材料。常采用ITO导电玻璃、FTO导电玻璃或带ITO的PEN塑料薄膜作为衬底和透明电极,其方块电阻是10~50Ω/□,透过率在80%~90%。In the perovskite solar cell of the present invention, the substrate material is preferably transparent materials such as glass and flexible plastics (PEN, PET). The material of the transparent electrode is preferably a transparent electrode material such as indium tin oxide (ITO, IndiumTinOxide), fluorine tin oxide (FTO, FluorineDopedTinOxide). ITO conductive glass, FTO conductive glass or PEN plastic film with ITO are often used as the substrate and transparent electrode. The sheet resistance is 10-50Ω/□, and the transmittance is 80%-90%.
本发明的钙钛矿太阳能电池中,空穴传输材料一般为具有较高空穴迁移率的材料,空穴传输层主要是将空穴传输至顶电极。In the perovskite solar cell of the present invention, the hole transport material is generally a material with relatively high hole mobility, and the hole transport layer mainly transports holes to the top electrode.
本发明的钙钛矿太阳能电池中,吸光层采用具有钙钛矿晶体结构的材料制备,其作用是吸收入射光。单纯的吸光层由钙钛矿材料的晶粒构成,钙钛矿材料主要有类似ABX3(A=CH3NH3+等;B=Pb2+,Sn2+等;X=Cl-,Br-,I-等)型晶体结构的有机无机杂化钙钛矿。In the perovskite solar cell of the present invention, the light-absorbing layer is made of a material with a perovskite crystal structure, and its function is to absorb incident light. The pure light-absorbing layer is composed of perovskite material grains, and the perovskite materials mainly include ABX3 (A=CH3 NH3+ , etc.; B=Pb2+ , Sn2+ , etc.; X=Cl- , Br- , I-, etc.) type crystal structure of organic-inorganic hybrid perovskite.
本发明的钙钛矿太阳能电池中,电子传输层主要起到传输电子的作用,同时防止电极与吸光层直接接触。电子传输材料采用的PCBM主要为PC60BM或PC70BM。In the perovskite solar cell of the present invention, the electron transport layer mainly plays the role of transporting electrons, while preventing the electrodes from directly contacting the light-absorbing layer. The PCBM used in electron transport materials is mainly PC60 BM or PC70 BM.
本发明的钙钛矿太阳能电池中,顶电极可以采用真空镀膜、等离子体喷涂、溅射、喷墨打印以及溶液成膜等方法制作。In the perovskite solar cell of the present invention, the top electrode can be fabricated by methods such as vacuum coating, plasma spraying, sputtering, inkjet printing, and solution film formation.
与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:
本发明的钙钛矿太阳能电池是采用溶液法低温制备得到,可批量生产。目前钙钛矿电池的主流制备工艺是采用共蒸发法制备吸光层,该制备工艺操作复杂、成本高、生产效率低,同时电子传输层通常采用需高温(450℃)烧结处理的介孔状TiO2层,或更为复杂的等离子体化学气相沉积方法。本发明的制备工艺中,空穴传输层、钙钛矿材料吸光层和电子传输层均可在低温的空气环境下通过溶液法制备,避免了采用共蒸发法制备吸光层,有利于简化工艺流程,降低成本,提高电池的制备效率,实现规模化生产。The perovskite solar cell of the present invention is prepared by a solution method at low temperature and can be produced in batches. At present, the mainstream preparation process of perovskite cells is to prepare the light-absorbing layer by co-evaporation. This preparation process is complicated to operate, high in cost, and low in production efficiency.2 layers, or more complex plasma chemical vapor deposition methods. In the preparation process of the present invention, the hole transport layer, the perovskite light-absorbing layer and the electron transport layer can all be prepared by a solution method in a low-temperature air environment, avoiding the use of co-evaporation to prepare the light-absorbing layer, which is conducive to simplifying the process flow , reduce costs, improve the preparation efficiency of batteries, and realize large-scale production.
附图说明Description of drawings
图1为本发明实施例中钙钛矿太阳能电池的结构示意图。FIG. 1 is a schematic structural diagram of a perovskite solar cell in an embodiment of the present invention.
图2为本发明实施例1中在暗态和AM1.5光照下钙钛矿太阳能电池的伏安特性曲线,其中:空心圆点曲线为电池的暗态伏安特性曲线,实心圆点曲线为AM1.5光照伏安特性曲线。Fig. 2 is the volt-ampere characteristic curve of the perovskite solar cell under dark state and AM1.5 illumination in embodiment 1 of the present invention, wherein: the hollow circle point curve is the dark state volt-ampere characteristic curve of battery, and the solid circle point curve is AM1.5 photovoltaic characteristic curve.
图例说明:illustration:
1、衬底;2、透明电极;3、空穴传输层;4、吸光层;5、电子传输层;6、顶电极。1. Substrate; 2. Transparent electrode; 3. Hole transport layer; 4. Light absorbing layer; 5. Electron transport layer; 6. Top electrode.
具体实施方式Detailed ways
以下结合说明书附图和具体优选的实施例对本发明作进一步描述,但并不因此而限制本发明的保护范围。The present invention will be further described below in conjunction with the accompanying drawings and specific preferred embodiments, but the protection scope of the present invention is not limited thereby.
以下实施例中所采用的材料和仪器均为市售。All materials and instruments used in the following examples are commercially available.
实施例1:Example 1:
一种本发明的钙钛矿太阳能电池,如图1所示(由上至下观察),包括依次层叠的衬底1、透明电极2、空穴传输层3、吸光层4、电子传输层5和顶电极6,吸光层4是由具有钙钛矿结构的光伏材料构成,空穴传输层3是由空穴传输材料构成,电子传输层5是由电子传输材料构成。A perovskite solar cell of the present invention, as shown in Figure 1 (observed from top to bottom), includes a substrate 1, a transparent electrode 2, a hole transport layer 3, a light absorbing layer 4, and an electron transport layer 5 stacked in sequence And the top electrode 6, the light absorbing layer 4 is made of photovoltaic material with perovskite structure, the hole transport layer 3 is made of hole transport material, and the electron transport layer 5 is made of electron transport material.
本实施例中,衬底1采用玻璃衬底,厚度为1.1mm;透明电极2采用透明ITO电极,厚度为80nm;空穴传输层3采用PEDOT∶PSS材料,厚度为40nm;吸光层4采用CH3NH3PbI3钙钛矿材料,厚度为350nm;电子传输层5采用PC60BM材料,厚度为10nm;顶电极6采用铝电极,厚度为100nm。In this embodiment, the substrate 1 is a glass substrate with a thickness of 1.1mm; the transparent electrode 2 is a transparent ITO electrode with a thickness of 80nm; the hole transport layer 3 is made of PEDOT:PSS material with a thickness of 40nm; the light-absorbing layer 4 is made of CH3 NH3 PbI3 perovskite material with a thickness of 350nm; the electron transport layer 5 is made of PC60 BM material with a thickness of 10nm; the top electrode 6 is made of an aluminum electrode with a thickness of 100nm.
一种上述本实施例的钙钛矿太阳能电池的制备工艺,包括以下步骤:A kind of preparation technology of the perovskite solar cell of above-mentioned present embodiment, comprises the following steps:
(1)选择方阻为15Ω/□、透过率为85%的ITO玻璃作为带有ITO透明电极的玻璃衬底,透明电极2为正极;(1) Select ITO glass with a square resistance of 15Ω/□ and a transmittance of 85% as the glass substrate with an ITO transparent electrode, and the transparent electrode 2 is the positive electrode;
(2)采用溶液旋涂的方法在ITO玻璃上涂布质量分数为5%的PEDOT∶PSS水溶液(PEDOT∶PSS水溶液为德国拜尔的cleviosp型产品),在加热台上150℃低温处理30min,得到厚度为40nm的PEDOT∶PSS致密薄膜作为空穴传输层3;(2) Coat the ITO glass with a 5% mass fraction of PEDOT:PSS aqueous solution (PEDOT:PSS aqueous solution is a cleviosp product from Bayer, Germany) on the ITO glass by solution spin coating, and treat it on a heating table at 150°C for 30 minutes. Obtain a PEDOT with a thickness of 40nm: PSS dense film as the hole transport layer 3;
(3)在空穴传输层3表面旋涂PbI2溶液,PbI2溶液的浓度为1mol/L,溶剂为N,N-二甲基甲酰胺,于70℃烘干后,放入浓度为10mg/mL的CH3NH3I溶液(溶剂为异丙醇)中浸泡40秒,衬底颜色迅速变为棕黑色,取出后放入干净的异丙醇中,洗去多余的CH3NH3I,最后放置在70℃的加热台上烘10min,得到厚度为350nm的CH3NH3PbI3钙钛矿材料的吸光层4;(3) Spin-coat PbI2 solution on the surface of the hole transport layer 3, the concentration of PbI2 solution is 1mol/L, the solvent is N,N-dimethylformamide, after drying at 70°C, add the concentration of 10mg /mL CH3 NH3 I solution (solvent is isopropanol) for 40 seconds, the color of the substrate quickly turns brown-black, take it out and put it in clean isopropanol to wash away excess CH3 NH3 I , and finally place it on a heating platform at 70° C. and bake for 10 minutes to obtain a light-absorbing layer 4 of CH3 NH3 PbI3 perovskite material with a thickness of 350 nm;
(4)在吸光层4的表面旋涂PC60BM溶液(质量分数为2%,溶剂为氯苯),在加热台上60℃低温处理5min,形成厚度为10nm的电子传输层5;(4) Spin-coat PC60 BM solution (2% mass fraction, chlorobenzene as solvent) on the surface of the light-absorbing layer 4, and treat it on a heating platform at 60°C for 5 minutes at a low temperature to form an electron transport layer 5 with a thickness of 10nm;
上述空穴传输层、吸光层和电子传输层的制备过程均在空气环境下进行。The preparation process of the above-mentioned hole transport layer, light absorbing layer and electron transport layer is all carried out in air environment.
(5)在电子传输层5上采用真空热蒸镀金属电极的方式沉积100nm厚的铝电极作为顶电极6(负极),得到如图1所示的钙钛矿太阳能电池。(5) Deposit a 100nm-thick aluminum electrode as the top electrode 6 (negative electrode) on the electron transport layer 5 by vacuum thermal evaporation metal electrode, and obtain the perovskite solar cell as shown in FIG. 1 .
由该实施例可知,本发明的钙钛矿太阳能电池样品的制备工艺在低温的空气环境中就可以完成,有利于简化工艺流程,降低成本,提高电池的制备效率,可规模化生产。It can be seen from this example that the preparation process of the perovskite solar cell sample of the present invention can be completed in a low-temperature air environment, which is conducive to simplifying the process flow, reducing costs, improving the preparation efficiency of the cell, and enabling large-scale production.
实施效果:对上述本实施例制备的钙钛矿太阳能电池进行电池性能测试,在AM1.5、100mW/cm2标准光强的照射下,钙钛矿太阳能电池样品的开路电压为0.87V,短路电流密度为16.78mA/cm2(见图2),填充因子为0.72,转换效率为10.51%。图2中实心圆点曲线为AM1.5光照伏安特性曲线,图2中空心圆点曲线为电池的暗态伏安特性曲线,由图2可以看出,本发明的钙钛矿太阳能电池的等效串联电阻比较小。Implementation effect: The perovskite solar cell prepared in the above example was tested for battery performance. Under the irradiation of the standard light intensity of AM1.5 and 100mW/cm2 , the open circuit voltage of the perovskite solar cell sample was 0.87V, and the short circuit The current density is 16.78mA/cm2 (see Figure 2), the fill factor is 0.72, and the conversion efficiency is 10.51%. The solid circle curve in Fig. 2 is the AM1.5 light volt-ampere characteristic curve, and the hollow circle curve in Fig. 2 is the dark state volt-ampere characteristic curve of battery, as can be seen from Fig. 2, the perovskite solar cell of the present invention The equivalent series resistance is relatively small.
实施例2:Example 2:
一种本发明的钙钛矿太阳能电池,如图1所示(由上至下观察),包括依次层叠的衬底1、透明电极2、空穴传输层3、吸光层4、电子传输层5和顶电极6,吸光层4是由具有钙钛矿结构的光伏材料构成,空穴传输层3是由空穴传输材料构成,电子传输层5是由电子传输材料构成。A perovskite solar cell of the present invention, as shown in Figure 1 (observed from top to bottom), includes a substrate 1, a transparent electrode 2, a hole transport layer 3, a light absorbing layer 4, and an electron transport layer 5 stacked in sequence And the top electrode 6, the light absorbing layer 4 is made of photovoltaic material with perovskite structure, the hole transport layer 3 is made of hole transport material, and the electron transport layer 5 is made of electron transport material.
本实施例中,衬底1采用玻璃衬底,厚度为1.1mm;透明电极2采用透明ITO电极,厚度为80nm;空穴传输层3采用Spiro-MeOTAD材料,厚度为50nm;吸光层4采用CH3NH3PbI3钙钛矿材料,厚度为500nm;电子传输层5采用PC60BM材料,厚度为15nm;顶电极6采用铝电极,厚度为100nm。In this embodiment, the substrate 1 is a glass substrate with a thickness of 1.1mm; the transparent electrode 2 is a transparent ITO electrode with a thickness of 80nm; the hole transport layer 3 is made of Spiro-MeOTAD material with a thickness of 50nm; the light-absorbing layer 4 is made of CH3 NH3 PbI3 perovskite material with a thickness of 500nm; the electron transport layer 5 is made of PC60 BM material with a thickness of 15nm; the top electrode 6 is made of an aluminum electrode with a thickness of 100nm.
一种上述本实施例的钙钛矿太阳能电池的制备方法,包括以下步骤:A kind of preparation method of the perovskite solar cell of above-mentioned present embodiment, comprises the following steps:
(1)选择方阻为15Ω/□、透过率为85%的ITO玻璃作为带有ITO透明电极的玻璃衬底,透明电极2为正极;(1) Select ITO glass with a square resistance of 15Ω/□ and a transmittance of 85% as the glass substrate with an ITO transparent electrode, and the transparent electrode 2 is the positive electrode;
(2)采用溶液旋涂的方法在ITO玻璃上涂布质量分数为10%的Spiro-MeOTAD的氯苯/乙腈溶液(氯苯与乙腈的体积比为10∶1),在加热台上100℃低温处理20min,得到厚度为50nm的Spiro-MeOTAD致密薄膜作为空穴传输层3;(2) Spiro-MeOTAD chlorobenzene/acetonitrile solution (the volume ratio of chlorobenzene and acetonitrile is 10:1) with a mass fraction of 10% Spiro-MeOTAD was coated on the ITO glass by solution spin coating, and heated on a heating table at 100 °C Treat at low temperature for 20 minutes to obtain a Spiro-MeOTAD dense film with a thickness of 50 nm as the hole transport layer 3;
(3)在空穴传输层3表面旋涂PbI2溶液,PbI2溶液的浓度为1mol/L,溶剂为N,N-二甲基甲酰胺,于70℃烘干后,放入浓度为10mg/mL的CH3NH3I溶液(溶剂为异丙醇)中浸泡40秒,衬底颜色迅速变为棕黑色,取出后放入干净的异丙醇中,洗去多余的CH3NH3I,最后放置在70℃的加热台上烘10min,得到厚度为500nm的CH3NH3PbI3钙钛矿材料的吸光层4;(3) Spin-coat PbI2 solution on the surface of the hole transport layer 3, the concentration of PbI2 solution is 1mol/L, the solvent is N,N-dimethylformamide, after drying at 70°C, add the concentration of 10mg /mL CH3 NH3 I solution (solvent is isopropanol) for 40 seconds, the color of the substrate quickly turns brown-black, take it out and put it in clean isopropanol to wash away excess CH3 NH3 I , and finally place it on a heating platform at 70° C. and bake for 10 minutes to obtain a light-absorbing layer 4 of CH3 NH3 PbI3 perovskite material with a thickness of 500 nm;
(4)在吸光层4的表面旋涂PC60BM溶液(质量分数为4%,溶剂为氯苯),在加热台上60℃低温处理5min,形成厚度为15nm的电子传输层5;(4) Spin-coat PC60 BM solution (4% mass fraction, chlorobenzene as a solvent) on the surface of the light-absorbing layer 4, and treat it on a heating platform at 60°C for 5 minutes at a low temperature to form an electron transport layer 5 with a thickness of 15nm;
上述空穴传输层、吸光层和电子传输层的制备过程均在空气环境下进行。The preparation process of the above-mentioned hole transport layer, light absorbing layer and electron transport layer is all carried out in air environment.
(5)在电子传输层5上采用真空热蒸镀金属电极的方式沉积100nm厚的铝电极作为顶电极6(负极),得到如图1所示的钙钛矿太阳能电池。(5) Deposit a 100nm-thick aluminum electrode as the top electrode 6 (negative electrode) on the electron transport layer 5 by vacuum thermal evaporation metal electrode, and obtain the perovskite solar cell as shown in FIG. 1 .
由该实施例可知,本发明的钙钛矿太阳能电池样品的制备工艺在低温的空气环境中就可以完成,有利于简化工艺流程,降低成本,提高电池的制备效率。It can be seen from this example that the preparation process of the perovskite solar cell sample of the present invention can be completed in a low-temperature air environment, which is conducive to simplifying the process flow, reducing costs, and improving the preparation efficiency of the cell.
实施例3:Example 3:
一种本发明的钙钛矿太阳能电池,与实施例1基本相同,区别仅在于:空穴传输层3采用NiOx材料,厚度为10nm。A perovskite solar cell of the present invention is basically the same as the embodiment 1, the only difference is that the hole transport layer 3 is made of NiOx material, and the thickness is 10nm.
一种上述本实施例的钙钛矿太阳能电池的制备方法,其步骤与实施例1基本相同,区别仅在于:步骤(2)中,采用溶液旋涂的方法在ITO玻璃上涂布四水醋酸镍(Ni(CH3COO)2·4H2O)的乙醇/乙醇胺溶液,其中每升乙醇中加入0.1摩尔乙醇胺,溶液中醋酸镍的质量分数为10%,在加热台上150℃低温水解处理20min,经脱水后,得到厚度为10nm的NiOx致密薄膜作为空穴传输层3,NiOx是由不同价态的Ni(如Ni+、Ni+2、Ni+3等)的氧化物构成的混合物,是在醋酸镍溶液的加热水解过程中自然生成的。本实施例制备钙钛矿太阳能电池的工艺简单方便,原料易得,成本低廉,可较大地提高电池的制备效率,且可规模化生产。A method for preparing the perovskite solar cell of the above-mentioned embodiment, the steps of which are basically the same as those of Embodiment 1, the only difference being that in step (2), acetic acid tetrahydrate is coated on the ITO glass by solution spin coating Nickel (Ni(CH3 COO)2 4H2 O) ethanol/ethanolamine solution, in which 0.1 mole of ethanolamine is added to each liter of ethanol, the mass fraction of nickel acetate in the solution is 10%, and it is hydrolyzed at 150°C on a heating platform After 20min, after dehydration, aNiOx dense film with a thickness of 10nm is obtained as the hole transport layer 3.NiOx is a mixture of Ni oxides in different valence states (such as Ni+, Ni+2, Ni+3, etc.) , is naturally generated during the heating and hydrolysis of nickel acetate solution. The process for preparing perovskite solar cells in this embodiment is simple and convenient, the raw materials are readily available, and the cost is low, the preparation efficiency of the cells can be greatly improved, and large-scale production is possible.
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。凡属于本发明思路下的技术方案均属于本发明的保护范围。应该指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下的改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above descriptions are only preferred implementations of the present invention, and the scope of protection of the present invention is not limited to the above examples. All technical solutions under the idea of the present invention belong to the protection scope of the present invention. It should be pointed out that for those skilled in the art, improvements and modifications without departing from the principle of the present invention should also be regarded as the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510547386.2ACN105206749A (en) | 2015-08-31 | 2015-08-31 | Perovskite solar cell and preparation process thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510547386.2ACN105206749A (en) | 2015-08-31 | 2015-08-31 | Perovskite solar cell and preparation process thereof |
| Publication Number | Publication Date |
|---|---|
| CN105206749Atrue CN105206749A (en) | 2015-12-30 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510547386.2APendingCN105206749A (en) | 2015-08-31 | 2015-08-31 | Perovskite solar cell and preparation process thereof |
| Country | Link |
|---|---|
| CN (1) | CN105206749A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106025085A (en)* | 2016-07-18 | 2016-10-12 | 武汉大学 | Perovskite solar cells based on Spiro-OMeTAD/CuXS composite hole transport layer and its preparation method |
| CN106449992A (en)* | 2016-12-06 | 2017-02-22 | 庄爱芹 | Transmitting photoelectric module |
| CN113193062A (en)* | 2021-04-13 | 2021-07-30 | Tcl华星光电技术有限公司 | Photoelectric sensor, manufacturing method thereof and display panel |
| CN113594383A (en)* | 2021-07-21 | 2021-11-02 | 苏州大学 | Blue-light perovskite light-emitting diode based on modified hole transport layer and preparation method thereof |
| CN114122260A (en)* | 2021-08-05 | 2022-03-01 | 南开大学 | PIN heterojunction based artificial synapse at two ends and preparation method thereof |
| WO2024066478A1 (en)* | 2022-09-27 | 2024-04-04 | 隆基绿能科技股份有限公司 | Solar cell and photovoltaic module |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103855307A (en)* | 2014-03-14 | 2014-06-11 | 国家纳米科学中心 | Perovskite solar battery and preparing method thereof |
| CN104022225A (en)* | 2014-06-20 | 2014-09-03 | 苏州瑞晟纳米科技有限公司 | High-efficiency low-cost copper indium gallium selenium / perovskite double-junction solar photocell prepared through all-solution method |
| CN104362253A (en)* | 2014-10-23 | 2015-02-18 | 河北工业大学 | All solid state perovskite microcrystalline silicon composite solar battery and preparation method thereof |
| CN104393177A (en)* | 2014-10-24 | 2015-03-04 | 姚冀众 | Perovskite phase organic metal halide-based solar cell and manufacturing method thereof |
| CN104576932A (en)* | 2015-01-19 | 2015-04-29 | 武汉大学 | Mesoscopic perovskite photovoltaic cell with tin-oxide electron-transporting layer and preparation method thereof |
| CN104769736A (en)* | 2012-09-18 | 2015-07-08 | 埃西斯创新有限公司 | Optoelectronic devices |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104769736A (en)* | 2012-09-18 | 2015-07-08 | 埃西斯创新有限公司 | Optoelectronic devices |
| CN103855307A (en)* | 2014-03-14 | 2014-06-11 | 国家纳米科学中心 | Perovskite solar battery and preparing method thereof |
| CN104022225A (en)* | 2014-06-20 | 2014-09-03 | 苏州瑞晟纳米科技有限公司 | High-efficiency low-cost copper indium gallium selenium / perovskite double-junction solar photocell prepared through all-solution method |
| CN104362253A (en)* | 2014-10-23 | 2015-02-18 | 河北工业大学 | All solid state perovskite microcrystalline silicon composite solar battery and preparation method thereof |
| CN104393177A (en)* | 2014-10-24 | 2015-03-04 | 姚冀众 | Perovskite phase organic metal halide-based solar cell and manufacturing method thereof |
| CN104576932A (en)* | 2015-01-19 | 2015-04-29 | 武汉大学 | Mesoscopic perovskite photovoltaic cell with tin-oxide electron-transporting layer and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106025085A (en)* | 2016-07-18 | 2016-10-12 | 武汉大学 | Perovskite solar cells based on Spiro-OMeTAD/CuXS composite hole transport layer and its preparation method |
| CN106025085B (en)* | 2016-07-18 | 2018-03-13 | 武汉大学 | Based on Spiro OMeTAD/CuXPerovskite solar cell of S composite hole transporting layers and preparation method thereof |
| CN106449992A (en)* | 2016-12-06 | 2017-02-22 | 庄爱芹 | Transmitting photoelectric module |
| CN113193062A (en)* | 2021-04-13 | 2021-07-30 | Tcl华星光电技术有限公司 | Photoelectric sensor, manufacturing method thereof and display panel |
| CN113594383A (en)* | 2021-07-21 | 2021-11-02 | 苏州大学 | Blue-light perovskite light-emitting diode based on modified hole transport layer and preparation method thereof |
| CN114122260A (en)* | 2021-08-05 | 2022-03-01 | 南开大学 | PIN heterojunction based artificial synapse at two ends and preparation method thereof |
| CN114122260B (en)* | 2021-08-05 | 2025-08-19 | 南开大学 | PIN heterojunction-based two-end artificial synapse and preparation method thereof |
| WO2024066478A1 (en)* | 2022-09-27 | 2024-04-04 | 隆基绿能科技股份有限公司 | Solar cell and photovoltaic module |
| Publication | Publication Date | Title |
|---|---|---|
| CN104134711B (en) | A kind of preparation method of perovskite solar cell | |
| CN105226191A (en) | Flexible perovskite solar cell and preparation technology thereof | |
| CN105006522B (en) | Perovskite-based inverted thin-film solar cell and preparation method thereof | |
| CN101540371B (en) | Flexible polymer solar battery of anode layer of metal grid | |
| CN105702864B (en) | A kind of high quality perovskite thin film, solar cell and preparation method thereof | |
| CN105552236B (en) | A kind of perovskite solar cell and preparation method thereof | |
| CN105206749A (en) | Perovskite solar cell and preparation process thereof | |
| CN104900672A (en) | Perovskite solar cell-super capacitor combined integrated device | |
| CN111987222A (en) | Solar cells based on double perovskite materials and preparation methods | |
| CN109768167B (en) | Perovskite solar cell without current lag and preparation method thereof | |
| CN108269918A (en) | Porous perovskite thin film, carbon pastes and the solar cell based on carbon electrode | |
| CN111129315A (en) | Inverted plane heterojunction hybrid perovskite solar cell and preparation method thereof | |
| CN106887520A (en) | A kind of perovskite solar cell of additive auxiliary and preparation method thereof | |
| CN109216557A (en) | One kind being based on citric acid/SnO2Perovskite solar battery of electron transfer layer and preparation method thereof | |
| CN111211230B (en) | Full-spectrum absorption multilayer perovskite/quantum dot solar cell device and preparation method | |
| CN103594627A (en) | Inversed organic thin-film solar cell and manufacturing method of inversed organic thin-film solar cell | |
| CN109755394A (en) | A method for preparing perovskite solar cells by applying air knife coating | |
| CN103811663A (en) | Annealed free organic solar cell and production method thereof | |
| CN105977386A (en) | Perovskite solar cell of nano metal oxide hole transport layer and preparation method thereof | |
| CN116669443B (en) | Laminated solar cell of patterned electron transport layer and preparation method thereof | |
| CN219998239U (en) | A kind of laminated solar cell with patterned tunneling layer | |
| CN106450007A (en) | Solar cell based on cuprous iodide/calcium titanium ore bulk heterojunction and preparation method thereof | |
| CN108767120A (en) | A kind of method and solar cell preparing perovskite thin film using carbon quantum dot | |
| CN114914365A (en) | A perovskite/perovskite tandem solar cell with an inverted structure | |
| CN113394343B (en) | Back-incident p-i-n structure perovskite solar cell and preparation method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20151230 |