Movatterモバイル変換


[0]ホーム

URL:


CN105162116B - A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generation - Google Patents

A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generation
Download PDF

Info

Publication number
CN105162116B
CN105162116BCN201510574375.3ACN201510574375ACN105162116BCN 105162116 BCN105162116 BCN 105162116BCN 201510574375 ACN201510574375 ACN 201510574375ACN 105162116 BCN105162116 BCN 105162116B
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mtr
mfrac
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510574375.3A
Other languages
Chinese (zh)
Other versions
CN105162116A (en
Inventor
周玮
胡姝博
孙辉
王小磊
彭飞翔
谭洪恩
陈兆庆
苏安龙
崔万里
周小明
毛大维
李伟
曲霏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
State Grid Liaoning Electric Power Co Ltd
Original Assignee
Dalian University of Technology
State Grid Liaoning Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology, State Grid Liaoning Electric Power Co LtdfiledCriticalDalian University of Technology
Priority to CN201510574375.3ApriorityCriticalpatent/CN105162116B/en
Publication of CN105162116ApublicationCriticalpatent/CN105162116A/en
Application grantedgrantedCritical
Publication of CN105162116BpublicationCriticalpatent/CN105162116B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

一种求解含风电的区间经济调度非线性对偶优化方法,属于电力系统调度运行技术领域。其特征在于:针对双层非线性悲观解模型采用非线性对偶理论及原对偶内点法结合的方法进行优化求解。根据非线性对偶方法,将原双层模型中的目标函数及约束条件求偏导,引入新增临时变量,结合外层模型,将区间变量转换为常规优化变量并采用原对偶内点法求解,得到区间变量结果。将该结果代入原双层悲观解模型,合并为单层模型,采用原对偶内点法优化计算,得到悲观解。本发明的效果和益处是针对模型中双层非线性悲观解模型进行求解,直接对双层非线性悲观解模型进行优化计算,解决了实际电网的经济调度运行中对于双层的非线性区间经济调度模型求解困难的问题。

The invention relates to a nonlinear dual optimization method for solving interval economic dispatch including wind power, which belongs to the technical field of electric power system dispatch operation. It is characterized in that: for the double-layer nonlinear pessimistic solution model, the method of combining the nonlinear dual theory and the original dual interior point method is used to optimize the solution. According to the nonlinear dual method, the objective function and constraint conditions in the original two-layer model are partial derivatives, new temporary variables are introduced, combined with the outer model, the interval variables are converted into conventional optimization variables and solved by the original dual interior point method, Get interval variable results. Substituting the result into the original double-layer pessimistic solution model, combining it into a single-layer model, and using the original dual interior point method to optimize the calculation, the pessimistic solution is obtained. The effect and benefits of the present invention are to solve the double-layer nonlinear pessimistic solution model in the model, directly optimize and calculate the double-layer nonlinear pessimistic solution model, and solve the problem of the double-layer nonlinear interval economy in the economic dispatching operation of the actual power grid Scheduling models solve difficult problems.

Description

Translated fromChinese
一种求解含风电的区间经济调度非线性对偶优化方法A nonlinear dual optimization method for solving interval economic dispatch including wind power

技术领域technical field

本发明属于电力系统调度运行技术领域,涉及到电力系统非线性区间经济调度建模求解方法,特别涉及区间经济调度中双层非线性悲观解的解法问题。The invention belongs to the technical field of electric power system dispatching operation, relates to a modeling and solving method for the nonlinear interval economic dispatching of the electric power system, and particularly relates to the solution problem of the double-layer nonlinear pessimistic solution in the interval economic dispatching.

背景技术Background technique

近年来,风能作为一种新能源广泛的应用在电力系统运行中,但是风能具有间歇性和随机性,为电力系统安全稳定运行带来新的难题。In recent years, wind energy has been widely used in power system operation as a new energy source, but wind energy is intermittent and random, which brings new problems to the safe and stable operation of power system.

通常对于含风电不确定性的经济调度模型主要有概率模型,模糊模型及区间模型。概率模型建模中需考虑样本空间极其概率分布,模糊模型中需建立隶属度函数,这些都包含了人为的主观因素在内。而区间方法只需知道区间上下边界,无需得到不确定量的概率分布,并且得到的区间结果能够直观的提供目标的上下边界,为电力系统安全稳定运行提供依据,因此具有广泛的应用前景。Usually, the economic dispatch models with wind power uncertainty mainly include probability models, fuzzy models and interval models. The sample space and its probability distribution need to be considered in probabilistic model modeling, and the membership function needs to be established in fuzzy model, all of which include human subjective factors. The interval method only needs to know the upper and lower boundaries of the interval, and does not need to obtain the probability distribution of uncertain quantities, and the obtained interval results can intuitively provide the upper and lower boundaries of the target, providing a basis for the safe and stable operation of the power system, so it has a wide range of application prospects.

当风电接入电网后,风电不确定性对电力系统经济调度运行带来了影响,如何解决引入风电区间变量后的电力系统经济调度模型求解是区间经济调度研究的重点。含区间变量的电力系统经济调度问题的优化目标是寻求目标函数的区间解,即目标函数对应的乐观解和悲观解,其模型分别用双层优化模型表示。其中乐观解是在不确定扰动区间范围内的最优解,表示为“min-min”形式,悲观解是在不确定扰动区间范围内的最差解,表示为“max-min”形式。通过求解区间经济调度问题,不仅得到目标函数即成本的区间估计,还得到相应的发电机出力。When wind power is connected to the grid, the uncertainty of wind power has an impact on the economic dispatching operation of the power system. How to solve the economic dispatching model of the power system after introducing the interval variable of wind power is the focus of the research on interval economic dispatching. The optimization goal of the power system economic dispatching problem with interval variables is to seek the interval solution of the objective function, that is, the optimistic solution and the pessimistic solution corresponding to the objective function, and their models are represented by a two-layer optimization model. Among them, the optimistic solution is the optimal solution within the range of uncertain disturbance interval, expressed as "min-min" form, and the pessimistic solution is the worst solution within the range of uncertain disturbance interval, expressed as "max-min" form. By solving the interval economic scheduling problem, not only the interval estimation of the objective function, namely the cost, but also the corresponding generator output can be obtained.

在实际电网中,电力系统的经济调度模型包含大量的非线性因素,例如含阀点效应的目标函数以及电网的线路约束等等。目前针对区间经济调度的乐观解及悲观解的求法都具有局限性,由于乐观解及悲观解都是双层优化模型,现有的一些方法是将目标函数及约束条件进行线性化后,对内层模型采用线性对偶转换为单层模型再采用优化方法进行求解,或者解决针对二次规划的函数模型,没有直接对非线性区间经济调度问题进行求解。In the actual power grid, the economic dispatch model of the power system contains a large number of nonlinear factors, such as the objective function including the valve point effect and the line constraints of the power grid and so on. At present, the optimistic solution and the pessimistic solution for interval economic dispatch have limitations. Since the optimistic solution and the pessimistic solution are two-layer optimization models, some existing methods are to linearize the objective function and constraints, and then internally The layer model is converted into a single layer model by linear duality and then solved by optimization method, or solves the function model for quadratic programming, and does not directly solve the nonlinear interval economic scheduling problem.

发明内容Contents of the invention

本发明目的是提供一种求解含风电的区间经济调度非线性对偶优化方法,主要针对模型中双层非线性悲观解模型进行求解。针对实际电网中双层非线性悲观解模型采用非线性对偶模型结合原对偶内点法对其进行优化计算,得到发电成本的区间估计及其相应的发电机出力,为发电决策提供依据。The purpose of the present invention is to provide a nonlinear dual optimization method for solving interval economic dispatch including wind power, which is mainly aimed at solving the double-layer nonlinear pessimistic solution model in the model. For the double-layer nonlinear pessimistic solution model in the actual power grid, the nonlinear dual model combined with the original dual interior point method is used to optimize the calculation, and the interval estimation of the power generation cost and the corresponding generator output are obtained, which provides a basis for power generation decision-making.

本发明的技术方案是:Technical scheme of the present invention is:

1.建立电力系统区间经济调度模型1. Establish a power system interval economic dispatch model

传统经济调度问题的目标是在满足负荷和运行约束的前提下,合理地分配电网中各发电机组的出力使得调度周期发电总成本最小,而区间经济调度模型中含有风电的不确定区间出力,每一个区间内的风电取值对应一个目标函数优化解,因此,区间经济调度模型根据风电区间变量求得目标函数的乐观解及悲观解。此外,电力系统经济调度中,汽轮机进气阀突然开启时出现的拔丝现象会在机组耗量曲线上叠加一个脉动效应,产生阀点效应。因此,区间经济调度模型如式(1)所示。The goal of the traditional economic dispatch problem is to rationally distribute the output of each generating unit in the power grid under the premise of satisfying the load and operation constraints so that the total cost of power generation in the dispatch cycle is minimized. However, the interval economic dispatch model contains the uncertain interval output of wind power. The value of wind power in an interval corresponds to an optimal solution of the objective function. Therefore, the interval economic dispatch model obtains the optimistic and pessimistic solutions of the objective function according to the variable of wind power interval. In addition, in the economic dispatching of the power system, the wire drawing phenomenon that occurs when the inlet valve of the steam turbine is suddenly opened will superimpose a pulsation effect on the unit consumption curve, resulting in a valve point effect. Therefore, the interval economic dispatch model is shown in formula (1).

其中,a,b,c,e,f为燃料费用系数,Pi为发电机出力。Pi,j为j时段发电机i的出力,PDj为j时段总负荷数。为j时段风力发电机组出力总和,Wi为第i台风力发电机组的出力,Wi为第i台风力发电机组出力下限,为第i台风力发电机组出力上限。Pimin为第i台发电机出力下限,Pimax为第i台发电机出力上限。URi为第i台发电机组向上爬坡率约束,DRi为第i台发电机组向下爬坡率约束。Among them, a, b, c, e, f are fuel cost coefficients, and Pi is generator output. Pi, j is the output of generator i in period j, and PDj is the total load in period j. is the total output of wind turbines in period j, Wi is the output of the i-th wind turbine,Wi is the lower limit of the output of the i-th wind turbine, It is the output upper limit of the i-th wind turbine. Pimin is the lower limit of the output of the i-th generator, and Pimax is the upper limit of the output of the i-th generator. URi is the upward ramp rate constraint of the i-th generator set, and DRi is the downward ramp rate constraint of the i-th generator set.

目标函数中的阀点效应燃料成本部分采用凝聚函数将其进行光滑化处理等价为式(2)所示:The fuel cost part of the valve point effect in the objective function is smoothed by the agglomeration function, which is equivalent to formula (2):

含区间变量的电力系统经济调度问题的优化目标是寻求目标函数的区间解,即目标函数对应的乐观解和悲观解,其模型分别用双层优化模型表示。其中乐观解表示在不确定扰动区间范围内的最优值,表示为“min-min”形式,悲观解表示在不确定扰动区间范围内的最差解,表示为“max-min”形式。乐观解模型为:The optimization goal of the power system economic dispatching problem with interval variables is to seek the interval solution of the objective function, that is, the optimistic solution and the pessimistic solution corresponding to the objective function, and their models are represented by a two-layer optimization model. Among them, the optimistic solution represents the optimal value within the range of the uncertain disturbance interval, expressed in the form of "min-min", and the pessimistic solution represents the worst solution within the range of the uncertain disturbance interval, expressed in the form of "max-min". The optimistic solution model is:

悲观解模型为:The pessimistic solution model is:

对于乐观解模型,内外层都事求取目标函数最小,合并为单层求最小优化模型,而悲观解模型,内外层求取目标不同,需先进行对偶转换为单层优化模型后再求解。For the optimistic solution model, the inner and outer layers both seek to minimize the objective function, and are merged into a single-layer optimization model to find the minimum. For the pessimistic solution model, the inner and outer layers have different objectives, and it is necessary to perform dual conversion into a single-layer optimization model before solving.

2.非线性对偶方法2. Nonlinear dual method

设原问题模型如式(5)所示:Suppose the original problem model is shown in formula (5):

则所对应的对偶问题模型如式(6)所示:Then the corresponding dual problem model is shown in formula (6):

其中,x为原问题优化变量,u对偶问题的新增变量;x,u分别为n×1阶和m×1阶向量,uT为u的转置;f(x)为原问题目标函数,是x组成的纯量函数;h(x)为原问题约束条件,由hi(x)(i=1,2,…,m)组成,即:Among them, x is the optimization variable of the original problem, and the new variable of u dual problem; x, u are n×1 order and m×1 order vectors respectively, uT is the transpose of u; f(x) is the objective function of the original problem , is a scalar function composed of x; h(x) is the constraint condition of the original problem, composed of hi (x)(i=1,2,…,m), namely:

Z(x,u)为对偶问题的目标函数。Z(x,u) is the objective function of the dual problem.

Vxf(x)表示由f(x)关于xi(i=1,2,…,n)的偏导数所组成的n×1阶向量,即:Vx f(x) represents an n×1 order vector composed of partial derivatives of f(x) with respect to xi (i=1,2,…,n), namely:

同理,Vxh(x)表示h(x)关于xi(i=1,2,…,n)的偏导数所组成的n×m阶矩阵,即:Similarly, Vx h(x) represents an n×m order matrix composed of partial derivatives of h(x) with respect to xi (i=1,2,…,n), namely:

本发明的效果和益处是:提供了一种求解含风电的区间经济调度的非线性对偶优化方法,主要针对悲观解模型中双层非线性悲观解模型进行求解。本发明直接对双层非线性悲观解模型进行优化计算,解决了实际电网的经济调度运行中对于双层的非线性区间经济调度模型求解困难的问题。The effects and benefits of the present invention are: a nonlinear dual optimization method for solving interval economic dispatch including wind power is provided, which mainly solves the double-layer nonlinear pessimistic solution model in the pessimistic solution model. The invention directly optimizes and calculates the double-layer nonlinear pessimistic solution model, and solves the problem of difficulty in solving the double-layer nonlinear interval economic dispatch model in the economic dispatch operation of the actual power grid.

附图说明Description of drawings

附图是双层非线性悲观解模型求解流程图。The accompanying drawing is a flow chart of solving the double-layer nonlinear pessimistic solution model.

具体实施方式detailed description

以下结合技术方案和附图详细叙述本发明的具体实施方式。The specific embodiments of the present invention will be described in detail below in conjunction with the technical solutions and accompanying drawings.

步骤1.建立非线性区间经济调度模型,将第9台机组作为风电出力机组,并转换为相应的乐观解模型及悲观解模型。含风电的区间经济调度悲观解模型如式(10)所示:Step 1. Establish a nonlinear interval economic dispatch model, take the ninth unit as a wind power output unit, and convert it into the corresponding optimistic solution model and pessimistic solution model. The pessimistic solution model of interval economic dispatch including wind power is shown in formula (10):

步骤2.将步骤1中提到的乐观解模型直接内外层合并,构成普通非线性优化模型,并采用原对偶内点法求解,得到乐观解。Step 2. Combine the inner and outer layers of the optimistic solution model mentioned in step 1 directly to form an ordinary nonlinear optimization model, and use the primal dual interior point method to solve it to obtain an optimistic solution.

步骤3.针对步骤1中的悲观解内层模型,将其按照非线性对偶原理进行转换求解,其中风电区间变量为外层变量,内层模型在求解过程中,区间变量为已知量,则求解目标函数关于变量Pi,t的偏导,得到9×1的导数列向量f(Pi,t)。如式(11)所示:Step 3. For the inner model of the pessimistic solution in step 1, it is converted and solved according to the principle of nonlinear duality, wherein the interval variable of wind power is the outer variable, and the interval variable is a known quantity during the solution of the inner model, then Solve the partial derivative of the objective function with respect to the variable Pi,t , and obtain a 9×1 derivative column vector f(Pi,t ). As shown in formula (11):

步骤4.分别对约束中的变量求导,得到导数矩阵将约束条件转换为式(12)所示状态,Step 4. Differentiate the variables in the constraint respectively to obtain the derivative matrix Transform the constraints into the state shown in formula (12),

分别对式中的变量Pi,t和Pi,t-1求导,得到导数矩阵得到(9×24)×(24×9×2+23×9×2+2)的导数矩阵,其中24为时段数,9为机组数,23为每台机组爬坡率约束的Pi,t和Pi,t-1变量数。Differentiate the variables Pi, t and Pi, t-1 in the formula to obtain the derivative matrix Obtain the derivative matrix of (9×24)×(24×9×2+23×9×2+2), where 24 is the number of time periods, 9 is the number of units, and 23 is the Pi constrained by the ramp rate of each unit, t and Pi,t-1 variable number.

步骤5.区间变量的上下限如表1中Unit10机组的约束所示,根据步骤3和步骤4中得到的导数矩阵行列数,引入临时变量u构成式(13)所示新的非线性优化模型,此时的区间变量将区间变量转换为常规优化变量:Step 5. The upper and lower limits of the interval variable are shown in the constraints of Unit10 in Table 1. According to the number of rows and columns of the derivative matrix obtained in Step 3 and Step 4, a new nonlinear optimization model shown in the composition formula (13) of the temporary variable u is introduced , the interval variable at this time converts the interval variable into a regular optimization variable:

步骤6.利用原对偶内点法对步骤5中的模型进行求解,得到区间变量Wi的优化解,即式(1)中Wi为已知量。将此优化解带入原双层悲观解模型中,双层悲观解模型转换为单层优化模型,公式如式(14)所示,采用原对偶内点法优化计算,得到的目标函数值即为悲观解。Step 6. Use the primal dual interior point method to solve the model in step 5, and obtain the optimal solution of the interval variable Wi , that is, Wi in formula (1) is a known quantity. Bring this optimization solution into the original double-layer pessimistic solution model, and convert the double-layer pessimistic solution model into a single-layer optimization model. For a pessimistic solution.

乐观解模型的目标函数为1762387.25$,悲观解模型的目标函数为4063941.84$,则求得的目标函数区间结果为[1762387.25,4063941.84],单位为$。The objective function of the optimistic solution model is 1762387.25$, and the objective function of the pessimistic solution model is 4063941.84$, then the obtained objective function interval result is [1762387.25, 4063941.84], and the unit is $.

十机组系统负荷表如表1所示。The system load table of the ten units is shown in Table 1.

表1十机组系统负荷表Table 1 System load table of ten units

十机组系统参数表如表2所示。The system parameters of the ten units are shown in Table 2.

表2十机组系统参数表Table 2 System parameter list of ten units

求解乐观解模型得到的十机组系统各时段各发电机组出力如表3所示。The output of each generator set in each period of the ten-unit system obtained by solving the optimistic solution model is shown in Table 3.

表3乐观解模型各时段下各发电机组出力Table 3 The output of each generator set in each time period of the optimistic solution model

求解悲观解模型得到的十机组系统各时段各发电机组出力如表4所示。The output of each generator set in each period of the ten-unit system obtained by solving the pessimistic solution model is shown in Table 4.

表4悲观解模型各时段下各发电机组出力Table 4 The output of each generator set in each time period of the pessimistic solution model

Claims (1)

<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <munder> <mi>max</mi> <mi>W</mi> </munder> <munder> <mi>min</mi> <mi>P</mi> </munder> </mrow> </mtd> <mtd> <mrow> <mi>F</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>{</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>&amp;times;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mi>ln</mi> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>min</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <mo>-</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>W</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>D</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>max</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>n</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>UR</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>DR</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>W</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mo>&amp;lsqb;</mo> <munder> <msub> <mi>W</mi> <mi>i</mi> </msub> <mo>&amp;OverBar;</mo> </munder> <mo>,</mo> <msub> <mover> <mi>W</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>V</mi> <mi>x</mi> </msub> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>V</mi> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </msub> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>2</mn> <mo>&amp;times;</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mo>&amp;times;</mo> <mfrac> <mn>1</mn> <mrow> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <mo>-</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> </mrow> </mfrac> <mo>&amp;times;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> <mo>&amp;times;</mo> <mi>p</mi> <mo>{</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>cos</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> <mo>&amp;times;</mo> <mi>p</mi> <mo>{</mo> <mo>-</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>cos</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>V</mi> <mi>x</mi> </msub> <mi>h</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>1</mn> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mn>2</mn> </msub> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> </mfrac> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mfrac> <mrow> <mo>&amp;part;</mo> <msub> <mi>h</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>min</mi> </mtd> <mtd> <mrow> <mi>Z</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>,</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>u</mi> <mi>T</mi> </msup> <mo>&amp;CenterDot;</mo> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>V</mi> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </msub> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>V</mi> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> </msub> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>u</mi> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <mi>u</mi> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <munder> <msub> <mi>W</mi> <mi>i</mi> </msub> <mo>&amp;OverBar;</mo> </munder> <mo>&amp;le;</mo> <msub> <mi>W</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mover> <mi>W</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <munder> <mi>min</mi> <mi>P</mi> </munder> </mtd> <mtd> <mrow> <mi>F</mi> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>T</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mo>{</mo> <msub> <mi>a</mi> <mi>i</mi> </msub> <mo>&amp;times;</mo> <msubsup> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>&amp;times;</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>c</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> <mi>ln</mi> <mrow> <mo>(</mo> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mi>min</mi> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mi>p</mi> <mo>{</mo> <mo>-</mo> <msub> <mi>e</mi> <mi>i</mi> </msub> <mi>sin</mi> <mo>&amp;lsqb;</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> <mo>}</mo> </mrow> </msup> <mo>)</mo> </mrow> <mo>}</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>W</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>D</mi> <mi>t</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>min</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mi>max</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>n</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>UR</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>P</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>t</mi> </mrow> </msub> <mo>&amp;le;</mo> <msub> <mi>DR</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
CN201510574375.3A2015-09-102015-09-10A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generationExpired - Fee RelatedCN105162116B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201510574375.3ACN105162116B (en)2015-09-102015-09-10A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generation

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201510574375.3ACN105162116B (en)2015-09-102015-09-10A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generation

Publications (2)

Publication NumberPublication Date
CN105162116A CN105162116A (en)2015-12-16
CN105162116Btrue CN105162116B (en)2018-01-30

Family

ID=54802913

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201510574375.3AExpired - Fee RelatedCN105162116B (en)2015-09-102015-09-10A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generation

Country Status (1)

CountryLink
CN (1)CN105162116B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107330131B (en)*2016-04-292020-10-20南京理工大学 Interval Optimization Method for Structural Dimensional Parameters and Dimensional Tolerances of Mechanical Parts
CN106202833A (en)*2016-08-102016-12-07广东工业大学Power dispatching method and system
CN109256799B (en)*2018-09-172021-07-16大连理工大学New energy power system optimal scheduling method based on sample entropy
CN114243710B (en)*2021-12-212024-02-27国网湖北省电力有限公司经济技术研究院Short-term interval optimal scheduling method for water-fire wind-light multi-energy system

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104239967A (en)*2014-08-292014-12-24华北电力大学Multi-target economic dispatch method for power system with wind farm
CN104242356A (en)*2014-09-262014-12-24国家电网公司Method and device for robust interval wind power scheduling based on consideration on wind power field current collecting line fault
CN104362673A (en)*2014-10-292015-02-18国网甘肃省电力公司Wind power integration coordinated dispatching optimization method based on peak regulation margin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9373960B2 (en)*2013-03-132016-06-21Oracle International CorporationComputerized system and method for distributed energy resource scheduling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104239967A (en)*2014-08-292014-12-24华北电力大学Multi-target economic dispatch method for power system with wind farm
CN104242356A (en)*2014-09-262014-12-24国家电网公司Method and device for robust interval wind power scheduling based on consideration on wind power field current collecting line fault
CN104362673A (en)*2014-10-292015-02-18国网甘肃省电力公司Wind power integration coordinated dispatching optimization method based on peak regulation margin

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
考虑风电不确定性的区间经济调度模型及空间分支定界法;丁涛、郭庆来等;《中国电机工程学报》;20140805;第34卷(第22期);全文*

Also Published As

Publication numberPublication date
CN105162116A (en)2015-12-16

Similar Documents

PublicationPublication DateTitle
CN104638644B (en)Acquiring method for dynamic random optimal power flow of power system for wind-containing power field
Zhang et al.Day-ahead optimal scheduling of a standalone solar-wind-gas based integrated energy system with and without considering thermal inertia and user comfort
CN106096269B (en)The Interval Power Flow calculation method of natural gas grid in a kind of electric-gas coupled system
CN109919399B (en) A day-ahead economic dispatch method and system for an integrated energy system
CN109936164A (en) Optimal operation method of multi-energy power system based on analysis of complementary characteristics of power sources
CN112163700A (en) A planning method for electrochemical energy storage power station considering cycle life of energy storage battery
CN105162116B (en)A kind of section economic load dispatching Nonlinear Dual optimization method of the solution containing wind-powered electricity generation
CN113570117B (en)Electric-gas comprehensive energy microgrid optimal scheduling method based on second order cone relaxation conversion method
CN103473393B (en)A kind of transmission of electricity nargin Controlling model modeling method considering random chance
CN107317361A (en)A kind of active distribution network global optimization dispatching method for considering regional autonomy ability
CN105811407A (en)Distributed Newton method based primary frequency modulation control method of microgrid
CN110620397A (en)Peak regulation balance evaluation method for high-proportion renewable energy power system
CN110212551B (en) Microgrid Automatic Reactive Power Control Method Based on Convolutional Neural Network
CN105305423A (en)Method for determining optimal error boundary considering intermittent energy uncertainty
CN113328435B (en) A joint control method of active and reactive power in active distribution network based on reinforcement learning
CN118211738B (en)Collaborative optimization method for cascade water, wind, light and day-ahead power generation plan and flexibility response rule
CN114357782A (en) An optimal scheduling method for integrated energy system considering carbon source and sink effect
CN104167765A (en)Admitting ability distribution-based maximum wind power installed capacity calculation method
CN105207272A (en)Electric power system dynamic random economic dispatching method and device based on general distribution
CN108647415A (en)The reliability estimation method of electric system for high proportion wind-electricity integration
CN105958496A (en)Continuous power flow based maximum transmission capacity calculation method for system containing power source converter (VSC)
CN115169950B (en) A method and system for distributed coordination of electric-gas system based on multi-parameter programming
CN106026169A (en)Decomposition-coordination optimization method based on multi-microgrid merging into power distribution network
CN105678415A (en)Method for predicting net load of distributed power supply power distribution network
CN113809780B (en)Micro-grid optimal scheduling method based on improved Q learning punishment selection

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
CB03Change of inventor or designer information

Inventor after:Zhou Wei

Inventor after:Zhou Xiaoming

Inventor after:Mao Dawei

Inventor after:Li Wei

Inventor after:Qu Fei

Inventor after:Hu Shubo

Inventor after:Sun Hui

Inventor after:Wang Xiaolei

Inventor after:Peng Feixiang

Inventor after:Tan Hongen

Inventor after:Chen Zhaoqing

Inventor after:Su Anlong

Inventor after:Cui Wanli

Inventor before:Zhou Wei

Inventor before:Hu Shubo

Inventor before:Sun Hui

Inventor before:Wang Xiaolei

CB03Change of inventor or designer information
TA01Transfer of patent application right
TA01Transfer of patent application right

Effective date of registration:20170714

Address after:116024 Liaoning, Dalian, Ganjingzi Ling Road, No. 2

Applicant after:Dalian University of Technology

Applicant after:State Grid Liaoning Electric Power Co., Ltd.

Address before:116024 Ganjingzi City, Dalian province Dalian District Ling Road, No. 2, No.

Applicant before:Dalian University of Technology

GR01Patent grant
GR01Patent grant
CB03Change of inventor or designer information

Inventor after:Zhou Wei

Inventor after:Zhou Xiaoming

Inventor after:Wang Dawei

Inventor after:Li Wei

Inventor after:Qu Fei

Inventor after:Hu Shubo

Inventor after:Sun Hui

Inventor after:Wang Xiaolei

Inventor after:Peng Feixiang

Inventor after:Tan Hongen

Inventor after:Chen Zhaoqing

Inventor after:Su Anlong

Inventor after:Cui Wanli

Inventor before:Zhou Wei

Inventor before:Zhou Xiaoming

Inventor before:Mao Dawei

Inventor before:Li Wei

Inventor before:Qu Fei

Inventor before:Hu Shubo

Inventor before:Sun Hui

Inventor before:Wang Xiaolei

Inventor before:Peng Feixiang

Inventor before:Tan Hongen

Inventor before:Chen Zhaoqing

Inventor before:Su Anlong

Inventor before:Cui Wanli

CB03Change of inventor or designer information
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20180130

Termination date:20180910

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp