技术领域technical field
本发明涉及一种位移传感器,适用于结构构件之间的位移、材料的弹性模量和泊松比试验,特别适用于木结构构件的变形和构件与构件之间的位移的试验。The invention relates to a displacement sensor, which is suitable for the displacement between structural components, elastic modulus and Poisson's ratio test of materials, and is especially suitable for the deformation test of wooden structural components and the displacement between components.
背景技术Background technique
应用应变片可以制成测量各种参数的传感器,它们具有灵敏度高、精度高、输出为电信号以及便于自动记录和进行数据处理等优点,已被广泛使用。应变式传感器按用途可以分为测力传感器、压力传感器、位移传感器、加速度传感器等,原理应用是将应变片粘贴在弹性元件上,并接成一定的桥路,当弹性元件受力变形后,电桥就有电信号输出,应用测量仪器就可以测出所需要的参数。The application of strain gauges can be used to make sensors for measuring various parameters. They have the advantages of high sensitivity, high precision, output as electrical signals, and easy automatic recording and data processing. They have been widely used. Strain sensors can be divided into force sensors, pressure sensors, displacement sensors, acceleration sensors, etc. according to their uses. The principle application is to paste the strain gauges on the elastic elements and connect them into a certain bridge. When the elastic elements are deformed by force, The bridge has an electrical signal output, and the required parameters can be measured by using a measuring instrument.
应变式传感器的弹性元件可以采用不同形式,常用的有梁式、弓形形式和弹簧组合式三种弹性元件的位移传感器。The elastic elements of strain gauge sensors can be in different forms, and there are three kinds of displacement sensors commonly used: beam type, bow type and spring combination type.
现有技术一,悬臂梁应变式位移传感器,它的原理是将应变片粘贴在弹性元件上,并接成一定的桥路,当弹性元件受力变形后,电桥就有电信号输出,应用测量仪器即可测出所需要的参数。Existing technology 1, cantilever beam strain type displacement sensor, its principle is to paste the strain gauge on the elastic element and connect it to form a certain bridge. When the elastic element is deformed by force, the bridge will have an electrical signal output. Application The measuring instrument can measure the required parameters.
现有技术二,国内生产的应变式悬臂梁、弹簧组合式位移传感器,其组成元件有悬臂梁、圆柱螺旋弹簧、导杆和标尺等。在悬臂梁固定端附近粘贴应变片,当测点位移传递给导杆后,导杆带动弹簧,使弹簧伸长,并使悬臂梁产生弯曲变形。因此,测点的位移是弹簧伸长量和悬臂梁自由端位移之和。The second prior art is the domestically produced strain-type cantilever beam and spring combined displacement sensor, and its components include cantilever beams, cylindrical coil springs, guide rods and scales. Paste the strain gauge near the fixed end of the cantilever beam. When the displacement of the measuring point is transmitted to the guide rod, the guide rod drives the spring to elongate the spring and cause the cantilever beam to bend and deform. Therefore, the displacement of the measuring point is the sum of the spring elongation and the displacement of the free end of the cantilever beam.
还能够获得的现有理论和技术如下:Existing theories and techniques that can also be obtained are as follows:
[1]吴宗岱,陶宝褀.应变电测原理及技术.国防工业出版社,1982,292~377。[1] Wu Zongdai, Tao Baoyu. Principle and Technology of Electrical Strain Measurement. National Defense Industry Press, 1982, 292~377.
[2]陶宝褀,王妮.电阻应变式传感器.国防工业出版社,1993,149~158。[2] Tao Baoqi, Wang Ni. Resistance strain sensor. National Defense Industry Press, 1993, 149-158.
[3]曹天捷.集中力作用下悬臂梁几何中轴的弹性大挠度分析.中国民航大学[3] Cao Tianjie. Elastic large deflection analysis of the geometric axis of the cantilever beam under the action of concentrated force. Civil Aviation University of China
学报,2007,Vol.25,No.5。Journal, 2007, Vol.25, No.5.
[4]葛如海,储志俊.悬臂梁集中载荷大挠度弯曲变形的一种解.应用力学学[4] Ge Ruhai, Chu Zhijun. A solution to large deflection bending deformation of cantilever beam under concentrated load. Applied Mechanics
报,1997,Vo1.14,No.4。Newspaper, 1997, Vo1.14, No.4.
[5]张彦兵,刘永前.悬臂梁自由端受集中载荷作用考虑几何非线性时的位[5] Zhang Yanbing, Liu Yongqian. The position of the free end of the cantilever beam under the action of concentrated load considering geometric nonlinearity
移函数.国防交通工程与技术,2005,Vo1.3,41~42。Shift function. National Defense Transportation Engineering and Technology, 2005, Vo1.3, 41-42.
[6]武汉水利电力学院编.工程力学(材料力学).高等教育出版社,1986,186~[6] Edited by Wuhan Institute of Water Conservancy and Electric Power. Engineering Mechanics (Material Mechanics). Higher Education Press, 1986, 186~
363。363.
[7]李银山等.Maple材料力学.机械工业出版社,2009,109~159。[7] Li Yinshan et al.Maple Mechanics of Materials. Machinery Industry Press, 2009, 109~159.
发明内容Contents of the invention
一种“三角形”位移传感器是位移应变转换元件上设置应变片,将应变片构成桥路连接应变仪;位移应变转换元件通过弹性元件连接组成“三角形”位移传感器。“三角形”位移传感器根据具体情况,通过改变弹性元件的几何尺寸,可以测量小位移和大位移。A "triangular" displacement sensor is provided with strain gages on the displacement strain conversion elements, and the strain gages form bridges connected to strain gauges; the displacement strain conversion elements are connected through elastic elements to form a "triangular" displacement sensor. The "triangular" displacement sensor can measure small displacements and large displacements by changing the geometric dimensions of the elastic element according to the specific situation.
将“三角形”位移传感器的一端固定在参考位置,另一端固定在位移活动端。传感器的活动端位移时,位移与位移应变转换元件上的应变片处的应变呈线性关系。本发明结构简单,重复性好,精度高、灵敏度高,制作、安装方便,成本低,适用于结构构件之间的位移、材料的弹性模量和泊松比试验,特别适用于木结构构件的变形和构件与构件的位移的试验。Fix one end of the "triangular" displacement sensor at the reference position, and the other end at the active end of the displacement. When the movable end of the sensor is displaced, the displacement has a linear relationship with the strain at the strain gauge on the displacement-strain conversion element. The invention has the advantages of simple structure, good repeatability, high precision, high sensitivity, convenient production and installation, and low cost, and is suitable for displacement between structural components, elastic modulus of materials and Poisson's ratio test, especially for deformation of wooden structural components and member-to-member displacement tests.
一种“三角形”位移传感器,其特征是:A "triangular" displacement sensor characterized by:
位移应变转换元件;Displacement strain conversion element;
所述位移应变转换元件(1)呈三角形;其上设置有应变片(2)并构成桥路,将构成的桥路(2)连接应变仪;The displacement-strain conversion element (1) is triangular; strain gauges (2) are arranged on it to form a bridge, and the formed bridge (2) is connected to a strain gauge;
位移应变转换元件(1)的两个自由端(3)、(4),分别连接弹性元件(5)、(6)的一端,弹性元件(5)的另一端连接参考固定端,弹性元件(6)的另一端连接位移活动端。当弹性元件(6)活动端位移时,位移与应变片(2)处的应变呈线性关系。The two free ends (3), (4) of the displacement-strain conversion element (1) are respectively connected to one end of the elastic element (5), (6), and the other end of the elastic element (5) is connected to the reference fixed end, and the elastic element ( 6) The other end is connected to the movable end of the displacement. When the movable end of the elastic element (6) is displaced, the displacement has a linear relationship with the strain at the strain gauge (2).
如权利要求所述的“三角形”位移传感器,其特征是:"Triangle" displacement sensor as claimed in the claims, is characterized in that:
位移应变转换元件(1)由薄形弹性金属材料制成;呈三角形状,有两个对称可伸缩的自由端(3)、(4)。根据测量对象预先估计的位移大小,选择位移应变转换元件(1)的几何尺寸,确保测量的精度。The displacement-strain conversion element (1) is made of thin elastic metal material; it is triangular in shape and has two symmetrical and expandable free ends (3), (4). According to the pre-estimated displacement of the measurement object, the geometric size of the displacement-strain conversion element (1) is selected to ensure measurement accuracy.
如权利要求所述的“三角形”位移传感器,其特征是:"Triangle" displacement sensor as claimed in the claims, is characterized in that:
弹性元件(5)、(6)是拉簧。它们的一端分别与位移应变转换元件(1)的自由端(3)、(4)连接;另一端分别连接参考固定端和位移活动端。根据测量对象预先估计的位移大小,选择弹性元件(5)、(6)的型号。根据测量对象预先估计的位移大小和安装所述的“三角形”位移传感器的位置,位移应变转换元件(1)的自由端(3)可以不用连接弹性元件(5)直接连接参考固定端。根据测量对象预先估计的位移大小和安装所述的“三角形”位移传感器的位置,位移应变转换元件(1)的自由端(3)、(4)可以不用连接弹性元件(5)、(6),位移应变转换元件(1)的自由端(3)直接连接参考固定端,位移应变转换元件(1)的自由端(4)直接连接位移活动端。Elastic elements (5), (6) are extension springs. One ends of them are respectively connected to the free ends (3) and (4) of the displacement strain conversion element (1); the other ends are respectively connected to the reference fixed end and the displacement movable end. Select the models of the elastic elements (5) and (6) according to the pre-estimated displacement of the measurement object. According to the pre-estimated displacement of the measurement object and the installation position of the "triangular" displacement sensor, the free end (3) of the displacement-strain conversion element (1) can be directly connected to the reference fixed end without connecting the elastic element (5). According to the pre-estimated displacement of the measurement object and the installation position of the "triangular" displacement sensor, the free ends (3), (4) of the displacement-strain conversion element (1) may not be connected to the elastic elements (5), (6) , the free end (3) of the displacement strain conversion element (1) is directly connected to the reference fixed end, and the free end (4) of the displacement strain conversion element (1) is directly connected to the displacement movable end.
如权利要求所述的“三角形”位移传感器,其特征是:"Triangle" displacement sensor as claimed in the claims, is characterized in that:
安装“三角形”位移传感器时,根据情况确定参考固定端与位移活动端的距离(标距),这个距离使位移应变转换元件(1)的自由端(3)、(4)能预先张开一定长度,确保测量的精度。When installing the "triangular" displacement sensor, determine the distance (gauge length) between the reference fixed end and the movable end of the displacement according to the situation. This distance enables the free ends (3) and (4) of the displacement-strain conversion element (1) to be pre-opened to a certain length , to ensure the accuracy of the measurement.
“三角形”位移传感器的使用方法是按下列步骤进行的:The method of using the "triangular" displacement sensor is carried out according to the following steps:
第一步:根据情况确定固定端与位移活动端的距离(标距)。Step 1: Determine the distance (gauge length) between the fixed end and the movable end according to the situation.
第二步:根据测量对象预先估计的位移大小和安装所述的“三角形”位移传感器的位置,决定是否在位移应变转换元件(1)的自由端(3)、(4)连接弹性元件(5)、(6)。Step 2: According to the pre-estimated displacement of the measurement object and the location where the "triangular" displacement sensor is installed, decide whether to connect the elastic element (5) to the free end (3) and (4) of the displacement-strain conversion element (1) ), (6).
第三步:将“三角形”位移传感器连接参考固定端与位移活动端,将构成的桥路(2)连接应变仪。Step 3: Connect the "triangular" displacement sensor to the reference fixed end and the movable end of the displacement, and connect the formed bridge (2) to the strain gauge.
第四步:当位移活动端位移时,“三角形”传感器位移应变转换元件(1)上应变片(2)处的应变与位移呈线性关系;用应变仪测量位移时应变片(2)处的应变。Step 4: When the movable end of the displacement is displaced, the strain at the strain gauge (2) on the "triangular" sensor displacement strain conversion element (1) has a linear relationship with the displacement; when the displacement is measured with a strain gauge, the strain at the strain gauge (2) strain.
第五步:根据标定的应变与位移关系式确定位移。应变与位移关系式为:y=kε=b,其中,y为位移,ε为应变,k为比例系数,b为常数。Step 5: Determine the displacement according to the calibrated strain-displacement relationship. The relationship between strain and displacement is:y=kε=b , wherey is displacement,ε is strain,k is a proportional coefficient, andb is a constant.
实现本发明所提供的一种“三角形”位移传感器,与现有技术相比,其所具有的优点与积极效果在于:Compared with the prior art, the "triangular" displacement sensor provided by the present invention has the following advantages and positive effects:
实现了一种新的位移应变转换元件——三角形位移应变转换元件,为应变式位移传感器的位移应变转换元件增加了一种新的结构形式。克服了现有应变式位移传感器技术的制作周期长、成本高、安装时不方便、不宜非专业生产厂家的人员制作等问题。A new displacement-strain conversion element—triangular displacement-strain conversion element is realized, which adds a new structural form to the displacement-strain conversion element of the strain gauge displacement sensor. The invention overcomes the problems of long production cycle, high cost, inconvenient installation, unfavorable production by non-professional manufacturers, and the like in the existing strain type displacement sensor technology.
本发明的“三角形”位移传感器,适用于结构构件之间的位移、材料的弹性模量和泊松比试验,特别适用于木结构构件的变形和构件与构件的位移的试验。它具有结构简单、线性好、灵敏度高、精度高、重复性好、安装方便、便于制作、制作成本低等特征;输出为电信号,便于自动记录和进行数据处理。The "triangular" displacement sensor of the present invention is suitable for tests of displacement between structural components, elastic modulus of materials and Poisson's ratio, and is particularly suitable for tests of deformation of wooden structural components and displacement between components. It has the characteristics of simple structure, good linearity, high sensitivity, high precision, good repeatability, convenient installation, easy production, and low production cost; the output is an electrical signal, which is convenient for automatic recording and data processing.
附图说明Description of drawings
图1:三角形位移应变转换元件Figure 1: Triangular Displacement Strain Transformation Element
图2:三角形位移应变转换元件的计算简图Figure 2: Calculation diagram of a triangular displacement-strain conversion element
图3:“三角形”位移传感器(不加弹簧)标定的拟合曲线Figure 3: Fitting curve for calibration of "triangular" displacement sensor (without spring)
图4:“三角形”位移传感器(加两根0.5×5×50弹簧)标定的拟合曲线Figure 4: The fitting curve calibrated by the "triangular" displacement sensor (plus two 0.5×5×50 springs)
图5:“三角形”位移传感器在古建筑木结构试验中的应用。Figure 5: The application of the "triangular" displacement sensor in the test of the wooden structure of the ancient building.
具体实施方式Detailed ways
下面对本发明的具体实施方式作出进一步的说明。The specific implementation manners of the present invention will be further described below.
本发明“三角形”位移传感器的理论依据:The theoretical basis of the "triangular" displacement sensor of the present invention:
“三角形”位移传感器,它的原理是将应变片粘贴在弹性元件上,并接成一定的桥路,当弹性元件受力变形后,电桥就有电信号输出,应用测量仪器就可以测出所需要的参数。The principle of the "triangular" displacement sensor is to paste the strain gauge on the elastic element and connect it to form a certain bridge. The required parameters.
如图2示,根据力学原理,三角形位移应变转换元件的位移与应变的计算为As shown in Figure 2, according to the mechanics principle, the displacement and strain of the triangular displacement-strain conversion element are calculated as
如果三角形位移应变转换元件与加弹簧组合时位移为If the triangular displacement-strain conversion element is combined with the spring, the displacement is
Δ=Δ1+Δ2Δ=Δ1 +Δ2
式中Δ1——三角形位移应变转换元件的位移;In the formula, Δ1 is the displacement of the triangular displacement-strain conversion element;
Δ2——弹簧的伸长量;Δ2 - the elongation of the spring;
基于三角形位移应变转换元件的位移与应变的力学原理,“三角形”位移传感器的制作如下:Based on the mechanical principle of the displacement and strain of the triangular displacement-strain conversion element, the fabrication of the "triangular" displacement sensor is as follows:
按图2所示尺寸制作,在位移应变转换元件上设置应变片,将应变片构成桥路连接应变仪;位移应变转换元件通过弹性元件连接组成“三角形”位移传感器。Manufactured according to the size shown in Figure 2, the strain gauges are set on the displacement-strain conversion elements, and the strain gauges form a bridge to connect the strain gauges; the displacement-strain conversion elements are connected by elastic elements to form a "triangular" displacement sensor.
根据测量对象预先估计的位移大小和安装所述的“三角形”位移传感器的位置,决定是否在位移应变转换元件(1)的自由端(3)、(4)连接弹性元件(5)、(6)。According to the pre-estimated displacement of the measurement object and the position where the "triangular" displacement sensor is installed, decide whether to connect the elastic elements (5), (6) to the free ends (3), (4) of the displacement-strain conversion element (1) ).
标定结果如表1、表2、图3和图4示。表1和图3是“三角形”位移传感器不加弹簧,标距为30mm的标定结果,相对误差最大值为0.239%,变异系数最大值为0.231%,线性度为1.411%,重复性误差为0.003%,精度为1.597%,灵敏度为0.0021%,分辨力为476.429mm。表2和图4是“三角形”位移传感器加两根0.5×5×50弹簧,标距为21.25mm的标定结果,相对误差最大值为0.6024%,变异系数最大值为0.5313%,线性度为0.4257%,重复性误差为0.0022%,精度为0.5563%,灵敏度为0.0202%,分辨力为49.4364mm。The calibration results are shown in Table 1, Table 2, Figure 3 and Figure 4. Table 1 and Figure 3 are the calibration results of the "triangular" displacement sensor without springs and a gauge length of 30mm. The maximum relative error is 0.239%, the maximum coefficient of variation is 0.231%, the linearity is 1.411%, and the repeatability error is 0.003 %, the accuracy is 1.597%, the sensitivity is 0.0021%, and the resolution is 476.429mm. Table 2 and Figure 4 are the calibration results of the "triangular" displacement sensor plus two 0.5×5×50 springs, the gauge length is 21.25mm, the maximum relative error is 0.6024%, the maximum variation coefficient is 0.5313%, and the linearity is 0.4257 %, the repeatability error is 0.0022%, the precision is 0.5563%, the sensitivity is 0.0202%, and the resolution is 49.4364mm.
“三角形”位移传感器不加弹簧,标距为30mm的标定结果表1Table 1
“三角形”位移传感器加两根0.5×5×50弹簧,标距为21.25mm的标定结果表2"Triangle" displacement sensor plus two 0.5×5×50 springs, the calibration results of 21.25mm in gauge length Table 2
标定结果表明“三角形”位移传感器的相对误差、变异系数、线性度、重复性、精度、灵敏度和分辨力均达到位移传感器的技术要求。The calibration results show that the relative error, coefficient of variation, linearity, repeatability, precision, sensitivity and resolution of the "triangular" displacement sensor all meet the technical requirements of the displacement sensor.
在实际应用前必须对传感器进行标定,以标定值为准。The sensor must be calibrated before actual application, and the calibration value shall prevail.
图5为“三角形”位移传感器在古建筑木结构试验中的应用。在试验中这种传感器安装方便、线性好、灵敏度高、精度高、重复性好,测得的位移数据较理想,满足试验的要求。Figure 5 shows the application of the "triangular" displacement sensor in the test of ancient wooden structures. In the test, this kind of sensor is easy to install, has good linearity, high sensitivity, high precision and good repeatability, and the measured displacement data is ideal, which meets the requirements of the test.
本发明实现了一种新的位移应变转换元件——三角形位移应变转换元件,为应变式位移传感器的位移应变转换元件增加了一种新的结构形式。克服了现有应变式位移传感器技术的制作周期长、成本高、安装时不方便、不宜非专业生产厂家的人员制作等问题。The invention realizes a new displacement-strain transformation element—a triangular displacement-strain transformation element, and adds a new structural form to the displacement-strain transformation element of a strain gauge displacement sensor. The invention overcomes the problems of long production cycle, high cost, inconvenient installation, unfavorable production by non-professional manufacturers, and the like in the existing strain type displacement sensor technology.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510264802.8ACN105157551A (en) | 2015-05-22 | 2015-05-22 | Triangle displacement sensor |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510264802.8ACN105157551A (en) | 2015-05-22 | 2015-05-22 | Triangle displacement sensor |
| Publication Number | Publication Date |
|---|---|
| CN105157551Atrue CN105157551A (en) | 2015-12-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510264802.8APendingCN105157551A (en) | 2015-05-22 | 2015-05-22 | Triangle displacement sensor |
| Country | Link |
|---|---|
| CN (1) | CN105157551A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108759749A (en)* | 2018-05-31 | 2018-11-06 | 上海朗旦制冷技术有限公司 | Utilize the method for strain measurement piston displacement |
| CN113009325A (en)* | 2020-12-28 | 2021-06-22 | 中国北方车辆研究所 | Embedded high-temperature displacement testing method based on elastic element strain |
| CN115183726A (en)* | 2022-09-13 | 2022-10-14 | 太原理工大学 | Device and method for measuring relative rotation angle and horizontal friction slippage between wood members |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5235662A (en)* | 1975-09-15 | 1977-03-18 | Toyoda Mach Works Ltd | Process for measuring displacement in the inner wall of pressure vesse l |
| JPH10332314A (en)* | 1997-05-29 | 1998-12-18 | Sekisui Chem Co Ltd | Displacement gauge and strain measuring method using it |
| CN101825429A (en)* | 2010-04-24 | 2010-09-08 | 大连理工大学 | Dynamic strain measurement-based large-amplitude rotation angle measurement instrument and using method thereof |
| CN201637384U (en)* | 2010-04-20 | 2010-11-17 | 襄樊达安汽车检测中心 | Transducer for measuring small displacement |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5235662A (en)* | 1975-09-15 | 1977-03-18 | Toyoda Mach Works Ltd | Process for measuring displacement in the inner wall of pressure vesse l |
| JPH10332314A (en)* | 1997-05-29 | 1998-12-18 | Sekisui Chem Co Ltd | Displacement gauge and strain measuring method using it |
| CN201637384U (en)* | 2010-04-20 | 2010-11-17 | 襄樊达安汽车检测中心 | Transducer for measuring small displacement |
| CN101825429A (en)* | 2010-04-24 | 2010-09-08 | 大连理工大学 | Dynamic strain measurement-based large-amplitude rotation angle measurement instrument and using method thereof |
| Title |
|---|
| 施纪泽: "几种应变式位移计研制及使用情况的分析", 《材料试验机》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108759749A (en)* | 2018-05-31 | 2018-11-06 | 上海朗旦制冷技术有限公司 | Utilize the method for strain measurement piston displacement |
| CN113009325A (en)* | 2020-12-28 | 2021-06-22 | 中国北方车辆研究所 | Embedded high-temperature displacement testing method based on elastic element strain |
| CN113009325B (en)* | 2020-12-28 | 2023-01-13 | 中国北方车辆研究所 | Embedded high-temperature displacement testing method based on elastic element strain |
| CN115183726A (en)* | 2022-09-13 | 2022-10-14 | 太原理工大学 | Device and method for measuring relative rotation angle and horizontal friction slippage between wood members |
| CN115183726B (en)* | 2022-09-13 | 2022-11-22 | 太原理工大学 | Measuring device and method for relative rotation angle and horizontal friction slippage between wooden components |
| Publication | Publication Date | Title |
|---|---|---|
| CN103090778B (en) | A kind of strain-type Linear Double is to large displacement sensor and detection method thereof | |
| CN103698225B (en) | Four-point bending elastic parameter measurement method and measurement system | |
| CN100458388C (en) | Two-dimension force transducer with small measuring range | |
| CN103551922B (en) | Strain gauge integrated three-dimensional turning force sensor | |
| CN106500900A (en) | A kind of Cable force measuring device and its measuring method | |
| CN104614196B (en) | Piezoelectric element actuator stiffness measurement device | |
| CN101561334A (en) | Method for calibrating three-dimensional micro-touch force sensor | |
| CN102175137B (en) | Extensometer for measuring micro-deformation of component | |
| CN105628269B (en) | A kind of micro- power and micro-displacement amplify sensor | |
| CN108593058A (en) | Air drag tests balance | |
| CN209387171U (en) | A Multi-Dimensional Microdynamometer Based on Eddy Current Sensor | |
| CN102506688B (en) | Resistance strain thickness measuring device and measurement method thereof | |
| CN103196526B (en) | Dynamometry weighing sensor with unbalance loading isolating function and isolating measuring method thereof | |
| CN108398099A (en) | A kind of modification method of single-point laser strain calibrated error | |
| CN108267118A (en) | A kind of strain-type intelligent inclinometer | |
| CN202383021U (en) | Device for measuring tension and compression elasticity modulus of material | |
| CN108759652B (en) | A kind of curvature measurement method based on favour stone full-bridge principle | |
| CN105157551A (en) | Triangle displacement sensor | |
| KR20110105301A (en) | Temperature Compensated Load Cell with Strain Gauge | |
| CN103148971A (en) | Method for testing local stress field of end part structure of thermal jacket of ultrahigh-pressure tubular reactor | |
| CN205384108U (en) | Measure axial tension's resistance strain force sensor | |
| CN106895930A (en) | A kind of micro- power of cantilever beam structure and micro-displacement sensing device | |
| CN205120283U (en) | Tension appearance sensor | |
| CN106092391A (en) | A kind of split type 2 D force sensor | |
| Qandil et al. | Considerations in the design and manufacturing of a load cell for measuring dynamic compressive loads |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| WD01 | Invention patent application deemed withdrawn after publication | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20151216 |