Movatterモバイル変換


[0]ホーム

URL:


CN105091849A - Optical axis nonlinear binocular range finding method - Google Patents

Optical axis nonlinear binocular range finding method
Download PDF

Info

Publication number
CN105091849A
CN105091849ACN201410186771.4ACN201410186771ACN105091849ACN 105091849 ACN105091849 ACN 105091849ACN 201410186771 ACN201410186771 ACN 201410186771ACN 105091849 ACN105091849 ACN 105091849A
Authority
CN
China
Prior art keywords
camera
formula
binocular
ranging
cameras
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410186771.4A
Other languages
Chinese (zh)
Other versions
CN105091849B (en
Inventor
张毅
柏连发
吴磊
万一龙
韩静
岳江
陈钱
顾国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and TechnologyfiledCriticalNanjing University of Science and Technology
Priority to CN201410186771.4ApriorityCriticalpatent/CN105091849B/en
Publication of CN105091849ApublicationCriticalpatent/CN105091849A/en
Application grantedgrantedCritical
Publication of CN105091849BpublicationCriticalpatent/CN105091849B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明提出一种光轴非平行双目测距方法。首先搭建双目测距装置,并建立与双目测距装置在左右相机光轴非理想平行时配合使用的测距公式;然后标定测距公式中的参数,获得未知量只包含待测场景目标在双目测距装置左右相机图像中的成像位置的测距公式;实际应用时,将直接读取的待测场景目标在左右相机图像中的成像位置数据代入标定后的测距公式即可计算获得待测场景目标与双目测距装置中参考相机的距离。本发明适用于光轴非理想平行状态的双目立体视觉装置,降低了由于安装导致的光轴不平行带来的测距误差,提高了实际工程应用中的测距精度。

The invention proposes a non-parallel binocular ranging method with optical axes. First build a binocular ranging device, and establish a ranging formula that is used in conjunction with the binocular ranging device when the optical axes of the left and right cameras are not ideally parallel; then calibrate the parameters in the ranging formula to obtain unknown quantities that only include the target of the scene to be measured The ranging formula of the imaging position in the left and right camera images of the binocular ranging device; in practical applications, the directly read imaging position data of the scene target to be measured in the left and right camera images can be calculated by substituting the calibrated ranging formula The distance between the target in the scene to be measured and the reference camera in the binocular distance measuring device is obtained. The invention is suitable for the binocular stereo vision device in the non-ideal parallel state of the optical axes, reduces the ranging error caused by the non-parallel optical axes caused by installation, and improves the ranging accuracy in practical engineering applications.

Description

Translated fromChinese
一种光轴非平行双目测距方法A non-parallel binocular ranging method with optical axes

技术领域technical field

本发明属于计算机视觉领域,具体涉及一种光轴非平行双目测距方法。The invention belongs to the field of computer vision, and in particular relates to a non-parallel binocular ranging method with optical axes.

背景技术Background technique

双目立体视觉是一种通过模仿人类双眼视觉特性获取场景三维信息的计算机视觉。双目相机从不同角度获取场景信息,根据视差计算对应点到成像面的距离,获取深度感知与三维重建。相机装置采集目标场景的三维信息,空间立体目标场景经相机透镜系统的光学变换,投影于两个二维成像平面上,该过程就是相机成像模型。Binocular stereo vision is a computer vision that obtains three-dimensional information of the scene by imitating the characteristics of human binocular vision. The binocular camera obtains scene information from different angles, calculates the distance from the corresponding point to the imaging surface according to the parallax, and obtains depth perception and 3D reconstruction. The camera device collects the three-dimensional information of the target scene, and the spatial three-dimensional target scene is optically transformed by the camera lens system and projected on two two-dimensional imaging planes. This process is the camera imaging model.

双目测距装置根据左右相机的图像信息计算出对应的实际物体与拍摄相机的距离。根据左右相机的相对安放位置,结合相机成像模型推导出对应的测量目标物体距离相机的距离计算公式,常用的双目测距装置是一种左右相机光轴平行的双目装置。左右两相机光轴平行的双目模型又叫做规范结构的相机安装方式。装置中采用的两相机相同,这种安装方式下基线与相机像平面的水平轴平行,光轴平行且等高。目前多数双目测距方法就是针对这种光轴平行的双目测距模型,如文献(岳荣刚,王少萍,李凯,宋林珺的“基于相似原理的新型双目测距法.光电工程,2008”)。但在实际安装过程中,装置总是会偏离理想安装位置,其中的偏移量会影响测距精度。The binocular distance measuring device calculates the distance between the corresponding actual object and the shooting camera according to the image information of the left and right cameras. According to the relative placement positions of the left and right cameras, combined with the camera imaging model, the corresponding formula for calculating the distance between the measurement target object and the camera is derived. The commonly used binocular distance measuring device is a binocular device whose optical axes of the left and right cameras are parallel. The binocular model in which the optical axes of the left and right cameras are parallel is also called the standard camera installation method. The two cameras used in the device are the same. In this installation mode, the baseline is parallel to the horizontal axis of the camera image plane, and the optical axes are parallel and equal in height. At present, most binocular distance measurement methods are aimed at this kind of binocular distance measurement model with parallel optical axes. ). However, in the actual installation process, the device will always deviate from the ideal installation position, and the offset will affect the ranging accuracy.

发明内容Contents of the invention

本发明提出一种光轴非平行双目测距方法,该方法适用于光轴非理想平行状态的双目立体视觉装置,降低了由于安装导致的光轴不平行带来的测距误差,提高了实际工程应用中的测距精度。The invention proposes a non-parallel binocular ranging method with optical axes, which is suitable for binocular stereo vision devices with non-ideal parallel optical axes, reduces the ranging error caused by non-parallel optical axes caused by installation, and improves The ranging accuracy in practical engineering applications is improved.

为了解决上述技术问题,本发明提出一种光轴非平行双目测距方法,首先搭建双目测距装置,并建立与双目测距装置在左右相机光轴非理想平行时配合使用的测距公式;然后标定测距公式中的参数,获得未知量只包含待测场景目标在双目测距装置左右相机图像中的成像位置的测距公式;实际应用时,将直接读取的待测场景目标在左右相机图像中的成像位置数据代入标定后的测距公式计算获得待测场景目标与双目测距装置中参考相机的距离;In order to solve the above-mentioned technical problems, the present invention proposes a non-parallel binocular distance measuring method with optical axes. Then calibrate the parameters in the ranging formula to obtain the ranging formula that the unknown quantity only includes the imaging position of the scene target to be measured in the left and right camera images of the binocular ranging device; in actual application, the directly read measured Substituting the imaging position data of the scene target in the left and right camera images into the calibrated ranging formula to calculate the distance between the scene target to be measured and the reference camera in the binocular ranging device;

所述双目测距装置为:采用两个型号相同的相机作为双目测距装置的左右相机,采用焦距相同的镜头作为左右相机的镜头,将左右相机安装在同一平台上,使得两个相机处于同一高度,左右相机的前端镜面处于同一平面,通过图像采集卡将左右相机拍摄的图片实时采入计算机;The binocular distance measuring device is as follows: adopt two cameras of the same model as the left and right cameras of the binocular distance measuring device, adopt lenses with the same focal length as the lenses of the left and right cameras, and install the left and right cameras on the same platform so that the two cameras At the same height, the front mirrors of the left and right cameras are on the same plane, and the pictures taken by the left and right cameras are collected into the computer in real time through the image acquisition card;

所述测距公式如公式(1)所示,The ranging formula is shown in formula (1),

ZZ==BB**ffrrdxdxrr**coscosααxxll--xxrr++Oorr′′--Ooll′′++ffrrdxdxrrtanthe tanθθ------((11))

式(1)中,Z为场景目标距离双目相机中参考相机的距离;fl和fr分别为左右相机的像距,B为左右相机光心距,θ为右相机成像平面与参考相机成像平面的夹角,设夹角值逆时针为正;Ol'和Or'分别为左右光心Ol和Or在成像面上的投影点的图像坐标的横坐标值,α为左右相机的光心Ol和Or连线与参考相机成像平面的夹角,设夹角值逆时针为正;xl为场景目标在参考相机中的成像面上成的像的图像坐标的横坐标值,xr为场景目标在右相机中的成像面上成的像的图像坐标的横坐标值;dxl为左相机每个像元的实际尺寸,dxr为右相机每个像元的实际尺寸;公式(1)中,需要标定的参数为:B、fr/dxr、α、Ol'、Or'和θ。In formula (1), Z is the distance between the scene target and the reference camera in the binocular camera; fl and fr are the image distances of the left and right cameras respectively, B is the optical center distance of the left and right cameras, θ is the imaging plane of the right camera and the reference camera The included angle of the imaging plane, the included angle value is positive counterclockwise; Ol ' and Or ' are the abscissa values of the image coordinates of the projection points of the left and right optical centers Ol and Or on the imaging plane, and α is the left and rightThe angle between the line connecting the optical center Ol and Or of the camera and the imaging plane of the reference camera, the angle value is set to be positive counterclockwise; coordinate value, xr is the abscissa value of the image coordinates of the image formed by the scene object on the imaging surface of the right camera; dxl is the actual size of each pixel of the left camera, and dxr is the size of each pixel of the right camera Actual size; in formula (1), the parameters to be calibrated are: B, fr /dxr , α, Ol ', Or ', and θ.

本发明与现有技术相比,其显著优点在于,提高了位置已经固定、光轴光心位置存在偏差的双目装置的测距精度,降低了由于相机安放的不平行带来的测距误差,具有较为简便、实用等特点,更符合工程应用的实际情况,在工程应用中具有更为实用的价值。Compared with the prior art, the present invention has a significant advantage in that it improves the distance measurement accuracy of the binocular device whose position has been fixed and the position of the optical axis and optical center deviates, and reduces the distance measurement error caused by the non-parallel placement of the cameras , has the characteristics of being relatively simple and practical, more in line with the actual situation of engineering applications, and has more practical value in engineering applications.

附图说明Description of drawings

图1是本发明中所使用的双目测距装置示意图。Fig. 1 is a schematic diagram of a binocular ranging device used in the present invention.

图2是本发明双目测距原理示意图。Fig. 2 is a schematic diagram of the principle of binocular ranging in the present invention.

图3是本发明中小孔成像原理示意图。Fig. 3 is a schematic diagram of the principle of small hole imaging in the present invention.

图4本发明中所使用的相机棋盘格标定板的图像。Figure 4 is an image of the camera checkerboard calibration board used in the present invention.

具体实施方式Detailed ways

本发明一种光轴非平行双目测距方法,其基本原理是:首先搭建双目测距装置,并建立与双目测距装置在左右相机光轴非理想平行时配合使用的测距公式;然后标定测距公式中的参数,获得未知量只包含待测场景目标在双目测距装置左右相机图像中的成像位置的测距公式;实际应用时,将直接读取的待测场景目标在左右相机图像中的成像位置数据代入标定后的测距公式即可计算获得待测场景目标与双目测距装置中参考相机的距离。The present invention is a non-parallel binocular distance measuring method with optical axes, the basic principle of which is: first build a binocular distance measuring device, and establish a distance measuring formula used in conjunction with the binocular distance measuring device when the optical axes of the left and right cameras are not ideally parallel ; Then calibrate the parameters in the ranging formula to obtain a ranging formula whose unknown quantity only includes the imaging position of the scene object to be measured in the left and right camera images of the binocular ranging device; in practical applications, the directly read scene object to be measured The imaging position data in the left and right camera images are substituted into the calibrated ranging formula to calculate the distance between the scene target to be measured and the reference camera in the binocular ranging device.

一、所述双目测距装置为:1. The binocular ranging device is:

如图1所示,采用两个型号相同的相机作为双目测距装置的左右相机,采用焦距相同的镜头作为左右相机的镜头,将左右相机安装在同一平台上,使得两个相机处于同一高度,左右相机的前端镜面处于同一平面,左右相机下方有螺丝用于固定相机位置,通过图像采集卡将左右相机拍摄的图片实时采入计算机。设定左相机为参考相机;As shown in Figure 1, two cameras of the same model are used as the left and right cameras of the binocular distance measuring device, and lenses with the same focal length are used as the lenses of the left and right cameras. The left and right cameras are installed on the same platform so that the two cameras are at the same height , the front mirrors of the left and right cameras are on the same plane, and there are screws under the left and right cameras to fix the position of the cameras, and the pictures taken by the left and right cameras are collected into the computer in real time through the image acquisition card. Set the left camera as the reference camera;

二、所述测距公式如公式(1)所示,Two, the distance measuring formula is as shown in formula (1),

ZZ==BB**ffrrdxdxrr**coscosααxxll--xxrr++Oorr′′--Ooll′′++ffrrdxdxrrtanthe tanθθ------((11))

式(1)中,Z为场景目标距离双目相机中参考相机的距离;fl和fr分别为左右相机的像距,B为左右相机光心距,θ为右相机成像平面与参考相机成像平面的夹角,设夹角值逆时针为正;Ol'和Or'分别为左右光心Ol和Or在成像面上的投影点的图像坐标的横坐标值,α为左右相机的光心Ol和Or连线与参考相机成像平面的夹角,设夹角值逆时针为正;xl为场景目标在参考相机中的成像面上成的像的图像坐标的横坐标值,xr为场景目标在右相机中的成像面上成的像的图像坐标的横坐标值;dxl为左相机每个像元的实际尺寸,dxr为右相机每个像元的实际尺寸;公式(1)中,需要标定的测距公式中的参数为:B、fr/dxr、α、Ol'、Or'和θ。In formula (1), Z is the distance between the scene target and the reference camera in the binocular camera; fl and fr are the image distances of the left and right cameras respectively, B is the optical center distance of the left and right cameras, θ is the imaging plane of the right camera and the reference camera The included angle of the imaging plane, the included angle value is positive counterclockwise; Ol ' and Or ' are the abscissa values of the image coordinates of the projection points of the left and right optical centers Ol and Or on the imaging plane, and α is the left and rightThe angle between the line connecting the optical center Ol and Or of the camera and the imaging plane of the reference camera, the angle value is set to be positive counterclockwise; coordinate value, xr is the abscissa value of the image coordinates of the image formed by the scene object on the imaging surface of the right camera; dxl is the actual size of each pixel of the left camera, and dxr is the size of each pixel of the right camera Actual size; in formula (1), the parameters in the ranging formula that need to be calibrated are: B, fr /dxr , α, Ol ', Or ', and θ.

三、所述标定的测距公式中的参数的方法为:Three, the method of the parameter in the ranging formula of described calibration is:

首先标定出左右相机的像距f与像元尺寸dx的比值f/dx,然后采用非线性规划方法求最优解的方式,求解出已经固定好的双目测距装置的测距公式中的参数。具体为:First calibrate the ratio f/dx of the image distance f of the left and right cameras to the pixel size dx, and then use the non-linear programming method to find the optimal solution to solve the distance measurement formula of the fixed binocular distance measurement device parameter. Specifically:

步骤一、将棋盘格标定板放置在左右相机拍摄范围内的任意位置,根据棋盘格标定板中同一角点分别在左右相机拍摄的图像中对应的高度位置关系,调节左右相机高度,使标定板中同一角点在左右相机拍摄的图像中处于相同高度,然后固定左右相机。棋盘格标定板如图4所示。Step 1. Place the checkerboard calibration board at any position within the shooting range of the left and right cameras, and adjust the height of the left and right cameras according to the corresponding height position relationship of the same corner point in the checkerboard calibration board in the images captured by the left and right cameras, so that the calibration board The same corner point is at the same height in the images captured by the left and right cameras, and then fix the left and right cameras. The checkerboard calibration board is shown in Figure 4.

步骤二、选定棋盘格标定板水平方向N个相邻的棋盘格,用刻度尺测量该N个相邻的棋盘格的实际长度A;Step 2, select N adjacent checkerboards in the horizontal direction of the checkerboard calibration plate, and measure the actual length A of the N adjacent checkerboards with a scale;

将标定板放置在左相机拍摄范围内的任意两个不同的位置,并分别测量标定板到左相机的物距u1和u2,通过图像采集卡对应的图像采集程序分别获取并记录所选定的N个相邻的棋盘格在左相机拍摄的图像中所占像素的个数m1和m2Place the calibration board at any two different positions within the shooting range of the left camera, and measure the object distances u1 and u2 from the calibration board to the left camera, and obtain and record the selected distances through the image acquisition program corresponding to the image acquisition card. Numbers m1 and m2 of pixels occupied by the N adjacent checkerboard grids in the image captured by the left camera;

计算左相机的像距fl与其拍摄的图像中每个像素点的实际尺寸值dx比值fl/dx,计算方式如公式(2)所示,Calculate the ratio fl /dx of the image distance fl of the left camera to the actual size value dx of each pixel in the captured image, the calculation method is shown in formula (2),

fflldxdx==uu22--uu11AAmm22--AAmm11------((22))

将标定板放置在右相机拍摄范围内任意两个不同的位置,并分别测量标定板到右相机的物距u1'和u2',通过图像采集卡对应的图像采集程序分别获取并记录所选定的N'个相邻的棋盘格在右相机拍摄的图像中所占像素的个数m1'和m2';Place the calibration board at any two different positions within the shooting range of the right camera, and measure the object distances u 1 ' and u 2 ' from the calibration board to the right camera, respectively, and record the distances u1 ' and u2 ' through the image acquisition program corresponding to the image acquisition card. The number of pixels m1 ' and m2 ' occupied by the selected N' adjacent checkerboard grids in the image captured by the right camera;

计算右相机的像距fr与其拍摄的图像中每个像素点的实际尺寸值dx比值fr/dx,计算方式如公式(3)所示,Calculate the ratio fr/dx between the image distance fr of the right camera and the actual size value dx of each pixel in the captured image, the calculation method is shown in formula (3),

ffrrdxdx==uu22′′--uu11′′AAmm22′′--AAmm11′′------((33))

步骤三、以左相机为参考相机,按棋盘格标定板平面平行于相机成像平面的方式安放标定棋盘格标定板,用刻度尺测量棋盘格标定板与参考相机的距离Z0,通过图像采集卡对应的图像采集程序获取并记录同一棋盘格角点位于左右相机图像中位置坐标的横坐标值xl和xr;然后将棋盘格标定板移至另一与相机具有不同距离的位置,记录不同距离下同一棋盘格角点位于左右相机图像中位置坐标的横坐标值xl和xr。假设左右相机光心的初始位置位于镜头中心处,用刻度尺初步测量左右相机的光心距B,记相机采集到的图像的宽度为W,则左右相机光心Ol'和Or'的值为W/2,根据相机的近似平行的安装方式可以得出左右相机的光心Ol和Or的连线与参考相机成像平面的夹角α与左右相机光轴夹角θ的在±5°之内,将不同距离下的同一棋盘格角点在左右相机图像中的坐标位置的横坐标值与对应的距离代入双目测距公式(1),运用非线性优化,求解出左右相机的光心距B、左右相机光心Ol和Or在成像面上的投影点Ol'和Or'的图像坐标位置的横坐标值、左相机透镜光心Ol和右相机透镜的光心Or的连线与左相机透镜平面Ll的夹角α、左右相机光轴的夹角θ;然后将前述求解出的参数代入到双目测距公式(1)中,获得未知参数只包含同一场景目标在左右相机图像中的图像坐标位置的横坐标值xl和xr的测距公式。Step 3. With the left camera as the reference camera, place the checkerboard calibration board in such a way that the plane of the checkerboard calibration board is parallel to the imaging plane of the camera, measure the distance Z0 between the checkerboard calibration board and the reference camera with a scale, and use the image acquisition card The corresponding image acquisition program acquires and records the abscissa values xl and xr of the same checkerboard corner point located in the left and right camera images; then move the checkerboard calibration board to another position with different distances from the camera, and record different The distance is the abscissa values xl and xr of the position coordinates of the same checkerboard corner point located in the left and right camera images. Assuming that the initial positions of the optical centers of the left and right cameras are at the center of the lens, measure the optical center distance B of the left and right cameras with a scale, and record the width of the image collected by the camera as W, then the optical centers of the left and right cameras Ol ' and Or ' The value is W/2, and according to the approximately parallel installation method of the cameras, it can be obtained that the angle α between the line connecting the optical centers Ol and Or of the left and right cameras and the imaging plane of the reference camera and the angle θ between the optical axes of the left and right cameras are within ± Within 5°, the abscissa value of the coordinate position of the same checkerboard corner point at different distances in the left and right camera images and the corresponding distance are substituted into the binocular ranging formula (1), and the left and right cameras are solved by nonlinear optimization. The optical center distance B of the left and right camera optical centers Ol and Or on the imaging plane, the abscissa values of the image coordinate positions of the projection points Ol ' and Or ', the left camera lens optical center Ol and the right camera lens The angle α between the line connecting the optical center Or and the lens plane Ll of the left camera, and the angle θ between the optical axes of the left and right cameras; then, substitute the parameters obtained from the previous solution into the binocular ranging formula (1) to obtain the unknown parameters The ranging formula that only includes the abscissa values xl and xr of the image coordinate positions of the same scene target in the left and right camera images.

使用本发明中的双目测距装置和测距公式进行实际应用时,只需读取待测目标在双目测距装置中左右相机中的成像位置,即在左右相机图像中的图像坐标位置的横坐标值xl和xr,然后带入标定参数后的测距公式就可以计算得到场景目标与双目测距装置中参考相机的距离。When using the binocular distance measuring device and the distance measuring formula in the present invention for practical application, it is only necessary to read the imaging position of the target to be measured in the left and right cameras in the binocular distance measuring device, that is, the image coordinate position in the left and right camera images The abscissa values xl and xr of the calibrated parameters are then brought into the ranging formula to calculate the distance between the scene target and the reference camera in the binocular ranging device.

四、本发明测距公式的原理:Four, the principle of the ranging formula of the present invention:

如图2所示,本发明双目测距原理示意图,假设的成像方式是小孔的成像方式,同时假设左相机的透镜平面Ll与左相机的成像面Cl是平行关系,右相机的透镜平面Llr与右相机的成像面Cr也是平行关系。左右相机经过俯仰调节后,同一个目标物在左右两个相机中所成的像处于同一水平高度上。As shown in Figure 2, the schematic diagram of binocular ranging principle of the present invention, the assumed imaging mode is the imaging mode of pinhole, assumes that the lens plane L1 of the left camera is parallel to the imaging plane C1 of the left camera, and the imaging plane C 1 of the right camera The lens plane Llr is also parallel to the imaging plane Cr of the right camera. After the left and right cameras are adjusted in pitch, the images of the same target object formed by the left and right cameras are at the same horizontal height.

同时假设:Also assume that:

以左相机为参考;Take the left camera as a reference;

场景目标P距离左相机成像面Cl的距离记为Z;The distance between the scene target P and the left camera imaging surface C1 is denoted as Z;

左相机透镜的光心Ol和右相机透镜的光心Or的连线长度为光心距B;The length of the connecting line between the optical center Ol of the left camera lens and the optical center Or of the right camera lens is the optical center distance B;

左相机透镜的光心Ol和右相机透镜的光心Or的连线与左相机透镜平面Ll的夹角为α,且逆时针为正;The angle between the optical center Ol of the left camera lens and the optical center Or of the right camera lens and the plane Ll of the left camera lens is α, and the counterclockwise direction is positive;

右相机成像平面Cr与左相机成像平面Cl夹角为θ,大小等于左相机的光轴Eil与右相机光轴Eir的夹角,逆时针为正;The angle between the imaging plane Cr of the right camera and the imaging plane Cl of the left camera is θ, which is equal to the angle between the optical axis Eil of the left camera and the optical axis Eir of the right camera, and the counterclockwise direction is positive;

左相机的透镜Ll所在平面与其成像面Cl相距长度为fl,右相机的透镜Lr所在平面与其成像面Cr相距长度为fr;The distance between the plane where the lens Ll of the left camera is located and its imaging plane Cl is fl , and the distance between the plane where the lens Lr of the right camera is located and its imaging plane Cr is fr;

左相机透镜光心Ol在左相机成像面Cl上的投影点的图像坐标位置的横坐标值为Ol',右相机透镜光心Or在左相机成像面Cr上的投影点的图像坐标位置的横坐标值为Or';The abscissa value of the image coordinate position of the projection point of the left camera lens optical center Ol on the left camera imaging surface Cl is Ol ', and the projection point of the right camera lens optical center Or on the left camera imaging surface Cr is The abscissa value of the image coordinate position is Or ';

场景目标P在左相机中的成像面Cl上成的像的图像坐标位置的横坐标值为xl,场景目标P在右相机中的成像面Cr上成的像的图像坐标位置的横坐标值为xrThe abscissa value of the image coordinate position of the image formed by the scene object P on the imaging surface Cl of the left camera is xl , and the abscissa value of the image coordinate position of the image formed by the scene object P on the imaging surface Cr of the right camera is The coordinate value is xr ;

相机成像面中的像元为方形成像器件,像元的长度与宽度相等,左相机的每个像元的实际尺寸为dxl,右相机的每个像元的实际尺寸为dxr。The pixel in the imaging surface of the camera is a square imaging device, and the length and width of the pixel are equal. The actual size of each pixel of the left camera is dxl , and the actual size of each pixel of the right camera is dxr.

基于以上假设,由相似三角形原理可以获得式(1-1)和式(1-2):Based on the above assumptions, formula (1-1) and formula (1-2) can be obtained by the principle of similar triangles:

BB11coscosααZZ--ffll==((xxll--Ooll′′))ddxxllffll------((11--11))

BBcoscosαα--BBsinsinααtanthe tanββ--BB11coscosααZZ--ffll==tanthe tanββ------((11--22))

将式(1-1)与式(1-2)相加获得式(1-3):Add formula (1-1) and formula (1-2) to obtain formula (1-3):

BBcoscosαα--BBsinsinααtanthe tanββZZ--ffll==tanthe tanββ++((xxll--Ooll′′))ddxxllffll------((11--33))

根据三角形正切原理可得式(1-4):According to the triangle tangent principle, formula (1-4) can be obtained:

将式(1-4)与式(1-3)联立可以获得式(1-5):Combine formula (1-4) and formula (1-3) to get formula (1-5):

BB[[ffrrcoscosαα--((Oorr′′--xxrr))ddxxrrcoscosααtanthe tanθθ--((Oorr′′--xxrr))ddxxrrsinsinαα--ffrrsinsinααtanthe tanθθ==((ZZ--ffll))[[((Oorr′′--xxrr))ddxxrr++ffrrtanthe tanθθ++ffrr--((Oorr′′--xxrr))ddxxrrtanthe tanθθffll((xxll--Ooll′′))ddxxll]]------((11--55))

将式(1-5)简化可以获得式(1-6)Simplify formula (1-5) to get formula (1-6)

BB[[ffrrddxxrrcoscosαα--((Oorr′′--xxrr))coscosααtanthe tanθθ--((Oorr′′--xxrr))sinsinαα--ffrrddxxrrsinsinααtanthe tanθθ]]==((ZZ--ffll))[[((Oorr′′--xxrr))++ffrrddxxrrtanthe tanθθ++ffrrdxdxrr--((Oorr′′--xxrr))tanthe tanθθffllddxxll((xxll--Ooll′′))]]------((11--66))

在实际双目测距装置的相机中f/dx的值一般较大,且在实际双目测距装置中,由于相机是近似平行放置,所以左相机透镜光心Ol和右相机透镜的光心Or的连线与左相机透镜平面Ll的夹角α以及右相机成像平面Cr与左相机成像平面Cl的夹角θ(即左相机的光轴Eil与右相机光轴Eir的夹角)都比较小,一般在+5°变化范围内,所以可以得式(1-7):The value of f/dx in the camera of the actual binocular distance measuring device is generally large, and in the actual binocular distance measuring device, since the cameras are placed approximately in parallel, the optical centerOl of the left camera lens and the optical center of the right camera lens The angle α between the line connecting the center Or and the lens plane Ll of the left camera and the angle θ between the imaging plane Cr of the right camera and the imaging plane Cl of the left camera (that is, the optical axis E il of the left camera and the optical axis Eil of the right camera The included angle ofir ) is relatively small, generally within the range of +5°, so formula (1-7) can be obtained:

ffrrddxxrrcoscosαα>>>>((Oorr′′--xxrr))coscosααtanthe tanθθ++((Oorr′′--xxrr))sinsinαα++ffrrddxxrrsinsinααtanthe tanθθ------((11--77))

实际双目测距装置中,均会采用相同规格的相机作为装置中的左右相机,所以可得式(1-8)所示的关系:In the actual binocular distance measuring device, cameras with the same specifications are used as the left and right cameras in the device, so The relationship shown in formula (1-8) can be obtained:

((xxll--Ooll&prime;&prime;))((Oorr&prime;&prime;--xxrr))tanthe tan&theta;&theta;ffllddxxll<<<<xxll--xxrr++Oorr&prime;&prime;--Ooll&prime;&prime;++ffrrddxxrrtanthe tan&theta;&theta;------((11--88))

根据式(1-7)与式(1-8),可以将式(1-6)化简为式(1-9):According to formula (1-7) and formula (1-8), formula (1-6) can be simplified into formula (1-9):

ZZ==BB**ffrrddxxrr**coscos&alpha;&alpha;xxll--xxrr++Oorr&prime;&prime;--Ooll&prime;&prime;++ffrrddxxrrtanthe tan&theta;&theta;------((11--99))

一般实际应用中,所要测量的物距Z远远大于相机的像距fl,所以式(1-9)中fl可以忽略不计,如此式(1-9)可以进一步简化为式(1-10):In general practical applications, the object distance Z to be measured is far greater than the image distance fl of the camera, so fl in formula (1-9) can be ignored, so formula (1-9) can be further simplified into formula (1- 10):

ZZ==BB**ffrrddxxrr**coscos&alpha;&alpha;xxll--xxrr++Oorr&prime;&prime;--Ooll&prime;&prime;++ffrrddxxrrtanthe tan&theta;&theta;------((11--1010))

式(1-10)就是本发明光轴不平行时的双目立体装置的测距公式,如式(1-10)所示的双目测距装置的测距公式中包含了以下数据:Formula (1-10) is exactly the ranging formula of the binocular stereoscopic device when the optical axes of the present invention are not parallel, as shown in the formula (1-10), the ranging formula of the binocular ranging device has included the following data:

左相机透镜光心Ol和右相机透镜的光心Or的连线长度即光心距B;The length of the connection line between the optical center Ol of the left camera lens and the optical center Or of the right camera lens is the optical center distance B;

左相机透镜光心Ol和右相机透镜的光心Or的连线与左相机透镜平面Ll的夹角α;The angle α between the line connecting the optical center Ol of the left camera lens and the optical center Or of the right camera lens and the plane Ll of the left camera lens;

相机的像距f与像元尺寸dx比值f/dx;The ratio f/dx of the camera's image distance f to the pixel size dx;

左相机透镜光心Ol在左相机成像面Cl上的投影点的图像坐标位置的横坐标值Ol',右相机透镜光心Or在左相机成像面Cr上的投影点的图像坐标位置的横坐标值Or';The abscissa value Ol ' of the image coordinate position of the projection point of the optical center Ol of the left camera lens on the imaging plane Cl of the left camera, the image of the projection point of the optical center Or of the right camera lens on the imaging plane Cr of the left camera The abscissa value Or ' of the coordinate position;

场景目标P在左相机成像面Cl上像的图像坐标位置的横坐标值xl,在右相机中的成像面Cr上像的图像坐标位置的横坐标值为xrThe abscissa value xl of the image coordinate position of the image of the scene object P on the imaging plane Cl of the left camera isx r.

五、本发明相机像距与像元尺寸比值f/dx的标定原理Five, the calibration principle of the camera image distance and pixel size ratio f/dx of the present invention

如图3所示,采用小孔成像方式作为相机的成像方式,设场景目标P的长度为A,将场景目标P放置在相机的视野范围之内,进行拍摄。As shown in Figure 3, the pinhole imaging method is used as the imaging method of the camera, and the length of the scene object P is set as A, and the scene object P is placed within the field of view of the camera for shooting.

第一次用相机拍摄场景目标P时,场景目标P与相机透镜Len的距离为u1,在相机成像面C上的成像长度为s1,通过图像采集程序将相机采集到的目标场景P的图像读入计算机,读取第一次拍摄时目标场景像的长度为m1,以像素为单位;第二次用相机拍摄场景目标P时,场景目标P与相机透镜Len的距离为u2,在相机成像面C上的成像长度为s2,通过图像采集程序将相机采集到的目标场景P的图像读入计算机,读取第二拍摄时目标场景像的长度为m2,以像素为单位。在方形成像设备中,像素形状为长方形的,设每个像素实际宽度为dx,高度为dy,对于方形像素相设备,dx与dy可认为相等,那么可以得到式(1-11)与式(1-12):When shooting the scene object P with the camera for the first time, the distance between the scene object P and the camera lens Len is u1 , and the imaging length on the camera imaging surface C is s1 , and the object scene P captured by the camera is captured by the image acquisition program. The image is read into the computer, and the length of the target scene image at the first shooting is m1 , in units of pixels; when the scene target P is shot with the camera for the second time, the distance between the scene target P and the camera lens Len is u2 , The imaging length on the imaging surface C of the camera is s2 , and the image of the target scene P collected by the camera is read into the computer through the image acquisition program, and the length of the target scene image at the time of reading the second shooting is m2 , and the unit is pixel . In a square imaging device, the shape of the pixel is rectangular, and the actual width of each pixel is dx, and the height is dy. For a square pixel phase device, dx and dy can be considered equal, then formula (1-11) and formula can be obtained (1-12):

mm11==sthe s11dxdx------((11--1111))

mm22==sthe s22dxdx------((11--1212))

由相似三角形原理可以得式(1-13)与式(1-14):According to the principle of similar triangles, formula (1-13) and formula (1-14) can be obtained:

AAuu11==sthe s11ff------((11--1313))

AAuu22==sthe s22ff------((11--1414))

将式(1-13)与式(1-114)相减得式(1-15):Subtract formula (1-13) and formula (1-114) to get formula (1-15):

uu22--uu11==ff((AAsthe s22--AAsthe s11))------((11--1515))

将式(1-11)和式(1-12)代入式(1-15)得式(1-16):Substitute formula (1-11) and formula (1-12) into formula (1-15) to get formula (1-16):

uu22--uu11==ffdxdx((AAmm22--AAmm11))------((11--1616))

将式(1-13)和式(1-14)代入式(1-16)得式(1-17):Substitute formula (1-13) and formula (1-14) into formula (1-16) to get formula (1-17):

ffdxdx==uu22--uu11AAmm22--AAmm11------((11--1717))

通过式(1-17)可以计算得到双目测距装置中的相机的像距f与像元尺寸dx比值f/dx。在双目测距装置中,左右相机经过俯仰调节后,同一个目标物在左右两个相机中所成的像处于同一水平高度上,只存在水平方向的误差。The ratio f/dx of the image distance f of the camera in the binocular distance measuring device to the pixel size dx can be calculated by formula (1-17). In the binocular distance measuring device, after the left and right cameras are adjusted in pitch, the images of the same target object formed by the left and right cameras are at the same horizontal height, and there is only an error in the horizontal direction.

本发明的效果可以通过以下结果进一步说明:Effect of the present invention can be further illustrated by the following results:

采用两个WAT-902H相机作为装置的左右相机搭建双目测距装置,左右相机均采用焦距均为25mm的镜头作为左右相机的镜头,按左右相机的前端处于同一平面的方式安置相机,通过调节俯仰,固定好相机位置,使其无竖直方向的视差。Two WAT-902H cameras are used as the left and right cameras of the device to build a binocular distance measuring device. Both the left and right cameras use lenses with a focal length of 25mm as the lenses of the left and right cameras. The cameras are placed so that the front ends of the left and right cameras are on the same plane. Pitch, fix the camera position so that there is no vertical parallax.

分两次在左相机拍摄视野范围内任意姿态放置棋盘格标定板棋盘格与相机的距离数据u1=240cm,u2=150cm,用刻度尺分别测量棋盘格标定板9个,5个,3个棋盘格的实际长度,实际长度数据实际长度A(cm)所示,通过计算机读取图像中对应长度的棋盘格在左右相机成的图像中所占的像素数,对应的图像像素长度数据图像长度m1,m2所示,根据式(1-17)计算可以得到可得左相机的像距fl与其拍摄的图像中每个像素点的实际尺寸值dx比值fl/dxl,多次测量求得的平均值fl/dxl=933;Place the checkerboard calibration board in any posture within the shooting field of view of the left camera twice. The distance data between the checkerboard grid and the camera is u1 = 240cm, u2 = 150cm. Use a scale to measure 9 checkerboard calibration boards, 5 pieces, and 3 pieces respectively. The actual length of a checkerboard, shown in the actual length A (cm) of the actual length data, the number of pixels occupied by the checkerboard of the corresponding length in the image read by the computer in the image formed by the left and right cameras, the corresponding image pixel length data image The lengths m1 and m2 show, according to formula (1-17), the ratio fl /dxl between the image distance fl of the left camera and the actual size value dx of each pixel in the captured image can be obtained. The average value fl /dxl obtained from two measurements = 933;

分两次在右相机拍摄视野范围内任意姿态放置棋盘格标定板,距离数据u1'=240cm,u2'=150cm,用刻度尺测量棋盘格标定板9个,5个,3个棋盘格的实际长度,实际长度数据实际长度A(cm)所示,通过计算机读取图像中对应长度的棋盘格在左右相机成的图像中所占的像素数,对应的图像像素长度数据图像长度m1',m2'所示,根据式(1-17)计算可以得到可得右相机的像距fr与其拍摄的图像中每个像素点的实际尺寸值dx比值fr/dxr,多次测量求得的平均值fr/dxr=926。Place the checkerboard calibration board in any posture within the shooting field of view of the right camera twice, the distance data u1 '=240cm, u2 '=150cm, measure 9 checkerboard calibration boards with a scale, 5 checkerboard grids, and 3 checkerboard grids The actual length of the actual length data shown in the actual length A (cm), through the computer to read the number of pixels of the checkerboard of the corresponding length in the image in the image formed by the left and right cameras, the corresponding image pixel length data image length m1 ',m2 ', according to formula (1-17), the ratio fr /dxr between the image distance fr of the right camera and the actual size value dx of each pixel in the captured image can be obtained, multiple times The average value fr /dxr =926 obtained from the measurement.

本实验分五次在左右相机的拍摄视野范围内任意姿态放置棋盘格标定板,棋盘格标定板与左相机成像面的距离数据记录距离Z所示,同一棋盘格角点在左相机中的图像坐标位置的横坐标数据记录xl像素所示,在右相机中的图像坐标位置横坐标数据记录xr像素所示。In this experiment, the checkerboard calibration board was placed in any posture within the shooting field of view of the left and right cameras five times. The distance between the checkerboard calibration board and the imaging surface of the left camera is shown in the data recording distance Z. The image of the same checkerboard corner point in the left camera The abscissa data record of the coordinate position is shown in xl pixels, and the image coordinate position in the right camera is shown in the abscissa data record of xr pixels.

本实施例采用的相机成像分辨率为720×576,因此确定Ol'和Or'的初值为图像宽度的一半360,确定最优解的搜索范围为360±15,初始测量相机间距为9cm,所以光心距的最优解范围为9.00±1.00cm,设定的初始偏移角度为0,由于安装趋近于平行,所以位置偏移应该是一个较小的偏移量,设定其两个偏移角度最优值处于0°±5°之内。确定了这些范围,在已知距离信息以及棋盘格标定板角点的成像位置,通过非线性优化搜索到了几个参数的最优解,双目立体装置左右相机的光心距B,左右相机光心Ol和Or在成像面上的投影点Ol'和Or'的图像坐标位置的横坐标值,左相机透镜光心Ol和右相机透镜的光心Or的连线与左相机透镜平面Ll的夹角α,左右相机光轴的夹角θ的值所示。The imaging resolution of the camera used in this embodiment is 720×576, so the initial value of Ol ' and Or ' is determined to be 360 half of the image width, the search range of the optimal solution is determined to be 360±15, and the initial measurement camera distance is 9cm, so the optimal solution range of the optical center distance is 9.00±1.00cm, and the initial offset angle is set to 0. Since the installation tends to be parallel, the position offset should be a small offset. Set The optimal values of the two offset angles are within 0°±5°. These ranges are determined, and the distance information and the imaging position of the corner points of the checkerboard calibration board are known, and the optimal solution of several parameters is searched through nonlinear optimization, the optical center distance B of the left and right cameras of the binocular stereo device, The abscissa values of the image coordinate positions of the projection points Ol ' and Or ' of the centers Ol and Or on the imaging plane, the line connecting the optical center Ol of the left camera lens and the optical center Or of the right camera lens and the left The angle α between the camera lens plane Ll and the value of the angle θ between the optical axes of the left and right cameras are shown.

在获得相机相关参数,代入公式(1-10)组成只包含两个未知数的测距公式(1-10)。然后进行实际测距应用,场景目标在左右相机中的成像的图像坐标位置的横坐标值差异数据记录的视差值(D)所示,场景目标与相机的实际距离由米尺测量得到,数据记录的实际距离Z0所示,由测距公式(1-10)计算得到的距离数据计算距离Z所示,计算得到的距离Z与实际距离Z0的误差数据误差E所示。实施例的结果表明,采用本发明的标定方法的装置及非平行测距公式具有较高的测距精度,同时在工程应用中具有更为实用的价值。After obtaining the relevant parameters of the camera, substitute into the formula (1-10) to form the ranging formula (1-10) that only contains two unknowns. Then carry out the actual ranging application, as shown in the parallax value (D) of the abscissa value difference data record of the image coordinate position of the scene target in the left and right cameras, the actual distance between the scene target and the camera is measured by a meter ruler, and the data The recorded actual distance Z0 is shown, the distance data calculated by the distance measurement formula (1-10) is shown as the calculated distance Z, and the error data E of the calculated distance Z and the actual distance Z0 is shown. The results of the embodiment show that the device using the calibration method of the present invention and the non-parallel ranging formula have higher ranging accuracy, and have more practical value in engineering applications.

Claims (2)

Translated fromChinese
1.一种光轴非平行双目测距方法,其特征在于,首先搭建双目测距装置,并建立与双目测距装置在左右相机光轴非理想平行时配合使用的测距公式;然后标定测距公式中的参数,获得未知量只包含待测场景目标在双目测距装置左右相机图像中的成像位置的测距公式;实际应用时,将直接读取的待测场景目标在左右相机图像中的成像位置数据代入标定后的测距公式计算获得待测场景目标与双目测距装置中参考相机的距离;1. A non-parallel binocular ranging method with optical axes, characterized in that, at first set up a binocular ranging device, and set up a ranging formula used in conjunction with the binocular ranging device when the optical axes of the left and right cameras are not ideally parallel; Then calibrate the parameters in the ranging formula to obtain a ranging formula whose unknown quantity only includes the imaging position of the scene object to be measured in the left and right camera images of the binocular ranging device; The imaging position data in the left and right camera images are substituted into the calibrated ranging formula to calculate the distance between the scene target to be measured and the reference camera in the binocular ranging device;所述双目测距装置为:采用两个型号相同的相机作为双目测距装置的左右相机,采用焦距相同的镜头作为左右相机的镜头,将左右相机安装在同一平台上,使得两个相机处于同一高度,左右相机的前端镜面处于同一平面,通过图像采集卡将左右相机拍摄的图片实时采入计算机;The binocular distance measuring device is as follows: adopt two cameras of the same model as the left and right cameras of the binocular distance measuring device, adopt lenses with the same focal length as the lenses of the left and right cameras, and install the left and right cameras on the same platform so that the two cameras At the same height, the front mirrors of the left and right cameras are on the same plane, and the pictures taken by the left and right cameras are collected into the computer in real time through the image acquisition card;所述测距公式如公式(1)所示,The ranging formula is shown in formula (1),ZZ==BB**ffrrdxdxrr**coscos&alpha;&alpha;xxll--xxrr++Oorr&prime;&prime;--Ooll&prime;&prime;++ffrrdxdxrrtanthe tan&theta;&theta;------((11))式(1)中,Z为场景目标距离双目相机中参考相机的距离;fl和fr分别为左右相机的像距,B为左右相机光心距,θ为右相机成像平面与参考相机成像平面的夹角,设夹角值逆时针为正;Ol'和Or'分别为左右光心Ol和Or在成像面上的投影点的图像坐标的横坐标值,α为左右相机的光心Ol和Or连线与参考相机成像平面的夹角,设夹角值逆时针为正;xl为场景目标在参考相机中的成像面上成的像的图像坐标的横坐标值,xr为场景目标在右相机中的成像面上成的像的图像坐标的横坐标值;dxl为左相机每个像元的实际尺寸,dxr为右相机每个像元的实际尺寸;公式(1)中,需要标定的参数为:B、fr/dxr、α、Ol'、Or'和θ。In formula (1), Z is the distance between the scene target and the reference camera in the binocular camera; fl and fr are the image distances of the left and right cameras respectively, B is the optical center distance of the left and right cameras, θ is the imaging plane of the right camera and the reference camera The included angle of the imaging plane, the included angle value is positive counterclockwise; Ol ' and Or ' are the abscissa values of the image coordinates of the projection points of the left and right optical centers Ol and Or on the imaging plane, and α is the left and rightThe angle between the line connecting the optical center Ol and Or of the camera and the imaging plane of the reference camera, the angle value is set to be positive counterclockwise; coordinate value, xr is the abscissa value of the image coordinates of the image formed by the scene object on the imaging surface of the right camera; dxl is the actual size of each pixel of the left camera, and dxr is the size of each pixel of the right camera Actual size; in formula (1), the parameters to be calibrated are: B, fr /dxr , α, Ol ', Or ', and θ.2.如权利要求1所述的光轴非平行双目测距方法,其特征在于,所述测距公式中的参数B、fr/dxr、α、Ol'、Or'和θ的标定方法为:2. optical axis non-parallel binocular ranging method as claimed in claim 1, is characterized in that, parameter B, fr /dxr , α, Ol ', Or ' and θ in the distance measuring formula The calibration method is:步骤一、将棋盘格标定板放置在左右相机拍摄范围内的任意位置,根据棋盘格标定板中同一角点分别在左右相机拍摄的图像中对应的高度位置关系,调节左右相机高度,使标定板中同一角点在左右相机拍摄的图像中处于相同高度,然后固定左右相机;Step 1. Place the checkerboard calibration board at any position within the shooting range of the left and right cameras, and adjust the height of the left and right cameras according to the corresponding height position relationship of the same corner point in the checkerboard calibration board in the images captured by the left and right cameras, so that the calibration board The same corner point is at the same height in the images captured by the left and right cameras, and then fix the left and right cameras;步骤二、选定棋盘格标定板水平方向N个相邻的棋盘格,用刻度尺测量该N个相邻的棋盘格的实际长度A;Step 2, select N adjacent checkerboards in the horizontal direction of the checkerboard calibration plate, and measure the actual length A of the N adjacent checkerboards with a scale;将标定板放置在右相机拍摄范围内的任意两个不同的位置,并分别测量标定板到右相机的物距u1和u2,通过图像采集卡对应的图像采集程序分别获取并记录所选定的N个相邻的棋盘格在右相机拍摄的图像中所占像素的个数m1和m2,计算右相机的像距fl与其拍摄的图像中每个像素点的实际尺寸值dx比值fl/dx,计算方式如公式(2)所示,Place the calibration board at any two different positions within the shooting range of the right camera, and measure the object distances u1 and u2 from the calibration board to the right camera, and obtain and record the selected distances through the image acquisition program corresponding to the image acquisition card. Determine the number of pixels m1 and m2 occupied by the N adjacent checkerboard grids in the image captured by the right camera, calculate the image distance fl of the right camera and the actual size value dx of each pixel in the image captured The ratio fl /dx is calculated as shown in formula (2),ffrrdxdx==uu22&prime;&prime;--uu11&prime;&prime;AAmm22&prime;&prime;--AAmm11&prime;&prime;------((22))步骤三、以左相机为参考相机,按棋盘格标定板平面平行于相机成像平面的方式安放标定棋盘格标定板,记录多组标定板位于不同位置时标定板与参考相机的距离Z0、同一棋盘格角点位于左右相机图像中位置坐标的横坐标值xl和xr,将记录的多组Z0、xl、xr代入双目测距公式(1),运用非线性优化,求解出左右相机的光心距B、左右相机光心Ol和Or在成像面上的投影点Ol'和Or'的图像坐标位置的横坐标值、左相机透镜光心Ol和右相机透镜的光心Or的连线与左相机透镜平面Ll的夹角α、左右相机光轴的夹角θ。Step 3. With the left camera as the reference camera, place the calibration checkerboard calibration board in such a way that the plane of the checkerboard calibration board is parallel to the imaging plane of the camera, and record the distance Z0 and the same The corner points of the checkerboard are located at the abscissa values xl and xr of the position coordinates in the left and right camera images. Substitute the recorded sets of Z0 , xl , and xr into the binocular ranging formula (1), and use nonlinear optimization to solve The optical center distance B of the left and right cameras, the abscissa values of the image coordinate positions of the projection points Ol ' and Or ' of the left and right camera optical centers Ol and Or on the imaging plane, the left camera lens optical center Ol and the right The angle α between the line connecting the optical center Or of the camera lens and the plane Ll of the left camera lens, and the angle θ between the optical axes of the left and right cameras.
CN201410186771.4A2014-05-052014-05-05A kind of non-parallel binocular distance-finding method of optical axisExpired - Fee RelatedCN105091849B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201410186771.4ACN105091849B (en)2014-05-052014-05-05A kind of non-parallel binocular distance-finding method of optical axis

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201410186771.4ACN105091849B (en)2014-05-052014-05-05A kind of non-parallel binocular distance-finding method of optical axis

Publications (2)

Publication NumberPublication Date
CN105091849Atrue CN105091849A (en)2015-11-25
CN105091849B CN105091849B (en)2018-03-09

Family

ID=54572805

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201410186771.4AExpired - Fee RelatedCN105091849B (en)2014-05-052014-05-05A kind of non-parallel binocular distance-finding method of optical axis

Country Status (1)

CountryLink
CN (1)CN105091849B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN106768887A (en)*2016-12-192017-05-31歌尔科技有限公司The optical axis testing calibration method of bugeye lens
CN107895425A (en)*2017-12-052018-04-10中国人民银行印制科学技术研究所Banknote tester, money identifier, intelligent terminal and banknote detection method
CN109141344A (en)*2018-06-152019-01-04北京众星智联科技有限责任公司A kind of method and system based on the accurate ranging of binocular camera
CN109143213A (en)*2018-07-112019-01-04华南理工大学广州学院A kind of double camera long range detection method and device
CN109191415A (en)*2018-08-222019-01-11成都纵横自动化技术股份有限公司Image interfusion method, device and electronic equipment
CN109343578A (en)*2018-11-162019-02-15北京理工大学 A Field-of-View Alignment Method for TDI-CCD Camera Binocular Vision System Based on Visual Feedback
CN109377460A (en)*2018-10-152019-02-22Oppo广东移动通信有限公司Image processing method, image processing device and terminal equipment
CN109443325A (en)*2018-09-252019-03-08上海市保安服务总公司Utilize the space positioning system of floor-mounted camera
CN109631829A (en)*2018-12-172019-04-16南京理工大学A kind of binocular distance measuring method of adaptive Rapid matching
CN109813278A (en)*2019-02-262019-05-28北京中科慧眼科技有限公司Ranging model modification method, distance measuring method, device and automated driving system
CN109813277A (en)*2019-02-262019-05-28北京中科慧眼科技有限公司Construction method, distance measuring method, device and the automated driving system of ranging model
CN109931906A (en)*2019-03-282019-06-25杭州华雁云态信息技术有限公司 Camera ranging method, device and electronic device
CN110243338A (en)*2019-07-162019-09-17北京宇航时代科技发展有限公司A kind of real-time dynamic binocular distance measuring method and system
CN110458882A (en)*2019-08-172019-11-15陈�峰A kind of fruit phenotype test method based on computer vision
CN110763140A (en)*2019-07-082020-02-07北京宇航时代科技发展有限公司Non-parallel optical axis high-precision binocular ranging method
CN110794585A (en)*2019-10-162020-02-14中国航空工业集团公司洛阳电光设备研究所Binocular alignment calibration method for helmet display
CN111047633A (en)*2018-10-122020-04-21富华科精密工业(深圳)有限公司Monocular distance measuring device
CN112257537A (en)*2020-10-152021-01-22天目爱视(北京)科技有限公司Intelligent multi-point three-dimensional information acquisition equipment
CN112254672A (en)*2020-10-152021-01-22天目爱视(北京)科技有限公司Height-adjustable's intelligent 3D information acquisition equipment
WO2021022934A1 (en)*2019-08-052021-02-11上海亨临光电科技有限公司Passive millimeter wave/terahertz imaging technology-based three-dimensional imaging method
CN114549627A (en)*2022-02-142022-05-27济南博观智能科技有限公司Method and device for measuring distance of target, image acquisition equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1971206A (en)*2006-12-202007-05-30北京航空航天大学Calibration method for binocular vision sensor based on one-dimension target
CN101294801A (en)*2007-07-132008-10-29东南大学 Vehicle distance measurement method based on binocular vision
US20130058581A1 (en)*2010-06-232013-03-07Beihang UniversityMicroscopic Vision Measurement Method Based On Adaptive Positioning Of Camera Coordinate Frame

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1971206A (en)*2006-12-202007-05-30北京航空航天大学Calibration method for binocular vision sensor based on one-dimension target
CN101294801A (en)*2007-07-132008-10-29东南大学 Vehicle distance measurement method based on binocular vision
US20130058581A1 (en)*2010-06-232013-03-07Beihang UniversityMicroscopic Vision Measurement Method Based On Adaptive Positioning Of Camera Coordinate Frame

Cited By (31)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN106768887A (en)*2016-12-192017-05-31歌尔科技有限公司The optical axis testing calibration method of bugeye lens
CN106768887B (en)*2016-12-192019-02-26歌尔科技有限公司 Optical axis detection and calibration method of ultra-wide-angle lens
CN107895425A (en)*2017-12-052018-04-10中国人民银行印制科学技术研究所Banknote tester, money identifier, intelligent terminal and banknote detection method
CN109141344A (en)*2018-06-152019-01-04北京众星智联科技有限责任公司A kind of method and system based on the accurate ranging of binocular camera
CN109143213A (en)*2018-07-112019-01-04华南理工大学广州学院A kind of double camera long range detection method and device
CN109191415A (en)*2018-08-222019-01-11成都纵横自动化技术股份有限公司Image interfusion method, device and electronic equipment
CN109191415B (en)*2018-08-222020-12-15成都纵横自动化技术股份有限公司Image fusion method and device and electronic equipment
CN109443325A (en)*2018-09-252019-03-08上海市保安服务总公司Utilize the space positioning system of floor-mounted camera
CN111047633A (en)*2018-10-122020-04-21富华科精密工业(深圳)有限公司Monocular distance measuring device
CN111047633B (en)*2018-10-122023-08-18深圳富联富桂精密工业有限公司Monocular distance measuring device
CN109377460A (en)*2018-10-152019-02-22Oppo广东移动通信有限公司Image processing method, image processing device and terminal equipment
CN109343578A (en)*2018-11-162019-02-15北京理工大学 A Field-of-View Alignment Method for TDI-CCD Camera Binocular Vision System Based on Visual Feedback
CN109631829A (en)*2018-12-172019-04-16南京理工大学A kind of binocular distance measuring method of adaptive Rapid matching
CN109813278A (en)*2019-02-262019-05-28北京中科慧眼科技有限公司Ranging model modification method, distance measuring method, device and automated driving system
CN109813278B (en)*2019-02-262021-09-17北京中科慧眼科技有限公司Ranging model correction method, ranging method and device and automatic driving system
CN109813277A (en)*2019-02-262019-05-28北京中科慧眼科技有限公司Construction method, distance measuring method, device and the automated driving system of ranging model
CN109813277B (en)*2019-02-262021-07-16北京中科慧眼科技有限公司Construction method of ranging model, ranging method and device and automatic driving system
CN109931906A (en)*2019-03-282019-06-25杭州华雁云态信息技术有限公司 Camera ranging method, device and electronic device
CN109931906B (en)*2019-03-282021-02-23华雁智科(杭州)信息技术有限公司Camera ranging method and device and electronic equipment
CN110763140A (en)*2019-07-082020-02-07北京宇航时代科技发展有限公司Non-parallel optical axis high-precision binocular ranging method
CN110763140B (en)*2019-07-082021-04-16北京宇航时代科技发展有限公司Non-parallel optical axis high-precision binocular ranging method
CN110243338A (en)*2019-07-162019-09-17北京宇航时代科技发展有限公司A kind of real-time dynamic binocular distance measuring method and system
CN110243338B (en)*2019-07-162021-06-11北京宇航时代科技发展有限公司Real-time dynamic binocular ranging method and system
WO2021022934A1 (en)*2019-08-052021-02-11上海亨临光电科技有限公司Passive millimeter wave/terahertz imaging technology-based three-dimensional imaging method
CN110458882A (en)*2019-08-172019-11-15陈�峰A kind of fruit phenotype test method based on computer vision
CN110794585A (en)*2019-10-162020-02-14中国航空工业集团公司洛阳电光设备研究所Binocular alignment calibration method for helmet display
CN110794585B (en)*2019-10-162022-05-24中国航空工业集团公司洛阳电光设备研究所Binocular alignment calibration method for helmet display
CN112254672A (en)*2020-10-152021-01-22天目爱视(北京)科技有限公司Height-adjustable's intelligent 3D information acquisition equipment
CN112257537A (en)*2020-10-152021-01-22天目爱视(北京)科技有限公司Intelligent multi-point three-dimensional information acquisition equipment
CN112257537B (en)*2020-10-152022-02-15天目爱视(北京)科技有限公司Intelligent multi-point three-dimensional information acquisition equipment
CN114549627A (en)*2022-02-142022-05-27济南博观智能科技有限公司Method and device for measuring distance of target, image acquisition equipment and medium

Also Published As

Publication numberPublication date
CN105091849B (en)2018-03-09

Similar Documents

PublicationPublication DateTitle
CN105091849B (en)A kind of non-parallel binocular distance-finding method of optical axis
CN103559735B (en)A kind of three-dimensional rebuilding method and system
CN105424006B (en)Unmanned plane hovering accuracy measurement method based on binocular vision
CN103115613B (en)Three-dimensional space positioning method
CN111243002A (en)Monocular laser speckle projection system calibration and depth estimation method applied to high-precision three-dimensional measurement
CN105913439B (en)A kind of large-field shooting machine scaling method based on laser tracker
CN110296691A (en)Merge the binocular stereo vision measurement method and system of IMU calibration
CN109141226A (en)The spatial point coordinate measuring method of one camera multi-angle
CN107680139B (en)Universality calibration method of telecentric binocular stereo vision measurement system
CN110057295A (en)It is a kind of to exempt from the monocular vision plan range measurement method as control
CN105486289B (en)A kind of laser photography measuring system and camera calibration method
CN100417231C (en) Stereo vision hardware-in-the-loop simulation system and method
CN101586943B (en)Method for calibrating structure light vision transducer based on one-dimensional target drone
CN109840922B (en) Depth acquisition method and system based on binocular field camera
CN106709955B (en)Space coordinate system calibration system and method based on binocular stereo vision
CN112489109B (en)Three-dimensional imaging system method and device and three-dimensional imaging system
CN103065303A (en)Device and method capable of rapidly achieving line-scan digital camera standardization
CN106447733A (en) Method, system and device for determining the range of motion of the cervical spine and the position of the axis of motion
WO2020199439A1 (en)Single- and dual-camera hybrid measurement-based three-dimensional point cloud computing method
CN105957096A (en)Camera extrinsic parameter calibration method for three-dimensional digital image correlation
CN112308926A (en)Camera external reference calibration method without public view field
CN109443214A (en)A kind of scaling method of structured light three-dimensional vision, device and measurement method, device
CN101487702A (en)Binocular vision based traffic accident on-site photogrammetric survey method
CN104036518B (en)Camera calibration method based on vector method and three collinear points
CN112907647A (en)Three-dimensional space size measurement method based on fixed monocular camera

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20180309

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp