相关申请Related applications
本申请要求递交于2013年3月29日的美国临时申请序列号No.61/806,821(代理人案号P55273Z)的权益并将其合并与此。This application claims the benefit of and is incorporated herein by US Provisional Application Serial No. 61/806,821 (Attorney Docket No. P55273Z), filed March 29, 2013.
背景技术Background technique
无线移动通信技术采用各种标准和协议在节点(例如,发送站或收发器节点)和无线设备(例如,移动设备)之间发送数据。一些无线设备在下行链路(DL)传输中使用正交频分多址(OFDMA)并在上行链路(UL)传输中使用单载波频分多址(SC-FDMA)来进行通信。使用正交频分复用(OFDM)用于信号传输的标准和协议包括第三代合作伙伴计划(3GPP)长期演进(LTE)、工业界通常称之为WiMAX(全球微波接入互操作性)的电气和电子工程师协会(IEEE)802.16标准(例如,802.16e、802.16m)以及工业界通常称之为WiFi的IEEE 802.11标准。Wireless mobile communication technologies employ various standards and protocols to transmit data between nodes (eg, transmitting stations or transceiver nodes) and wireless devices (eg, mobile devices). Some wireless devices communicate using Orthogonal Frequency Division Multiple Access (OFDMA) in downlink (DL) transmissions and Single-Carrier Frequency Division Multiple Access (SC-FDMA) in uplink (UL) transmissions. Standards and protocols that use Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission include 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE), what is commonly referred to in the industry as WiMAX (Worldwide Interoperability for Microwave Access) The Institute of Electrical and Electronics Engineers (IEEE) 802.16 standards (eg, 802.16e, 802.16m) and the IEEE 802.11 standard commonly referred to in the industry as WiFi.
在3GPP无线电接入网络(RAN)LTE系统中,节点可以是演进的通用陆地无线电接入网(E-UTRAN)节点B(通常被表示为演进的节点B、增强型节点B、eNodeB或eNB)和无线电网络控制器(RNC)的组合,其与无线设备(被称为用户设备(UE))通信。下行链路(DL)传输(也被称为广播信道(BC))可以是从节点(例如,eNodeB)到无线设备(例如,UE)的通信,上行链路(UE)传输(也被称为多址接入信道(MAC))可以是从无线设备到节点的通信。In a 3GPP Radio Access Network (RAN) LTE system, a node may be an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (often denoted as Evolved Node B, Enhanced Node B, eNodeB or eNB) A combination of a radio network controller (RNC), which communicates with wireless devices, known as user equipment (UE). Downlink (DL) transmissions (also known as Broadcast Channel (BC)) may be communications from nodes (eg, eNodeBs) to wireless devices (eg, UEs), uplink (UE) transmissions (also known as A multiple access channel (MAC)) may be communication from wireless devices to nodes.
下行链路和上行链路信道或传输可以使用时分双工(TDD)或频分双工(FDD)。时分双工(TDD)是时分复用(TDM)的应用,以分离下行链路和上行链路信号。在TDD中,下行链路信号和上行链路信号可以被承载在相同的载波频率上(即,共享的载波频率),其中下行链路信号使用与上行链路信号不同的时间间隔,使得下行链路信号和上行链路信号不对彼此产生干扰。TDM是一种类型的数字复用,其中两个或多个比特流或信号(例如,下行链路或上行链路)作为一个通信信道中的子信道被同时传输,但在物理上被传送在不同的资源上。在频分双工(FDD)中,上行链路传输和下行链路传输可以使用不同的频率载波进行操作(即,不同的载波频率用于每个传输方向)。在FDD中,因为下行链路信号使用与上行链路信号不同的频率载波,因此可以避免干扰。Downlink and uplink channels or transmissions may use time division duplex (TDD) or frequency division duplex (FDD). Time Division Duplex (TDD) is an application of Time Division Multiplexing (TDM) to separate downlink and uplink signals. In TDD, the downlink and uplink signals may be carried on the same carrier frequency (ie, a shared carrier frequency), with the downlink signal using a different time interval than the uplink signal, so that the downlink The uplink signal and the uplink signal do not interfere with each other. TDM is a type of digital multiplexing in which two or more bit streams or signals (eg, downlink or uplink) are transmitted simultaneously as subchannels in one communication channel, but are on different resources. In frequency division duplexing (FDD), uplink and downlink transmissions may operate using different frequency carriers (ie, different carrier frequencies for each transmission direction). In FDD, interference can be avoided because the downlink signal uses a different frequency carrier than the uplink signal.
eNB可以具有多个天线用于到UE的传输,允许eNB使用多输入和多输出(MIMO)。MIMO是智能天线技术,是指在发送器和接收器二者处使用多个天线来改善通信性能,其中输入和输出指承载信号的无线电信道,不一定指具有天线的设备。在MIMO中,多达八个发射或接收天线可以被使用,或多达八个信道可以被用于资源的传输。The eNB may have multiple antennas for transmission to the UE, allowing the eNB to use multiple input and multiple output (MIMO). MIMO is a smart antenna technology that refers to the use of multiple antennas at both the transmitter and receiver to improve communication performance, where input and output refer to the radio channel that carries the signal, not necessarily the device with the antenna. In MIMO, up to eight transmit or receive antennas may be used, or up to eight channels may be used for transmission of resources.
附图说明Description of drawings
根据随后结合附图的详细描述,本公开的特征和优点将是明显的,附图通过示例的方式一起说明本公开的特征,其中:Features and advantages of the present disclosure will be apparent from the ensuing detailed description, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, the features of the present disclosure, wherein:
图1示出根据示例的正交频分复用(OFDM)无线网络中发射器和接收器的物理层的框图;1 shows a block diagram of the physical layers of a transmitter and a receiver in an orthogonal frequency division multiplexing (OFDM) wireless network according to an example;
图2示出根据示例的物理信道处理器的物理信道处理的框图;2 illustrates a block diagram of physical channel processing by a physical channel processor according to an example;
图3示出根据示例的下行链路(DL)传输的无线电帧资源(例如,资源网格)的框图,下行链路(DL)传输包括遗留物理下行链路控制信道(PDCCH);3 illustrates a block diagram of radio frame resources (eg, resource grids) for downlink (DL) transmissions including legacy Physical Downlink Control Channel (PDCCH), according to an example;
图4A示出根据示例的单输入单输出(SISO)无线网络的框图;4A shows a block diagram of a single-input single-output (SISO) wireless network according to an example;
图4B示出根据示例的单输入多输出(SIMO)无线网络的框图;4B shows a block diagram of a single-input multiple-output (SIMO) wireless network according to an example;
图4C示出根据示例的多输入单输出(MISO)无线网络的框图;4C shows a block diagram of a multiple-input single-output (MISO) wireless network according to an example;
图4D示出根据示例的多输入多输出(MIMO)无线网络的框图;4D illustrates a block diagram of a multiple-input multiple-output (MIMO) wireless network according to an example;
图5示出根据示例的针对K个用户设备(UE)的随机波束成形(RBF)的图示;5 shows a diagram of random beamforming (RBF) for K user equipments (UEs) according to an example;
图6示出根据示例的朝向K个活跃用户设备(UE)的M个窄波束的图示;6 shows a diagram of M narrow beams towards K active user equipments (UEs) according to an example;
图7示出根据示例的波束选择操作顺序的图示;7 shows a diagram of a sequence of beam selection operations according to an example;
图8示出根据示例的K个用户设备(UE)间由随机波束成形(RBF)决定的调度优先级的图示;8 shows a diagram of scheduling priorities determined by random beamforming (RBF) among K user equipments (UEs) according to an example;
图9示出根据示例的两个发射器(2-Tx)天线的信号和干扰分量的图示;9 shows a graph of signal and interference components of two transmitter (2-Tx) antennas according to an example;
图10示出根据示例的时域和频域中波束选择模式的图示;10 shows a diagram of beam selection patterns in the time and frequency domains according to an example;
图11示出根据示例的一个分配的图示,该分配包括P个物理资源块(PRB);11 shows a diagram of an allocation including P physical resource blocks (PRBs), according to an example;
图12示出根据示例的针对使用八个天线同时训练八个波束的情况,将参考符号映射到资源元素(RE)的图示;12 shows a diagram of mapping reference symbols to resource elements (REs) for the case of training eight beams simultaneously using eight antennas, according to an example;
图13描绘根据示例的、可操作来根据一组正交参考信号生成改善的信号与干扰加噪声之比(SINR)用户设备(UE)的计算机电路的功能;13 depicts functionality of computer circuitry operable to generate an improved signal-to-interference-plus-noise ratio (SINR) user equipment (UE) from a set of orthogonal reference signals, according to an example;
图14描绘根据示例的用于使用正交波束成形矢量来提供波束选择的方法的流程图;14 depicts a flowchart of a method for providing beam selection using orthogonal beamforming vectors, according to an example;
图15示出根据示例的节点(例如,eNB)和无线设备(例如,UE)的框图;和15 illustrates a block diagram of a node (eg, an eNB) and a wireless device (eg, a UE) according to an example; and
图16示出根据示例的无线设备(例如,UE)的图示。16 shows an illustration of a wireless device (eg, UE) according to an example.
现在将参考所示出的示例性实施例,本文将使用特定的语言来描述这些示例性实施例。然而,应当理解的是,不由此限定本发明的范围。Reference will now be made to the illustrated exemplary embodiments, for which specific language will be used herein to describe the exemplary embodiments. It should be understood, however, that the scope of the present invention is not thereby limited.
具体实施方式Detailed ways
概述Overview
在公开和描述本发明之前,应当理解的是,本发明不限于此处所公开的具体结构、过程步骤或材料,而是被扩展到如本领域普通技术人员将认识到的那些等同物。应当理解的是,本文所采用的术语仅被用于描述特定示例的目的而不意在进行限制。不同图示中相同的参考标号代表相同元件。流程图和过程中所提供的数字用于清楚地示出步骤和操作的目的,而不一定指示特定的排序或顺序。Before the present invention is disclosed and described, it is to be understood that this invention is not limited to the specific structures, process steps or materials disclosed herein, but is to be extended to equivalents of those, as those of ordinary skill in the art will recognize. It is to be understood that the terminology employed herein is for the purpose of describing particular examples only and is not intended to be limiting. The same reference numbers in different figures represent the same elements. The numbers provided in the flowcharts and processes are for the purpose of clearly illustrating the steps and operations and do not necessarily indicate a particular ordering or sequence.
示例实施例Example embodiment
下面提供对技术实施例的初步概览,然后更详细地描述具体的技术实施例。该初始摘要意在帮助读者更快地理解本技术,而不意在标识本技术的关键特征或必要特征,也不意在限制所要求保护的主题的范围。A preliminary overview of technical embodiments is provided below, followed by a more detailed description of specific technical embodiments. This initial abstract is intended to help the reader understand the technology more quickly, and is not intended to identify key features or essential features of the technology, nor is it intended to limit the scope of the claimed subject matter.
无线通信系统可以被细分为称作层的不同部分。在LTE系统中,通信层可以包括物理(PHY)层、媒体访问控制(MAC)层、无线电链路控制(RLC)层、分组数据汇聚协议(PDCP)层和无线电资源控制(RRC)层。物理层可以包括无线通信系统400的基本硬件传输组件,如图1中所示出的。基本的多输入多输出(MIMO)系统被用于简单地示出基本的硬件传输组件,但是这些组件也可以适于复杂MIMO系统、单输入单输出(SISO)系统或类似的系统。例如,在MIMO系统中,在发射器410处,二进制输入数据420可以通过使用信道编码器422进行编码被保护,使用交织器424被交织以防止衰落现象,使用映射器426被映射以提高可靠性。被映射的数据可以被发射器(TX)波束成形器434分离成用于天线端口的层,而层可以使用调制器428A-B被OFDM调制成OFDM符号。调制器可以使用快速傅里叶逆变换(IFFT)算法来计算离散傅里叶逆变换(IDFT)以生成调制信号(用于各个天线端口的矢量x)。调制信号可以被数字-模拟转换器(DAC)转换成模拟信号。模拟信号可以经由射频(RF)发射器(Tx)432A-B被发送,发射器(Tx)432A-B被配置为将信号发送至可操作来传送信号的发射器天线440A-B。模拟信号将遵循被称为信道的路径。通过该路径的模拟信号可以被称为信道信号450。物理层可以包括其它部件(未示出),例如串行-并行(S/P)转换器、并行-串行(P/S)转换器、循环前缀(CP)插入器和删除器、保护带插入器和删除器以及其它所需部件。A wireless communication system can be subdivided into different parts called layers. In an LTE system, the communication layers may include a physical (PHY) layer, a medium access control (MAC) layer, a radio link control (RLC) layer, a packet data convergence protocol (PDCP) layer, and a radio resource control (RRC) layer. The physical layer may include the basic hardware transport components of the wireless communication system 400 as shown in FIG. 1 . A basic multiple-input multiple-output (MIMO) system is used to simply illustrate the basic hardware transmission components, but these components can also be adapted to complex MIMO systems, single-input single-output (SISO) systems, or similar systems. For example, in a MIMO system, at transmitter 410, binary input data 420 may be protected by encoding using channel encoder 422, interleaved using interleaver 424 to prevent fading phenomena, and mapped using mapper 426 to improve reliability . The mapped data may be separated by transmitter (TX) beamformer 434 into layers for antenna ports, and the layers may be OFDM modulated into OFDM symbols using modulators 428A-B. The modulator may use an Inverse Fast Fourier Transform (IFFT) algorithm to compute an Inverse Discrete Fourier Transform (IDFT) to generate a modulated signal (vector x for each antenna port). The modulated signal can be converted into an analog signal by a digital-to-analog converter (DAC). The analog signals may be transmitted via radio frequency (RF) transmitters (Tx) 432A-B configured to transmit the signals to transmitter antennas 440A-B operable to transmit the signals. An analog signal will follow a path called a channel. The analog signal passing through this path may be referred to as channel signal 450 . The physical layer may include other components (not shown) such as serial-to-parallel (S/P) converters, parallel-to-serial (P/S) converters, cyclic prefix (CP) inserters and removers, guard bands Inserters and deleters and other required components.
所发送的信道信号450可以受到噪声452和干扰454的影响。干扰可以包括小区内干扰和小区间干扰。小区内干扰可以指来自发送器410的小区内传送的其它信道信号的干扰。小区间干扰可以指来自相邻小区传送的其它信道信号的干扰。噪声和干扰可以被表示为到信道信号的添加(addition)456,信道信号可以被接收器460处的接收器天线490A-B和一个或多个射频(RF)接收器(Rx)482A-B接收。信道信号连同噪声和干扰可以被模拟-数字转换器480A-B转换成数字调制信号。数字信号可以使用解调器478A-B被OFDM解调制。解调器可以使用快速傅里叶变换(FFT)算法来计算离散傅里叶变换(DFT)以生成解调信号(用于各个天线端口的矢量y)。信道估计器462可以使用解调信号来估计信道450和发生在信道中的噪声和干扰。信道估计器可以包括反馈生成器或与反馈生成器通信,反馈生成器可以生成物理上行链路共享信道(PUSCH)反馈报告,例如信道质量指示符(CQI)报告、预编码矩阵指示符(PMI)报告或传输秩指示符(RI)报告。CQI可以被用于辅助MIMO传输模式。解调信号可以通过使用MIMO解码器484被合并、通过使用解映射器476被解映射、通过使用解交织器474被解交织并被信道解码器472解码以生成可以被接收站的其它层使用的二进制输出数据470。The transmitted channel signal 450 may be affected by noise 452 and interference 454 . Interference may include intra-cell interference and inter-cell interference. Intra-cell interference may refer to interference from other channel signals transmitted within the cell of transmitter 410 . Inter-cell interference may refer to interference from other channel signals transmitted by neighboring cells. Noise and interference may be represented as additions 456 to channel signals, which may be received by receiver antennas 490A-B and one or more radio frequency (RF) receivers (Rx) 482A-B at receiver 460 . The channel signal, along with noise and interference, may be converted into a digitally modulated signal by analog-to-digital converters 480A-B. The digital signal may be demodulated by OFDM using demodulators 478A-B. The demodulator may use a Fast Fourier Transform (FFT) algorithm to compute a Discrete Fourier Transform (DFT) to generate a demodulated signal (vector y for each antenna port). Channel estimator 462 may use the demodulated signal to estimate channel 450 and the noise and interference occurring in the channel. The channel estimator may include or be in communication with a feedback generator that may generate physical uplink shared channel (PUSCH) feedback reports such as channel quality indicator (CQI) reports, precoding matrix indicators (PMI) Report or transmission rank indicator (RI) report. CQI can be used to assist the MIMO transmission mode. The demodulated signals may be combined using MIMO decoder 484, demapped using demapper 476, deinterleaved using deinterleaver 474, and decoded by channel decoder 472 to generate data that may be used by other layers of the receiving station. Binary output data 470.
图2示出与图1中所示出的用于LTE MIMO移动通信系统的物理信道处理器相关的交织器424、映射器426、发射器波束成形器434和调制器428A-B。相应的特征可以存在于接收器460中。图2的MIMO物理信道处理器300可以包括扰频器320A-V、调制映射器330A-V、层映射器340、预编码器360、资源元素映射器370A-P和OFDM信号生成器380A-P。扰频器可以将各个码字310加扰成编码位以在物理信道上传送。调制映射器可以对加扰位进行调制以生成复值调制符号。层映射器可以将调制符号映射到多个传输层350。预编码器可以对每层上的调制符号进行预编码以用于天线端口590上的传输。预编码器可以使用在发射器(例如,eNB)和接收器(例如,UE)二者处已知的码本或在发射器处被计算并被传送到接收器(或在接收器处被学习)的码本。码本可以在发射器和接收器二者处定义一组矢量和矩阵,这可以实现高预编码增益、低反馈开销并提供灵活性来支持各种天线配置和不同数量的数据流。资源元素映射器可以将每个天线端口的调制符号映射到资源元素(RE)。OFDM信号生成器可以生成复值时域OFDM信号用于每个天线端口。2 shows the interleaver 424, mapper 426, transmitter beamformer 434, and modulators 428A-B associated with the physical channel processor shown in FIG. 1 for the LTE MIMO mobile communication system. Corresponding features may exist in receiver 460 . The MIMO physical channel processor 300 of FIG. 2 may include scramblers 320A-V, modulation mappers 330A-V, layer mappers 340, precoders 360, resource element mappers 370A-P, and OFDM signal generators 380A-P . The scrambler may scramble the individual codewords 310 into coded bits for transmission on the physical channel. The modulation mapper may modulate the scrambled bits to generate complex-valued modulation symbols. A layer mapper may map modulation symbols to multiple transmission layers 350 . A precoder may precode modulation symbols on each layer for transmission on antenna port 590. The precoder may use a codebook known at both the transmitter (eg, eNB) and receiver (eg, UE) or be computed at the transmitter and transmitted to the receiver (or learned at the receiver). ) codebook. A codebook can define a set of vectors and matrices at both the transmitter and receiver, which can achieve high precoding gain, low feedback overhead and provide flexibility to support various antenna configurations and different numbers of data streams. A resource element mapper may map modulation symbols for each antenna port to resource elements (REs). The OFDM signal generator can generate complex-valued time-domain OFDM signals for each antenna port.
在一个示例中,资源元素(RE)可以使用通用3GPP长期演进(LTE)帧结构表示节点(例如,eNodeB)和无线电设备(例如,UE)之间的下行链路传输中的物理(PHY)层上传送的无线电帧结构的元素,如图3中所示出的。In one example, a resource element (RE) may represent the physical (PHY) layer in downlink transmission between a node (eg, eNodeB) and a radio (eg, UE) using the generic 3GPP Long Term Evolution (LTE) frame structure elements of the radio frame structure transmitted on the
图3示出下行链路无线电帧结构类型1。在该示例中,被用于传送数据的信号的无线电帧100可以被配置为具有10毫秒(ms)的持续时间Tf。每个无线电帧可以被分段或被分成十个子帧110i,每个子帧长1ms。每个子帧还可以被细分成两个时隙120a和120b,每个时隙的持续时间(Tslot)为0.5ms。第一时隙(#0)120a可以包括遗留物理下行链路控制信道(PDCCH)160和/或物理下行链路共享信道(PDSCH)166,第二时隙(#1)120b可以包括使用PDSCH传送的数据。Figure 3 shows a downlink radio frame structure type 1. In this example, the radio frame 100 of the signal used to transmit data may be configured to have a duration Tf of 10 milliseconds (ms). Each radio frame may be segmented or divided into ten subframes 110i, each subframe 1 ms long. Each subframe may also be subdivided into two time slots 120a and 120b, each of which has a duration (Tslot) of 0.5 ms. The first time slot (#0) 120a may include legacy physical downlink control channel (PDCCH) 160 and/or the physical downlink shared channel (PDSCH) 166, and the second time slot (#1) 120b may include transmission using PDSCH The data.
节点和无线设备所使用的分量载波(CC)的每个时隙可以包括基于CC频率带宽的多个资源块(RB)130a、130b、130i、130m和130n。CC可以拥有具备带宽和中心频率的载波频率。CC的每个子帧可以包括遗留PDCCH中发现的下行链路控制信息(DCI)。当遗留PDCCH被使用时,控制区域中的遗留PDCCH可以包括每个子帧或物理RB(PRB)中的第一OFDM符号的一至三列。其余的11至13个OFDM符号(或当遗留PDCCH不被使用时,14个OFDM符号)可以被分配给用于数据的PDSCH(对于短或正常循环前缀)。Each time slot of a component carrier (CC) used by nodes and wireless devices may include a plurality of resource blocks (RBs) 130a, 130b, 130i, 130m, and 130n based on the frequency bandwidth of the CC. A CC can have a carrier frequency with a bandwidth and center frequency. Each subframe of a CC may include Downlink Control Information (DCI) found in the legacy PDCCH. When the legacy PDCCH is used, the legacy PDCCH in the control region may include one to three columns of the first OFDM symbol in each subframe or physical RB (PRB). The remaining 11 to 13 OFDM symbols (or 14 OFDM symbols when legacy PDCCH is not used) may be allocated to PDSCH for data (for short or normal cyclic prefix).
控制区域可以包括物理控制格式指示符信道(PCFICH)、物理混合自动重复请求(混合ARQ)指示符信道(PHICH)和PDCCH。控制区域具有灵活的控制设计,以避免不必要的开销。用于PDCCH的控制区域中的OFDM符号数量可以由物理控制格式指示符信道(PCFICH)中传送的控制信道格式指示符(CFI)来判定。PCFICH可以位于每个子帧的第一OFDM符号中。PCFICH和PHICH可以优先于PDCCH,使得PCFICH和PHICH优先于PDCCH被调度。The control region may include Physical Control Format Indicator Channel (PCFICH), Physical Hybrid Automatic Repeat Request (Hybrid ARQ) Indicator Channel (PHICH), and PDCCH. The control area has a flexible control design to avoid unnecessary overhead. The number of OFDM symbols in the control region for the PDCCH may be determined by the Control Channel Format Indicator (CFI) transmitted in the Physical Control Format Indicator Channel (PCFICH). The PCFICH may be located in the first OFDM symbol of each subframe. PCFICH and PHICH may be scheduled in preference to PDCCH, such that PCFICH and PHICH are scheduled in preference to PDCCH.
每个RB(物理RB或PRB)130i每时隙可以包括12-15kHz子载波136(在频率轴上)和6个或7个正交频分复用(OFDM)符号130(在时间轴上)。如果短或正常循环前缀被采用,则RB可以使用七个OFDM符号。如果扩展循环前缀被采用,则RB可以使用六个OFDM符号。资源块可以通过使用短或正常循环前缀被映射到84个资源元素(RE)140i,或者资源块可以通过使用扩展循环前缀被映射到72个RE(未示出)。RE可以是一个OFDM符号142乘以一个子载波(即,15kHz)146的单元。Each RB (physical RB or PRB) 130i may include 12-15 kHz sub-carriers 136 (on the frequency axis) and 6 or 7 Orthogonal Frequency Division Multiplexing (OFDM) symbols 130 (on the time axis) per slot . If the short or normal cyclic prefix is employed, the RB can use seven OFDM symbols. If the extended cyclic prefix is employed, the RB can use six OFDM symbols. A resource block may be mapped to 84 resource elements (REs) 140i using a short or normal cyclic prefix, or a resource block may be mapped to 72 REs (not shown) using an extended cyclic prefix. A RE may be a unit of one OFDM symbol 142 times one subcarrier (ie, 15 kHz) 146 .
在正交相移键控的情况下,每个RE可以发送两比特150a和150b的信息。可以使用其它类型的调制,例如使用16正交幅度调制(QAM)或64QAM以在每个RE中传送更多数量的比特,或者使用二进制相移键控(BPSK)调制以在每个RE中传送更少数量的比特。RB可以被配置为用于从eNodeB到UE的下行链路传输,或者RB可以被配置为用于从UE到eNodeB的上行链路传输。In the case of quadrature phase shift keying, each RE may transmit two bits of information 150a and 150b. Other types of modulation can be used, such as 16 Quadrature Amplitude Modulation (QAM) or 64QAM to transmit a higher number of bits in each RE, or Binary Phase Shift Keying (BPSK) modulation to transmit in each RE Fewer number of bits. The RB may be configured for downlink transmission from the eNodeB to the UE, or the RB may be configured for uplink transmission from the UE to the eNodeB.
图4A示出在发射天线端口810上使用单个无线电信道、并且在接收天线端口830上使用单个无线电信道的无线通信系统,该无线通信系统可以被称为单输入单输出(SISO)无线网络。图4B示出在发射天线端口810上使用单个无线电信道并且在数个接收天线端口840上使用多个无线电信道的无线通信系统,该无线通信系统可以被称为单输入多输出(SIMO)无线网络。图4C示出在数个发射天线端口820上使用多个无线电信道并且在接收天线端口830上使用单个无线电信道的无线通信系统,该无线通信系统可以被称为多输入单输出(MISO)无线网络。图4D示出在数个发射天线端口820上使用多个无线电信道、并且在数个接收天线端口840上使用多个无线电信道的无线通信系统,该无线通信系统可以被称为多输入多输出(MIMO)无线网络。术语输入和输出通常指承载信号的无线电信道,而不是指具有天线的设备。4A shows a wireless communication system that uses a single radio channel on transmit antenna port 810 and a single radio channel on receive antenna port 830, which may be referred to as a single-input single-output (SISO) wireless network. 4B shows a wireless communication system that uses a single radio channel on transmit antenna port 810 and multiple radio channels on several receive antenna ports 840, which may be referred to as a single-input multiple-output (SIMO) wireless network . 4C shows a wireless communication system that uses multiple radio channels on several transmit antenna ports 820 and a single radio channel on receive antenna ports 830, which may be referred to as a multiple-input single-output (MISO) wireless network . FIG. 4D shows a wireless communication system that uses multiple radio channels on several transmit antenna ports 820, and uses multiple radio channels on several receive antenna ports 840, which may be referred to as multiple input multiple output ( MIMO) wireless network. The terms input and output generally refer to the radio channel that carries the signal, not to a device with an antenna.
MIMO无线网络可以被用于波束成形。波束成形或空间滤波是天线阵列中用于定向信号传输或接收的信号处理技术。可以通过用其它信号经历相消干涉的同时特定角度处的信号经历相干干涉这种方式组合相控阵列中的元件来实现波束成形。波束成形可以被用在发射端和接收端二者处,以实现空间选择性。MIMO wireless networks can be used for beamforming. Beamforming or spatial filtering is a signal processing technique used in antenna arrays for directional signal transmission or reception. Beamforming can be achieved by combining elements in a phased array in such a way that signals at particular angles experience coherent interference while other signals experience destructive interference. Beamforming can be used at both the transmit and receive ends to achieve spatial selectivity.
蜂窝数据需求继续经历递增的增长率。结合稀缺的可用带宽,无线和蜂窝系统可以使用MIMO来递送急剧增加的频谱效率,以解决容量需求。单用户(SU)和多用户(MU)MIMO系统是在基站中(例如,eNodeB)有多达八个天线的天线规模的3GPP长期演进(LTE)规范的组成部分。然而,发射天线数量的数量级的增加(被称为大规模MIMO或全尺寸MIMO)可能导致显著更高的频谱效率。Cellular data demand continues to experience incremental growth rates. Combined with the scarce available bandwidth, wireless and cellular systems can use MIMO to deliver dramatically increased spectral efficiency to address capacity demands. Single-User (SU) and Multi-User (MU) MIMO systems are part of the 3GPP Long Term Evolution (LTE) specification for antenna scale with up to eight antennas in the base station (eg, eNodeB). However, an order of magnitude increase in the number of transmit antennas (known as massive MIMO or full-scale MIMO) can lead to significantly higher spectral efficiency.
在多用户MIMO(MU-MIMO)系统中,假设信道状态信号(CSI)在发射器处可用,则总用户率(例如,速率和容量或所有活跃用户的容量率)可以线性地随发射(Tx)天线的数量增加。CSI的可靠性和精度可以限制可实现的容量增益。例如,在LTE系统的频分双工(FDD)模式中,用户设备(UE)可以将CSI发送回eNodeB,以通知eNodeB对信道质量的不同测量。UE可以根据嵌入在所发送的物理资源块(PRB)中的参考信号(RS)计算CSI。对于诸如LTE升级版频分双工(FDD)规范之类的各种标准,信道测量和反馈可以通过多达八个天线端口被提供。为了实现由大规模MIMO系统提供的大增益,开销和CSI信令的大小可以被最小化,同时控制CSI反馈的精度要求。否则,导频(例如,RS)和反馈随天线数目的线性改变可以变得过高,这可能限制来自大规模MIMO系统的增益。In a multi-user MIMO (MU-MIMO) system, the total user rate (eg, rate and capacity or capacity rate of all active users) can vary linearly with the transmit (Tx ) the number of antennas increases. The reliability and accuracy of CSI can limit the achievable capacity gain. For example, in the frequency division duplex (FDD) mode of the LTE system, the user equipment (UE) may send CSI back to the eNodeB to inform the eNodeB of different measurements of channel quality. The UE may calculate CSI from reference signals (RS) embedded in transmitted physical resource blocks (PRBs). For various standards such as the LTE Plus Frequency Division Duplex (FDD) specification, channel measurements and feedback can be provided through up to eight antenna ports. To achieve the large gains provided by massive MIMO systems, the overhead and size of CSI signaling can be minimized while controlling the accuracy requirements for CSI feedback. Otherwise, the linear variation of pilots (eg, RSs) and feedback with the number of antennas can become too high, which can limit the gain from massive MIMO systems.
采用通常的MIMO方法(例如,具有多达八个发射天线的MIMO)可以生成大量导频和大量CSI需求。如本文所公开的,大规模MIMO技术可以解决大量导频和大量CSI需求的问题。其结果是,具有减少的导频和减少的CSI需求的大规模MIMO系统可以保留总速率随大量发射天线(例如,大于8个发射天线)线性改变。MU-MIMO系统的另一挑战是公平地服务不同的用户,以便没有用户长时间地等待接收服务,而不管UE的信道状态如何(例如,具有较低的SINR的UE)。Using common MIMO methods (eg, MIMO with up to eight transmit antennas) can generate a large number of pilots and a large number of CSI requirements. As disclosed herein, massive MIMO techniques can address the problem of large numbers of pilots and large CSI requirements. As a result, a massive MIMO system with reduced pilots and reduced CSI requirements can preserve the overall rate to vary linearly with a large number of transmit antennas (eg, greater than 8 transmit antennas). Another challenge of MU-MIMO systems is to serve different users fairly so that no user waits for a long time to receive service regardless of the channel state of the UE (eg, UE with lower SINR).
大规模MIMO可以应用于FDD或TDD。在时分双工(TDD)大规模MIMO中,发射器处的CSI可以通过信道互易从上行链路信道测量获得。由于FDD中相同的信道不被用于上行链路和下行链路,因此有限的开销信令和CSI反馈可以被用于增加大规模MU-MIMO波束成形的速率和容量,例如3GPP LTE系统中所使用的。Massive MIMO can be applied to FDD or TDD. In Time Division Duplex (TDD) massive MIMO, the CSI at the transmitter can be obtained from uplink channel measurements through channel reciprocity. Since the same channel in FDD is not used for uplink and downlink, limited overhead signaling and CSI feedback can be used to increase the rate and capacity of massive MU-MIMO beamforming, such as in 3GPP LTE systems in use.
随机波束成形(RBF)的原理可以应用于大型天线阵列UM-MIMO系统。RBF可以相对于发射天线的数量(例如,发射天线尺寸)提供MU-MIMO速率和容量的线性改变,而无需发射机处全部的信道知识。有限的和空间信道信息可以被用在发射器处并仍然提供增加的速率和容量。通过使用RBF的特征,大规模MIMO的导频开销和反馈需求可以被降低。The principle of random beamforming (RBF) can be applied to large antenna array UM-MIMO systems. RBF can provide a linear change in MU-MIMO rate and capacity relative to the number of transmit antennas (eg, transmit antenna size) without requiring full channel knowledge at the transmitter. Limited and spatial channel information can be used at the transmitter and still provide increased rate and capacity. By using the features of RBF, the pilot overhead and feedback requirements of massive MIMO can be reduced.
例如,图5示出LTE eNodeB处的M个发射天线元件216,其中在eNodeB的覆盖范围中具有K个活跃UE 220A-B、220K和220L。在eNodeB处,mt个符号qm(m=1,…,mt)210A-C和210M可以被预编码器用mt正交基函数{Φm}212A-C和212M预编码。一般地,mt可以小于或等于M,但出于说明的目的,假设mt=M。每个Φm可以是(Mx1)矢量,其可以向特定方向旋转符号qm。在示例中,符号qm可以是来自映射器的复值调制符号。For example, Figure 5 shows M transmit antenna elements 216 at an LTE eNodeB with K active UEs 220A-B, 220K and 220L in the coverage of the eNodeB. At the eNodeB, mt symbols qm (m=1, . . . , mt ) 210A-C and 210M may be precoded by the precoder with mt orthogonal basis functions {Φm } 212A-C and 212M. In general, mt may be less than or equal to M, but for illustration purposes, mt =M is assumed. Each Φm can be a (Mx1) vector that can rotate the symbol qm in a particular direction. In an example, the symbolsqm may be complex-valued modulation symbols from the mapper.
在信道矢量为Hk:(1xM)218的第k个UE处,所接收到的信号可以被白复高斯噪声vk破坏,使得对于k=1,…,K,所接收到的信号可以由表达式1来表示,其中t是符号索引,n是子载波索引。为了表示的简单起见,丢弃对t和n的引用。At the kth UE with channel vector Hk : (1xM) 218, the received signal can be corrupted by white complex Gaussian noise vk such that for k=1,...,K, the received signal can be given by Expressed in Expression 1, where t is the symbol index and n is the subcarrier index. For simplicity of representation, references to t and n are discarded.
(表达式1) (Expression 1)
如图6中所示出的,来自eNB 222的发射波束成形可以试图创建M个与活跃用户220A-C、220J-L和220N的信道方向一致的窄波束230A-E。作为波束成形的一部分,还可能生成旁瓣232。旁瓣可以是不在主瓣(即,来自波束成形的主波束)的远场辐射图的瓣(例如,局部最大值)。UE可以通过来自eNodeB的某些信令机制(例如,无线电资源控制(RRC)信令)知道特定的一组正交函数。在没有关于每个UE的CSI的先验知识的情况下,eNodeB和UE可以执行波束生成和选择以识别用于特定的用户k 220K的最佳波束(具有改善的信号与干扰加噪声之比(SINR))。As shown in FIG. 6, transmit beamforming from eNB 222 may attempt to create M narrow beams 230A-E that are aligned with the channel directions of active users 220A-C, 220J-L, and 220N. Sidelobes 232 may also be generated as part of beamforming. Side lobes may be lobes (eg, local maxima) of the far-field radiation pattern that are not in the main lobe (ie, from the beam-formed main beam). The UE may know a specific set of orthogonal functions through some signaling mechanism from the eNodeB (eg, Radio Resource Control (RRC) signaling). Without prior knowledge about each UE's CSI, the eNodeB and UE can perform beamforming and selection to identify the best beam (with improved signal-to-interference-plus-noise ratio) for a particular user k 220K SINR)).
图7示出波束选择和下行链路数据传输的示例。在波束生成和选择阶段示例中,节点(例如,eNodeB 222)可以生成M个新的正交M矢量φm:m=1,…,M,或者换句话说,节点可以选择新的正交基底{φm}(240)。节点可以生成M个正交导频或参考符号(RS),RSm:m=1,…,M。然后,节点可以针对每个整数i将参考符号映射到波束RSi→Φi,或者换句话说映射RSm→φm(242)。在示例中,节点可以转发(例如,发送)M个波束或转发M’<M个波束(其中M’波束的数量小于M个发射天线)(244)。Figure 7 shows an example of beam selection and downlink data transmission. In the beamforming and selection stage example, a node (eg, eNodeB 222) may generate M new orthogonal M-vectors φm : m=1, . . . , M, or in other words, a node may select a new orthogonal basis {φm }(240). A node may generate M orthogonal pilots or reference symbols (RS), RSm : m=1,...,M. The node may then map the reference symbols to beams RSi →Φi , or in other words RSm →Φm (242), for each integer i. In an example, the node may forward (eg, transmit) M beams or forward M'< M beams (where the number of M' beams is less than M transmit antennas) (244).
在每个UE 220处,在知道φm和RSm:m=1,…,M二者的情况下,UE可以假设RSm是所需的符号,然后计算表达式2所表示的信号与干扰加噪声之比,其中SNRP是从eNodeB接收到的导频的信噪比。At each UE 220, knowing bothφm andRSm :m =1, . plus noise ratio, where SNRP is the signal-to-noise ratio of the pilot received from the eNodeB.
(表达式2) (Expression 2)
在具有每个UE k处的一组m个SINR的情况下,UE k可以计算或核算maxm=1,…,MSINRk,m(250),并且转发(例如,反馈)UE的量化值至eNodeB并转发maxm=1,…,M SINRk,m的相关索引m(252)。量化值可以在CQI中被发送。例如,maxm=1,…,M SINRk,m的相关索引m可以由m*来表示,maxm=1,…,M SINRk,m可以被表示为SINR*k,m。With a set of m SINRs at each UE k, UE k may calculate or account for maxm=1,...,M SINRk,m (250), and forward (eg, feed back) the UE's quantization value To the eNodeB and forward maxm = 1, . . . , M SINRk, m correlation index m (252). The quantized value may be sent in the CQI. For example, the correlation index m of max m= 1, . . , M SINRk ,m can be represented by m*, and maxm=1, . . , M SINRk,m can be represented as SINR*k,m .
量化是将一大组输入值映射到较小组的过程,例如将值舍入到一些精度单位。执行量化的设备或算法函数被称为量化器。量化引入的舍入误差被称为量化误差。例如,最优波束可以被量化成最优波束的离散索引,例如预编码矩阵指示符(PMI)。在另一示例中,最优波束的信道与干扰加噪声之比(SINR)可以被量化成离散的SINR值,例如信道质量指示符(CQI)。Quantization is the process of mapping a large set of input values to a smaller set, such as rounding the values to some precision unit. A device or algorithmic function that performs quantization is called a quantizer. Rounding errors introduced by quantization are called quantization errors. For example, the optimal beam may be quantized into a discrete index of the optimal beam, such as a precoding matrix indicator (PMI). In another example, the channel-to-interference-plus-noise ratio (SINR) of the optimal beam may be quantized into discrete SINR values, such as a channel quality indicator (CQI).
PMI可以是由UE反馈的用于支持多输入多输出(MIMO)操作的信号。PMI可以对应于预编码器的索引(在由UE和eNodeB共享的码本内),这可以使数据位的总数最大化,数据位可以跨所有的下行链路空间传输层被接收。CQI可以被UE用信号发送到eNodeB,以指示用于下行链路传输的合适的数据率(例如,调制和编码方案(MCS)值),其可以基于对所接收到的下行链路信号与干扰加噪声之比(SINR)的测量和关于UE的接收器特性的知识。信号与干扰加噪声之比(SINR)或信噪比(S/R或SIR)(也被称为载波干扰比(C/I、CIR))指的是所接收到的平均调制载波功率S或C与所接收到的平均同信道干扰功率I(即,串扰,来自有用信号之外的其它发射器)之间的商。The PMI may be a signal fed back by the UE to support Multiple Input Multiple Output (MIMO) operation. The PMI may correspond to the index of the precoder (within the codebook shared by the UE and the eNodeB), which may maximize the total number of data bits that may be received across all downlink spatial transport layers. The CQI may be signaled by the UE to the eNodeB to indicate an appropriate data rate (eg, modulation and coding scheme (MCS) value) for downlink transmission, which may be based on a comparison of the received downlink signal and interference Measurement of the plus-to-noise ratio (SINR) and knowledge about the UE's receiver characteristics. Signal-to-interference-plus-noise ratio (SINR) or signal-to-noise ratio (S/R or SIR) (also known as carrier-to-interference ratio (C/I, CIR)) refers to the received average modulated carrier power S or The quotient between C and the received average co-channel interference power I (ie, crosstalk, from transmitters other than the wanted signal).
在节点接收到来自UE 220的反馈之后,针对多个波束,节点可以相对于彼此对所接收到的maxm=1,…,M SINRk,m进行排序。After the node receives the feedback from the UE 220, the node may rank the received maxm = 1, . . . , M SINRk, m relative to each other for multiple beams.
在下行链路(DL)数据传输阶段,为了使总速率最大化,eNodeB可以针对具有相同最佳波束索引m的UE向具有最佳SINR的UE分配DL容量,或应用简单随机选择。图8示出K个用户设备(UE)220A-E和220L间由随机波束成形(RBF)决定的调度优先级。对于集合{φm}中的波束方向φ1 212A,UE 5 224E、UE 1 224A和UE K 224L可以具有最大SINR,其中UE 5相比于UE 1和UE K具有更高的最大SINR 234。同样地,针对波束方向φ3 212C,UE 2 224B相比于UE 4 224D具有更高的最大SINR;针对波束方向φM 212M,UE 3 224C具有最大SINR。没有UE可以针对波束方向φ2 212B报告最大SINR。eNodeB可以针对具有波束方向φ1的UE 5、具有波束方向φ3的UE 2和具有波束方向φM的UE 3调度数据传输。In the downlink (DL) data transmission phase, in order to maximize the total rate, the eNodeB can allocate DL capacity to the UE with the best SINR for UEs with the same best beam index m, or apply a simple random selection. 8 illustrates scheduling priorities determined by random beamforming (RBF) among K user equipments (UEs) 220A-E and 220L. For beam direction φ1 212A in set {φm }, UE 5 224E, UE 1 224A and UE K 224L may have a maximum SINR, where UE 5 has a higher maximum SINR 234 than UE 1 and UE K. Likewise, for beam direction φ3 212C, UE 2 224B has a higher maximum SINR than UE 4 224D; for beam direction φM 212M, UE 3 224C has a maximum SINR. No UE can report the maximum SINR for beam direction φ2 212B. The eNodeB may schedule data transmissions for UE 5 with beam direction φ1 , UE 2 with beam direction φ3 , and UE 3 with beam direction φM.
转回参考图7,eNodeB可以调度最佳UE(246)用于数据传输(248)。然后,eNodeB可以通过切换到新的{φM}集合来恢复对下一时间间隔的训练,其中新的{φM}集合中至少一个波束具有不同于{φM}集合中的波束方向的波束方向。Turning back to Figure 7, the eNodeB may schedule the best UE (246) for data transmission (248). The eNodeB can then resume training for the next time interval by switching to a new set of {φM } where at least one beam in the new set of {φM } has a different beam direction than the beam in the set of {φM } direction.
为了说明的目的,图9示出了针对2-天线传输的情况如何识别用户k220K的最佳波束。用户k的信道到两基函数的投影可以确定特定波束方向(例如,φ1或φ2)的信号和干扰分量。在图9的示例中,假设φ1被用于到UE k的传输,|Hkφ1|涉及期望信道的功率,因此|Hkφ2|可以是来自被用于UE 1 220A的波束φ2的干扰。如图9中所示出并直观化的,最近的坐标可以导致最佳波束方向。在另一{φM′}集合中,波束方向φ1′可以是到UE 1或UE k的最近坐标。For illustrative purposes, Figure 9 shows how the optimal beam for user k220K is identified for the case of 2-antenna transmission. The projection of user k's channel onto the two basis functions can determine the signal and interference components for a particular beam direction (eg, φ1 or φ2 ). In the example of Figure 9, assuming that φ1 is used for transmission to UE k, |Hk φ1 | relates to the power of the desired channel, so |Hk φ2 | may be from the beam φ used for UE 1 220A2 interference. As shown and visualized in Figure 9, the closest coordinates can lead to the best beam direction. In another set of {φM ′}, the beam direction φ1 ′ may be the closest coordinate to UE 1 or UE k.
在部署大规模的节点天线(例如,LTE)中,随机波束成形可以被扩展到处理有限的开销和反馈。在示例中,波束选择阶段可以发生在最小时间和频率变化期间,例如在小于或等于相干带宽(BW)264与相干时间262的乘积(例如,相干带宽X相干时间)的时间-频率“瓦片”内,如图10中所描绘的。资源网格260中的“瓦片”可以由PRB 0-2和子帧(SF)0-1的二维(2D)区域(例如,2个子帧X 3个PRB)来表示。在示例中,RS到波束的频率第一映射可以被用在SF 0的PRB 0、PRB 1和然后的PRB 2处,然后被用在SF 1的PRB 0、PRB 1和然后的PRB 2处。2D域中的训练的一种替代方式可以是仅“垂直的”频率PRB上的最优一维(1D)波束选择或“水平的”时间子帧上的最优1D波束选择。对于图11中所示出的示例,在1D频域中在连续的PRB上提供波束选择,但类似的处理可以被用于1D时域或2D时域和频域。In deploying large scale node antennas (eg, LTE), random beamforming can be extended to handle limited overhead and feedback. In an example, the beam selection phase may occur during minimal time and frequency changes, such as at a time-frequency "tile less than or equal to the product of coherence bandwidth (BW) 264 and coherence time 262 (eg, coherence bandwidth x coherence time) ”, as depicted in Figure 10. A "tile" in resource grid 260 may be represented by a two-dimensional (2D) region of PRBs 0-2 and subframes (SF) 0-1 (eg, 2 subframes X 3 PRBs). In an example, the frequency first mapping of RSs to beams may be used at PRB 0, PRB 1 and then PRB 2 of SF 0 and then at PRB 0, PRB 1 and then PRB 2 of SF 1. An alternative to training in the 2D domain may be optimal one-dimensional (1D) beam selection on only "vertical" frequency PRBs or optimal 1D beam selection on "horizontal" time subframes. For the example shown in Figure 11, beam selection is provided on consecutive PRBs in the 1D frequency domain, but similar processing can be used for the 1D time domain or the 2D time and frequency domains.
图11示出子帧270(或子帧的时隙)中包括P个物理资源块(PRB)274A-C的一种分配。在示例中,P个PRB 272(或PRB对)可以形成一种“分配”,在这种分配中子载波被分配给多个UE。在另一示例中,每个调度分配的大小可以与为子带CSI反馈而考虑的一个“子带”的大小相同。因此,P可以是4、6或8个PRB,如3GPP LTE规范中所给出的。然而,通常“子带”和“分配”可以具有不同的大小。FIG. 11 illustrates an allocation of P physical resource blocks (PRBs) 274A-C in a subframe 270 (or a time slot of a subframe). In an example, the P PRBs 272 (or PRB pairs) may form an "allocation" in which subcarriers are allocated to multiple UEs. In another example, the size of each scheduling allocation may be the same as the size of one "subband" considered for subband CSI feedback. Therefore, P can be 4, 6 or 8 PRBs as given in the 3GPP LTE specification. However, in general "subbands" and "allocations" can have different sizes.
例如,在任何PRB对内,多达八个波束可以通过使用八个可用端口的不同信道状态信息参考信号(CSI-RS)被训练。CSI-RS可以被φm:m=1,…,M预编码。通常(例如,对于LTE规范版本11和更早版本),CSI-RS可以被传送而无需预编码。对于不太有利的信道(例如,具有低SINR),每波束一次CSI-RS观测可能不导致可靠的SINR估计,因此针对特定的波束φm使用多于一个CSI-RS资源可以导致训练少于八个波束。For example, within any PRB pair, up to eight beams can be trained using different channel state information reference signals (CSI-RS) using the eight available ports. The CSI-RS may be precoded by φm : m=1,...,M. Typically (eg, for LTE specification release 11 and earlier), CSI-RS can be transmitted without precoding. For less favorable channels (eg, with low SINR), one CSI-RS observation per beam may not result in a reliable SINR estimate, so using more than one CSI-RS resource for a particular beamφm may result in less than eight training beams.
相对于波束数量,可用于分配的CSI-RS资源的数量以及一些波束的较低的SINR可以确定波束选择过程。例如,当训练总数N<M个波束用于M个发射天线时,可以使用不同的波束选择过程,其中在每个分配(例如,子带)大小为S个PRB对且分配总数为A的PRB中,R个CSI-RS资源是可用的。例如,在一个分配中,最多S*R个波束可以被训练。Relative to the number of beams, the number of CSI-RS resources available for allocation and the lower SINR of some beams may determine the beam selection process. For example, when training a total number of N < M beams for M transmit antennas, a different beam selection process may be used, where in each allocation (eg, subband) size S PRB pairs and a total number of A PRBs are allocated , R CSI-RS resources are available. For example, in one assignment, at most S*R beams can be trained.
在基于子带的PMI/CQI报告示例中,三个不同的波束选择过程可以被区分,其中A=1。In the subband based PMI/CQI reporting example, three different beam selection procedures can be distinguished, where A=1.
对于S*R<N(或对于宽带反馈A*S*R<N),每个子带中S*R个波束可以被用于训练和随后的数据传输这二者。UE可以基于每个子带内被激活的S*R个波束计算该子带中的PMI和CQI。UE可以基于每个子带内活跃的下一S*R个波束计算该子带中的PMI和CQI,并在数个子带上继续该过程,直到N个波束限制被用尽。当所有的N个波束被使用时,UE可以识别最大的CQI和相关联的PMI并将该最大CQI和PMI反馈给eNodeB。然后过程可以重复或从头开始。For S*R<N (or A*S*R<N for wideband feedback), S*R beams in each subband may be used for both training and subsequent data transmission. The UE may calculate the PMI and CQI in each subband based on the activated S*R beams in that subband. The UE may calculate the PMI and CQI in each subband based on the next S*R beams that are active within that subband, and continue the process over several subbands until the N beam limit is exhausted. When all N beams are used, the UE can identify the maximum CQI and associated PMI and feed back the maximum CQI and PMI to the eNodeB. The process can then be repeated or started from scratch.
对于S*R=N(或对于宽带反馈A*S*R=N),每个子带中可以生成一个PMI和一个最大CQI,并且UE可以将该CQI和PMI反馈给eNodeB。For S*R=N (or A*S*R=N for wideband feedback), one PMI and one maximum CQI may be generated in each subband, and the UE may feed back the CQI and PMI to the eNodeB.
对于S*R>N(或对于宽带反馈A*S*R>N),一些波束可以被训练两次,这意味着更多的观测,并且因此更好的CQI和PMI估计可以在UE处被计算。对于其它波束,每子带一个PMI(例如,波束索引)和一个CQI(例如,SINR)可以在UE处被计算。然后,UE可以将该CQI和PMI反馈给eNodeB。For S*R>N (or A*S*R>N for wideband feedback), some beams can be trained twice, which means more observations and thus better CQI and PMI estimates can be obtained at the UE calculate. For other beams, one PMI (eg, beam index) and one CQI (eg, SINR) per subband may be calculated at the UE. The UE can then feed back the CQI and PMI to the eNodeB.
类似的过程可以应用于宽带CQI/PMI,其中总共A*S*R个训练波束用于全频带。子带反馈可以被认为是A=1的宽带反馈的特殊情况。A similar process can be applied to wideband CQI/PMI, where a total of A*S*R training beams are used for the full frequency band. Subband feedback can be considered a special case of wideband feedback with A=1.
在另一示例中,UE可以被用于SINR计算。UE可以通过使用RS→φ映射将RS关联到波束来识别波束索引。映射信息可以在起作用之前(例如,在被UE使用之前)被eNodeB用信号发送到UE。在PRB对中的八个CSI-RS机会已经被分配不同的参考信号的情况下,UE可以测量每个四CSI-RS群组的参考信号接收功率(PSRP),如图12中所示出的。图12示出每个PRB对280的CSI-RS 282 R1-R8、解调参考信号(DMRS)284、小区专用参考信号(CRS)286和遗留物理下行链路控制信道(PDCCH)288,其中C表示两个符号之间(例如,群组R1和R2,R3和R4,R5和R6或R7和R8)的码分复用(CDM)。对于每个群组(例如,m和m+1),UE可以验证RSRP是否大于噪声基底。噪声基底可以被用于判定RSRP什么时候足够强以提供有用数据。当群组(例如,R1和R2)的RSRP超过噪声基底时,UE可以通过用长为2的覆盖(length-2cover)进行解扩来决定两个索引之间的CDM。然后,UE可以标识波束索引m和m+1。UE然后可以计算|HkΦm|2和|HkΦm+1|2。In another example, the UE may be used for SINR calculation. The UE can identify the beam index by associating the RS to the beam using the RS→φ mapping. The mapping information may be signaled to the UE by the eNodeB prior to taking effect (eg, prior to being used by the UE). In the case where the eight CSI-RS opportunities in the PRB pair have been assigned different reference signals, the UE can measure the reference signal received power (PSRP) of each four CSI-RS group as shown in FIG. 12 . 12 shows CSI-RS 282 R1-R8, demodulation reference signal (DMRS) 284, cell-specific reference signal (CRS) 286, and legacy physical downlink control channel (PDCCH) 288 for each PRB pair 280, where C Indicates code division multiplexing (CDM) between two symbols (eg, groups R1 and R2, R3 and R4, R5 and R6, or R7 and R8). For each group (eg, m and m+1), the UE may verify whether the RSRP is greater than the noise floor. The noise floor can be used to determine when the RSRP is strong enough to provide useful data. When the RSRP of the group (eg, R1 and R2) exceeds the noise floor, the UE may decide the CDM between the two indices by despreading with a length-2 cover. Then, the UE may identify beam indices m and m+1. The UE can then calculate |Hk Φm |2 and |Hk Φm+1 |2 .
当群组(例如,R1和R2)的RSRP不超过噪声基底时,UE可以不标识CSI-RS群组(例如,CSI-RS群组中两个单独的CSI-RS)的波束,这可能意味着UE在给定的波束宽度之外,这意味着接近零的干扰贡献。When the RSRP of the group (eg, R1 and R2) does not exceed the noise floor, the UE may not identify the beams of the CSI-RS group (eg, two separate CSI-RSs in the CSI-RS group), which may mean With the UE outside the given beamwidth, this means near-zero interference contribution.
当可以生成信号功率用于CSI-RS时,在用尽不同的PRB对的波束之后,UE可以针对m=1,…,M收集功率|HkΦm|2。然后,UE可以计算最大并将该最大SINR和最大SINR波束索引值报告至节点(例如,eNodeB)。When signal power can be generated for CSI-RS, after exhausting beams of different PRB pairs, the UE can collect power |Hk Φm |2 for m=1,...,M. Then, the UE can calculate the maximum The maximum SINR and maximum SINR beam index values are reported to the node (eg, eNodeB).
在多小区环境中,在波束选择期间,由于相同参考信号的影响而造成来自相邻小区(或邻居)的干扰的可能性可以潜在地导致不对齐的波束。在多小区环境中,波束训练上的干扰控制可以包括各种机制。例如,用于CSI-RS的多个样式可以被用于一个以上的重用(例如,分别用于1、2、4、8个天线端口的20、20、10、5种不同的配置)。对于大于1的{φm}重用,可以使用两种选项。在第一选项中,如果M个基函数已经被用于特定小区,则恒定相移可以被应用以生成要被用于相邻小区的新的{φm′}集合。图5示出恒定相移(例如,φ1′和φ2′)。这样,本地小区可以具有与相邻小区不同的一组函数。在第二选项中,不同的RSi→φj置换可以被使用,其中i和j是整数。SINR的计算可以取决于具体的RS→φ映射。用于RS→φ映射的数种置换可以被使用,这些置换可以在被使用之前被传送到UE。In a multi-cell environment, during beam selection, the possibility of interference from neighboring cells (or neighbors) due to the influence of the same reference signal can potentially lead to misaligned beams. In a multi-cell environment, interference control over beam training can include various mechanisms. For example, multiple patterns for CSI-RS may be used for more than one reuse (eg, 20, 20, 10, 5 different configurations for 1, 2, 4, 8 antenna ports, respectively). For {φm } reuse greater than 1, two options are available. In a first option, if M basis functions are already used for a particular cell, a constant phase shift can be applied to generate a new set of {φm '} to be used for neighboring cells. FIG. 5 shows constant phase shifts (eg, φ1 ′ and φ2 ′). In this way, the local cell may have a different set of functions than neighboring cells. In a second option, different RSi → φj permutations can be used, where i and j are integers. The calculation of SINR may depend on the specific RS→φ mapping. Several permutations for RS→φ mapping can be used, which can be communicated to the UE before being used.
在另一示例中,基旋转(例如,波束方向相移)可以被用于改善由波束成形提供的分辨率或覆盖范围。例如,在大的发射天线阵列的潜在的窄波束宽度的传播范围之外的UE(例如图6中所示出的UE 2 220B)可以受益于基旋转。为了公平地对待UE 2,基旋转可以应用于指定的持续时间内(例如,每数十个子帧一个子帧)。其结果是,旋转模式(例如,{φm}→{φm′}→{φm″}→{φm})可以被应用以覆盖由小区覆盖的物理空间。图9示出{φm}→{φm′}旋转顺序。小区中节点(例如,eNodeB)和UE之间基旋转的精确顺序可以被预先协商。In another example, base rotation (eg, beam direction phase shift) may be used to improve the resolution or coverage provided by beamforming. For example, UEs outside the propagation range of the potentially narrow beamwidth of a large transmit antenna array (eg, UE2 220B shown in FIG. 6 ) may benefit from base rotation. To be fair to UE 2, base rotation may be applied for a specified duration (eg, one subframe every tens of subframes). As a result, a rotation pattern (eg, {φm }→{φm ′}→{φm ″}→{φm }) can be applied to cover the physical space covered by the cell. Figure 9 shows {φm }→{ φm'} rotation order. The exact order of basis rotations between nodes (eg, eNodeBs) and UEs in a cell can be pre-negotiated.
另一示例提供可操作来从一组正交参考信号(RS)生成改善的信号与干扰加噪声之比(SINR)的用户设备(UE)上的处理器和/或收发器的计算机电路的功能500,如图13中的流程图所示出的。该功能可以被实现为方法,或者该功能可以作为机器上的指令被执行,其中指令被包括在至少一个计算机可读介质上或至少一个非暂态机器可读存储戒指上。计算机电路可以被配置为从节点接收一组正交RS,其中每个参考信号表示传输波束方向,如框510。计算机电路还可以被配置为计算这组正交RS中的每个正交RS的SINR以形成一组SINR,如框520。计算机电路还可以被配置为从这组SINR中选择最大SINR,如框530。计算机电路还可以被配置为量化这组SINR的最大SINR,如框540。Another example provides functions of a processor and/or a transceiver computer circuit on a user equipment (UE) operable to generate an improved signal-to-interference-plus-noise ratio (SINR) from a set of quadrature reference signals (RS) 500, as shown in the flowchart in FIG. 13 . The functions may be implemented as a method, or the functions may be executed as instructions on a machine, wherein the instructions are included on at least one computer-readable medium or on at least one non-transitory machine-readable storage ring. The computer circuitry may be configured to receive a set of orthogonal RSs from the node, where each reference signal represents a transmit beam direction, as in block 510 . The computer circuit may also be configured to calculate the SINR for each orthogonal RS in the set of orthogonal RSs to form a set of SINRs, as in block 520 . The computer circuit may also be configured to select the largest SINR from the set of SINRs, as in block 530 . The computer circuit may also be configured to quantize the maximum SINR of the set of SINRs, as in block 540 .
在示例中,计算机电路还可以被配置为将该经量化的最大SINR和该经量化的最大SINR的参考信号索引发送至节点。SINR可以由来表示,最大SINR可以由maxm=1,…,MSINRk,m来表示,经量化的最大SINR可以在信道质量指示符(CQI)中被发送,参考信号索引可以由m来表示,其中|HkΦm|2表示所接收到的参考信号索引为m的RS的信号功率,∑i≠m|HkΦm|2表示这组正交RS中所接收到的其它RS的信号功率,SNRp是这组正交RS中所接收到的RS的信噪比(SNR),Hk是所接收到的用于UE k的RS的估计的信道矢量,M是节点的发射天线的数量并且m=1,2,…,M,φm是正交组中的第m个预编码矢量,φi是正交组中的第i个预编码矢量。In an example, the computer circuit may also be configured to send the quantized maximum SINR and the reference signal index of the quantized maximum SINR to the node. SINR can be determined by to represent, the maximum SINR can be represented by maxm=1,. |Hk Φm |2 represents the received signal power of the RS whose reference signal index is m, ∑i≠m |Hk Φm |2 represents the received signal power of other RSs in this group of orthogonal RSs , SNRp is the signal-to-noise ratio (SNR) of the received RS in the set of orthogonal RSs, Hk is the estimated channel vector of the received RS for UE k, and M is the number of transmit antennas of the node And m=1, 2, ..., M, φm is the m th precoding vector in the orthogonal group, and φi is the ith precoding vector in the orthogonal group.
在另一示例中,对于A*S*R>N,其中RS是信道状态信息RS(CSI-RS),R是每个物理资源块(PRB)中可用的CSI-RS,S是分配中PRB的数量,A是传输的分配的数量,N是节点处M个发射天线的波束传输的总数量;被配置为接收这组正交RS、计算每个RS的SINR、选择最大SINR、量化该最大SINR并发送该经量化的最大SINR和参考信号索引的计算机电路还可以被配置为:针对每个分配重复地接收这组正交RS,其中这组正交RS被映射到S*R个传输波束,并且A个分配被接收;基于每个分配中被激活的S*R个传输波束计算该分配中的最大SINR的预编码矩阵指示符(PMI)和信道质量指示符;从A个分配中选择最大PMI和最大CQI;并将该最大PMI和最大CQI发送到节点。In another example, for A*S*R>N, where RS is the channel state information RS (CSI-RS), R is the CSI-RS available in each physical resource block (PRB), and S is the PRB in the allocation , where A is the allocated number of transmissions, and N is the total number of beam transmissions for the M transmit antennas at the node; configured to receive the set of orthogonal RSs, calculate the SINR of each RS, select the maximum SINR, quantify the maximum The computer circuit that transmits the quantized maximum SINR and reference signal index may also be configured to repeatedly receive the set of orthogonal RSs for each allocation, where the set of orthogonal RSs are mapped to the S*R transmit beams , and A assignments are received; calculate a precoding matrix indicator (PMI) and a channel quality indicator for the maximum SINR in each assignment based on the S*R transmit beams activated in that assignment; select from A assignments maximum PMI and maximum CQI; and send the maximum PMI and maximum CQI to the node.
在另一示例中,对于A*S*R=N,其中RS是信道状态信息RS(CSI-RS),R是每个物理资源块(PRB)中可用的CSI-RS,S是分配中PRB的数量,A是传输的分配的数量,N是节点处M个发射天线的波束传输的总数量;被配置为接收这正交RS、计算每个RS的SINR、选择最大SINR、量化该最大SINR并发送该经量化的最大SINR和参考信号索引的计算机电路还可以被配置为:接收分配的这组正交RS,其中这组正交RS被映射到A*S*R个传输波束;基于分配中被激活的A*S*R个传输波束计算该分配中的最大SINR的预编码矩阵指示符(PMI)和信道质量指示符;并将该最大PMI和最大CQI发送到节点。In another example, for A*S*R=N, where RS is the channel state information RS (CSI-RS), R is the CSI-RS available in each physical resource block (PRB), and S is the PRB in the allocation , where A is the allocated number of transmissions, and N is the total number of beam transmissions for the M transmit antennas at the node; configured to receive the orthogonal RSs, calculate the SINR of each RS, select the maximum SINR, quantize the maximum SINR The computer circuit that sends the quantized maximum SINR and reference signal index may also be configured to: receive the allocated set of orthogonal RSs, where the set of orthogonal RSs are mapped to A*S*R transmit beams; based on the allocation A precoding matrix indicator (PMI) and a channel quality indicator for the maximum SINR in the allocation are calculated for the A*S*R transmission beams activated in the allocation; and the maximum PMI and the maximum CQI are sent to the node.
在另一示例中,对于A*S*R>N,其中RS是信道状态信息RS(CSI-RS),R是每个物理资源块(PRB)中可用的CSI-RS,S是分配中PRB的数量,A是传输的分配的数量,N是节点处M个发射天线的波束传输的总数量;被配置为接收这组正交RS、计算每个RS的SINR、选择最大SINR、量化该最大SINR并发送该经量化的最大SINR和参考信号索引的计算机电路还可以被配置为:接收分配的这组正交RS,其中这组正交RS被映射到A*S*R个传输波束,并且这组正交RS中的至少两个RS被映射到传输波束中的一个传输波束;基于分配中被激活的A*S*R个传输波束计算该分配中的最大SINR的预编码矩阵指示符(PMI)和信道质量指示符,其中SINR中的一个SINR根据上述至少两个RS被计算;并将该最大PMI和最大CQI发送到节点。In another example, for A*S*R>N, where RS is the channel state information RS (CSI-RS), R is the CSI-RS available in each physical resource block (PRB), and S is the PRB in the allocation , where A is the allocated number of transmissions, and N is the total number of beam transmissions for the M transmit antennas at the node; configured to receive the set of orthogonal RSs, calculate the SINR of each RS, select the maximum SINR, quantify the maximum The computer circuit that transmits the quantized maximum SINR and the reference signal index may also be configured to receive the assigned set of orthogonal RSs, where the set of orthogonal RSs are mapped to the A*S*R transmit beams, and At least two RSs in the set of orthogonal RSs are mapped to one of the transmission beams; the precoding matrix indicator ( PMI) and a channel quality indicator, wherein one of the SINRs is calculated according to the above at least two RSs; and the maximum PMI and the maximum CQI are sent to the node.
在另一配置中,计算机电路还可以被配置为:从节点接收第二组正交RS,其中每个参考信号表示一个传输波束方向,该第二组正交RS不同于上述那组正交RS,并且该第二组正交RS中的至少一个传输波束方向不在上述那组正交RS中;计算该第二组正交RS中每个RS的SINR以形成第二组SINR;从该第二组SINR中选择最大SINR;并量化该第二组SINR中的最大SINR。In another configuration, the computer circuit may also be configured to receive a second set of orthogonal RSs from the node, wherein each reference signal represents a transmit beam direction, the second set of orthogonal RSs being different from the set of orthogonal RSs described above , and at least one transmission beam direction in the second group of orthogonal RSs is not in the above-mentioned group of orthogonal RSs; calculate the SINR of each RS in the second group of orthogonal RSs to form a second group of SINRs; from the second group of orthogonal RSs The largest SINR in the set of SINRs is selected; and the largest SINR in the second set of SINRs is quantized.
在另一示例中,被配置为从节点接收这组正交RS的计算机电路还可以被配置为多输入多输出(MIMO)地对被节点预编码的解调信号RS进行解码。在另一配置中,计算机电路还可以被配置为由RS来识别该RS的每个波束索引以进行波束映射。In another example, the computer circuit configured to receive the set of orthogonal RSs from the node may also be configured to multiple-input multiple-output (MIMO) decoding the demodulated signal RS precoded by the node. In another configuration, the computer circuit may also be configured to identify, by the RS, each beam index of the RS for beam mapping.
在另一示例中,针对每个物理资源块(PRB)对中四个以上的波束,被配置为计算每个RS的SINR的计算机电路还可以被配置为(其中RS是信道状态信息RS(CSI-RS)):测量每个CSI-RS群组(包括用于四个以上波束的CSI-RS)的参考信号接收功率(RSRP);当RSRP大于噪声基底阈值时,用长2覆盖进行解扩来决定两个波束索引之间的CDM;识别CSI-RS群组中至少一个CSI-RS群组的两个波束索引;并计算由两个波束索引表示的这两个波束的功率。In another example, for more than four beams in each physical resource block (PRB) pair, the computer circuit configured to calculate the SINR of each RS may also be configured to (where RS is a channel state information RS (CSI) -RS)): measure the reference signal received power (RSRP) of each CSI-RS group (including CSI-RS for more than four beams); when RSRP is greater than the noise floor threshold, despread with long 2 coverage to determine the CDM between the two beam indices; identify the two beam indices of at least one CSI-RS group in the CSI-RS group; and calculate the power of the two beams represented by the two beam indices.
另一示例提供用于在节点处使用正交波束成形矢量来提供波束选择的方法600,如图14中的流程图中所示出的。该方法可以作为机器、计算机电路或节点的处理器上的指令被执行,其中指令被包括在至少一个计算机可读介质或至少一个非暂态机器可读存储介质上。该方法包括生成一组正交波束成形矢量的操作,如框610。随后是生成一组正交参考信号(RS)的操作,如框620。该方法的下一操作可以是使用上述那组正交波束成形矢量将这组正交RS映射到波束,如框630。Another example provides a method 600 for providing beam selection using orthogonal beamforming vectors at a node, as shown in the flowchart in FIG. 14 . The method may be executed as instructions on a processor of a machine, computer circuit or node, where the instructions are included on at least one computer-readable medium or at least one non-transitory machine-readable storage medium. The method includes the operation of generating a set of orthogonal beamforming vectors, as in block 610 . An operation of generating a set of quadrature reference signals (RS) follows, as in block 620 . A next operation of the method may be to map the set of orthogonal RSs to beams using the set of orthogonal beamforming vectors described above, as in block 630 .
在示例中,将这组正交RS映射到波束的操作还可以包括由正交基函数来对一组调制符号进行预编码。正交基函数可以使用正交波束成形矢量,每个正交基函数可以向特定方向旋转调制符号,并且这组正交RS可以是信道状态信息RS(CSI-RS)。该方法还可以包括将波束中的正交RS发送到用户设备(UE)。In an example, mapping the set of orthogonal RSs to the beams may also include precoding the set of modulation symbols by orthogonal basis functions. Orthogonal basis functions may use orthogonal beamforming vectors, each of which may rotate modulation symbols in a particular direction, and the set of orthogonal RSs may be channel state information RSs (CSI-RSs). The method may also include transmitting the orthogonal RSs in the beam to a user equipment (UE).
在另一配置中,该方法还可以包括:从多个用户设备(UE)中的每个用户设备接收经量化的最大信号与干扰加噪声之比(SINR)并接收每个经量化的最大SINR的参考信号(RS)索引;使用相对于其它UE具有最高的量化最大SINR的UE调度每个波束的下行链路资源;使用波束将数据发送至针对该波束相对于其它UE具有最高的量化最大SINR的UE。RS索引可以表示针对这组正交RS具有最佳SINR的每个UE的波束,量化最大SINR可以在针对每个UE的信道质量指示符(CQI)中被接收,并且RA索引可以由从每个UE接收到的预编码矩阵指示符(PMI)来判定。SINR可以由来表示,最大SINR可以由maxm=1,…,MSINRk,m来表示,经量化的最大SINR可以在信道质量指示符(CQI)中被接收,参考信号索引可以由m来表示,其中|HkΦm|2表示UE处所接收到的参考信号索引为m的RS的信号功率,∑i≠m|HkΦm|2表示在UE处所接收到的这组正交RS中其它RS的信号功率,SNRp是这组正交RS中所接收到的RS的信噪比(SNR),Hk是所接收到的用于UE k的RS的估计的信道矢量,M是节点的发射天线的数量并且m=1,2,…,M,φm是正交组中的第m个预编码矢量,φi是正交组中的第i个预编码矢量。In another configuration, the method may further include receiving a quantized maximum signal-to-interference-plus-noise ratio (SINR) from each of the plurality of user equipments (UEs) and receiving each quantized maximum SINR Reference Signal (RS) index for each beam; use the UE with the highest quantized maximum SINR relative to other UEs to schedule downlink resources for each beam; use the beam to send data to that beam with the highest quantized maximum SINR relative to other UEs the UE. The RS index may represent the beam of each UE with the best SINR for the set of orthogonal RSs, the quantized maximum SINR may be received in the channel quality indicator (CQI) for each UE, and the RA index may be determined from each UE It is determined by the precoding matrix indicator (PMI) received by the UE. SINR can be determined by to represent, the maximum SINR can be represented by maxm=1,...,M SINRk,m , the quantized maximum SINR can be received in the channel quality indicator (CQI), the reference signal index can be represented by m, where |Hk Φm |2 represents the signal power of the RS with the reference signal index m received at the UE, ∑i≠m |Hk Φm |2 represents the other RSs in the set of orthogonal RSs received at the UE , SNRp is the signal-to-noise ratio (SNR) of the RS received in the set of orthogonal RSs, Hk is the estimated channel vector of the received RS for UE k, and M is the transmission of the node The number of antennas and m = 1, 2, ..., M, φm is the m th precoding vector in the orthogonal group, φi is the ith precoding vector in the orthogonal group.
在另一示例中,该方法还可以包括:重复地生成另一组正交波束成形矢量,其中该另一组正交波束成形矢量不同于第一组正交波束成形矢量;生成另一组正交参考信号(RS);并使用该另一组正交波束成形矢量将该另一组正交RS映射到其它波束,其中其它波束的方向不同于所生成的第一波束。In another example, the method may further include: repeatedly generating another set of orthogonal beamforming vectors, wherein the other set of orthogonal beamforming vectors is different from the first set of orthogonal beamforming vectors; generating another set of orthogonal beamforming vectors; cross reference signals (RSs); and use the other set of orthogonal beamforming vectors to map the other set of orthogonal RSs to other beams, wherein the other beams are oriented differently than the generated first beam.
图15示出示例节点710(例如,eNB)和示例无线设备720(例如,UE)。节点可以包括节点设备712。节点设备或节点可以被配置与无线设备(例如,UE)通信。节点设备可以包括处理器714和收发器716。处理器714和/或收发器716可以被配置为使用正交波束成形矢量提供波束选择,如图14的600中所描绘的。在另一示例中,处理器714和/或收发器716可以被配置为用于随机波束成形(RBF)。在示例中,节点可以包括M个发射天线,其中M>8(即,发射天线的数量大于八个天线)。节点可以包括基站(BS)、节点B(NB)、演进的节点B(eNB)、基带单元(BBU)、远程无线电头端(RRH)、远程无线电设备(RRE)、远程无线电单元(RRU)或中央处理模块(CPM)。15 illustrates an example node 710 (eg, an eNB) and an example wireless device 720 (eg, a UE). A node may include node device 712 . A node device or node may be configured to communicate with a wireless device (eg, a UE). The node device may include a processor 714 and a transceiver 716 . The processor 714 and/or the transceiver 716 may be configured to provide beam selection using orthogonal beamforming vectors, as depicted in 600 of FIG. 14 . In another example, the processor 714 and/or the transceiver 716 may be configured for random beamforming (RBF). In an example, a node may include M transmit antennas, where M > 8 (ie, the number of transmit antennas is greater than eight antennas). A node may include a base station (BS), node B (NB), evolved node B (eNB), baseband unit (BBU), remote radio head (RRH), remote radio equipment (RRE), remote radio unit (RRU) or Central Processing Module (CPM).
转回图15,收发器716可以被配置为从多个用户设备(UE)中的每个用户设备接收量化的最大信号与干扰加噪声之比(SINR)以每个量化的最大SINR的导频索引。导频索引可以表示针对这组正交导频具有最佳SINR的每个UE的波束,量化最大SINR可以在信道质量指示符(CQI)中被发送,并且导频索引可以由所发送的预编码矩阵指示符(PMI)来判定。处理器714可以被配置为使用相对于其它UE具有最高的量化最大SINR的UE调度每个波束的下行链路传输。收发器还可以被配置为使用波束经由一组发射天线将数据发送至针对波束相对于其它UE具有最高的量化最大SINR的UE。Turning back to FIG. 15 , the transceiver 716 may be configured to receive a quantized maximum signal-to-interference-plus-noise ratio (SINR) pilot from each of the plurality of user equipments (UEs) at each quantized maximum SINR index. The pilot index may represent the beam for each UE with the best SINR for the set of orthogonal pilots, the quantized maximum SINR may be sent in the channel quality indicator (CQI), and the pilot index may be determined by the sent precoding Matrix Indicator (PMI) to decide. The processor 714 may be configured to schedule downlink transmissions for each beam using the UE having the highest quantized maximum SINR relative to other UEs. The transceiver may also be configured to use the beam to transmit data via a set of transmit antennas to the UE having the highest quantized maximum SINR for the beam relative to other UEs.
在另一示例中,SINR可以由来表示,最大SINR可以由maxm=1,…,M SINRk,m来表示,经量化的最大SINR可以在信道质量指示符(CQI)中被接收,参考信号索引可以由m来表示,其中|HkΦm|2表示UE处所接收到的参考信号索引为m的RS的信号功率,∑i≠m|HkΦm|2表示在UE处所接收到的这组正交RS中其它RS的信号功率,SNRp是这组正交RS中所接收到的RS的信噪比(SNR),Hk是所接收到的用于UE k的RS的信道矢量,M是节点的发射天线的数量并且m=1,2,…,M,φm是正交组中的第m个预编码矢量,φi是正交组中的第i个预编码矢量。In another example, the SINR can be given by to represent, the maximum SINR can be represented by maxm=1,...,M SINRk,m , the quantized maximum SINR can be received in the channel quality indicator (CQI), the reference signal index can be represented by m, where |Hk Φm |2 represents the signal power of the RS with the reference signal index m received at the UE, ∑i≠m |Hk Φm |2 represents the other RSs in the set of orthogonal RSs received at the UE , SNRp is the signal-to-noise ratio (SNR) of the RS received in the set of orthogonal RSs, Hk is the received channel vector of the RS for UE k, and M is the transmit antenna of the node number and m=1, 2, . . . , M, φm is the m th precoding vector in the orthogonal group, and φi is the ith precoding vector in the orthogonal group.
在另一配置中,处理器714还可以被配置为选择对被用于经由M个发射天线生成总共N个波束的导频的分配。分配可以在相干时间和相干带宽内、在相关时间内或在相干带宽内。相干时间是信道脉冲响应变化小于相干时间阈值的时间段或子帧数,相干带宽是信道脉冲响应变化小于相干带宽阈值的频率或物理资源块(PRB)的范围。相干时间阈值和相干带宽阈值可以由系统的PRB或子帧的测量SINR来设置。In another configuration, the processor 714 may also be configured to select an assignment of pilot frequencies used to generate a total of N beams via the M transmit antennas. Allocations can be within coherence time and coherence bandwidth, within correlation time, or within coherence bandwidth. The coherence time is the time period or number of subframes where the channel impulse response variation is less than the coherence time threshold, and the coherence bandwidth is the range of frequencies or physical resource blocks (PRBs) where the channel impulse response variation is less than the coherence bandwidth threshold. The coherence time threshold and coherence bandwidth threshold may be set by the measured SINR of the system's PRBs or subframes.
在另一示例中,对于A*S*R<N,其中正交导频是信道状态信息RS(CSI-RS),R是每个PRB中可用的CSI-RS,S是分配中PRB的数量,A是传输的分配的数量,N是M个发射天线的波束传输的总数量,处理器714可以被配置为:针对A个分配重复地生成一组mt个正交矢量,其中对于每个分配mt≤M;针对每个分配重复地生成这组正交CSI-RS;并使用A个分配的这组正交矢量将每组正交CSI-RS映射到S*R个传输波束。收发器716还可以被配置为将每组正交CSI-RS发送到A个分配的S*R个传输波束。经量化的最大SINR和导频索引可以用于总共N个波束传输。In another example, for A*S*R<N, where the orthogonal pilots are the channel state information RS (CSI-RS), R is the CSI-RS available in each PRB, and S is the number of PRBs in the allocation , A is the number of assignments transmitted, N is the total number of beam transmissions for the M transmit antennas, the processor 714 may be configured to repeatedly generate a set of mt orthogonal vectors for the A assignments, where for each Allocations mt ≤ M; repeatedly generate the set of orthogonal CSI-RSs for each allocation; and map each set of orthogonal CSI-RSs to S*R transmit beams using the set of orthogonal vectors of A allocations. The transceiver 716 may also be configured to transmit each set of orthogonal CSI-RSs to A allocated S*R transmit beams. The quantized maximum SINR and pilot index can be used for a total of N beam transmissions.
在另一配置中,对于A*S*R=N,其中正交导频是信道状态信息RS(CSI-RS),R是每个PRB中可用的CSI-RS,S是分配中PRB的数量,A是传输的分配的数量,N是M个发射天线的波束传输的总数量,处理器714可以被配置为:针对分配生成一组mt个正交矢量,其中对于每个分配mt≤M;针对分配生成这组正交CSI-RS;并使用分配的这组正交矢量将每组正交CSI-RS映射到A*S*R个传输波束。收发器716还可以被配置为将每组正交CSI-RS发送到分配的S*R个传输波束。经量化的最大SINR和导频索引可以用于总共A*S*R个波束传输。In another configuration, for A*S*R=N, where the orthogonal pilots are the channel state information RS (CSI-RS), R is the CSI-RS available in each PRB, and S is the number of PRBs in the allocation , A is the number of assignments transmitted, N is the total number of beam transmissions for the M transmit antennas, the processor 714 may be configured to generate a set of mt orthogonal vectors for the assignments, where for each assignment mt ≤ M; generate the set of orthogonal CSI-RSs for assignments; and map each set of orthogonal CSI-RSs to A*S*R transmit beams using the set of orthogonal vectors of assignments. The transceiver 716 may also be configured to transmit each set of orthogonal CSI-RSs to the assigned S*R transmit beams. The quantized maximum SINR and pilot index can be used for a total of A*S*R beam transmissions.
在另一示例中,对于A*S*R>N,其中正交导频是信道状态信息RS(CSI-RS),R是每个PRB中可用的CSI-RS,S是分配中PRB的数量,A是传输的分配的数量,N是M个发射天线的波束传输的总数量,处理器714可以被配置为:针对分配生成一组mt个正交矢量,其中对于每个分配mt≤M;针对分配生成这组正交CSI-RS;并使用分配的这组正交矢量将这组正交CSI-RS映射到A*S*R个传输波束。这组正交RS中的至少两个CSI-RS可以被映射到传输波束中的一个传输波束。收发器716还可以被配置为将每组正交CSI-RS发送到分配的A*S*R个传输波束。经量化的最大SINR和导频索引可以用于总共A*S*R个波束传输。In another example, for A*S*R>N, where the orthogonal pilots are the channel state information RS (CSI-RS), R is the CSI-RS available in each PRB, and S is the number of PRBs in the allocation , A is the number of assignments transmitted, N is the total number of beam transmissions for the M transmit antennas, the processor 714 may be configured to generate a set of mt orthogonal vectors for the assignments, where for each assignment mt ≤ M; generate the set of orthogonal CSI-RSs for the allocation; and map the set of orthogonal CSI-RSs to A*S*R transmit beams using the set of orthogonal vectors of the allocations. At least two CSI-RSs in the set of orthogonal RSs may be mapped to one of the transmission beams. The transceiver 716 may also be configured to transmit each set of orthogonal CSI-RSs to the assigned A*S*R transmit beams. The quantized maximum SINR and pilot index can be used for a total of A*S*R beam transmissions.
在另一配置中,分配可以是子带,并且A=1可以是基于PMI/CQI反馈的传输的分配的数量。可替代地,分配可以是基于PMI/CQI反馈的宽带的传输的A>1个分配。In another configuration, the allocations may be subbands, and A=1 may be the number of allocations for transmission based on PMI/CQI feedback. Alternatively, the allocations may be A>1 allocations for wideband transmission based on PMI/CQI feedback.
在多小区环境的另一示例中,处理器714还可以被配置为:针对一组mt个正交矢量生成恒定相移,以当该组mt个正交矢量被用于本地小区时生成一组mt个恒定相移正交矢量用于相邻小区;或者当这组正交导频和这组正交矢量之间的映射配置被用于本地小区时生成用于相邻小区的这组正交导频和这组正交矢量之间的映射置换。In another example of a multi-cell environment, the processor 714 may also be configured to generate a constant phase shift for a set of mt orthogonal vectors to generate when the set of mt orthogonal vectors is used for the local cell A set of mt constant phase-shifted orthogonal vectors for neighboring cells; or when the mapping configuration between the set of orthogonal pilots and the set of orthogonal vectors is used for the local cell, the set of orthogonal vectors for neighboring cells is generated. A mapping permutation between the set of orthogonal pilots and the set of orthogonal vectors.
在另一配置中,处理器714还可以被配置为基于每指定数量的子帧的旋转序列对一组mt个正交矢量进行旋转。每组正交矢量可以生成不同于其它组正交矢量的一组传输波束。In another configuration, the processor 714 may also be configured to rotate a set of mt orthogonal vectors based on a rotation sequence every specified number of subframes. Each set of orthonormal vectors may generate a different set of transmit beams than other sets of orthonormal vectors.
无线设备720(例如,UE)可以包括收发器724和处理器722。无线设备(即,设备)可以被配置为从一组正交参考信号(RS)生成改善的信号与干扰加噪声之比(SINR),如图13中的500所描绘的。Wireless device 720 (eg, UE) may include transceiver 724 and processor 722 . A wireless device (ie, a device) may be configured to generate an improved signal-to-interference-plus-noise ratio (SINR) from a set of orthogonal reference signals (RS), as depicted at 500 in FIG. 13 .
图16提供对无线设备(例如,用户设备(UE)、移动站(MS)、移动无线设备、移动通信设备、平板、手持机或其它类型的无线设备)的示例示出。无线设备可以包括被配置为与节点或发射站(例如,基站(BS)、演进的节点B(eNB)、基带单元(BBU)、远程无线电头端(RRH)、远程无线电设备(RRE)、中继站(RS)、无线电设备(RE)、远程无线电单元(RRU)、中央处理模块(CPM)或其它类型的无线广域网(WWAN)接入点。)通信的一个或多个天线。无线设备可以被配置为使用至少一种无线通信标准(包括3GPP LTE、WiMAX、高速分组接入(HSPA)、蓝牙和WiFi)进行通信。无线设备可以使用单独的天线用于每种无线通信标准或使用共享的天下用于多种无线通信标准进行通信。无线设备可以在无线局域网(WLAN)、无线个域网(WPAN)和/或WWAN中进行通信。16 provides an example illustration of a wireless device (eg, user equipment (UE), mobile station (MS), mobile wireless device, mobile communication device, tablet, handset, or other type of wireless device). The wireless devices may include nodes or transmitting stations (eg, base stations (BSs), evolved Node Bs (eNBs), baseband units (BBUs), remote radio heads (RRHs), remote radio equipment (RREs), relay stations that are configured to communicate with (RS), Radio Equipment (RE), Remote Radio Unit (RRU), Central Processing Module (CPM), or other type of Wireless Wide Area Network (WWAN) access point.) one or more antennas for communication. The wireless device may be configured to communicate using at least one wireless communication standard, including 3GPP LTE, WiMAX, High Speed Packet Access (HSPA), Bluetooth, and WiFi. Wireless devices may communicate using separate antennas for each wireless communication standard or using a shared universe for multiple wireless communication standards. Wireless devices may communicate in a wireless local area network (WLAN), a wireless personal area network (WPAN), and/or a WWAN.
图16还提供对可以被用于来自无线设备的音频输入和输出的麦克风和一个或多个扬声器的示出。显示屏幕可以是液晶显示(LCD)屏幕,或诸如有机发光二极管(OLED)显示器之类的其它类型的显示屏幕。显示屏幕可以被配置为触摸屏。触摸屏可以使用电容性、电阻性或其它类型的触摸屏技术。应用处理器和图形处理器可以被耦接到内部存储器以提供处理和显示能力。非易失性存储器端口也可以被用于向用户提供数据输入/输出选项。非易失性存储器端口还可以被用于扩展无线设备的存储器能力。键盘可以与无线设备相集成或无线地连接到无线设备,以提供另外的用户输入。虚拟键盘也可以通过使用触摸屏被提供。16 also provides an illustration of a microphone and one or more speakers that may be used for audio input and output from the wireless device. The display screen may be a liquid crystal display (LCD) screen, or other type of display screen such as an organic light emitting diode (OLED) display. The display screen can be configured as a touch screen. The touch screen may use capacitive, resistive, or other types of touch screen technology. Application processors and graphics processors may be coupled to internal memory to provide processing and display capabilities. Non-volatile memory ports can also be used to provide data input/output options to the user. The non-volatile memory port can also be used to expand the memory capabilities of the wireless device. The keyboard can be integrated with or wirelessly connected to the wireless device to provide additional user input. A virtual keyboard can also be provided by using a touch screen.
各种技术或其某些方面或部分可以采用被包含在有形介质(例如,软盘、只读光盘存储器(CD-ROM)、硬盘驱动器、非暂态计算机可读存储介质或任何其它机器可读存储介质)中的程序代码(例如,指令)的形式,其中,当程序代码被载入到机器(例如,计算机)中并被机器执行时,机器变成用于实现各种技术的装置。电路可以包括硬件、固件、程序代码、可执行代码、计算机指令和/或软件。非暂态计算机可读存储介质可以是不包括信道的计算机可读存储介质。在程序代码在可编程计算机上执行的情况下,计算设备可以包括处理器、处理器可读的存储介质(包括易失性和非易失性存储器和/或存储元件)、至少一个输入设备和至少一个输出设备。易失性和非易失性存储器和/或存储元件可以是随机存取存储器(RAM)、可擦除可编程只读存储器(EPROM)、闪存驱动器、光盘驱动器、磁硬盘驱动器、固态驱动器或用于存储电子数据的其它介质。节点和无线设备还可以包括收发器模块(即,收发器)、计数器模块(即,计数器)、处理模块(即,处理器)和/或时钟模块(即,时钟)或定时器模块(即,定时器)。可以实现或利用本文所描述的各种技术的一个或多个程序可以使用应用程序编程接口(API)、可重用控件等。这些程序可以用高级程序或面向对象编程语言来实现,以与计算机系统通信。然而,如果需要的话,该(一个或多个)程序可以用汇编或机器语言来实现。在任何情况下,语言可以是编译或解释语言,并与硬件实现相结合。The various technologies, or some aspects or portions thereof, may be employed to be embodied on a tangible medium (eg, a floppy disk, a compact disk-read only memory (CD-ROM), a hard drive, a non-transitory computer-readable storage medium, or any other machine-readable storage medium. medium) in the form of program code (eg, instructions), wherein when the program code is loaded into a machine (eg, a computer) and executed by the machine, the machine becomes an apparatus for implementing various techniques. Circuitry may include hardware, firmware, program code, executable code, computer instructions and/or software. A non-transitory computer-readable storage medium may be a computer-readable storage medium that does not include a channel. Where the program code is executed on a programmable computer, the computing device may include a processor, a storage medium readable by the processor (including volatile and nonvolatile memory and/or storage elements), at least one input device, and at least one output device. Volatile and nonvolatile memory and/or storage elements may be random access memory (RAM), erasable programmable read only memory (EPROM), flash drives, optical drives, magnetic hard drives, solid state drives or Other media for storing electronic data. Nodes and wireless devices may also include transceiver modules (ie, transceivers), counter modules (ie, counters), processing modules (ie, processors), and/or clock modules (ie, clocks) or timer modules (ie, timer). One or more programs that may implement or utilize the various techniques described herein may use application programming interfaces (APIs), reusable controls, and the like. These programs can be implemented in high-level procedural or object-oriented programming languages to communicate with computer systems. However, the program(s) may be implemented in assembly or machine language, if desired. In any case, the language can be a compiled or interpreted language, combined with a hardware implementation.
应当理解的是,本说明书中所描述的功能单元中的许多功能单元已经被标记为模块,以便更具体地强调它们的实现独立性。例如,模块可以被实现为包括可定制超大规模集成(VLSI)电路或门阵列的硬件电路、诸如逻辑芯片、晶体管或其它分立元件的现货供应半导体。模块还可以在可编程硬件设备(例如,现场可编程门阵列、可编程阵列逻辑、可编程逻辑设备或类似物)中被实现。It should be understood that many of the functional units described in this specification have been labeled as modules in order to more specifically emphasize their implementation independence. For example, modules may be implemented as hardware circuits including customizable very large scale integration (VLSI) circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other discrete components. A module may also be implemented in programmable hardware devices (eg, field programmable gate arrays, programmable array logic, programmable logic devices, or the like).
模块还可以在软件中被实现,以用于各种类型的处理器的执行。可执行代码的识别模块例如可以包括一个或多个物理或逻辑的计算机指令块,其例如可以被组织为对象、过程或功能块。然而,识别模块的可执行代码不必在物理上位于一起,而是可以包括存储在不同位置的不同指令,当其在逻辑上结合在一起时,包括模块并实现模块的上述目的。Modules may also be implemented in software for execution by various types of processors. An identified module of executable code may, for example, comprise one or more physical or logical blocks of computer instructions, which may be organized, for example, as objects, procedures, or functional blocks. However, executable code identifying a module need not be physically located together, but may include different instructions stored in different locations that, when logically combined, comprise the module and achieve the above-described purpose of the module.
事实上,可执行代码的模块可以是单个指令,或许多指令,并且甚至可以分布在不同的程序间的数个不同的代码段上并跨数个存储器设备。类似地,操作数据可以被识别并在本文中在模块内被示出,并且可以以任何合适的形式被实现并在任何合适类型的数据结构内被组织。操作数据可以作为单个数据集合被收集,或者可以分布在包括不同的存储设备的不同位置上,并且可以仅作为系统或网络上的电子信号而存在(至少部分地)。模块可以是无源的或有源的,包括可操作来执行所需功能的代理。In fact, a module of executable code may be a single instruction, or many instructions, and may even be distributed over several different code segments among different programs and across several memory devices. Similarly, operational data may be identified and shown herein within modules, and may be implemented in any suitable form and organized within any suitable type of data structure. Operational data may be collected as a single set of data, or may be distributed across different locations including different storage devices, and may exist (at least in part) only as electronic signals on a system or network. Modules can be passive or active, including agents operable to perform desired functions.
整个说明书中对“示例”或“示例性”的引用意味着结合示例所描述的特定特征、结构或特性被包括在本发明的至少一个实施例中。因此,出现在整个说明书的各种地方的短语“在示例中”或词语“示例性”不一定全部指代相同的实施例。Reference throughout this specification to "an example" or "exemplary" means that a particular feature, structure or characteristic described in connection with the example is included in at least one embodiment of the present invention. Thus, appearances of the phrase "in an example" or the word "exemplary" in various places throughout the specification are not necessarily all referring to the same embodiment.
如本文中所使用的,为方便起见,多个项目、结构元件、组成元件和/或草料可以被呈现在共同的列表中。然而,这些列表应当别解释为好像列表中的每个成员被分别标识为单独的和独特的成员。因此,这种列表中没有单独的成员应当仅仅基于它们出现在共同的群组中而被唯一地解释为同一列表中任何其它成员的实际上的等同物而没有相反的指示。此外,本发明的各种实施例和示例在本文中可以随它的各种组件的替代物一起被引用。应当理解的是,这些实施例、示例和备选方案不应被解释为彼此的事实上的等同物,而应当被应为是本发明的分离的和自治的表示。As used herein, for convenience, multiple items, structural elements, constituent elements, and/or forages may be presented in a common list. However, these lists should not be interpreted as if each member of the list was identified as a separate and unique member, respectively. Accordingly, no individual member of such a list should be construed solely as a de facto equivalent of any other member of the same list solely on the basis of their appearance in a common group and no indication to the contrary. Furthermore, various embodiments and examples of the present invention may be cited herein along with alternatives for its various components. It should be understood that these embodiments, examples and alternatives should not be construed as de facto equivalents of each other, but should be construed as separate and autonomous representations of the present invention.
此外,所描述的特征、结构或特性可以在一个或多个实施例中以任何合适的方式被组合。在下面的描述中,许多具体的细节(例如,布局、距离、网络示例等的示例)被提供,以提供对本发明的实施例的彻底理解。然而,本领域技术人员将认识到,本发明可以在没有具体细节中的一个或多个具体细节的情况下被实现,或者用其他方法、组件、布局等被实现。在其它实例中,公知的结构、材料或操作可以被详细地示出或描述,以避免模糊本发明的各方面。Furthermore, the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details (eg, examples of layouts, distances, network examples, etc.) are provided to provide a thorough understanding of embodiments of the present invention. Those skilled in the art will recognize, however, that the invention may be practiced without one or more of the specific details, or with other methods, components, arrangements, and the like. In other instances, well-known structures, materials, or operations may be shown or described in detail to avoid obscuring aspects of the invention.
虽然前述示例是对本发明在一个或多个特定应用中的原理的说明,但是显然本领域的普通技术人员可以在不实施创造性劳动的情况下对本实现方式做出许多形式、用法和细节上的修改而不背离本发明的原理和构思。因此,本发明不意图在是限制性的,除通过下述权利要求进行限定。While the foregoing examples are illustrative of the principles of the invention in one or more particular applications, it will be apparent that many changes in form, usage, and detail may be made to the present implementations by those of ordinary skill in the art without inventive step without departing from the principles and concepts of the present invention. Accordingly, the present invention is not intended to be limiting, except as defined by the following claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361806821P | 2013-03-29 | 2013-03-29 | |
| US61/806,821 | 2013-03-29 | ||
| PCT/US2013/048639WO2014158208A1 (en) | 2013-03-29 | 2013-06-28 | Orthogonal beamforming for multiple user multiple-input and multiple-output (mu-mimo) |
| Publication Number | Publication Date |
|---|---|
| CN105027461A CN105027461A (en) | 2015-11-04 |
| CN105027461Btrue CN105027461B (en) | 2019-06-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380073690.7AActiveCN105027461B (en) | 2013-03-29 | 2013-06-28 | Orthogonal beams for multi-user's multiple-input and multiple-output (MU-MIMO) shape |
| Country | Link |
|---|---|
| US (1) | US9461723B2 (en) |
| CN (1) | CN105027461B (en) |
| WO (1) | WO2014158208A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9426813B2 (en)* | 2012-11-02 | 2016-08-23 | Lg Electronics Inc. | Interference cancellation receiving method and interference cancellation receiving terminal |
| EP2806576B1 (en)* | 2013-05-21 | 2019-07-24 | Telefonica S.A. | Method and system for performing multiple access in wireless OFDM cellular systems considering both space and frequency domains |
| CN105144600B (en) | 2013-05-31 | 2018-11-02 | 英特尔Ip公司 | Hybrid digital and analog beamforming for large antenna arrays |
| US20150036621A1 (en)* | 2013-07-31 | 2015-02-05 | Electronics And Telecommunications Research Institute | Method for providing interference information in mobile communication system |
| US9755711B2 (en)* | 2013-09-09 | 2017-09-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Large deviation delay analysis of queue-aware multi-user MIMO systems with multi-timescale mobile-driven feedback |
| KR102172442B1 (en)* | 2014-02-19 | 2020-10-30 | 삼성전자주식회사 | Method and apparatus for selecting and allocating beam index having apriority |
| KR102169662B1 (en)* | 2014-03-10 | 2020-10-23 | 삼성전자주식회사 | Apparatus and method for determining beam in wireless communication system |
| EP4002951B1 (en) | 2014-03-25 | 2024-10-23 | Telefonaktiebolaget LM Ericsson (publ) | System and method for beam-based physical random-access |
| CN106105065B (en)* | 2014-03-26 | 2019-09-06 | 诺基亚技术有限公司 | Radio frequency beam forming basic function feedback |
| EP3146739B1 (en) | 2014-05-22 | 2020-04-29 | Qualcomm Incorporated | Periodic and aperiodic channel state information (csi) reporting for mimo |
| EP3158824B1 (en)* | 2014-06-23 | 2018-03-21 | Telecom Italia S.p.A. | Method for reducing fronthaul load in centralized radio access networks (c-ran) |
| CN106664277B (en) | 2014-06-27 | 2021-09-07 | 泰科弗勒克斯公司 | Method and apparatus for sending data units |
| EP4293971A3 (en) | 2014-06-27 | 2024-02-14 | Samsung Electronics Co., Ltd. | Method and device for transmitting data |
| EP3162152B1 (en) | 2014-06-27 | 2024-10-09 | Samsung Electronics Co., Ltd. | Method and device for transmitting data |
| WO2015198145A1 (en) | 2014-06-27 | 2015-12-30 | Techflux, Ltd. | Bandwidth signaling |
| US9906280B2 (en)* | 2014-07-14 | 2018-02-27 | Intel Corporation | Principal eigen beam quantization for MIMO systems |
| US20160073437A1 (en)* | 2014-09-05 | 2016-03-10 | Intel Corporation | Radio communication device and method for transmitting data |
| WO2016056462A1 (en)* | 2014-10-07 | 2016-04-14 | 三菱電機株式会社 | Wireless communication device and wireless communication method |
| US10014916B2 (en)* | 2014-11-10 | 2018-07-03 | Samsung Electronics Co., Ltd. | 2D active antenna array operation for wireless communication systems |
| US10211891B2 (en)* | 2014-11-21 | 2019-02-19 | Futurewei Technologies, Inc. | System and method for multi-user multiple input multiple output communications |
| US9397736B2 (en)* | 2014-11-21 | 2016-07-19 | Intel IP Corporation | Quantized eigen beams for controlling antenna array elements in a wireless network |
| KR102382912B1 (en)* | 2014-11-25 | 2022-04-07 | 한국전자통신연구원 | Scheduling method and apparatus of multi-antenna communication system, and method and apparatus for feeding-back channel quality indicator |
| US10171221B2 (en)* | 2014-11-25 | 2019-01-01 | Electronics And Telecommunications Research Institute | Scheduling method and apparatus of multi-antenna communication system, and method and apparatus for feeding-back channel quality indicator |
| CN107210811B (en)* | 2015-01-16 | 2021-05-11 | 梁平 | Method for distributed massive MIMO (DM-MIMO) |
| CN107251618B (en)* | 2015-01-16 | 2021-05-14 | 梁平 | Beamforming in a multi-user multiple-input multiple-output wireless communication system with repeaters |
| CN105991175B (en)* | 2015-01-29 | 2019-02-05 | 电信科学技术研究院 | A method and device for transmitting and receiving a pilot signal |
| EP3272018B1 (en)* | 2015-03-16 | 2020-06-24 | Telefonaktiebolaget LM Ericsson (publ) | Multipoint transmission and reception in a radio communication network |
| WO2016154809A1 (en)* | 2015-03-27 | 2016-10-06 | 华为技术有限公司 | Method, apparatus, device and system for acquiring beam identifier |
| WO2016186378A1 (en)* | 2015-05-15 | 2016-11-24 | 엘지전자 주식회사 | Method for feeding back reference signal information in multi-antenna wireless communication system and apparatus therefor |
| WO2017034509A1 (en) | 2015-08-26 | 2017-03-02 | Intel IP Corporation | Managing aspects of receive beamforming |
| ES2875602T3 (en) | 2015-10-22 | 2021-11-10 | Ericsson Telefon Ab L M | Methods and apparatus related to the selective enhancement of radio signals |
| US9872337B2 (en)* | 2015-12-09 | 2018-01-16 | Google Llc | Backhaul-optimized beamforming in IEEE 802.11ad networks |
| CN106936487B (en)* | 2015-12-31 | 2021-01-05 | 华为技术有限公司 | Beam training method and device |
| EP3364699B1 (en)* | 2016-02-05 | 2021-04-07 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Peer-to-peer data transmission method, apparatus, and system |
| WO2017161575A1 (en)* | 2016-03-25 | 2017-09-28 | Qualcomm Incorporated | Channel state information reference signal transmission |
| SG11201807679XA (en) | 2016-03-31 | 2018-10-30 | Ericsson Telefon Ab L M | Methods and devices for determining precoder parameters in a wireless communication network |
| US11191061B2 (en) | 2016-04-19 | 2021-11-30 | Qualcomm Incorporated | Beam reference signal based narrowband channel measurement and CQI reporting |
| US20170339675A1 (en)* | 2016-05-18 | 2017-11-23 | Futurewei Technologies, Inc. | Method of Operating a Cellular Network including High Frequency Burst Transmission |
| US10425138B2 (en) | 2016-05-26 | 2019-09-24 | Qualcomm Incorporated | System and method for beam switching and reporting |
| US10541741B2 (en)* | 2016-05-26 | 2020-01-21 | Qualcomm Incorporated | System and method for beam switching and reporting |
| US10181891B2 (en) | 2016-05-26 | 2019-01-15 | Qualcomm Incorporated | System and method for beam switching and reporting |
| US10651899B2 (en) | 2016-05-26 | 2020-05-12 | Qualcomm Incorporated | System and method for beam switching and reporting |
| US10917158B2 (en)* | 2016-05-26 | 2021-02-09 | Qualcomm Incorporated | System and method for beam switching and reporting |
| US10498406B2 (en) | 2016-05-26 | 2019-12-03 | Qualcomm Incorporated | System and method for beam switching and reporting |
| CN107623540A (en)* | 2016-07-12 | 2018-01-23 | 株式会社Ntt都科摩 | Method and device for forming codebook, base station and mobile station |
| US10404347B2 (en)* | 2016-07-13 | 2019-09-03 | Qualcomm Incorporated | Beamforming in TDD MIMO systems with asymmetric antenna configuration |
| US10805020B2 (en)* | 2016-08-09 | 2020-10-13 | Nokia Technologies Oy | Method and apparatus for implementing framework for enhanced channel feedback |
| CN107888260B (en)* | 2016-09-30 | 2020-10-20 | 电信科学技术研究院 | Beam selection method and related equipment |
| CN106452674B (en)* | 2016-09-30 | 2019-04-12 | 西安交通大学 | A kind of actual data packet restoration methods based on 802.11ac network |
| US11297546B2 (en)* | 2016-11-04 | 2022-04-05 | Telefonaktiebolaget Lm Ericsson (Publ) | Neighboring mobility reference signal set search in beam-based NR mobility |
| EP3563540B1 (en) | 2016-12-27 | 2024-02-28 | Telecom Italia S.p.A. | Method and system for providing variable quality streaming video services in mobile communication networks |
| CN108282902B (en)* | 2017-01-06 | 2023-11-07 | 北京三星通信技术研究有限公司 | Random access method, base station and user equipment |
| US9935698B1 (en) | 2017-01-31 | 2018-04-03 | Verizon Patent And Licensing Inc. | System and method for a dynamically active FD-MIMO antenna array adjustment system |
| JP7017312B2 (en)* | 2017-02-20 | 2022-02-08 | 株式会社Nttドコモ | Wireless base station and wireless communication method |
| WO2018157911A1 (en)* | 2017-02-28 | 2018-09-07 | Telefonaktiebolaget Lm Ericsson (Publ) | Reporting of channel coefficients |
| WO2018157318A1 (en)* | 2017-02-28 | 2018-09-07 | 华为技术有限公司 | Scheduling method, base station and terminal |
| CN106888042B (en)* | 2017-03-01 | 2020-06-02 | 北京小米移动软件有限公司 | Beam selection method and device based on beamforming, base station and terminal |
| US10673652B2 (en)* | 2017-03-02 | 2020-06-02 | Futurewei Technologies, Inc. | System and method for providing explicit feedback in the uplink |
| TWI618374B (en)* | 2017-04-21 | 2018-03-11 | 國立臺灣大學 | Beamforming index space modulation method |
| CN108809367A (en)* | 2017-05-04 | 2018-11-13 | 株式会社Ntt都科摩 | Beam information feedback method and user apparatus |
| WO2018204273A1 (en) | 2017-05-05 | 2018-11-08 | Intel Corporation | Management of mimo communication systems |
| US10530548B2 (en) | 2017-05-15 | 2020-01-07 | Futurewei Technologies, Inc. | Unifying message to support downlink beam management over multiple groups of beam paired links (MGBPL) |
| US10211898B2 (en) | 2017-06-26 | 2019-02-19 | At&T Intellectual Property I, L.P. | Configurable beam failure event design |
| US9949277B1 (en)* | 2017-07-27 | 2018-04-17 | Saankhya Labs Pvt. Ltd. | System and method for mitigating co-channel interference in white space modems using interference aware techniques |
| EP3923484A1 (en)* | 2017-08-11 | 2021-12-15 | FRAUNHOFER-GESELLSCHAFT zur Förderung der angewandten Forschung e.V. | Concepts for transmitting data to one or more users |
| EP3698479A1 (en) | 2017-10-19 | 2020-08-26 | Nokia Technologies Oy | Ue-specific beam mapping with reference weight vectors |
| US20200359357A1 (en)* | 2017-11-13 | 2020-11-12 | Ntt Docomo, Inc. | User device |
| EP3753324A1 (en)* | 2018-02-15 | 2020-12-23 | Sony Corporation | Method and apparatus for mapping beam pattern to paging resources |
| CN112154710B (en)* | 2018-05-25 | 2024-04-26 | 瑞典爱立信有限公司 | Managing large-scale multiple-input multiple-output base stations |
| EP3591856B1 (en)* | 2018-07-04 | 2021-10-27 | Intel Corporation | Techniques for control of beam switching |
| US11963150B2 (en)* | 2018-11-01 | 2024-04-16 | Qualcomm Incorporated | Positioning enhancements for locating a mobile device in a wireless network |
| US11539424B2 (en)* | 2019-08-27 | 2022-12-27 | Samsung Electronics Co., Ltd | System and method for providing channel recovery for angle domain sparse channels |
| US11012133B2 (en)* | 2019-09-16 | 2021-05-18 | Nokia Solutions And Networks Oy | Efficient data generation for beam pattern optimization |
| US11805431B2 (en)* | 2019-11-22 | 2023-10-31 | Qualcomm Incorporated | Transmitter-based link adaptation |
| CN111313947A (en)* | 2020-02-25 | 2020-06-19 | 东南大学 | Uplink multi-user sending method assisted by communication between devices |
| US11985534B2 (en) | 2020-03-18 | 2024-05-14 | Equinix, Inc. | Application workload routing and interworking for network defined edge routing |
| US11304115B2 (en)* | 2020-03-18 | 2022-04-12 | Equinix, Inc. | Network defined edge routing for an application workload |
| CN113676231A (en)* | 2020-05-14 | 2021-11-19 | 索尼公司 | Electronic device and method for wireless communication, computer-readable storage medium |
| US11569876B2 (en)* | 2020-09-15 | 2023-01-31 | Qualcomm Incorporated | Beam index reporting based at least in part on a precoded channel state information reference signal |
| CN115622854A (en)* | 2021-07-12 | 2023-01-17 | 中兴通讯股份有限公司 | Data transmission, data modulation method, device, electronic device and storage medium |
| US20230412334A1 (en)* | 2022-06-17 | 2023-12-21 | Qualcomm Incorporated | Csi-rs resource multiplexing |
| CN116054892B (en)* | 2023-02-20 | 2024-08-06 | 西安电子科技大学 | An adaptive beamforming method for MU-MIMO system |
| US12284064B1 (en)* | 2024-10-07 | 2025-04-22 | NoiseFigure Research, Inc | Systems and methods for directed transmission and reception of wireless power and broadband data |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101574010A (en)* | 2007-01-05 | 2009-11-04 | 华为技术有限公司 | Two-dimensional reference signal sequences |
| CN101690306A (en)* | 2007-04-30 | 2010-03-31 | 香港科技大学 | Multi-user scheduling of multiple-input multiple-output broadcast channels with finite rate feedback |
| CN101904109A (en)* | 2007-12-19 | 2010-12-01 | 高通股份有限公司 | Beamforming in MIMO Systems |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101023366B1 (en)* | 2004-10-27 | 2011-03-18 | 삼성전자주식회사 | Apparatus and method for transmitting / receiving signals in a multiple input multiple output wireless communication system using a beamforming method |
| WO2010080631A2 (en) | 2008-12-18 | 2010-07-15 | Nec Laboratories America, Inc. | Methods and systems for conveying scheduling information of overlapping co-scheduled users in an ofdma-mu-mimo system |
| KR101745414B1 (en)* | 2009-06-09 | 2017-06-13 | 엘지전자 주식회사 | Apparatus and method of transmitting channel information in wireless communication system |
| KR101752824B1 (en) | 2010-09-29 | 2017-06-30 | 삼성전자주식회사 | Method and apparatus for feedback in multi user-multiple input multiple output system |
| US9219534B2 (en)* | 2010-10-12 | 2015-12-22 | Lg Electronics Inc. | Method and device for signal transmission in a multi-node system |
| KR101160424B1 (en) | 2010-11-09 | 2012-06-28 | 서울대학교산학협력단 | Apparatus and method of cooperative transmission in multi-antenna wireless systems |
| US8750358B2 (en)* | 2011-04-06 | 2014-06-10 | Nec Laboratories America, Inc. | Method for improving multiuser MIMO downlink transmissions |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101574010A (en)* | 2007-01-05 | 2009-11-04 | 华为技术有限公司 | Two-dimensional reference signal sequences |
| CN101690306A (en)* | 2007-04-30 | 2010-03-31 | 香港科技大学 | Multi-user scheduling of multiple-input multiple-output broadcast channels with finite rate feedback |
| CN101904109A (en)* | 2007-12-19 | 2010-12-01 | 高通股份有限公司 | Beamforming in MIMO Systems |
| Title |
|---|
| CQI-report optimization for multi-mode MIMO with unitary codebook based precoding;Helka-Liina Maattanen et al;《IEEE 20TH INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC 2009)》;20090913;3084-3088 |
| Publication number | Publication date |
|---|---|
| CN105027461A (en) | 2015-11-04 |
| WO2014158208A1 (en) | 2014-10-02 |
| US9461723B2 (en) | 2016-10-04 |
| HK1217060A1 (en) | 2016-12-16 |
| US20140341048A1 (en) | 2014-11-20 |
| Publication | Publication Date | Title |
|---|---|---|
| CN105027461B (en) | Orthogonal beams for multi-user's multiple-input and multiple-output (MU-MIMO) shape | |
| US12088381B2 (en) | Mechanisms for reduced density CSI-RS | |
| JP7003111B2 (en) | Configurable codebook for advanced CSI feedback overhead reduction | |
| KR102837278B1 (en) | Method and device for frame structure for improved communication system | |
| CN105474556B (en) | Nodes, methods and systems for adaptive sectorization of spatial regions | |
| US9225404B2 (en) | Hybrid beamforming for data transmission | |
| US9647735B2 (en) | Hybrid digital and analog beamforming for large antenna arrays | |
| US12003434B2 (en) | PRB bundling extension | |
| US11245449B2 (en) | Network node, wireless device and methods thereby to indicate a first set of antenna ports and a second set of antenna ports | |
| US20230179372A1 (en) | Methods and Apparatus for Configuration of Sounding Reference Signals | |
| CN109478987B (en) | Method and user equipment for handling communication | |
| US20200344092A1 (en) | System and Method for Providing Explicit Feedback in the Uplink | |
| HK1217060B (en) | Orthogonal beamforming for multiple user multiple-input and multiple-output (mu-mimo) | |
| HK40005399A (en) | Mechanisms for reduced density csi-rs | |
| HK1218027B (en) | Hybrid digital and analog beamforming for large antenna arrays |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| REG | Reference to a national code | Ref country code:HK Ref legal event code:DE Ref document number:1217060 Country of ref document:HK | |
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20200402 Address after:California, USA Patentee after:INTEL Corp. Address before:California, USA Patentee before:INTEL IP Corp. Effective date of registration:20200402 Address after:California, USA Patentee after:Apple Inc. Address before:California, USA Patentee before:INTEL Corp. |