优先权priority
本申请要求2013年3月14日提交的第61/785,131号美国临时专利申请的优先权和权益,该临时专利申请的全部内容通过引用并入本文;本申请是2013年3月13日提交的第13/800,468号美国专利申请的部分延续申请,该专利申请要求2013年1月18日提交的第61/754,028号美国临时专利申请的优先权和权益,这两个申请都通过引用并入本文;本申请还是2012年2月24日提交的第13/405,071号美国专利申请的部分延续申请,该专利申请要求2011年11月14日提交的第61/559,590号美国临时专利申请的优先权和权益以及2011年2月24日提交的第61/446,178号美国临时专利申请的优先权和权益,所有这些专利申请都通过引用并入本文。This application claims priority and benefit to U.S. Provisional Patent Application No. 61/785,131, filed March 14, 2013, which is hereby incorporated by reference in its entirety; this application was filed March 13, 2013 Continuation-in-Part of U.S. Patent Application No. 13/800,468, which claims priority and benefit to U.S. Provisional Patent Application No. 61/754,028, filed January 18, 2013, both of which are incorporated herein by reference ; this application is also a continuation-in-part of U.S. Patent Application Serial No. 13/405,071, filed February 24, 2012, which claims priority and and benefit of and priority to and benefit of U.S. Provisional Patent Application No. 61/446,178, filed February 24, 2011, all of which are incorporated herein by reference.
技术领域technical field
本公开主要涉及触摸传感器装置的领域,并且尤其涉及触摸传感器数据的处理。The present disclosure relates generally to the field of touch sensor devices, and in particular to the processing of touch sensor data.
背景background
计算装置(诸如笔记本计算机、个人数字助理、移动通信装置、便携式娱乐装置(例如,手持视频游戏装置,多媒体播放器等)以及机顶盒(例如,数字电缆箱,数字视频盘(DVD)播放器等))可以包括便于用户与该计算装置之间互动的用户界面装置。已变得常见的一类用户界面装置是触摸传感器装置或借助电容感应来操作的触摸输入装置。触摸传感器装置可以被实施为触摸屏、触摸传感器垫、触摸传感器滑块或触摸传感器按钮,并且可以包括具有电容式传感器元件阵列的触摸传感器。电容式感应通常包括扫描操作,该操作定期测量与电容式传感器元件相关联的电容变化以确定导电体(例如,笔尖,用户手指等)相对于触摸传感器的存在、位置和/或运动。Computing devices (such as notebook computers, personal digital assistants, mobile communication devices, portable entertainment devices (e.g., handheld video game devices, multimedia players, etc.) and set-top boxes (e.g., digital cable boxes, digital video disk (DVD) players, etc.) ) may include user interface means that facilitate interaction between a user and the computing means. One type of user interface device that has become common is touch sensor devices or touch input devices that operate by means of capacitive sensing. A touch sensor arrangement may be implemented as a touch screen, a touch sensor pad, a touch sensor slider, or a touch sensor button, and may include a touch sensor having an array of capacitive sensor elements. Capacitive sensing typically includes a scanning operation that periodically measures changes in capacitance associated with a capacitive sensor element to determine the presence, position and/or motion of a conductive object (eg, a pen tip, a user's finger, etc.) relative to the touch sensor.
触摸传感器是触摸传感器装置或其用户界面系统的昂贵部件。触摸传感器的高制造成本的一个原因是常规传感器使用在多层基板或单层基板上形成的多层电极材料,用一系列“跳线”形成单独电极分段之间的电气连接并将它们与和它们交叉的其他电极隔离。降低触摸传感器的高成本的一种方式是在单层基板的有效区域上布线紧靠在一起的各电极的迹线部分(或分段)而无需使用“跳线”。不过,这种类型的传感器构造导致各电极之间增加的电容交叉耦合(例如,尤其是响应于导电体触摸),从而引起错误的触摸、不准确和差的触摸响应线性度,所有这些限制触摸传感器装置的功能和/或导致差的用户体验。A touch sensor is an expensive component of a touch sensor device or its user interface system. One reason for the high manufacturing cost of touch sensors is that conventional sensors use multiple layers of electrode material formed on a multi-layer or single-layer substrate, with a series of "jumper wires" forming the electrical connections between the individual electrode segments and connecting them to the isolated from the other electrodes they intersect. One way to reduce the high cost of touch sensors is to route the trace portions (or segments) of the electrodes close together on the active area of a single layer substrate without the use of "jumpers". However, this type of sensor configuration results in increased capacitive cross-coupling between electrodes (eg, especially in response to conductive touches), causing false touches, inaccuracies, and poor touch response linearity, all of which limit touch The functionality of the sensor device and/or result in a poor user experience.
发明内容Contents of the invention
本申请至少包括以下实施方式:This application includes at least the following implementation methods:
1)一种用于校正尾端效应的装置,包括:1) A device for correcting tail effects, comprising:
传感器阵列,所述传感器阵列包括多个接收RX电极和多个发送TX电极,其中,所述多个RX电极和所述多个TX电极在所述传感器阵列的基板上的单层中的触摸感应区域中彼此交错而没有交叉;A sensor array comprising a plurality of receiving RX electrodes and a plurality of transmitting TX electrodes, wherein the plurality of RX electrodes and the plurality of TX electrodes sense touch in a single layer on the substrate of the sensor array intersect with each other without intersecting in the region;
传感器,所述传感器经配置测量来自所述传感器阵列的多个测量结果,其中,所述多个测量结果代表导电体与所述传感器阵列接触或接近所述传感器阵列;以及a sensor configured to measure a plurality of measurements from the sensor array, wherein the plurality of measurements represent electrical conductors in contact with or in proximity to the sensor array; and
与所述传感器耦合的处理逻辑,其中,所述处理逻辑经配置至少执行以下操作:processing logic coupled to the sensor, wherein the processing logic is configured to at least perform the following operations:
确定对应于与由所述多个测量结果代表的所述导电体相关联的尾端效应的调整值的集合,其中,用于特定TX电极的调整值是基于沿所述特定TX电极的RX电极的索引的总和来计算的;以及determining a set of adjustment values corresponding to tail effects associated with the electrical conductor represented by the plurality of measurements, wherein the adjustment value for a particular TX electrode is based on an RX electrode along the particular TX electrode is computed as the sum of the indices; and
基于所述调整值的集合生成对应于由所述多个测量结果代表的所述导电体的调整后的测量结果,其中,所述调整后的测量结果校正所述尾端效应。An adjusted measurement corresponding to the electrical conductor represented by the plurality of measurements is generated based on the set of adjustment values, wherein the adjusted measurement corrects for the tail effect.
2)如1)所述的装置,其中,所述尾端效应包括由受所述导电体影响的RX电极的主迹线和TX电极之间的寄生耦合引起的寄生信号增加或寄生信号减少,其中,所述RX电极的所述主迹线邻近所述TX电极布线。2) The apparatus of 1), wherein the tail effect comprises a spurious signal increase or a spurious signal decrease caused by parasitic coupling between the main trace of the RX electrode affected by the electrical conductor and the TX electrode, Wherein, the main trace of the RX electrode is adjacent to the wiring of the TX electrode.
3)如2)所述的装置,其中,所述RX电极的所述主迹线和所述RX电极的成形部被布置在所述传感器阵列的所述触摸感应区域中,但是,所述RX电极的所述成形部不受所述导电体影响。3) The device of 2), wherein the main trace of the RX electrode and the shaped portion of the RX electrode are arranged in the touch sensitive area of the sensor array, however, the RX The shaped portion of the electrode is not affected by the electrical conductor.
4)如1)所述的装置,其中,所述传感器阵列包括在所述传感器阵列的相对侧上的第一非感应区域和第二非感应区域,其中,所述多个RX电极的第一子集和所述多个TX电极的第一子集从所述第一非感应区域布线,并且所述多个RX电极的第二子集和所述多个TX电极的第二子集从所述第二非感应区域布线。4) The apparatus of 1), wherein the sensor array includes a first non-sensing area and a second non-sensing area on opposite sides of the sensor array, wherein a first of the plurality of RX electrodes A subset and a first subset of the plurality of TX electrodes are routed from the first non-sensing region, and a second subset of the plurality of RX electrodes and a second subset of the plurality of TX electrodes are routed from the The wiring in the second non-sensing area.
5)如1)所述的装置,其中,所述处理逻辑还经配置基于所述调整后的测量结果确定所述导电体在所述传感器阵列上的位置坐标。5) The apparatus of 1), wherein the processing logic is further configured to determine positional coordinates of the electrical conductor on the sensor array based on the adjusted measurements.
6)如1)所述的装置,其中,所述多个测量结果包括通过所述传感器阵列的所述特定TX电极形成的传感器元件的信号值,并且其中,所述调整后的测量结果包括对应于所述信号值的调整值。6) The apparatus of 1), wherein the plurality of measurements include signal values of sensor elements formed by the particular TX electrode of the sensor array, and wherein the adjusted measurements include corresponding The adjusted value on the signal value.
7)如6)所述的装置,其中,为了确定关于所述特定TX电极的所述调整值,所述处理逻辑经配置执行以下操作:7) The apparatus of 6), wherein, to determine the adjustment value for the particular TX electrode, the processing logic is configured to:
计算沿所述特定TX电极形成所述传感器元件的RX电极的所述索引的总和;calculating a sum of said indices of RX electrodes forming said sensor element along said particular TX electrode;
计算沿所述特定TX电极的所述传感器元件的所述信号值的总和;calculating a sum of said signal values of said sensor elements along said particular TX electrode;
基于所述索引的总和和所述信号值的总和计算参数值;以及calculating a parameter value based on the sum of the indices and the sum of the signal values; and
至少基于:所述信号值中的每个信号值、所述参数值、以及对应RX电极的索引调整所述每个信号值,以获得对应的调整值。Adjusting each of the signal values based on at least: each of the signal values, the parameter value, and an index of the corresponding RX electrode to obtain a corresponding adjustment value.
8)如6)所述的装置,其中,通过所述特定TX电极形成的所述传感器元件的所述信号值小于尾端效应阈值值。8) The apparatus of 6), wherein said signal value of said sensor element formed by said particular TX electrode is less than a tail end effect threshold value.
9)如6)所述的装置,其中,沿所述特定TX电极形成所述传感器元件的所述RX电极具有大于形成具有峰值信号值的传感器元件的RX电极的索引的索引。9) The apparatus of 6), wherein the RX electrodes forming the sensor element along the particular TX electrode have an index greater than the index of the RX electrodes forming the sensor element having a peak signal value.
10)一种用于校正尾端效应的方法,包括:10) A method for correcting for tail effects, comprising:
接收从传感器阵列测量的多个测量结果,其中,所述多个测量结果代表导电体与所述传感器阵列接触或接近所述传感器阵列;receiving a plurality of measurements taken from the sensor array, wherein the plurality of measurements represent electrical conductors in contact with or in proximity to the sensor array;
其中,所述传感器阵列包括多个接收RX电极和多个发送TX电极,其中,所述多个RX电极和所述多个TX电极在所述传感器阵列的基板上的单层中的触摸感应区域中彼此交错而没有交叉;Wherein, the sensor array includes a plurality of receiving RX electrodes and a plurality of sending TX electrodes, wherein the plurality of RX electrodes and the plurality of TX electrodes are in a touch-sensitive area in a single layer on the substrate of the sensor array interspersed with each other without intersecting;
处理装置确定对应于与由所述多个测量结果代表的所述导电体相关联的尾端效应的调整值的集合,其中,用于特定TX电极的调整值是基于沿所述特定TX电极的RX电极的索引的总和来计算的;以及The processing means determines a set of adjustment values corresponding to tail effects associated with the electrical conductor represented by the plurality of measurements, wherein the adjustment value for a particular TX electrode is based on The sum of the indices of the RX electrodes is calculated; and
基于所述调整值的集合生成对应于由所述多个测量结果代表的所述导电体的调整后的测量结果,其中,所述调整后的测量结果校正所述尾端效应。An adjusted measurement corresponding to the electrical conductor represented by the plurality of measurements is generated based on the set of adjustment values, wherein the adjusted measurement corrects for the tail effect.
11)如10)所述的方法,其中,所述尾端效应包括由受所述导电体影响的RX电极的主迹线和TX电极之间的寄生耦合引起的寄生信号增加或寄生信号减少,并且其中,所述RX电极的所述主迹线邻近所述TX电极布线。11) The method according to 10), wherein the tail effect comprises a spurious signal increase or a spurious signal decrease caused by parasitic coupling between the main trace of the RX electrode affected by the electrical conductor and the TX electrode, And wherein, the main trace of the RX electrode is routed adjacent to the TX electrode.
12)如11)所述的方法,其中,所述RX电极的所述主迹线和所述RX电极的成形部被布置在所述传感器阵列的所述触摸感应区域中,但是,所述RX电极的所述成形部不受所述导电体影响。12) The method of 11), wherein the main trace of the RX electrode and the shaped portion of the RX electrode are arranged in the touch sensitive area of the sensor array, however, the RX The shaped portion of the electrode is not affected by the electrical conductor.
13)如10)所述的方法,还包括基于所接收到的多个测量结果确定所述传感器阵列的传感器元件的差分信号。13) The method of 10), further comprising determining differential signals for sensor elements of the sensor array based on the plurality of received measurements.
14)如10)所述的方法,其中:14) The method as described in 10), wherein:
所述多个测量结果包括通过所述传感器阵列的所述特定TX电极形成的传感器元件的信号值;并且said plurality of measurements includes signal values of sensor elements formed by said particular TX electrodes of said sensor array; and
所述处理装置确定所述调整后的测量结果包括:Determining the adjusted measurement by the processing means includes:
计算沿所述特定TX电极形成所述传感器元件的RX电极的所述索引的总和;calculating a sum of said indices of RX electrodes forming said sensor element along said particular TX electrode;
计算沿所述特定TX电极的所述传感器元件的所述信号值的总和;calculating a sum of said signal values of said sensor elements along said particular TX electrode;
基于所述索引的总和和所述信号值的所述总和计算参数值;以及calculating a parameter value based on the sum of the indices and the sum of the signal values; and
至少基于:所述信号值中的每个信号值、所述参数值、以及对应RX电极的索引调整所述每个信号值,以获得对应的调整值。Adjusting each of the signal values based on at least: each of the signal values, the parameter value, and an index of the corresponding RX electrode to obtain a corresponding adjustment value.
15)如14)所述的方法,其中,所述处理装置确定所述调整后的测量结果还包括:15) The method according to 14), wherein said processing means determining said adjusted measurement result further comprises:
通过将所述多个测量结果和尾端效应阈值值进行比较,选择通过所述传感器阵列的所述特定TX电极形成的所述传感器元件的所述信号值。The signal value of the sensor element formed by the particular TX electrode of the sensor array is selected by comparing the plurality of measurements to an end effect threshold value.
16)如14)所述的方法,其中,所述处理装置确定所述调整后的测量结果还包括:16) The method according to 14), wherein said processing means determining said adjusted measurement result further comprises:
确定形成具有峰值信号值的传感器元件的RX电极的第一索引;以及determining a first index of an RX electrode forming a sensor element having a peak signal value; and
通过只选择小于尾端效应阈值值并且具有大于所述第一索引的索引的那些信号值来选择通过所述传感器阵列的所述特定TX电极形成的所述传感器元件的所述信号值。Said signal values of said sensor elements formed by said particular TX electrodes of said sensor array are selected by selecting only those signal values which are less than a tail-effect threshold value and which have an index greater than said first index.
17)如10)所述的方法,还包括,基于所述调整后的测量结果确定所述导电体在所述传感器阵列上的位置坐标。17) The method according to 10), further comprising: determining the position coordinates of the electrical conductor on the sensor array based on the adjusted measurement results.
18)一种用于校正尾端效应的系统,包括:18) A system for correcting for tail effects, comprising:
电容式传感器阵列,所述电容式传感器阵列包括多个接收RX电极和多个发送TX电极,其中,所述多个RX电极和所述多个TX电极在所述电容式传感器阵列的基板上的单层中的触摸感应区域中彼此交错而没有交叉;A capacitive sensor array, the capacitive sensor array includes a plurality of receiving RX electrodes and a plurality of transmitting TX electrodes, wherein the plurality of RX electrodes and the plurality of TX electrodes are on the substrate of the capacitive sensor array The touch-sensitive areas in a single layer are interleaved with each other without crossing;
电容式传感器,所述电容式传感器与所述电容式传感器阵列耦合,所述电容式传感器经配置从所述多个RX电极测量多个测量结果,其中,所述多个测量结果代表导电体与所述电容式传感器阵列接触或接近所述电容式传感器阵列;以及a capacitive sensor coupled to the capacitive sensor array, the capacitive sensor configured to measure a plurality of measurements from the plurality of RX electrodes, wherein the plurality of measurements represent the relationship between electrical conductors and the capacitive sensor array is in contact with or proximate to the capacitive sensor array; and
处理逻辑,所述处理逻辑与所述电容式传感器耦合,其中,所述处理逻辑经配置至少执行以下操作:processing logic coupled to the capacitive sensor, wherein the processing logic is configured to at least perform the following operations:
确定对应于与由所述多个测量结果代表的所述导电体相关联的尾端效应的调整值的集合,其中,用于特定TX电极的调整值是基于沿所述特定TX电极的RX电极的索引的总和来计算的;以及determining a set of adjustment values corresponding to tail effects associated with the electrical conductor represented by the plurality of measurements, wherein the adjustment value for a particular TX electrode is based on an RX electrode along the particular TX electrode is computed as the sum of the indices; and
基于所述调整值的集合生成对应于由所述多个测量结果代表的所述导电体的调整后的测量结果,其中,所述调整后的测量结果校正所述尾端效应。An adjusted measurement corresponding to the electrical conductor represented by the plurality of measurements is generated based on the set of adjustment values, wherein the adjusted measurement corrects for the tail effect.
19)如18)所述的系统,其中:19) The system of 18), wherein:
所述尾端效应包括由受所述导电体影响的RX电极的主迹线和TX电极之间的寄生电容耦合引起的寄生信号增加或寄生信号减少,其中,所述RX电极的所述主迹线邻近所述TX电极布线;并且The tail effect includes a parasitic signal increase or a parasitic signal decrease caused by a parasitic capacitive coupling between a main trace of an RX electrode affected by the conductor and a TX electrode, wherein the main trace of the RX electrode wires are routed adjacent to the TX electrodes; and
所述RX电极的所述主迹线和所述RX电极的成形部被布置在所述电容式传感器阵列的所述触摸感应区域中,但是,所述RX电极的所述成形部不受所述导电体影响。The main trace of the RX electrode and the shaped portion of the RX electrode are arranged in the touch sensing area of the capacitive sensor array, however, the shaped portion of the RX electrode is not affected by the Conductor influence.
20)如18)所述的系统,其中,所述电容式传感器阵列包括在所述电容式传感器阵列的相对侧上的第一非感应区域和第二非感应区域,其中,所述多个RX电极的第一子集和所述多个TX电极的第一子集从所述第一非感应区域布线,而所述多个RX电极的第二子集和所述多个TX电极的第二子集从所述第二非感应区域布线。20) The system of 18), wherein the capacitive sensor array includes first and second non-sensing regions on opposite sides of the capacitive sensor array, wherein the plurality of RX A first subset of electrodes and a first subset of the plurality of TX electrodes are routed from the first non-sensing region, while a second subset of the plurality of RX electrodes and a second subset of the plurality of TX electrodes A subset is routed from the second non-sensing area.
附图说明Description of drawings
图1是示出包括触摸传感器组件的示例电子系统的实施例的框图。FIG. 1 is a block diagram illustrating an embodiment of an example electronic system including a touch sensor assembly.
图2是示出处理触摸传感器数据的示例传感器系统的实施例的框图。2 is a block diagram illustrating an embodiment of an example sensor system that processes touch sensor data.
图3A根据示例实施例示出触摸传感器装置的简化平面图。FIG. 3A shows a simplified plan view of a touch sensor device, according to an example embodiment.
图3B示出在图3A中的触摸传感器装置的横截面视图。Fig. 3B shows a cross-sectional view of the touch sensor device in Fig. 3A.
图3C根据示例实施例示出触摸传感器的一部分。FIG. 3C illustrates a portion of a touch sensor, according to an example embodiment.
图4A、4B、4C、4D和4E根据各个实施例示出在单层基板上的传感器电极的替代图案。4A, 4B, 4C, 4D and 4E illustrate alternative patterns of sensor electrodes on a single layer substrate, according to various embodiments.
图5根据示例实施例示出耦合在具有单层的SLIM电极图案的触摸传感器面板的一部分中的寄生信号。FIG. 5 illustrates parasitic signals coupled in a portion of a touch sensor panel having a single layer of SLIM electrode patterns, according to example embodiments.
图6根据示例实施例示出具有SLIM电极图案的双布线触摸传感器面板。FIG. 6 illustrates a dual wiring touch sensor panel having a SLIM electrode pattern, according to example embodiments.
图7A和7B根据示例实施例示出存储反映由双布线触摸传感器面板的每面上的导电体引起的尾端效应的信号值的两个示例数据结构。7A and 7B illustrate two example data structures that store signal values reflecting tail effects caused by electrical conductors on each side of a dual wiring touch sensor panel, according to example embodiments.
图8是根据示例实施例示出在双布线触摸传感器面板上的尾端效应校正的示例的曲线图。8 is a graph illustrating an example of tailing correction on a dual wiring touch sensor panel, according to an example embodiment.
图9是示出关于根据图8的示例实施例示出的双布线触摸传感器面板的尾端效应信号和校正信号的比较的曲线图。FIG. 9 is a graph showing a comparison of a tail effect signal and a correction signal with respect to a dual wiring touch sensor panel shown according to the example embodiment of FIG. 8 .
图10A根据示例实施例示出存储所测量的反映由双布线触摸传感器面板上的导电体引起的尾端效应的信号值的数据结构。10A illustrates a data structure that stores measured signal values reflecting tail effects caused by electrical conductors on a dual wiring touch sensor panel, according to an example embodiment.
图10B示出存储经关于在图10A中示出的尾端效应的校正调整的信号值的数据结构。FIG. 10B shows a data structure that stores signal values adjusted for corrections for the tail effects shown in FIG. 10A .
图11根据示例实施例示出用于校正尾端效应的方法。FIG. 11 illustrates a method for correcting for tail effects, according to an example embodiment.
图12根据某些实施例(例如,诸如在图11中示出的示例实施例)示出用于调整尾端效应的信号值的示例方法。FIG. 12 illustrates an example method for adjusting signal values for tail effects, according to certain embodiments (eg, such as the example embodiment shown in FIG. 11 ).
图13根据说明由大导电体(例如,诸如胖手指)的接触的某些实施例示出校正尾端效应的示例方法。13 illustrates an example method of correcting for tail effects, according to certain embodiments illustrating contact by a large electrical conductor (eg, such as a fat finger).
具体实施方式detailed description
下列描述阐述很多具体细节,诸如具体系统、组件、方法等诸如此类的示例,以便提供本文所述的用于校正单层触摸传感器(例如,诸如具有SLIM电极图案的触摸传感器)中的尾端效应的技术的各个实施例的良好理解。不过,至少某些实施例可以在没有这些具体细节的情况下被实践,这对于本领域的技术人员来说是明显的。在其他实例中,众所周知的组件或方法未详细描述或以简单框图形式呈现,以避免不必要模糊本文所述的技术。因此,后文阐述的具体细节仅是示例性的。特定实施可以不同于这些示例性细节,并且仍然预期在本发明的实质和范围内。The following description sets forth numerous specific details, such as examples of specific systems, components, methods, etc., in order to provide the methods described herein for correcting tailing effects in a single layer touch sensor (e.g., such as a touch sensor with a SLIM electrode pattern). A good understanding of the various embodiments of the technology. It will be apparent, however, to one skilled in the art that at least some embodiments may be practiced without these specific details. In other instances, well-known components or methods have not been described in detail or are presented in simplified block diagram form in order to avoid unnecessarily obscuring the techniques described herein. Accordingly, the specific details set forth below are exemplary only. Particular implementations may vary from these exemplary details and still be within the spirit and scope of the invention.
在说明书中引用的“实施例(an embodiment)”、“一个实施例(one embodiment)”、“示例实施例(an example embodiment)”、“某些实施例(some embodiments)”和“各个实施例(various embodiments)”是指结合包括在本发明的至少一个实施例中的实施例描述的特定特征、结构或特性。此外,在说明书中的不同地方出现的各短语“实施例”、“一个实施例”、“示例实施例”、“某些实施例”和“各个实施例”不一定全部是指相同的实施例。References in the specification to "an embodiment", "one embodiment", "an example embodiment", "some embodiments" and "various embodiments" (various embodiments)"refers to a particular feature, structure, or characteristic described in connection with an embodiment that is included in at least one embodiment of the invention. Additionally, appearances of the phrases "an embodiment," "one embodiment," "example embodiments," "certain embodiments," and "various embodiments" in various places in the specification are not necessarily all referring to the same embodiment. .
本说明书包括对附图的引用,附图形成详细描述的一部分。附图示出根据示例性实施例的插图。这些实施例(在本文,也可称为“示例”)被描述的足够详细,以使本领域的技术人员能够实践本文描述的要求保护的主题的实施例。可以组合各实施例,可以利用其他实施例,或可以做出结构、逻辑和电气改变,而不偏离要求保护的主题的范围和实质。应当理解本文所述的实施例并不旨在限制本主题的范围,而是旨在使得本领域的技术人员能够实践、制作和/或使用本主题。This specification includes references to the accompanying drawings, which form a part of the detailed description. The figures show illustrations according to exemplary embodiments. These embodiments (also referred to herein as "examples") are described in sufficient detail to enable those skilled in the art to practice the embodiments of the claimed subject matter described herein. Embodiments may be combined, other embodiments may be utilized, or structural, logical, and electrical changes may be made without departing from the scope and spirit of the claimed subject matter. It should be understood that the embodiments described herein are not intended to limit the scope of the subject matter, but rather to enable those skilled in the art to practice, make and/or use the subject matter.
概述overview
本文所述的是用于校正触摸传感器中的尾端效应的技术的各个实施例,该触摸传感器具有被布置在该触摸传感器的基板的相同层(例如,单层)中的发送电极(TX)和接收电极(RX)。除非明确指出,否则“触摸传感器”也在本文被称为“传感器阵列”、“触摸传感器阵列”、“触摸面板”、“触摸传感器面板”等。Described herein are various embodiments of techniques for correcting tailing effects in a touch sensor having transmit electrodes (TX) arranged in the same layer (eg, a single layer) of the touch sensor's substrate and the receiving electrode (RX). Unless expressly stated otherwise, a "touch sensor" is also referred to herein as a "sensor array," "touch sensor array," "touch panel," "touch sensor panel," and the like.
如本文所使用的,“接触”是指在触摸传感器的触摸表面上的导电体(例如,笔尖、用户的手指等)的物理接触,和/或是指其中导电体充分接近以影响触摸传感器的传感器元件而没有物理接触传感器的触摸表面的悬停。如本文所使用的,“传感器元件”是指电极的离散单元或位置区(例如,相邻),在该离散单元或位置区,可以获得是独立的并且与从该触摸传感器中的其他单元或定位区获得的测量结果/信号不同的测量结果或信号。As used herein, "contact" refers to the physical contact of an electrical conductor (e.g., a stylus, a user's finger, etc.) on the touch surface of a touch sensor, and/or refers to a contact in which the electrical conductor is in sufficient proximity to affect the touch sensor. Hovering of a sensor element without physically contacting the touch surface of the sensor. As used herein, "sensor element" refers to a discrete unit or location area (e.g., adjacent) of electrodes where a discrete unit or location area can be obtained that is independent of and distinct from other units or locations in the touch sensor. A measurement or signal that differs from the measurement/signal obtained in the location area.
在使用交错电极而没有使用“跳线”的单层触摸传感器中,导电体可以影响多个电极的各部分(也称为“分段”),从而引起甚至未直接在导电体接触下的并且不应标示或以其他方式检测到接触的各电极电容的变化。受接触影响的耦合实际触摸传感器区域外侧的此类寄生信号引起寄生信号增加或寄生信号减少(例如,取决于触摸传感器使用的感应机制的类型)。此类寄生信号在触摸传感器的一个或多个传感器元件中的增加或减少在本文被称为“尾端效应”。In a single-layer touch sensor that uses interleaved electrodes without the use of "jumpers," conductors can affect portions of multiple electrodes (also called "segments"), causing and Changes in the capacitance of each electrode in contact shall not be marked or otherwise detected. Such spurious signals outside the actual touch sensor area that are affected by contact coupling cause either an increase in the spurious signal or a decrease in the spurious signal (eg, depending on the type of sensing mechanism used by the touch sensor). An increase or decrease in such spurious signals in one or more sensor elements of a touch sensor is referred to herein as a "tail effect."
在一个示例实施例中,装置包括与处理逻辑耦合的传感器。传感器经配置在扫描操作期间测量来自传感器阵列的多个测量结果,其中,该多个测量结果代表导电体接触或接近该传感器阵列。传感器阵列包括多个RX电极和多个TX电极,其中,多个RX电极和多个TX电极在传感器阵列的基板上的单层中彼此交错而没有交叉。处理逻辑经配置确定对应于和多个测量结果相关联的尾端效应的调整值的集合,并且基于该调整值的集合生成对应于多个测量结果的调整后的测量结果,其中,该调整后的测量结果校正尾端效应的寄生信号变化。在这个实施例中的某些方面,尾端效应包括由受导电体影响的RX电极的主迹线和TX电极之间的寄生耦合引起的寄生信号增加或寄生信号减少,其中,RX电极的主迹线邻近TX电极布线。RX电极的主迹线和RX电极的成形部被布置在传感器阵列的触摸感应区域中,但是,RX电极的成形部不受导电体影响。In one example embodiment, an apparatus includes a sensor coupled with processing logic. The sensor is configured to measure a plurality of measurements from the sensor array during a scanning operation, wherein the plurality of measurements represent electrical conductors contacting or proximate to the sensor array. The sensor array includes a plurality of RX electrodes and a plurality of TX electrodes, wherein the plurality of RX electrodes and the plurality of TX electrodes are interleaved with each other in a single layer on a substrate of the sensor array without intersecting. The processing logic is configured to determine a set of adjustment values corresponding to tail effects associated with the plurality of measurements, and to generate adjusted measurements corresponding to the plurality of measurements based on the set of adjustment values, wherein the adjusted The measurements are corrected for tail effects of parasitic signal variations. In certain aspects of this embodiment, the tailing effect includes a spurious signal increase or a spurious signal decrease caused by parasitic coupling between the main trace of the RX electrode and the TX electrode affected by the electrical conductor, wherein the main trace of the RX electrode The traces are routed adjacent to the TX electrodes. The main traces of the RX electrodes and the shaped portions of the RX electrodes are arranged in the touch sensitive area of the sensor array, however, the shaped portions of the RX electrodes are not affected by the electrical conductors.
在另一示例实施例中,用于校正尾端效应的方法包括步骤:接收从传感器阵列测量的多个测量结果,其中,该多个测量结果表示导电体在与传感器阵列接触或接近,并且其中,该传感器阵列包括在传感器阵列的基板上的单层中彼此交错而没有交叉的多个RX电极和多个TX电极;处理装置确定对应于和所述多个测量结果相关联的尾端效应的调整值的集合;并且基于该调整值的集合生成对应于所述多个测量结果的调整后的测量结果,其中,所述调整后的测量结果校正尾端效应的寄生信号变化。在这个实施例的某些方面,多个测量结果包括通过传感器阵列的特定TX电极形成的关于传感器元件的信号值,并且确定调整后的测量结果包括步骤:计算沿着特定TX电极形成传感器元件的RX电极的索引的总和;计算沿特定TX电极的关于传感器元件的信号值的总和;基于所述索引的总和以及所述信号值总和计算参数值;并且至少基于所述每个信号值、参数值和对应RX电极的索引调整所述信号值中的每个信号值以获得对应的调整值。In another example embodiment, a method for correcting for tailing effects includes the steps of receiving a plurality of measurements taken from a sensor array, wherein the plurality of measurements indicate that an electrical conductor is in contact with or in proximity to the sensor array, and wherein , the sensor array comprising a plurality of RX electrodes and a plurality of TX electrodes interleaved with each other without intersecting in a single layer on a substrate of the sensor array; the processing means determines the corresponding a set of adjustment values; and generating adjusted measurements corresponding to the plurality of measurements based on the set of adjustment values, wherein the adjusted measurements correct for parasitic signal variations of tail effects. In certain aspects of this embodiment, the plurality of measurements includes signal values for sensor elements formed by particular TX electrodes of the sensor array, and determining the adjusted measurements includes the step of calculating Summing the indices of the RX electrodes; calculating a sum of signal values for the sensor elements along a particular TX electrode; calculating a parameter value based on said sum of indices and said sum of signal values; and based at least on said each signal value, parameter value Each of the signal values is adjusted with the index of the corresponding RX electrode to obtain a corresponding adjusted value.
在另一示例实施例中,系统包括与电容式传感器耦合的电容式传感器阵列和与电容式传感器耦合的处理逻辑。电容式传感器阵列包括多个RX电极和多个TX电极,其中,多个RX电极和多个TX电极在电容式传感器阵列的基板上的单层中交错而没有彼此交叉。电容式传感器经配置从多个RX电极测量多个测量结果,其中,该多个测量结果代表导电体接触或接近该电容式传感器阵列。处理逻辑经配置确定对应于和多个测量结果相关联的尾端效应的调整值的集合,并且基于该调整值的集合生成对应于多个测量结果的调整后的测量结果,其中,该调整后的测量结果校正尾端效应的寄生信号变化。In another example embodiment, a system includes a capacitive sensor array coupled to the capacitive sensors and processing logic coupled to the capacitive sensors. The capacitive sensor array includes a plurality of RX electrodes and a plurality of TX electrodes, wherein the plurality of RX electrodes and the plurality of TX electrodes are interleaved in a single layer on a substrate of the capacitive sensor array without crossing each other. The capacitive sensors are configured to measure a plurality of measurements from the plurality of RX electrodes, wherein the plurality of measurements represent electrical conductors contacting or proximate to the capacitive sensor array. The processing logic is configured to determine a set of adjustment values corresponding to tail effects associated with the plurality of measurements, and to generate adjusted measurements corresponding to the plurality of measurements based on the set of adjustment values, wherein the adjusted The measurements are corrected for tail effects of parasitic signal variations.
示例操作背景Example Operational Background
图1示出电子系统100的一个示例实施例的框图,电子系统100包括处理装置110,该处理装置可以经配置测量触摸感应表面的电容并生成用于补偿和/或消除尾端效应的调整。电子系统100包括耦合于处理装置110和主机150的触摸感应表面116(例如,触摸屏、触摸垫等)。在某些实施例中,触摸感应表面116是使用触摸传感器阵列121检测表面116上的触摸的用户界面。1 shows a block diagram of an example embodiment of an electronic system 100 that includes a processing device 110 that may be configured to measure the capacitance of a touch-sensitive surface and generate adjustments for compensating and/or eliminating tail effects. Electronic system 100 includes a touch-sensitive surface 116 (eg, touch screen, touch pad, etc.) coupled to processing device 110 and host 150 . In some embodiments, touch-sensitive surface 116 is a user interface that uses touch sensor array 121 to detect touches on surface 116 .
在图1的示例实施例中,触摸传感器121包括在基板的单层上交错而没有彼此交叉(例如,在SLIM型中)的传感器电极121(1)-121(N)(其中,N是正整数)。触摸传感器121经由传送多个信号的一个或多个模拟总线115被耦合到处理装置110的引脚113(1)-113(N)。为了便于说明,在这个实施例中,每个电极121(1)-121(N)被表示为电容器。触摸传感器121中的每个电极的自电容通过处理装置110中的电容式传感器101来测量。在某些实施例中,取决于触摸传感器的类型,电容式传感器可以经配置检测当导电体(例如,笔尖,用户的手指等)在接触一个或多个电极时电极的互电容。In the example embodiment of FIG. 1 , touch sensor 121 includes sensor electrodes 121(1)-121(N) (where N is a positive integer) interleaved on a single layer of a substrate without intersecting each other (e.g., in a SLIM type). ). Touch sensor 121 is coupled to pins 113(1)-113(N) of processing device 110 via one or more analog buses 115 that carry a plurality of signals. For ease of illustration, each electrode 121(1)-121(N) is represented as a capacitor in this embodiment. The self-capacitance of each electrode in touch sensor 121 is measured by capacitive sensor 101 in processing device 110 . In some embodiments, depending on the type of touch sensor, a capacitive sensor may be configured to detect the mutual capacitance of one or more electrodes when a conductive object (eg, a pen tip, a user's finger, etc.) is in contact with one or more electrodes.
电容式传感器101(也仅称为“传感器”)可以包括将电容转换为测量值的张弛振荡器或其他装置。电容式传感器101还可以包括测量振荡器输出的计数器或计时器。电容式传感器101还可以包括将计数值(例如,电容值)转换为检测判定(也称为切换检测判定)或相对幅值的软件组件。在某些实施例中,通过电容式传感器101获得的测量值可以是表示信号的一个或多个特性的信号值;在某些实施例中,信号值可以另外是或改为基于信号特性(例如,诸如电压和/或电流幅值、原电容等)从测量值推导的值。需要指出的是,测量电容有各种已知方法,诸如电流对电压相移测量、电阻器-电容器充电计时、电容桥分频器、电荷转移、逐次逼近、sigma-delta调制器、电荷积累电路、场效应、互电容、频移或其他电容测量算法。需要指出的是,取代评估相对于阈值的原始计数,电容式传感器可以评估其它测量结果以确定用户交互。例如,在具有sigma-delta调制器的电容式传感器中,电容式传感器可以评估输出的脉冲宽度的比率,以取代在特定阈值之上或下的原始计数。Capacitive sensor 101 (also referred to simply as "sensor") may include a relaxation oscillator or other device that converts capacitance into a measurement. Capacitive sensor 101 may also include a counter or timer that measures the output of the oscillator. Capacitive sensor 101 may also include a software component that converts a count value (eg, a capacitance value) into a detection decision (also referred to as a switch detection decision) or a relative magnitude. In some embodiments, measurements obtained by capacitive sensor 101 may be signal values indicative of one or more characteristics of the signal; in some embodiments, signal values may additionally or instead be based on signal characteristics (e.g. , such as voltage and/or current magnitudes, primary capacitance, etc.) values derived from measured values. It should be noted that there are various known methods of measuring capacitance such as current versus voltage phase shift measurement, resistor-capacitor charging timing, capacitive bridge divider, charge transfer, successive approximation, sigma-delta modulator, charge accumulation circuit , field effect, mutual capacitance, frequency shift or other capacitance measurement algorithms. It should be noted that instead of evaluating raw counts against thresholds, capacitive sensors may evaluate other measurements to determine user interaction. For example, in a capacitive sensor with a sigma-delta modulator, the capacitive sensor can evaluate the ratio of the pulse width of the output to replace raw counts above or below a certain threshold.
在图1的示例实施例中,处理装置110还包括处理逻辑102。处理逻辑102的操作可以在固件中实施;另选地,它们可以在硬件或软件中实施。处理逻辑102经配置执行实施用于如本文所述校正尾端效应的技术的操作。例如,处理逻辑102可以接收来自电容式传感器101的测量结果,调整测量结果以补偿/消除尾端效应,并随后使用调整后的测量结果以确定触摸传感器121的状态,诸如检测物体(例如,手指、笔尖等)是否在触摸传感器上或接近触摸传感器(例如,确定物体的存在),物体被检测在触摸传感器上的什么地方(例如,确定物体的定位),跟踪物体的运动,或与在触摸传感器的被检测物体相关的其他信息。In the example embodiment of FIG. 1 , processing device 110 also includes processing logic 102 . The operations of processing logic 102 may be implemented in firmware; alternatively, they may be implemented in hardware or software. Processing logic 102 is configured to perform operations that implement techniques for correcting tail effects as described herein. For example, processing logic 102 may receive measurements from capacitive sensor 101, adjust the measurements to compensate/remove tailing effects, and then use the adjusted measurements to determine a state of touch sensor 121, such as detecting an object (e.g., a finger). , stylus, etc.) is on or near the touch sensor (e.g., to determine the presence of an object), where an object is detected on the touch sensor (e.g., to determine the location of the object), track the motion of the object, or Other information about the detected object of the sensor.
在另一个实施例中,取代执行在处理装置(例如,诸如处理装置110)中的处理逻辑的操作,处理装置可以向主机(例如,诸如主机150)发送原始数据或部分处理过的数据。如图1中所示,主机150可以包括执行处理逻辑102的上述部分或全部操作的判定逻辑151。判定逻辑151的操作可以在固件、硬件、软件或它们的组合中实施。主机150可以包括应用152中的高级应用编程接口(API),其执行接收到数据的例程,诸如补偿灵敏度差异、其他补偿算法、基准更新例程、启动和/或初始化例程、插值运算、缩放操作和/或实施如本文所述用于校正尾端效应的技术的操作。关于处理逻辑102描述的操作可以在判定逻辑151、应用152中实施,或在处理装置110外部的其他硬件、软件和/或固件中实施。在某些其他实施例中,处理装置110可以是主机150。In another embodiment, instead of executing operations of processing logic in a processing device (eg, such as processing device 110), the processing device may send raw data or partially processed data to a host (eg, such as host 150). As shown in FIG. 1 , the host 150 may include decision logic 151 that performs some or all of the above-described operations of the processing logic 102 . The operations of decision logic 151 may be implemented in firmware, hardware, software, or a combination thereof. Host 150 may include high-level application programming interfaces (APIs) in applications 152 that perform routines for receiving data, such as compensation for sensitivity differences, other compensation algorithms, baseline update routines, startup and/or initialization routines, interpolation operations, Scaling operations and/or operations implementing techniques for correcting for tail effects as described herein. The operations described with respect to processing logic 102 may be implemented in decision logic 151 , applications 152 , or in other hardware, software, and/or firmware external to processing device 110 . In some other embodiments, processing device 110 may be host 150 .
在另一实施例中,处理装置110也可以包括非感应动作块103。这个块103可以被用于处理数据和/或从主机150接收数据/向主机150传送数据。例如,另外的组件可以被实施,以与触摸传感器121一起操作处理装置110(例如,键盘、小键盘、鼠标、轨迹球、LED、显示器或其他外围装置)。In another embodiment, the processing device 110 may also include a non-sensing action block 103 . This block 103 may be used for processing data and/or receiving/transmitting data from/to the host 150 . For example, additional components may be implemented to operate processing device 110 in conjunction with touch sensor 121 (eg, a keyboard, keypad, mouse, trackball, LED, display, or other peripheral device).
处理装置110可以驻留在公共载体基板(诸如例如集成电路(IC)管芯基板或多芯片模块基板)上。另选地,处理装置110的组件可以是一个或多个独立的集成电路和/或分立元件。在一个实施例中,处理装置110可以是在单IC芯片上制造的芯片上可编程系统,诸如,例如由加利福尼亚州圣何塞的Cypress半导体公司开发的芯片处理装置上可编程系统(PSoCTM)。另选地,处理装置110可以是本领域的普通技术人员已知的一种或多种其他处理装置,诸如微处理器或中央处理单元、控制器、专用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或其他可编程装置。在替代实施例中,例如,处理装置110可以是网络处理器,该网络处理器具有包括芯单元和多个微引擎的多个处理器。另外,处理装置110可以包括通用处理装置和专用处理装置的任何组合。The processing device 110 may reside on a common carrier substrate such as, for example, an integrated circuit (IC) die substrate or a multi-chip module substrate. Alternatively, components of processing device 110 may be one or more separate integrated circuits and/or discrete components. In one embodiment, the processing device 110 may be a programmable system on a chip fabricated on a single IC chip, such as, for example, the Processing Programmable System on a Chip (PSoC™ ) developed by Cypress Semiconductor Corporation of San Jose, California. Alternatively, processing device 110 may be one or more other processing devices known to those of ordinary skill in the art, such as a microprocessor or central processing unit, controller, special purpose processor, digital signal processor (DSP) , Application Specific Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA), or other programmable device. In an alternative embodiment, for example, processing device 110 may be a network processor having multiple processors including core units and multiple microengines. Additionally, the processing device 110 may comprise any combination of general-purpose and special-purpose processing devices.
在一个实施例中,电子系统100在包括触摸感应表面116的装置中实施为用户界面,诸如手持式电子装置、便携式和/或智能电话、蜂窝电话、笔记本电脑、个人计算机、个人数据辅助(PDA)、电话亭、键盘、电视、远程控制器、监视器、掌上多媒体装置、掌上视频播放器、游戏装置、家庭或工业电器控制板或其他计算机外围装置或输入装置。另选地,电子系统100可以被用于其他类型的装置中。需要指出的是,电子系统100的组件可以包括上述的所有组件。另选地,电子系统100可以只包括上述组件中的某些组件,或包括未在这里列出的另外组件。In one embodiment, the electronic system 100 is implemented as a user interface in a device that includes a touch-sensitive surface 116, such as a handheld electronic device, a portable and/or smart phone, a cellular phone, a notebook computer, a personal computer, a personal data assistant (PDA), etc. ), telephone booths, keyboards, televisions, remote controls, monitors, handheld multimedia devices, handheld video players, gaming devices, home or industrial electrical control panels or other computer peripherals or input devices. Alternatively, electronic system 100 may be used in other types of devices. It should be pointed out that the components of the electronic system 100 may include all the above-mentioned components. Alternatively, the electronic system 100 may include only some of the above-mentioned components, or include additional components not listed here.
图2是示出将所测量的电容转换为坐标的电容式触摸传感器阵列121(也被称为“触摸传感器”)和电容式传感器101(也被只称为“传感器”)的一个实施例的框图。各坐标基于所测量的电容来计算。在一个实施例中,触摸传感器121和电容式传感器101在诸如电子系统100的系统中实施。触摸传感器121包括具有N个接收电极和M个发送电极的矩阵225。例如,矩阵225包括发送电极(TX)222和接收电极(RX)223。矩阵225中的每个电极通过多路分配器212和多路复用器213与电容式感应电路201连接。2 is a diagram illustrating one embodiment of a capacitive touch sensor array 121 (also referred to as a "touch sensor") and capacitive sensor 101 (also referred to simply as a "sensor") that converts measured capacitances into coordinates. block diagram. Each coordinate is calculated based on the measured capacitance. In one embodiment, touch sensor 121 and capacitive sensor 101 are implemented in a system such as electronic system 100 . The touch sensor 121 includes a matrix 225 having N receive electrodes and M transmit electrodes. For example, matrix 225 includes transmit electrodes (TX) 222 and receive electrodes (RX) 223 . Each electrode in matrix 225 is connected to capacitive sensing circuit 201 through demultiplexer 212 and multiplexer 213 .
电容式传感器101包括多路复用器控制器211、多路分配器212和多路复用器213、时钟发生器214、信号发生器215、解调电路216以及模数转换器(ADC)217。ADC 217与触摸坐标转换器218进一步耦合。触摸坐标转换器218向处理逻辑102输出信号。Capacitive sensor 101 includes multiplexer controller 211 , demultiplexer 212 and multiplexer 213 , clock generator 214 , signal generator 215 , demodulation circuit 216 and analog-to-digital converter (ADC) 217 . ADC 217 is further coupled with touch coordinate converter 218 . Touch coordinate converter 218 outputs signals to processing logic 102 .
矩阵225中的发送电极和接收电极可以被布置,使得每个发送电极与在相同基板层(例如,单层)上的接收电极交错,但是没有与接收电极交叉同时保持它们电气(例如,电流)隔离。因此,每个发送电极可以与接收电极中的每个电容耦合。例如,发送电极222在矩阵225的传感器元件区226与接收电极223电容耦合,其中,接收电极223的“E”形部与发送电极222的“梳齿”形部交错。在矩阵225中示出的电极图案中,在相同水平面的“E”形部在触摸传感器121的外圈(bezel)部分(未示出)中彼此电耦合以形成单个(水平)接收电极,而每个发送电极是“梳齿”形的并从矩阵225的顶部到底部运行(垂直)。The transmit and receive electrodes in matrix 225 may be arranged such that each transmit electrode is interleaved with receive electrodes on the same substrate layer (e.g., a single layer), but not intersected with receive electrodes while keeping them electrically (e.g., galvanically) isolation. Thus, each transmit electrode can be capacitively coupled with each of the receive electrodes. For example, transmit electrodes 222 are capacitively coupled to receive electrodes 223 at sensor element region 226 of matrix 225 , wherein the “E” shaped portions of receive electrodes 223 are interleaved with the “comb tooth” shaped portions of transmit electrodes 222 . In the electrode pattern shown in matrix 225, "E" shaped portions at the same level are electrically coupled to each other in a bezel portion (not shown) of touch sensor 121 to form a single (horizontal) receive electrode, while Each transmit electrode is "comb" shaped and runs from the top to the bottom of the matrix 225 (vertically).
在某些实施例中,电容式传感器(例如,诸如图1中的传感器101)可以经配置使用互电容感应技术,根据该技术,在两个电极的传感器元件区域呈现的互电容可以通过处理装置(例如,诸如图1中的处理装置120)来测量。在一个或多个传感器元件区域的这种互电容的变化允许处理逻辑确定接触在触摸传感器上的定位。通过互电容感应,一组电极(例如,诸如列电极)被指定为发送(TX)电极。发送电极被通过发送多路复用器施加于发送电极的TX信号驱动。另一组电极(例如,诸如行电极)被指定为发送(TX)电极。在行电极和列电极彼此交错的区域形成的传感器元件的互电容可以通过采样每个接收电极上的信号来测量。在某些实施例中,接收多路复用器可以用于采样一个或多个接收电极上的信号并提供返回到处理逻辑102的接收测量信号(和/或到处理装置的另一组件)。In some embodiments, a capacitive sensor (eg, such as sensor 101 in FIG. 1 ) can be configured to use a mutual capacitance sensing technique, whereby a mutual capacitance present at the sensor element region of two electrodes can be detected by a processing device. (for example, such as the processing device 120 in FIG. 1) to measure. This change in mutual capacitance at the area of one or more sensor elements allows processing logic to determine the location of a contact on the touch sensor. Through mutual capacitance sensing, a set of electrodes (eg, such as column electrodes) is designated as transmit (TX) electrodes. The transmit electrodes are driven by the TX signal applied to the transmit electrodes through the transmit multiplexer. Another set of electrodes (eg, such as row electrodes) is designated as transmit (TX) electrodes. The mutual capacitance of the sensor elements formed in the regions where the row and column electrodes intersect each other can be measured by sampling the signal on each receive electrode. In some embodiments, a receive multiplexer may be used to sample the signal on one or more receive electrodes and provide a receive measurement signal back to the processing logic 102 (and/or to another component of the processing device).
返回参考图2,时钟发生器214向信号发生器215提供时钟信号,信号发生器215产生供应给触摸传感器121的发送电极的发送(TX)信号224。在一个实施例中,信号发生器215包括根据来自时钟发生器214的时钟信号操作的一组开关。该开关可以通过将信号发生器215的输出端定期连接到第一电压并随后连接到第二电压生成TX信号224,其中,所述第一电压和第二电压是不同的。Referring back to FIG. 2 , the clock generator 214 provides a clock signal to the signal generator 215 which generates a transmit (TX) signal 224 supplied to the transmit electrodes of the touch sensor 121 . In one embodiment, signal generator 215 includes a set of switches that operate according to a clock signal from clock generator 214 . The switch may generate the TX signal 224 by periodically connecting the output of the signal generator 215 to a first voltage and then to a second voltage, wherein the first voltage and the second voltage are different.
信号发生器215的输出端与多路分配器212连接,这允许TX信号224被施加到触摸传感器121的M个发送电极中的任一个。在一个实施例中,多路复用器控制器211控制多路分配器212,使得TX信号224以受控序列被施加于每个发送电极222。多路分配器212还可以用于接地、悬浮或将备用信号连接到当前未施加TX信号224的其他发送电极。The output of the signal generator 215 is connected to the demultiplexer 212 , which allows the TX signal 224 to be applied to any one of the M transmit electrodes of the touch sensor 121 . In one embodiment, multiplexer controller 211 controls demultiplexer 212 such that TX signal 224 is applied to each transmit electrode 222 in a controlled sequence. The demux 212 may also be used to ground, float, or connect a spare signal to other transmit electrodes to which the TX signal 224 is not currently applied.
因为发送电极与接收电极之间的电容耦合,施加于每个发送电极的TX信号224感应在每个接收电极内的电流。例如,当TX信号224通过多路分配器212被施加于发送电极222时,TX信号224在感应矩阵225的接收电极上的接收(RX)信号227。在每个接收电极上的RX信号227可以随后通过使用将N个接收电极中的每个按顺序连接到解调电路216的多路复用器213按顺序进行测量。The TX signal 224 applied to each transmit electrode induces a current in each receive electrode because of the capacitive coupling between the transmit electrodes and the receive electrodes. For example, when the TX signal 224 is applied to the transmit electrodes 222 through the demultiplexer 212 , the TX signal 224 receives (RX) a signal 227 on the receive electrodes of the sense matrix 225 . The RX signal 227 on each receive electrode may then be measured sequentially by using a multiplexer 213 that sequentially connects each of the N receive electrodes to the demodulation circuit 216 .
与每个传感器元件相关联的互电容(例如,给定TX电极与给定RX电极交错的区域)可以使用多路分配器212和多路复用器213通过选择TX电极和RX电极的每个可用组合来感应。为提高性能,多路复用器213还可以被分段,以允许矩阵225中的一个以上的接收电极被布线到另外的解调电路216。在其中具有接收电极解调电路216的实例具有1对1对应的优化配置中,多路复用器213可以不存在于该系统中。The mutual capacitance associated with each sensor element (e.g., the area where a given TX electrode is interleaved with a given RX electrode) can be determined by selecting each of the TX electrodes and RX electrodes using demultiplexer 212 and multiplexer 213. Combinations are available for sensing. To improve performance, multiplexer 213 may also be segmented to allow more than one receive electrode in matrix 225 to be routed to additional demodulation circuitry 216 . In an optimal configuration in which instances with receive electrode demodulation circuit 216 have a 1-to-1 correspondence, multiplexer 213 may not be present in the system.
当物体(诸如手指)趋近电极矩阵225时,该物体引起只有某些电极之间的互电容的减少。例如,如果手指被放置接近传感器元件区226(发送电极222与接收电极223交错的区域),手指的存在将减少电极222与电极223之间互电容的减少。因此,触摸传感器121上手指的定位可以通过识别具有减少互电容的一个或多个接收电极以及在一个或多个接收电极上的减少互电容被测量的时间通过识别向其施加TX信号224的发送电极来确定。When an object, such as a finger, approaches electrode matrix 225, the object causes a reduction in mutual capacitance between only certain electrodes. For example, if a finger is placed close to sensor element region 226 (the area where transmit electrodes 222 and receive electrodes 223 intersect), the presence of the finger will reduce the reduction in mutual capacitance between electrodes 222 and 223 . Accordingly, the location of a finger on touch sensor 121 may be measured by identifying one or more receive electrodes with reduced mutual capacitance and the time at which the reduced mutual capacitance on one or more receive electrodes is measured by identifying the transmit signal to which TX signal 224 is applied. electrode to determine.
通过确定与通过矩阵225中的发送电极和接收电极形成的每个传感器元件相关联的互电容,一个或多个触摸接触的定位可以被确定。该确定可以是连续、并行的,或可以在常用电极处更频繁发生。By determining the mutual capacitance associated with each sensor element formed by the transmit and receive electrodes in matrix 225, the location of one or more touch contacts may be determined. This determination may be serial, parallel, or may occur more frequently at common electrodes.
在某些实施例中,用于检测手指或导电体的存在的其他方法可以在被用在手指或导电体在一个或多个电极引起电容增加的位置,其中,所述一个或多个电极可以以特定交错图案来布置。例如,接近触摸传感器的电极放置的手指可能引入增加电极与接地之间总电容的附加对地电容。手指的定位可以从检测到增加电容处的一个或多个电极的定位来确定。In certain embodiments, other methods for detecting the presence of a finger or conductive object may be used where the finger or conductive object causes an increase in capacitance at one or more electrodes that may Arranged in a specific staggered pattern. For example, a finger placed close to an electrode of a touch sensor may introduce additional capacitance to ground that increases the total capacitance between the electrode and ground. The location of the finger may be determined from the location of one or more electrodes where increased capacitance is detected.
所感应的电流信号227通过解调电路216整流。解调电路216输出的整流电流可以随后被滤波并被ADC 217转换为数字代码。The sensed current signal 227 is rectified by the demodulation circuit 216 . The rectified current output by demodulation circuit 216 may then be filtered and converted to digital code by ADC 217 .
数字代码可以随后被触摸坐标转换器218转换为指示触摸传感器121的输入的位置的触摸位置坐标。触摸位置坐标作为输入信号被传送给处理逻辑102。在一个实施例中,输入信号在处理逻辑102的输入端收到。在一个实施例中,该输入端可以经配置接收指示多个行坐标和多个列坐标的电容测量结果。另选地,该输入端可以经配置接收行坐标和列坐标。The digital code may then be converted by touch coordinate converter 218 into touch location coordinates indicating the location of the touch sensor 121's input. The touch location coordinates are passed as input signals to processing logic 102 . In one embodiment, the input signal is received at an input of processing logic 102 . In one embodiment, the input may be configured to receive capacitance measurements indicative of a plurality of row coordinates and a plurality of column coordinates. Alternatively, the input may be configured to receive row and column coordinates.
在某些实施例中,处理逻辑102可以经配置生成(或例如从触摸坐标接收器218接收)表示差分信号的电容测量结果(在本文也被称为“差分信号值”)。例如,处理逻辑102可以经配置将给定传感器元件的差分信号确定为传感器元件(例如,当导电体不接触触摸传感器并且触摸传感器不被扫描时)的稳定(settled)/基准(例如,预期或完全充电)电容与作为扫描操作的一部分被测量的传感器元件的电容(例如,当导电体可能在或可能不接触触摸传感器)之间的差异。用于计算传感器元件的差分信号的电容可以是传感器元件的自电容和/或互电容。In some embodiments, processing logic 102 may be configured to generate (or receive, for example, from touch coordinate receiver 218 ) capacitance measurements (also referred to herein as “differential signal values”) representing differential signals. For example, processing logic 102 may be configured to determine a differential signal for a given sensor element as a settled/reference (e.g., expected or The difference between the fully charged) capacitance and the capacitance of the sensor element measured as part of the scan operation (eg, when a conductive object may or may not be in contact with the touch sensor). The capacitance used to calculate the differential signal of the sensor element may be the self-capacitance and/or the mutual capacitance of the sensor element.
在各个实施例中,处理逻辑可以基于表示传感器元件的自电容和/或互电容的电容测量结果计算触摸传感器中每个传感器元件的差分信号。例如,给定传感器元件的自电容可以包括在传感器元件与基准电压(例如,诸如接地电压)之间形成的电容。给定传感器元件的互电容可以包括在形成传感器元件的发送电极和接收电极和/或与电容式传感器元件电隔离的一个或多个导电体(例如,诸如笔尖或用户的手指)之间形成的电容。In various embodiments, processing logic may calculate a differential signal for each sensor element in the touch sensor based on capacitance measurements indicative of self-capacitance and/or mutual capacitance of the sensor elements. For example, the self-capacitance of a given sensor element may include the capacitance formed between the sensor element and a reference voltage (eg, such as ground voltage). The mutual capacitance of a given sensor element may include the capacitance formed between the transmit and receive electrodes forming the sensor element and/or one or more electrical conductors (e.g., such as the tip of a pen or a user's finger) that are electrically isolated from the capacitive sensor element. capacitance.
单层触摸传感器single layer touch sensor
过去已尝试减少层的数量,并因此降低触摸传感器的制造成本。在某些实施例中,单层触摸传感器仅适用于单个触摸接收。这些触敏传感器通常使用一系列电极,该电极的宽度从电极的一端到另一端线性改变。利用沿电极长度的信号变化,沿电极轴的坐标被确定。在到电极轴垂直方向的坐标通过常规数字化方法确定。在其他实施例中,单层多触摸传感器使用填充传感器区域的垫阵列,并且每个垫(或电极)以自电容感应模式单独感应。此类实施例通常需要用于每个感应垫的独立迹线和控制器芯片上很大数量的测量通道和引脚,以得到甚至很小尺寸传感器的可接受精度。Attempts have been made in the past to reduce the number of layers, and thus the manufacturing cost of the touch sensor. In some embodiments, a single layer touch sensor is only suitable for a single touch reception. These touch sensitive sensors typically use a series of electrodes whose width changes linearly from one end of the electrode to the other. Using the signal variation along the length of the electrode, coordinates along the electrode axis are determined. The coordinates in the direction perpendicular to the electrode axis are determined by conventional digital methods. In other embodiments, a single layer multi-touch sensor uses an array of pads filling the sensor area, and each pad (or electrode) senses individually in a self-capacitance sensing mode. Such embodiments typically require separate traces for each sensing pad and a significant number of measurement channels and pins on the controller chip to obtain acceptable accuracy for even small sized sensors.
在某些实施例中,触摸传感器装置包括具有单层有效区域的触摸传感器。另外,触摸传感器设有将导线数量减到最小的接线图以及同时检测多个接触(例如,诸如“触摸”)所需的迹线。结果,触摸传感器的整个制造成本以及相应触摸传感器装置的整个制造成本可得以降低。In some embodiments, a touch sensor device includes a touch sensor having a single layer active area. In addition, touch sensors are provided with a wiring diagram that minimizes the number of wires and traces required to detect multiple contacts simultaneously (eg, such as "touch"). As a result, the overall manufacturing costs of the touch sensor and of the corresponding touch sensor device can be reduced.
图3A和3B是根据示例实施例的触摸传感器装置301(例如,诸如电容式感应装置)的简化图。在这个实施例中,触摸传感器301是包括具有有效区域302和非有效区域303的触摸传感器的“触摸屏”装置。如本文说使用的,触摸传感器的“有效区域”和“触摸感应区域”是指传感器能够生成信号、引起电容变化或以其他方式检测一个或多个接触的区域。触摸传感器的“非有效区域”和“非感应区域”是指未检测到或以其他方式响应接触的区域。触摸传感器装置301包括布置在触摸传感器305(例如,诸如传感器阵列或组件)下面的液晶显示器(LCD)面板304。作为一般理解,有效区域302可以对应于触摸传感器305的透明(例如,可视)区域的尺寸和形状,而非有效区域303可以对应于触摸传感器305的非透明(例如,非可视)区域,该非透明区域可以通过阻止接触效果的外壳(casing)(未示出)或其他装置来覆盖。触摸传感器305包括通过粘合剂307附接到与LCD面板相对的面的叠层(或保护层)306。触摸传感器装置301还包括从其延伸的柔性印刷电路(FPC)尾部308,该尾部可以被用于将电信号布线至触摸传感器305和从触摸传感器305布线电信号。3A and 3B are simplified diagrams of a touch sensor device 301 (eg, such as a capacitive sensing device) according to an example embodiment. In this embodiment, touch sensor 301 is a “touch screen” device that includes a touch sensor having an active area 302 and an inactive area 303 . As used herein, the "active area" and "touch-sensitive area" of a touch sensor refer to the area where the sensor is capable of generating a signal, causing a change in capacitance, or otherwise detecting one or more contacts. The "non-active area" and "non-sensing area" of a touch sensor are areas that do not detect or otherwise respond to contact. Touch sensor arrangement 301 includes a liquid crystal display (LCD) panel 304 disposed below a touch sensor 305 (eg, such as a sensor array or assembly). As a general understanding, active area 302 may correspond to the size and shape of a transparent (e.g., viewable) area of touch sensor 305, while inactive area 303 may correspond to a non-transparent (e.g., non-visible) area of touch sensor 305, This non-transparent area may be covered by a casing (not shown) or other means to prevent contact effects. Touch sensor 305 includes a laminate (or protective layer) 306 attached by adhesive 307 to the face opposite the LCD panel. Touch sensor arrangement 301 also includes a flexible printed circuit (FPC) tail 308 extending therefrom, which may be used to route electrical signals to and from touch sensor 305 .
图3C示出根据示例实施例的触摸传感器310(例如,诸如电容式传感器阵列)的一部分。触摸传感器310包括具有有效区域(或中心部)314的基板312以及接近基板312的边缘的非有效区域(或外圈部)316。基板312的中心部314可以对应于触摸传感器装置的有效(例如,触摸感应)区域(例如,诸如图3A中的触摸传感器装置301的区域302)。基板312的外圈部316可以对应于触摸传感器装置的非有效(例如,非感应)区域(例如,诸如图3A中的触摸传感器装置301的区域303)。在某些实施例中,基板312由具有高光透射率的电绝缘材料(诸如玻璃、聚对苯二甲酸乙二醇酯(PET)或它们的组合)制成。FIG. 3C illustrates a portion of a touch sensor 310 (eg, such as a capacitive sensor array) according to an example embodiment. The touch sensor 310 includes a substrate 312 having an active area (or central portion) 314 and an inactive area (or outer peripheral portion) 316 near the edge of the substrate 312 . Central portion 314 of substrate 312 may correspond to an active (eg, touch-sensitive) area of a touch-sensor device (eg, such as area 302 of touch-sensor device 301 in FIG. 3A ). Outer peripheral portion 316 of substrate 312 may correspond to an inactive (eg, non-sensing) area of the touch sensor device (eg, such as area 303 of touch sensor device 301 in FIG. 3A ). In some embodiments, the substrate 312 is made of an electrically insulating material with high light transmission, such as glass, polyethylene terephthalate (PET), or combinations thereof.
电极阵列在基板312的中心部314上形成,该电极阵列包括第一组(或多个)电极318(也被称为“第一电极”)和第二组(或多个)电极320(也被称为“第二电极”)。第一电极318和第二电极320均在基板312的相同层(例如,单层)上形成,但是彼此没有交叉并且同时保持彼此电(例如,电流)隔离。在某些实施例中,为了形成第一电极和第二电极,透明导电材料层(诸如铟锡氧化物(ITO)或银纳米粒子膜)可以被沉积在基板312上(或之上)。如后文将更详细描述的,在触摸传感器310上执行的扫描操作期间,第一电极318可以被用作发送(TX)电极,以及第二电极320可以被用作接收(RX)电极。不过,应当理解,这些TX和RX角色仅是示例性的,并且在各个其他实施例中可以被转换。An electrode array is formed on the central portion 314 of the substrate 312 and includes a first set (or plurality) of electrodes 318 (also referred to as “first electrodes”) and a second set (or plurality) of electrodes 320 (also referred to as “first electrodes”). referred to as the "second electrode"). Both the first electrode 318 and the second electrode 320 are formed on the same layer (eg, a single layer) of the substrate 312 , but do not cross each other while remaining electrically (eg, galvanically) isolated from each other. In some embodiments, to form the first and second electrodes, a layer of transparent conductive material, such as indium tin oxide (ITO) or a silver nanoparticle film, may be deposited on (or over) the substrate 312 . As will be described in more detail later, during a scan operation performed on the touch sensor 310 , the first electrode 318 may be used as a transmit (TX) electrode, and the second electrode 320 may be used as a receive (RX) electrode. However, it should be understood that these TX and RX roles are exemplary only and may be switched in various other embodiments.
第一电极318是如图3C所示的具有面向左侧的梳齿构件的大致“梳齿”形。在图3C中所示的触摸传感器310的部分中,包括三个第一电极318(例如,318a、318b和318c)和两个第二电极320(例如,320a和320b)。三个第一电极是基本垂直的并大致沿基板312的中心部314的整个长度延伸。应当理解,虽然其他实施例可以使用在不同于垂直的方向延伸的不同数量的第一电极,但是,在其他实施例中,第一电极的一个子集可以只围绕中心部的下半个长度延伸,而第一电极的另一子集从基板底部的外圈部向上延伸。The first electrode 318 is generally "comb" shaped as shown in FIG. 3C with a left-facing comb member. In the portion of the touch sensor 310 shown in FIG. 3C, three first electrodes 318 (eg, 318a, 318b, and 318c) and two second electrodes 320 (eg, 320a and 320b) are included. The three first electrodes are substantially vertical and extend substantially along the entire length of the central portion 314 of the substrate 312 . It should be understood that, while other embodiments may use a different number of first electrodes extending in a direction other than perpendicular, in other embodiments a subset of the first electrodes may only extend around the lower half of the length of the central portion , while another subset of the first electrodes extends upward from the outer ring portion at the bottom of the substrate.
根据本文所述的用于校正尾端效应的技术,第二电极包括一个或多个成形部、一个或多个主迹线以及至少一个次级迹线,其中,主迹线和成形部在触摸传感器的有效(触摸感应)区域中布线。如本文所使用的,主迹线也被称为“线路”或“迹线线路”。电极的“成形”部具有大于主迹线宽度的宽度和不同于基本直线的几何形状。成形部被电连接到相应的主迹线,并且每个主迹线被电耦合到触摸传感器的非有效(非感应)区域中的次级迹线。给定第二电极的主迹线沿进一步远离给定第二电极的非有效区域(例如,触摸传感器的外圈部)形成的一个或多个其他第二电极的一个或多个其他主迹线的至少一部分在触摸传感器的有效区域中布线。此外,给定第二电极的主迹线沿给定第一电极的至少一部分在有效区域中布线。电耦合于给定第二电极的主迹线的次级迹线在触摸传感器的非有效区域(例如,诸如外圈部)中布线。因此,给定第二电极的主迹线可能受导电体接触的影响(这可能对在扫描操作期间从给定第二电极测量的信号的变化有影响),因为主迹线在触摸传感器的有效、触摸感应区域中被布线。另一方面,次级迹线通常受此类接触影响,因为次级迹线在触摸传感器的非有效、非感应区域中布线,并因此不在扫描操作期间对从第二电极测量的信号有影响。In accordance with the techniques described herein for correcting tailing effects, the second electrode includes one or more shaped portions, one or more primary traces, and at least one secondary trace, wherein the primary trace and the shaped portion touch Routing in the active (touch-sensing) area of the sensor. As used herein, master traces are also referred to as "lines" or "trace lines." The "shaped" portion of the electrode has a width greater than the main trace width and a geometry other than substantially straight. The shaped portions are electrically connected to respective primary traces, and each primary trace is electrically coupled to a secondary trace in an inactive (non-sensing) area of the touch sensor. The main trace of a given second electrode is along one or more other main traces of one or more other second electrodes formed further away from the inactive area of the given second electrode (e.g., the outer peripheral portion of the touch sensor) At least a portion of is routed in the active area of the touch sensor. Additionally, the main trace for a given second electrode is routed in the active area along at least a portion of the given first electrode. The secondary trace electrically coupled to the primary trace of a given second electrode is routed in an inactive area of the touch sensor (eg, such as the outer ring portion). Therefore, the main trace of a given second electrode may be affected by the contact of the electrical conductor (which may have an effect on the change of the signal measured from the given second electrode during the scanning operation), because the main trace is in the active area of the touch sensor. , is routed in the touch sensing area. Secondary traces, on the other hand, are generally affected by such contacts because they are routed in the non-active, non-sensing area of the touch sensor, and thus have no effect on the signal measured from the second electrode during the scanning operation.
作为说明,在图3C中,第一电极318被布置在列322中,并且第二电极320被布置在行324中,其中,每个列322包括第一电极318中的一个,以及每个行324包括第二电极320中的一个。第二电极320中的每个包括如图3C所示的向右延伸的大致“E”形部。给定第二电极320的每个“E”形部与第一电极318的对应一个交错(例如,以叉指式图案)。在每个行324内,给定第二电极320的“E”形部彼此电耦合,并且每个“E”形部与相应第一电极318的“梳齿”形构件交错(例如,叉指)。例如,第二电极320b包括三个“E”形部(例如,320b-1,320b-2,320b-3),每个“E”形部被电连接到相应的主迹线(例如,对应326a、326b、326c),其中,所有相应的主迹线在外圈部316中的次级迹线(例如,330b)之上彼此电耦合。需要指出的是,在图3C中示出的指定电极图案仅是示例性的,因此,其他电极形状和交叉图案(可以不是叉指式的)是可能的并且在本文所述的技术的范围内。As an illustration, in FIG. 3C, the first electrodes 318 are arranged in columns 322 and the second electrodes 320 are arranged in rows 324, wherein each column 322 includes one of the first electrodes 318, and each row 324 includes one of the second electrodes 320 . Each of the second electrodes 320 includes a substantially "E" shaped portion extending rightward as shown in FIG. 3C . Each "E" shaped portion of a given second electrode 320 is interleaved with a corresponding one of the first electrodes 318 (eg, in an interdigitated pattern). Within each row 324, the "E" shaped portions of a given second electrode 320 are electrically coupled to each other, and each "E" shaped portion is interleaved (e.g., interdigitated) with "comb tooth" shaped members of a corresponding first electrode 318. ). For example, the second electrode 320b includes three "E" shaped portions (e.g., 320b-1, 320b-2, 320b-3), each "E" shaped portion being electrically connected to a corresponding main trace (e.g., corresponding 326a , 326b , 326c ), where all respective primary traces are electrically coupled to each other over secondary traces (eg, 330b ) in outer ring portion 316 . It should be noted that the specified electrode pattern shown in Figure 3C is exemplary only, therefore, other electrode shapes and interdigitated patterns (may not be interdigitated) are possible and within the scope of the technology described herein .
在图3C中,耦合到第二电极320的成形部的主迹线326基本平行布线并彼此相邻。进一步远离外圈部316的第二电极的主迹线比更靠近外圈部的第二电极的主迹线更长并邻近其他第二电极的更多成形部布线。In FIG. 3C , the main traces 326 coupled to the shaped portion of the second electrode 320 are routed substantially parallel and adjacent to each other. The main traces of the second electrodes further away from the outer ring portion 316 are longer than the main traces of the second electrodes closer to the outer ring portion and are routed adjacent to more shaped portions of the other second electrodes.
第一电极318、第二电极320和主迹线326可以由铟锡氧化物(ITO)制成并以大致平面的方式在相同基板层(例如,单层)上形成。就是说,虽然未在图3C中具体示出,但是第一电极318、第二电极320和主迹线326可以具有大致相同的厚度(例如,300埃(A))并且可以敷设(lay)在大致相同的平面中。The first electrode 318, the second electrode 320, and the main trace 326 may be made of indium tin oxide (ITO) and formed in a substantially planar manner on the same substrate layer (eg, a single layer). That is, although not specifically shown in FIG. 3C , first electrode 318, second electrode 320, and main trace 326 may have approximately the same thickness (eg, 300 Angstroms (A)) and may be laid on in roughly the same plane.
如图3C所示,绝缘材料(体或层)328在基板312的外圈(外部)部316形成或以其他方式与其附接。绝缘材料328覆盖在延伸到外圈部316上的主迹线326的端部,但是需要指出的是,绝缘材料328不在基板312的中心部314之上延伸。绝缘材料328可以由例如环氧树脂或树脂材料制成并具有沉积在基板312上的例如在5与25微米(μm)之间的厚度。在某些实施例中,绝缘材料328可以是附接到基板312的柔性基板,诸如柔性印刷电路(FPC)。绝缘材料328将给定次级迹线330与至少某些主迹线326电隔离。例如,在图3C中,绝缘材料328使次级迹线330b与连接到第二电极320a的主迹线326和不同于电极320b的那些第二电极320的主迹线绝缘。As shown in FIG. 3C , insulating material (body or layer) 328 is formed on or otherwise attached to outer peripheral (outer) portion 316 of substrate 312 . An insulating material 328 covers the ends of the main traces 326 that extend onto the outer ring portion 316 , but it should be noted that the insulating material 328 does not extend over the central portion 314 of the substrate 312 . The insulating material 328 may be made of, for example, an epoxy or resin material and have a thickness deposited on the substrate 312 of, for example, between 5 and 25 micrometers (μm). In some embodiments, insulating material 328 may be a flexible substrate, such as a flexible printed circuit (FPC), attached to substrate 312 . Insulating material 328 electrically isolates a given secondary trace 330 from at least some of primary traces 326 . For example, in FIG. 3C, insulating material 328 insulates secondary trace 330b from primary traces 326 connected to second electrode 320a and those of second electrodes 320 that are different from electrode 320b.
次级迹线(或多个导体)330在基板312的外圈部316中的绝缘材料328上形成。在一个实施例中,次级迹线330由银制成。对图3C的实施例感兴趣的是,给定的次级迹线330电连接到与行324的给定行(并且只有一个)中的给定第二电极320相关联的所有主迹线326。此外,在图3C的实施例中,隔离的次级迹线330电耦合到第一电极318的对应电极。例如,次级迹线330a耦合于第一电极318c。在某些实施例中,为降低外圈部316中的布线区域,外圈区域中的迹线宽度和次级迹线330的间距可以被减到最小。例如,宽度为10-50μm以及间距为10-50μm的金属迹线线路可以被用在外圈区域中。A secondary trace (or plurality of conductors) 330 is formed on the insulating material 328 in the outer circumference portion 316 of the substrate 312 . In one embodiment, secondary traces 330 are made of silver. Of interest to the embodiment of FIG. 3C is that a given secondary trace 330 is electrically connected to all primary traces 326 associated with a given second electrode 320 in a given row (and only one) of rows 324 . Furthermore, in the embodiment of FIG. 3C , isolated secondary traces 330 are electrically coupled to corresponding electrodes of first electrodes 318 . For example, secondary trace 330a is coupled to first electrode 318c. In some embodiments, to reduce the routing area in the outer ring portion 316, the trace width and the pitch of the secondary traces 330 in the outer ring area may be minimized. For example, metal trace lines with a width of 10-50 μm and a pitch of 10-50 μm may be used in the outer ring region.
应当理解,触摸传感器310可以包括未在图3C中示出的另外一组迹线。例如,另外一组接地迹线可以在触摸传感器310的有效区域中形成并且可以大致平行于第一电极318布线。此类接地迹线可以用于提供接地,以便将给定的第一电极318与连接到第二电极320的紧邻/相邻主迹线326电隔离。因此,每个接地迹线可以被电连接到耦合于系统接地的次级迹线330中的至少一个。It should be understood that touch sensor 310 may include an additional set of traces not shown in FIG. 3C . For example, an additional set of ground traces may be formed in the active area of touch sensor 310 and may be routed substantially parallel to first electrode 318 . Such ground traces may be used to provide a ground to electrically isolate a given first electrode 318 from the immediately adjacent/adjacent main trace 326 connected to the second electrode 320 . Accordingly, each ground trace may be electrically connected to at least one of the secondary traces 330 coupled to system ground.
在操作中,次级迹线330被耦合(例如,与其可操作通信)到电子系统(例如,诸如在图2中示出的系统),以便对触摸传感器310执行扫描操作。在扫描操作中,触摸传感器310通过依次向第一电极318中的每个电极(称为“驱动”TX电极)提供信号同时将剩余第一电极318接地来操作。信号在具有与驱动TX电极交错的成形部的这些第二电极320(RX电极)中感应,因为在它们之间耦合的电容。在RX电极中感应的信号通过电子系统中的处理逻辑来测量和/或记录。所测量/记录的信号可以改变(从预先确定的基准值),由于与触摸传感器310的一部分接触的导电体(例如,此类手指或笔尖)的存在。在RX电极上测量的信号变化(例如,从基准值)代表RX电极中的一个或多个与驱动TX电极之间的电容(例如,在“互电容”中)的变化。在测量RX电极上的信号后,通过向下一个TX电极提供信号并以相同的方式测量对应RX电极,继续扫描操作。In operation, secondary trace 330 is coupled (eg, is in operative communication therewith) to an electronic system (eg, such as the system shown in FIG. 2 ) to perform a scan operation on touch sensor 310 . In a scanning operation, touch sensor 310 operates by sequentially providing a signal to each of first electrodes 318 (referred to as a "drive" TX electrode) while grounding the remaining first electrodes 318 . Signals are induced in these second electrodes 320 (RX electrodes) having shaped sections interleaved with the driven TX electrodes because of the capacitance coupled between them. Signals induced in the RX electrodes are measured and/or recorded by processing logic in the electronic system. The measured/recorded signal may change (from a predetermined reference value) due to the presence of an electrical conductor (eg, such a finger or stylus) in contact with a portion of the touch sensor 310 . The signal change measured across the RX electrodes (eg, from a reference value) represents a change in capacitance (eg, in "mutual capacitance") between one or more of the RX electrodes and the driving TX electrodes. After measuring the signal on the RX electrode, the scanning operation continues by providing the signal to the next TX electrode and measuring the corresponding RX electrode in the same way.
图4A-E示出根据本文所述的技术的各个实施例的第一电极318和第二电极320的替代形状、图案和布置。例如,在图4A中示出的实施例包括第一电极318和第二电极320,其包括如与先前关于第一电极和第二电极所讨论的“梳齿”和“E”形结构分别相对的“螺旋”结构。不过,应当理解,可以使用其他形状、图案和布置(如在图4B、4C、4D和4E中示出的各个替代实施例所示)。4A-E illustrate alternative shapes, patterns, and arrangements of first and second electrodes 318, 320, according to various embodiments of the technology described herein. For example, the embodiment shown in FIG. 4A includes a first electrode 318 and a second electrode 320 comprising "comb teeth" and "E" shaped structures as previously discussed with respect to the first and second electrodes, respectively. "spiral" structure. It should be understood, however, that other shapes, patterns and arrangements may be used (as shown in the various alternative embodiments shown in Figures 4B, 4C, 4D and 4E).
在某些实施例中,不同的材料可以用于形成传感器(例如,第一和第二)电极,诸如铜、铝、银或可以形成适当图案的任何合适导电材料。而且,FPC可以用于形成传感器电极。在此类实施例中,在FPC中的各个导电层可以经正确配置形成如上所述的第一电极和第二电极阵列以及形成其主迹线。因此,应当理解,所述电极、迹线和绝缘材料(或体)全部可以通过单个正确配置的FPC形成。如本领域中的技术人员应当理解,此类实施例特别适用于非透明装置,诸如鼠标垫、轨迹板、触摸板等。另外,在某些实施例中,基板可以由其他材料制成,诸如包括乙烯、聚酰胺的任何合适塑料,所述材料取决于特定的装置可能是不透明的。In some embodiments, different materials may be used to form the sensor (eg, first and second) electrodes, such as copper, aluminum, silver, or any suitable conductive material that can be appropriately patterned. Also, FPC can be used to form sensor electrodes. In such embodiments, the various conductive layers in the FPC can be properly configured to form the first and second electrode arrays as described above and form the main traces thereof. Therefore, it should be understood that the electrodes, traces and insulating material (or body) can all be formed by a single properly configured FPC. As will be understood by those skilled in the art, such embodiments are particularly applicable to non-transparent devices, such as mouse pads, trackpads, touchpads, and the like. Additionally, in some embodiments, the substrate may be made of other materials, such as any suitable plastic including vinyl, polyamide, which may be opaque depending on the particular device.
在某些实施例中,触摸传感器可以通过使用替代导电材料(诸如金属网)敷设传感器电极来形成。在此类实施例中,传感器电极通过在PET基板上布置金属网电极来形成。在替代实施例中,金属网传感器电极可以布置在玻璃基板上。在其他实施例中,传感器电极可以用银纳米导线在PET上或用银纳米导线在玻璃基板上形成。在其他实施例中,触摸传感器可以通过将玻璃(或其他透明绝缘)镜片键合到在其上面布置传感器电极图案的另一玻璃上来形成。在另外的其他实施例中,触摸传感器可以通过将玻璃(或其他透明绝缘材料)键合到包含传感器图案的一块PET上来形成。In some embodiments, a touch sensor may be formed by laying down sensor electrodes using an alternative conductive material, such as a metal mesh. In such embodiments, the sensor electrodes are formed by arranging metal mesh electrodes on a PET substrate. In an alternative embodiment, the metal mesh sensor electrodes may be arranged on a glass substrate. In other embodiments, the sensor electrodes can be formed on PET with silver nanowires or on a glass substrate with silver nanowires. In other embodiments, a touch sensor may be formed by bonding a glass (or other transparent insulating) lens to another glass on which the sensor electrode pattern is disposed. In yet other embodiments, the touch sensor may be formed by bonding glass (or other transparent insulating material) to a piece of PET containing the sensor pattern.
因此,本文所述的实施例提供一种触摸传感器装置,其具有在该装置的触摸传感器的有效区域(或部分)中的单层结构,而多层结构可以用在触摸传感器的外圈(或其他非感应)部分中用于布线迹线。此类多层布线允许重复使用迹线,使得触摸传感器使用最少数量的迹线和驱动触摸传感器装置的在电子系统上的最少数量引脚,从而降低相关的制造成本。Thus, embodiments described herein provide a touch sensor device having a single-layer structure in the active area (or portion) of the touch sensor of the device, while a multi-layer structure can be used on the outer circumference (or portion) of the touch sensor other non-sensing) section for routing traces. Such multi-layer wiring allows trace reuse such that the touch sensor uses a minimum number of traces and a minimum number of pins on the electronic system driving the touch sensor device, thereby reducing associated manufacturing costs.
尾端效应tail effect
在单层触摸传感器中的尾端效应可以是响应于导电体(例如,笔尖,用户的手指等)与触摸传感器接触在一个或多个传感器元件中的寄生信号增加或寄生信号减少。在某些实施例中,用于给定传感器元件的尾端效应通过在TX电极与RX电极的主迹线之间耦合的寄生信号引起,该主迹线的成形部在实际接触区域之外并因此不受接触影响。A tailing effect in a single layer touch sensor may be an increase in or a decrease in parasitic signals in one or more sensor elements in response to a conductive object (eg, stylus, user's finger, etc.) in contact with the touch sensor. In some embodiments, the tail effect for a given sensor element is caused by a parasitic signal coupled between the main trace of the TX electrode and the RX electrode, the shaped portion of the main trace is outside the actual contact area and So not affected by contact.
本文所述的用于校正尾端效应的技术提供对来自触摸传感器的特定分段的信号分布图的分析。该分析使用线性近似(例如,基于低于某些尾端效应阈值的传感器元件的测量/推导信号值)以计算校正尾端效应的寄生信号变化的调整值,并在执行位置计算之前从所测量/推导的信号值减去该调整值以计算接触的位置坐标。The techniques described herein for correcting for tailing effects provide analysis of signal profiles from specific segments of a touch sensor. The analysis uses a linear approximation (e.g. based on measured/derived signal values of sensor elements below some tail-effect threshold) to calculate an adjustment value that corrects for spurious signal variations of the tail-effect, and calculates from the measured /The derived signal value is subtracted by this adjustment value to calculate the position coordinates of the contact.
图5示出耦合在触摸传感器的触摸感应区域中具有单层电极图案的触摸传感器面板的一部分中的寄生信号。根据示例实施例,触摸传感器的部分510包括接地迹线512和514、TX电极516和518(被布置为垂直列)和RX电极520、522、524、526、528和530(被布置为水平行)。接地迹线512和514被布置在触摸传感器部分510的触摸感应区域中并大致平行并紧邻TX电极布线。接地迹线(例如,诸如接地迹线514)用于提供接地,以便将给定TX电极(例如,诸如TX电极516)与RX电极的临近/相邻部(例如,诸如RX电极部530a-2和530b-2、528a-2和528b-2、526a-2和526b-2等)电隔离。TX电极516和518中的每个大致垂直布置并包括与RX电极520-530的成形部交错的大致“梳齿”形构件。RX电极520、522、524、526、528和530中的每个在其行中布置,并如所示,包括至少两个大致“E”形部,每个“E”形部电连接到其自身的对应主迹线,每个主迹线通过在触摸传感器的非感应(例如,外圈)区域中的次级迹线(未示出)依次电连接到RX电极的其他主迹线。5 illustrates spurious signals coupled in a portion of a touch sensor panel having a single layer electrode pattern in a touch sensing area of a touch sensor. According to an example embodiment, portion 510 of the touch sensor includes ground traces 512 and 514, TX electrodes 516 and 518 (arranged as vertical columns), and RX electrodes 520, 522, 524, 526, 528, and 530 (arranged as horizontal rows). ). Ground traces 512 and 514 are arranged in the touch sensitive area of touch sensor portion 510 generally parallel to and immediately adjacent to the TX electrode routing. Ground traces (eg, such as ground trace 514) are used to provide grounding to connect a given TX electrode (eg, such as TX electrode 516) to an adjacent/adjacent portion of an RX electrode (eg, such as RX electrode portion 530a-2). and 530b-2, 528a-2 and 528b-2, 526a-2 and 526b-2, etc.) are electrically isolated. Each of the TX electrodes 516 and 518 is arranged generally vertically and includes generally "comb-tooth" shaped members interleaved with the shaped portions of the RX electrodes 520-530. Each of the RX electrodes 520, 522, 524, 526, 528, and 530 is arranged in its row and, as shown, includes at least two generally "E" shaped sections, each "E" shaped section being electrically connected to its Its own corresponding primary trace, each primary trace in turn electrically connected to the other primary traces of the RX electrodes through secondary traces (not shown) in the non-sensitive (eg, outer circle) region of the touch sensor.
具体地,RX电极520包括电连接到主迹线520b-1的成形部520a-1和电连接到主迹线520b-2的成形部520a-2。同样,RX电极522包括电连接到主迹线522b-1的成形部522a-1和电连接到主迹线522b-2的成形部522a-2。RX电极524包括电连接到主迹线524b-1的成形部524a-1和电连接到主迹线524b-2的成形部524a-2。RX电极526包括电连接到主迹线526b-1的成形部526a-1和电连接到主迹线526b-2的成形部526a-2。RX电极528包括电连接到主迹线528b-1的成形部528a-1和电连接到主迹线528b-2的成形部528a-2。最后,RX电极530包括电连接到主迹线530b-1的成形部530a-1和电连接到主迹线530b-2的成形部530a-2。Specifically, the RX electrode 520 includes a shaped portion 520a-1 electrically connected to the main trace 520b-1 and a shaped portion 520a-2 electrically connected to the main trace 520b-2. Likewise, RX electrode 522 includes shaped portion 522a-1 electrically connected to main trace 522b-1 and shaped portion 522a-2 electrically connected to main trace 522b-2. RX electrode 524 includes shaped portion 524a-1 electrically connected to main trace 524b-1 and shaped portion 524a-2 electrically connected to main trace 524b-2. RX electrode 526 includes shaped portion 526a-1 electrically connected to main trace 526b-1 and shaped portion 526a-2 electrically connected to main trace 526b-2. RX electrode 528 includes shaped portion 528a-1 electrically connected to main trace 528b-1 and shaped portion 528a-2 electrically connected to main trace 528b-2. Finally, the RX electrode 530 includes a shaped portion 530a-1 electrically connected to the main trace 530b-1 and a shaped portion 530a-2 electrically connected to the main trace 530b-2.
图5示出导电体的接触540受触摸传感器部510影响的操作情况。如所示,接触540主要被定位于RX电极520的成形部520a-1之上并因此少量位于RX电极522的成形部522a-1之上;另外,接触540部分定位于RX电极520的成形部520a-2之上和少量位于RX电极522的成形部522a-2之上。接触540也被定位在TX电极516和518之上并影响该TX电极。不过,如所示,接触540也电容影响寄生耦合区域542a中的主迹线524b-1、526b-1、528b-1和530b-1(分别对应RX电极524、526、528和530)。同样,接触540电容影响寄生耦合区域542b中的主迹线524b-2、526b-2、528b-2和530b-2(分别对应RX电极524、526、528和530)。因为接触540在区域542a和542b中的寄生耦合,在扫描操作期间从RX电极524、526、528和530读取的信号值将记录信号变化(从它们的相应基准),即使该接触未被定位在RX电极524、526、528和530的成形部之上,并且因此,这些RX电极的成形部不受该接触影响。这些信号变化表示通过在区域542a和542b中的寄生耦合引起的尾端效应。因此,如果从RX电极524、526、528和530读取的信号值未被针对在区域542a和542b中的寄生耦合的尾端效应引起的信号变化进行校正,则在触摸传感器上的接触540的位置定位可能计算不正确(例如,如从其实际定位偏移)。FIG. 5 shows the operation situation in which the contact 540 of the conductor is affected by the touch sensor part 510 . As shown, the contact 540 is positioned primarily over the shaped portion 520a-1 of the RX electrode 520 and thus a small amount over the shaped portion 522a-1 of the RX electrode 522; in addition, the contact 540 is partially positioned over the shaped portion of the RX electrode 520 520 a - 2 and a small amount over the shaped portion 522 a - 2 of the RX electrode 522 . Contact 540 is also positioned over and affects TX electrodes 516 and 518 . However, as shown, contact 540 also capacitively affects main traces 524b-1, 526b-1, 528b-1, and 530b-1 (corresponding to RX electrodes 524, 526, 528, and 530, respectively) in parasitic coupling region 542a. Likewise, contact 540 capacitance affects main traces 524b-2, 526b-2, 528b-2, and 530b-2 (corresponding to RX electrodes 524, 526, 528, and 530, respectively) in parasitic coupling region 542b. Because of the parasitic coupling of contact 540 in regions 542a and 542b, signal values read from RX electrodes 524, 526, 528, and 530 during a scan operation will register signal changes (from their respective references) even though the contact is not located over the shaped portions of the RX electrodes 524, 526, 528 and 530, and therefore, the shaped portions of these RX electrodes are not affected by this contact. These signal changes represent tail effects caused by parasitic coupling in regions 542a and 542b. Thus, if the signal values read from RX electrodes 524, 526, 528, and 530 are not corrected for signal variations caused by the tail effects of parasitic coupling in regions 542a and 542b, the contact 540 on the touch sensor Position fixes may be calculated incorrectly (eg, as offset from their actual fixes).
如图5所示,在成形部未实际被接触覆盖的RX电极的主迹线上有额外的寄生耦合。不过,这些(未受接触影响)成形部与对应TX电极的成形部交错以形成藉此获得不同信号值的传感器元件。因此,尾端效应引起更多的传感器元件错误记录接触,因为连接到这些传感器元件的主迹线受接触直接影响(即使传感器元件本身不在接触区域中)。此外,由于相同的主迹线邻近/邻接每个TX电极布线,被接触覆盖TX电极越多,尾端效应将越高。As shown in Figure 5, there is additional parasitic coupling on the main trace of the RX electrode where the shaped portion is not actually covered by the contact. However, these (unaffected by contact) shaped portions are interleaved with the shaped portions of the corresponding TX electrodes to form sensor elements whereby different signal values are obtained. Thus, the tail effect causes more sensor elements to falsely register contacts because the main traces connected to these sensor elements are directly affected by the contact (even if the sensor element itself is not in the contact area). Furthermore, since the same main trace is adjacent/adjacent to each TX electrode routing, the more TX electrodes are covered by contact, the higher the tailing effect will be.
如图5所示,当RX电极从触摸传感器的顶部向底部布线时,尾端效应通过下游RX电极“看到”(或记录)。如果RX电极从触摸传感器的底部向顶部布线,则将“看到”相反的尾端效应。在某些实施例中,为了将由RX电极的主迹线占用的区域的总宽度(例如,诸如寄生耦合区域542a和542b的宽度)减到最小,触摸传感器(例如,诸如SLIM触摸面板)可以例如从触摸传感器的顶部外圈/非感应区域和从底部外圈/非感应区域被双布线。这意味着RX电极的(约)一半将具有从顶部外圈布线(例如,向下延伸)的主迹线,剩下的RX电极具有从触摸传感器的底部外圈布线(例如,向上延伸)的其主迹线。As shown in Figure 5, when the RX electrodes are routed from the top to the bottom of the touch sensor, tail effects are "seen" (or recorded) by the downstream RX electrodes. If the RX electrodes are routed from the bottom to the top of the touch sensor, you will "see" the opposite tail effect. In some embodiments, in order to minimize the overall width of the area occupied by the main traces of the RX electrodes (eg, such as the width of parasitic coupling regions 542a and 542b), a touch sensor (eg, such as a SLIM touch panel) may, for example, The touch sensor is dual routed from the top outer ring/non-sensing area and from the bottom outer ring/non-sensing area. This means that (approximately) half of the RX electrodes will have main traces routed (e.g., extending down) from the top outer ring, and the remaining RX electrodes have main traces routed (e.g., extending up) from the bottom outer ring of the touch sensor. its main trace.
双布线、单层触摸传感器的示例在图6中示出。在图6的示例实施例中,触摸传感器610包括顶部外圈(非感应)区域616、顶部有效(触摸感应)区域614a、底部有效(触摸感应)区域614b和底部外圈(非感应)区域626。在顶部有效区域614a中的RX电极从顶部外圈区域616布线,而在底部有效区域614b中的RX电极从底部外圈区域626布线。在图6中示出的实施例中,在顶部有效区域614a和底部有效区域614b中的TX电极均从顶部外圈区域616布线。在其他实施例中,类似于RX电极,例如,如果有降低传感器元件的RC常数的需求,则TX电极也可以被分开并从相对的非感应区域双布线。An example of a dual wiring, single layer touch sensor is shown in FIG. 6 . In the example embodiment of FIG. 6, touch sensor 610 includes top outer peripheral (non-sensing) region 616, top active (touch-sensitive) region 614a, bottom active (touch-sensitive) region 614b, and bottom outer peripheral (non-sensing) region 626. . The RX electrodes in the top active region 614 a are routed from the top outer region 616 , while the RX electrodes in the bottom active region 614 b are routed from the bottom outer region 626 . In the embodiment shown in FIG. 6 , the TX electrodes in both the top active area 614 a and the bottom active area 614 b are routed from the top outer ring area 616 . In other embodiments, similar to the RX electrodes, the TX electrodes can also be split and double-wired from the opposite non-sensing area, for example, if there is a need to reduce the RC constant of the sensor element.
在双布线触摸传感器面板(诸如图6中的面板)的情况下,导电体的接触将引起在面板的每面上的独立尾端效应。例如,置于触摸传感器610的顶部有效区域614a中的接触将在从接触区域向下并朝向其中布线改变到底部外圈布线的中间线615的传感器元件中形成尾端效应。同样,置于触摸传感器610的底部有效区域614b中的接触将在从接触区域向上并朝向中间线615的传感器元件中形成尾端效应。In the case of a dual wiring touch sensor panel such as the panel in Figure 6, the contact of the electrical conductors will cause independent tail effects on each side of the panel. For example, a contact placed in the top active area 614a of the touch sensor 610 will create a tail effect in the sensor element down from the contact area and toward the middle line 615 where the routing changes to the bottom outer ring routing. Likewise, a contact placed in the bottom active area 614b of the touch sensor 610 will create a tail effect in the sensor elements from the contact area up and toward the middle line 615 .
在双布线、单层触摸传感器面板的每面上的独立尾端效应的示例在图7A和7B中示出。具体地,图7A和7B根据示例实施例示出存储反映由双布线触摸传感器面板的每面上的导电体引起的尾端效应的信号值的示例数据结构。An example of independent tail effects on each side of a dual wiring, single layer touch sensor panel is shown in Figures 7A and 7B. In particular, FIGS. 7A and 7B illustrate an example data structure that stores signal values reflecting tail effects caused by electrical conductors on each side of a dual wiring touch sensor panel, according to an example embodiment.
图7A和7B示出存储差分信号值的数据结构700,其中该信号值在特定扫描操作(在图7A中示出)和不同的扫描操作(在图7B中示出)期间,从传感器阵列的传感器元件测量的多个测量结果导出。传感器阵列包括有效触摸感应区域(由附图标记714逻辑指示)、顶部非感应区域(由附图标记716逻辑指示)和底部非感应区域(由附图标记726逻辑指示)。FIGS. 7A and 7B illustrate a data structure 700 that stores differential signal values obtained from sensor arrays during a particular scan operation (shown in FIG. 7A ) and a different scan operation (shown in FIG. 7B ). Multiple measurement results derived from sensor element measurements. The sensor array includes an active touch sensitive area (logically indicated by reference numeral 714 ), a top non-sensing area (logically indicated by reference numeral 716 ), and a bottom non-sensing area (logically indicated by reference numeral 726 ).
在图7A和7B中,传感器阵列的传感器元件被逻辑表示为通过11个TX电极和19个RX电极形成的框符(box)。操作传感器阵列的传感器或处理逻辑(未示出)存储/关联每个独立TX电极的独立索引值,其中,该索引值被布置在表示传感器阵列中TX电极的物理布置的序列中;同样,该传感器或处理逻辑也存储/关联每个独立RX电极的独立索引值,其中,该索引值被布置在表示传感器阵列中RX电极的物理布置的序列中。In FIGS. 7A and 7B , the sensor elements of the sensor array are logically represented as boxes formed by 11 TX electrodes and 19 RX electrodes. A sensor or processing logic (not shown) operating the sensor array stores/associates an individual index value for each individual TX electrode, wherein the index values are arranged in a sequence representing the physical arrangement of the TX electrodes in the sensor array; likewise, the The sensor or processing logic also stores/associates an individual index value for each individual RX electrode, where the index values are arranged in a sequence representing the physical arrangement of the RX electrodes in the sensor array.
例如,在图7A和7B中,TX索引702是表示11个TX电极的范围从0到10的整数值的序列;同样,RX索引704是表示19个RX电极的范围从0到18的整数值的序列。在图7A和7B中示出的实施例中,具有索引值“0”到“9”的RX电极从顶部非感应区域(716)布线,从而形成传感器阵列的顶部部分,而剩下的具有索引值“10”到“18”的RX电极从底部非感应区域(726)布线,从而形成该传感器阵列的底部部分。For example, in Figures 7A and 7B, TX index 702 is a sequence of integer values ranging from 0 to 10 representing 11 TX electrodes; likewise, RX index 704 is a sequence of integer values ranging from 0 to 18 representing 19 RX electrodes the sequence of. In the embodiment shown in Figures 7A and 7B, the RX electrodes with index values "0" to "9" are routed from the top non-sensing area (716), forming the top portion of the sensor array, while the rest have index RX electrodes with values "10" to "18" are routed from the bottom non-sensing area (726), forming the bottom portion of the sensor array.
图7A和7B还示出通过对应的扫描操作获得的差分信号,该差分信号用于在数据结构700中表示的每个传感器元件。例如,在图7A的扫描操作中,差分信号701a(具有“19”的值)被测量或以其他方式获得以用于传感器元件,该传感器元件通过TX索引为“9”的TX电极和RX索引为“16”的RX电极的成形部形成。在图7B的扫描操作中,差分信号701b(具有“1”的值)被测量或以其他方式获得以用于相同的传感器元件(即,该传感器元件通过TX索引为“9”的TX电极和RX索引为“16”的RX电极的成形部形成)。需要指出的是,由于各个实施例可以使用具有不同数量的发送电极和接收电极以及关于对应TX索引和RX索引的不同编码方案的传感器阵列,本文所述的用于校正尾端效应的技术并不局限于特定数量的电极。因此,传感器阵列及其对应于在图7A和7B中示出的数据结构700的TX索引和RX索引被视为是说明性的含义,而非限制性的含义。FIGS. 7A and 7B also show the differential signal obtained by the corresponding scanning operation for each sensor element represented in data structure 700 . For example, in the scan operation of FIG. 7A, differential signal 701a (having a value of "19") is measured or otherwise obtained for a sensor element passed through a TX electrode with TX index of "9" and RX index Formed part for "16" of the RX electrode. In the scan operation of FIG. 7B , a differential signal 701b (with a value of "1") is measured or otherwise obtained for the same sensor element (i.e., the sensor element passes through the TX electrode with TX index "9" and The forming part of the RX electrode whose RX index is "16" is formed). It should be noted that since various embodiments may use sensor arrays with different numbers of transmit and receive electrodes and different encoding schemes for corresponding TX and RX indices, the techniques described herein for correcting for tail effects do not Limited to a specific number of electrodes. Accordingly, the sensor array and its TX index and RX index corresponding to the data structure 700 shown in FIGS. 7A and 7B are to be considered in an illustrative rather than a restrictive sense.
在图7A中,用于在数据结构700中表示的传感器元件的差分值通过在给定时间点的扫描操作来获得。该差分值指示接触706a存在于传感器阵列的底部部分中的触摸表面上。该差分值还指示尾端效应708a也仅存在于该阵列的底部部分中。需要指出,该差分值表示在执行扫描操作的时间的传感器阵列的传感器元件的状态—因此,在图7A中示出的接触706a可以是静态接触(例如,诸如轻拍)或可以是更复杂手势(例如,诸如滚屏手势)的一部分。In FIG. 7A , differential values for sensor elements represented in data structure 700 are obtained by a scan operation at a given point in time. This differential value indicates that contact 706a is present on the touch surface in the bottom portion of the sensor array. The differential value also indicates that the tail effect 708a is only present in the bottom part of the array as well. Note that this differential value represents the state of the sensor elements of the sensor array at the time the scanning operation is performed—thus, contact 706a shown in FIG. 7A may be a static contact (such as, for example, a tap) or may be a more complex gesture (e.g., as part of a scrolling gesture).
在图7B中,用于在数据结构700中表示的传感器元件的差分值通过不同于在图7A中反映的扫描操作的扫描操作(例如,在不同的时间点)来获得。参考图7B,该差分值指示接触706b存在于传感器阵列的顶部部分中的触摸表面上。该差分值还指示尾端效应708b也仅存在于该传感器阵列的顶部部分中。在图7B中示出的接触706b可以是静态接触(例如,诸如轻拍)或可以是更复杂手势(例如,诸如滚屏手势)的一部分。In FIG. 7B , the differential values for the sensor elements represented in data structure 700 are obtained by a different scan operation (eg, at a different point in time) than the scan operation reflected in FIG. 7A . Referring to FIG. 7B, the differential value indicates that contact 706b exists on the touch surface in the top portion of the sensor array. The differential value also indicates that the tail effect 708b is only present in the top portion of the sensor array as well. The contact 706b shown in FIG. 7B may be a static contact (eg, such as a tap) or may be part of a more complex gesture (eg, such as a scrolling gesture).
需要指出,除了尾端效应所表现的程度可以从设计到设计进行变化之外,各种不同的传感器设计倾向于上述的寄生尾端效应。因此,在各个实施例中,用于校正本文所述的尾端效应的各技术可以被实施用于根据各种不同设计技术构造的传感器阵列。此类设计和技术包括但不限于单固态菱形设计、MH3和金属网。It should be noted that various sensor designs are prone to the above-mentioned parasitic tail effects, in addition to the extent to which the tail effects manifest can vary from design to design. Thus, in various embodiments, the techniques for correcting for the tail effects described herein may be implemented for sensor arrays constructed according to various different design techniques. Such designs and techniques include, but are not limited to, single solid diamond designs, MH3, and metal mesh.
处理尾端效应数据的示例Example of Handling Tail Effects Data
假定RX索引值在远离藉此布线RX电极的触摸传感器的面的方向增加,单层触摸传感器中的尾端效应与在接触下的RX电极的RX索引成比例。例如,距离实际接触的RX电极的成形部越远,其从寄生耦合得到的尾端效应信号就越多。引用图5作为示例,当与其他示出的RX电极比较时,尽管成形部530a-1和530a-2进一步远离接触540,但是RX电极530从寄生耦合得到最多的信号,至少因为:(1)主迹线部530b-1和530b-2分别沿TX电极516和518运行更长长度;并且(2)当存在导电体540时,它降低来自RX电极的全部四个成形部的信号,该信号相对于对应的传感器元件(520a-1、520a-2、522a-1、522a-2)的基准直接成比例受影响,并因此底部RX电极530从寄生耦合仍然得到最多信号。换言之,由于在接触540下的寄生耦合,RX电极520得到最少的信号增加,因为这个RX电极具有最短的主迹线。Tail effects in a single layer touch sensor are proportional to the RX index of the RX electrode under contact given that the RX index value increases in a direction away from the face of the touch sensor through which the RX electrodes are routed. For example, the farther away the shaped portion of the RX electrode is from the actual contact, the more tail effect signal it will get from parasitic coupling. Referring to FIG. 5 as an example, when compared to the other RX electrodes shown, although shaped portions 530a-1 and 530a-2 are further away from contact 540, RX electrode 530 gets the most signal from parasitic coupling at least because: (1) Main trace portions 530b-1 and 530b-2 run longer lengths along TX electrodes 516 and 518, respectively; and (2) when conductor 540 is present, it reduces the signal from all four shaped portions of the RX electrode, which The reference relative to the corresponding sensor element (520a-1, 520a-2, 522a-1, 522a-2) is affected directly proportionally, and thus the bottom RX electrode 530 still gets the most signal from parasitic coupling. In other words, the RX electrode 520 gets the least signal increase due to parasitic coupling under contact 540 because this RX electrode has the shortest main trace.
根据本文所述的用于校正尾端效应的技术,给定扫描操作(也被称为扫描“帧”或“循环”)获得传感器阵列中的所有传感器元件(例如,通过向TX电极供电和读取RX电极上的信号)的测量结果。在某些实施例中,获得测量结果可以包括同时多路复用几个或全部RX电极;当获得时,来自全部RX电极的该组测量结果表示单个扫描操作的测量结果。处理逻辑确定来自通过扫描操作获得的测量结果的差分信号值—例如,通过将获得的测量结果与被存储用于对应传感器元件的基准值进行比较。随后,假设具有低于某些阈值的信号强度的所有传感器元件由尾端效应引起,本文所述的技术基于所确定的差分信号值提供构建/确定近似线的参数,使用所确定的参数计算对应于尾端效应的用于每个受影响传感器元件的调整值,并从对应传感器元件的信号值减去每个计算的调整值,从而校正尾端效应。According to the techniques described herein for correcting for tailing effects, a given scan operation (also referred to as a scan "frame" or "cycle") acquires all sensor elements in the sensor array (e.g., by powering and reading the TX electrodes). Take the measurement of the signal on the RX electrode). In some embodiments, obtaining measurements may include multiplexing several or all RX electrodes simultaneously; when obtained, the set of measurements from all RX electrodes represents the measurements of a single scan operation. Processing logic determines differential signal values from measurements obtained through the scanning operation—for example, by comparing the obtained measurements to reference values stored for corresponding sensor elements. Subsequently, assuming that all sensor elements with signal strengths below some threshold are caused by tail effects, the technique described herein provides parameters for constructing/determining an approximate line based on the determined differential signal values, using the determined parameters to calculate the corresponding The tail effects are corrected for the tail effects by subtracting each calculated adjustment value from the signal value of the corresponding sensor element.
需要指出,在双布线触摸传感器设计(其提供带有两个独立布线部的触摸传感器)中,当在两个独立布线部中的每个中校正尾端效应时,可以使用本身具有独立参数的独立近似线。此类独立参数将指示在触摸传感器的每个部分的边缘开始并在触摸传感器的中间结束的具有不同角度的近似线。此类双近似线的示例在图8中示出。It should be noted that in a dual wiring touch sensor design (which provides a touch sensor with two separate wiring sections), when correcting for tailing effects in each of the two separate wiring sections, it is possible to use independent approximation lines. Such independent parameters would indicate approximate lines with different angles starting at the edges of each portion of the touch sensor and ending in the middle of the touch sensor. An example of such a double approximation line is shown in FIG. 8 .
图8是示出用于双布线触摸传感器面板上的特定中间TX电极的尾端效应校正的示例的曲线图。在曲线图800中,信号806通过来自双布线触摸传感器的特定扫描操作来检测并沿表示RX索引值804的X轴和表示差分信号值802的Y轴绘出。尾端效应阈值803定义有可能是尾端效应的差分信号电平(约“55”左右)。本文所述的技术用于确定用于触摸传感器的顶部的最佳拟合线808a和用于触摸传感器的底部的最佳拟合线808b的参数(例如,角度或斜率)。如图8所示,线808a具有与线808b不同的斜率,并且这两种线均从触摸传感器的它们相应边缘向其中间(RX电极周围具有“10”的RX索引值)延伸。附图标记807指示来自RX电极组的被触摸传感器的底部中的尾端效应影响的差分信号。8 is a graph showing an example of tailing correction for a specific middle TX electrode on a dual wiring touch sensor panel. In graph 800 , a signal 806 is detected by a particular scan operation from a dual wire touch sensor and is plotted along an X-axis representing RX index value 804 and a Y-axis representing differential signal value 802 . The end effect threshold 803 defines the differential signal level (about "55") that may be an end effect. Techniques described herein are used to determine the parameters (eg, angle or slope) of the line of best fit 808a for the top of the touch sensor and the line of best fit 808b for the bottom of the touch sensor. As shown in FIG. 8, line 808a has a different slope than line 808b, and both lines extend from their respective edges to the middle of the touch sensor (with an RX index value of "10" around the RX electrodes). Reference numeral 807 indicates a differential signal from the RX electrode set that is affected by the tail effect in the bottom of the touch sensor.
在某些实施例中,尾端效应阈值可以取决于触摸传感器的接触阈值设定或作为该阈值设定的特定百分比的绝对峰值信号。在某些实施例中,使尾端效应阈值取决于绝对峰值信号更有意义,因为尾端效应与绝对峰值信号的值成正比。例如,在一个特定实施例中,尾端效应阈值被设定为触摸传感器的接触确定阈值的百分比。在这个特定实施例中,该确定接触阈值是自适应的并取决于通过潜在扫描操作检测到的最大峰值,并且尾端效应阈值的典型设定是自适应接触阈值值的三分之二(2/3)。In some embodiments, the tailing threshold may depend on the contact threshold setting of the touch sensor or the absolute peak signal as a certain percentage of the threshold setting. In some embodiments, it makes more sense to make the tail effect threshold dependent on the absolute peak signal, since the tail effect is proportional to the value of the absolute peak signal. For example, in one particular embodiment, the tailing threshold is set as a percentage of the contact determination threshold of the touch sensor. In this particular embodiment, the determined contact threshold is adaptive and depends on the largest peak detected by the underlying scanning operation, and a typical setting of the tail effect threshold is two thirds (2/3) of the adaptive contact threshold value. /3).
更普遍的说,如果触摸传感器旨在以小物体操作(例如,诸如小手指或唱针),那么,优选使用动态/自适应类型的阈值,因为来自实际触摸和来自尾端效应的扫描操作测量结果(例如,原始计数)的差异不是那么大。例如,来自4mm手指的接触可以生成与来自较大手指(例如,20mm手指)的尾端效应的信号幅值大约相同的信号。因此,使用动态/自适应接触确定阈值是有用的—初始非常低的检测阈值可以被设定以检测较小手指的接触,并且此后,基于实际测量接触的最大峰值信号的值(例如,原始计数),可以具体为这个接触动态调整接触确定阈值。在这个示例中,尾端效应阈值可以被设定为小于实际检测到的最大峰值信号的50%。通过这种方式,尾端效应阈值“自适应”检测到的每个接触。More generally, if the touch sensor is intended to be operated with small objects (such as a small finger or a stylus, for example), then it is preferable to use a dynamic/adaptive type of threshold, since the scan operation measurements from actual touch and from tail effects ( For example, the difference in raw counts) is not that large. For example, a contact from a 4mm finger may generate a signal of approximately the same magnitude as a tail effect from a larger finger (eg, a 20mm finger). Therefore, it is useful to use a dynamic/adaptive contact determination threshold—an initial very low detection threshold can be set to detect contacts with smaller fingers, and thereafter, based on the value of the largest peak signal of the actual measured contact (e.g., raw count ), the contact determination threshold can be dynamically adjusted specifically for this contact. In this example, the tail effect threshold may be set to be less than 50% of the maximum peak signal actually detected. In this way, the tail effect threshold "adapts" to each detected contact.
在某些实施例中,如果触摸传感器旨在以较大的物体操作(例如,诸如正常或胖手指),那么,优选使用固定的尾端效应阈值,因为实际触摸的幅值与尾端效应信号的幅值之间的差异是明显的(由于寄生耦合)。例如,图8中的阈值803表示可以用于确定尾端效应信号的约“55”的固定阈值—例如,高于“0”并低于“55”的差分信号值可以被认为是尾端效应信号。In some embodiments, if the touch sensor is intended to be operated with larger objects (such as, for example, a normal or fat finger), then it is preferable to use a fixed tail-effect threshold because the magnitude of the actual touch is different from the tail-effect signal The difference between the magnitudes of is noticeable (due to parasitic coupling). For example, threshold 803 in FIG. 8 represents a fixed threshold of about "55" that may be used to determine an end effect signal—for example, a differential signal value above "0" and below "55" may be considered an end effect signal. Signal.
根据本文所述的用于校正尾端效应的技术,低于(固定或自适应)尾端效应阈值的传感器元件的差分信号用于藉此形成这些传感器元件的给定TX电极的线性近似计算。According to the techniques described herein for correcting for tailing effects, the differential signals of sensor elements below a (fixed or adaptive) tailing effect threshold are used to form a linear approximation for a given TX electrode of these sensor elements thereby.
在某些实施例中,下面的等式1用于确定由于尾端效应引起的差分信号与形成对应于该差分信号的传感器元件的RX电极的索引值之间相关性的线性近似(例如,诸如最佳拟合线):In some embodiments, Equation 1 below is used to determine a linear approximation of the correlation between the differential signal due to tail effects and the index values of the RX electrodes forming the sensor elements corresponding to the differential signal (e.g., such as best fit line):
Si=a*rxIndex+b (1)Si =a*rxIndex+b (1)
其中:in:
b是等于(或近似等于)“0”的拦截(或偏移)参数,因为RX电极藉此布线的触摸传感器的边缘不存在尾端效应信号(或可忽略不计的)(例如,因为在该边缘的RX电极不具有暴露于接触的明显主迹线长度),b is an intercept (or offset) parameter equal to (or approximately equal to) "0" because there is no (or negligible) tail effect signal at the edge of the touch sensor through which the RX electrodes are routed (e.g., because at this RX electrodes at the edge do not have significant main trace lengths exposed to contacts),
rxIndex是沿给定TX电极形成一个(例如,第i个)单独传感器元件的一个(例如,第i个)RX电极的RX索引值,rxIndex is the RX index value of one (e.g., ith) RX electrode forming one (e.g., ith) individual sensor element along a given TX electrode,
a是定义给定TX电极的近似最佳拟合线的歪曲率(斜率)的恒定斜率(或角度)参数值(需要指出的是,如果使用双布线触摸传感器设计,则斜率参数值对于每个TX电极和对于RX电极由此布线的触摸传感器的每个部分是唯一的),并且a is the constant slope (or angle) parameter value that defines the skew rate (slope) of the approximate best-fit line for a given TX electrode (it should be noted that if a dual wiring touch sensor design is used, the slope parameter value for each TX electrodes and each portion of the touch sensor from which the RX electrodes are wired are unique), and
Si表示一个(例如,第i个)单独传感器元件的调整值,其中,这个调整值对应于在第i个传感器元件的尾端效应信号(如基于近似最佳拟合线来确定)并且应当从该传感器元件的差分信号减去以便校正尾端效应。Si denote an adjustment value for one (e.g., i-th) individual sensor element, where this adjustment value corresponds to the tail-effect signal at the i-th sensor element (as determined based on an approximate best-fit line) and should The differential signal from the sensor element is subtracted to correct for tail effects.
在某些实施例中,斜率参数值(或系数)a可以通过使用下面的等式2来确定:In some embodiments, the slope parameter value (or coefficient) a can be determined by using Equation 2 below:
其中,in,
si是沿给定TX电极从通过一个(例如,第i个)RX电极形成的一个(例如,第i个)单独传感器元件获得的差分信号值,si is the differential signal value obtained along a given TX electrode from one (e.g., ith) individual sensor element formed by one (e.g., ith) RX electrode,
i是其差分信号值si大于“0”并且小于正被使用的尾端效应阈值的一个(例如,第i个)单独传感器元件的RX索引值(沿给定TX电极),i is the RX index value (along a given TX electrode) of one (e.g., i-th) individual sensor element whose differential signal value si is greater than "0" and less than the end effect threshold being used,
N是沿给定TX电极的具有大于“0”并小于尾端效应阈值的差分信号值的传感器元件的数量,N is the number of sensor elements along a given TX electrode that have a differential signal value greater than "0" and less than the end effect threshold,
是用于沿给定TX电极的具有大于“0”并小于尾端效应阈值的差分信号值的传感器元件的差分信号值的总和,并且 is the sum of the differential signal values for sensor elements along a given TX electrode that have differential signal values greater than "0" and less than the end-effect threshold, and
∑i是沿给定TX电极的具有大于“0”并小于尾端效应阈值的差分信号值的传感器元件的RX索引值的总和。因此,根据方程式2,只有具有的差分信号具有在“0”和“阈值”之间的值的传感器元件用于确定近似最佳拟合线的参数,其余的传感器元件和它们的RX索引值被跳过免于计算。Σi is the sum of the RX index values of sensor elements along a given TX electrode that have a differential signal value greater than "0" and less than the end effect threshold. Thus, according to Equation 2, only sensor elements having differential signals with values between "0" and "threshold" are used to determine the parameters of an approximate best-fit line, the rest of the sensor elements and their RX index values are Skip from calculations.
用于双布线触摸传感器的近似最佳拟合线的示例在图8中示出(例如,诸如最佳拟合线808b)。如图8所示,只有对应于由附图标记807指示的差分信号值的传感器元件用于确定最佳拟合线808b的参数。An example of an approximate best-fit line for a dual wiring touch sensor is shown in FIG. 8 (eg, such as best-fit line 808b ). As shown in Figure 8, only the sensor elements corresponding to the differential signal values indicated by reference numeral 807 are used to determine the parameters of the best fit line 808b.
在某些实施例中,在用于给定TX电极的斜率参数(或系数)a被确定(例如,根据上面的等式2)后,用于对应(例如,第i个)传感器元件的调整值Si被计算(例如,根据上面的等式1)。尾端效应随后通过使用下面的等式(3)通过从对应(例如,第i个)传感器元件获得的差分信号值si减去调整值Si来校正:In some embodiments, after the slope parameter (or coefficient) a for a given TX electrode is determined (eg, according to Equation 2 above), for the adjustment of the corresponding (eg, ith) sensor element A value Si is calculated (eg, according to Equation 1 above). The tail effect is then corrected by subtracting the adjustment value Si from the differential signal value Si obtained for the corresponding (eg, ith) sensor element using equation (3) below:
DiffrxIndex=srxIndex-a*rxIndex (3)DiffrxIndex = srxIndex -a*rxIndex (3)
(其等于si-校正=si-Si)(which is equal to si -correction = si -Si )
其中,in,
a*rxIndex(例如,Si)是对应于沿给定TX电极和RX索引值为“rxIndex”的RX电极形成的传感器元件(例如,第i个传感器元件)的尾端效应的调整值,a*rxIndex(e.g., Si ) is an adjustment value corresponding to the tailing effect of a sensor element (e.g., the i-th sensor element) formed along a given TX electrode and an RX electrode with an RX index value of "rxIndex",
srxIndex(例如,si)是沿给定TX电极和RX索引值为“rxIndex”的RX电极形成的传感器元件(例如,第i个传感器元件)原始获得的差分信号值,以及srxIndex (e.g., si ) is the originally obtained differential signal value of a sensor element (e.g., the i-th sensor element) formed along a given TX electrode and an RX electrode with an RX index value of "rxIndex", and
DiffrxIndex(例如,si-校正)是沿给定TX电极和RX索引值为“rxIndex”的RX电极形成的传感器元件(例如,第i个传感器元件)的尾端效应校正差分信号值。DiffrxIndex (eg, si-corrected ) is the tail-effect-corrected differential signal value for a sensor element (eg, the i-th sensor element) formed along a given TX electrode and an RX electrode with an RX index value of "rxIndex".
在图8示出的示例中,触摸传感器的左侧(例如,顶部)几乎未收到来自接触的信号,因此,用于该侧的尾端效应校正是最小的。在触摸传感器的右侧(例如,底部),观察到来自接触的尾端效应,并且来自该尾端效应的信号需要根据本文所述的技术基于最佳拟合线808b的参数被减去。所产生的信号(如用于尾端效应所校正的)在图9上绘出。In the example shown in FIG. 8 , the left side (eg, top) of the touch sensor receives little signal from the contact, so the tail effect correction for that side is minimal. On the right side (eg, bottom) of the touch sensor, tailing from the contact is observed and the signal from this tailing needs to be subtracted according to the techniques described herein based on the parameters of the best fit line 808b. The resulting signal (as corrected for tail effects) is plotted on FIG. 9 .
图9是示出图8的双布线触摸传感器面板上的尾端效应信号和校正信号的比较的曲线图。在曲线图900中,原始信号906(例如,如通过来自双布线触摸传感器的特定扫描操作检测到的)和校正信号916沿表示RX索引值804的X轴和表示差分信号值802的Y轴绘出。如图9所示,尾端效应信号907从原始信号906消除,并且已校正信号916中再无尾端显露。有时候,在某些实施例中,尾端效应校正可以产生其中检测到尾端效应的传感器元件的负信号值;不过,这对位置(例如,位置坐标)计算并不重要,因为在这些实施例中的位置计算算法排除所有负差分信号值。FIG. 9 is a graph illustrating a comparison of tail effect signals and correction signals on the dual wiring touch sensor panel of FIG. 8 . In graph 900, raw signal 906 (e.g., as detected by a particular scan operation from a dual-wiring touch sensor) and corrected signal 916 are plotted along an X-axis representing RX index value 804 and a Y-axis representing differential signal value 802. out. As shown in FIG. 9 , the tail effect signal 907 is removed from the original signal 906 , and no tail is revealed in the corrected signal 916 . Sometimes, in some embodiments, tailing corrections can produce negative signal values for sensor elements where tailings are detected; however, this is not critical for position (e.g., position coordinates) calculations because in these The position calculation algorithm in the example excludes all negative differential signal values.
在某些实施例中,尾端效应校正仅应用于执行检测到的接触的位置计算,并且尾端效应校正不应该在位置计算完成后被恢复原状。这是必要的,以便保持触摸传感器中传感器元件关于来自给定扫描操作的实际测量信号的校正基准值,并且确保用于扫描操作的输入数据将具有相同的可视尾端效应。In some embodiments, the tail effect correction should only be applied to perform position calculations for detected contacts, and the tail effect correction should not be reverted after the position calculation is complete. This is necessary in order to maintain a correct reference value of the sensor elements in the touch sensor with respect to the actual measured signal from a given scan operation, and to ensure that the input data for the scan operation will have the same visible tail effect.
在某些实施例中,恢复尾端效应校正可以通过使用下面的等式4来执行:In some embodiments, recovery tail effect correction may be performed using Equation 4 below:
DiffrxIndex=srxIndex+a*rxIndex (4)DiffrxIndex = srxIndex + a*rxIndex (4)
(其等于si=si-校正+Si)(which is equal to si =si - correction + Si )
其中,in,
a*rxIndex(例如,Si)是对应于沿给定TX电极和RX索引值为“rxIndex”的RX电极形成的传感器元件(例如,第i个传感器元件)的尾端效应的调整值,a*rxIndex(e.g., Si ) is an adjustment value corresponding to the tailing effect of a sensor element (e.g., the i-th sensor element) formed along a given TX electrode and an RX electrode with an RX index value of "rxIndex",
srxIndex(例如,si-校正)是沿给定TX电极和RX索引值为“rxIndex”的RX电极形成的传感器元件(例如,第i个传感器元件)的当前存储的尾端效应校正的差分信号值,以及srxIndex (e.g., si-correction ) is the difference of the currently stored end-effect corrections for the sensor element (e.g., the i-th sensor element) formed along the given TX electrode and the RX electrode with the RX index value "rxIndex" signal value, and
DiffrxIndex(例如,si)是沿给定TX电极和RX索引值为“rxIndex”的RX电极形成的传感器元件(例如,第i个传感器元件)的恢复(例如,原始)差分信号值。DiffrxIndex (eg, si ) is the recovered (eg, raw) differential signal value of a sensor element (eg, i-th sensor element) formed along a given TX electrode and an RX electrode with an RX index value of "rxIndex".
尾端效应校正的这种恢复单独应用于每个TX电极和RX电极藉此布线的触摸传感器的每个部分(例如,如果使用双布线触摸传感器设计)。This restoration of tailing correction applies individually to each portion of the touch sensor through which each TX electrode and RX electrode is routed (eg, if a dual-wiring touch sensor design is used).
尾端效应校正数据的示例在图10A和10B中示出,该数据从特定实施例根据实验获得。具体地,图10A示出存储差分信号值的数据结构1000,该差分信号值反映由双布线触摸传感器上的导电体引起的尾端效应。图10B示出存储经用于尾端效应的校正调整的信号值的相同数据结构1000。在图10A和10B中,触摸传感器的传感器元件逻辑表示为由11个TX电极和19个RX电极形成的框符,其中,TX索引1002是范围从0到10表示11个TX电极的整数值序列,而RX索引1004是范围从0到18表示19个RX电极的整数值序列。在图10A和10B中示出的实施例中,具有索引值“0”到“9”的RX电极从顶部非感应区域布线,从而形成触摸传感器的顶部部分,而剩下的具有索引值“10”到“18”的RX电极从底部非感应区域布线,从而形成该触摸传感器的底部部分。An example of tail effect correction data obtained experimentally from certain embodiments is shown in FIGS. 10A and 10B . Specifically, FIG. 10A shows a data structure 1000 that stores differential signal values that reflect tail effects caused by electrical conductors on a dual wiring touch sensor. FIG. 10B shows the same data structure 1000 storing signal values adjusted for corrections for tail effects. In FIGS. 10A and 10B , the sensor elements of the touch sensor are logically represented as boxes formed by 11 TX electrodes and 19 RX electrodes, where TX index 1002 is a sequence of integer values ranging from 0 to 10 representing the 11 TX electrodes. , while the RX index 1004 is a sequence of integer values ranging from 0 to 18 representing 19 RX electrodes. In the embodiment shown in Figures 10A and 10B, the RX electrodes with index values "0" to "9" are routed from the top non-sensing area, forming the top portion of the touch sensor, while the rest have index values "10 ” to “18” are routed from the bottom non-sensing area, forming the bottom portion of the touch sensor.
在图10A中,用于在数据结构1000中表示的传感器元件的差分信号值通过在给定时间点的扫描操作来获得。该差分信号值指示接触存在于触摸传感器的底部部分中的接触区域1006a中。该差分信号值也指示尾端效应存在于尾端效应区域1008中。在图10B中,用于在数据结构1000中表示的传感器元件的差分值已根据本文所述的技术被针对尾端效应1008进行校正。例如,对应于尾端效应的调整值已被计算用于触摸传感器中的传感器元件,并且这些调整值已从存储在数据结构1000中的对应差分信号值减去。因此,在图10B中,数据结构1000在接触区域1006b和已校正尾区域1018中存储用于各传感器元件的已校正差分信号值。因此,图10A示出存在尾端效应的初始信号图,而图10B示出尾端效应根据本文所述的技术被消除的已校正信号图。在应用尾端效应校正后,如图10B所示,与触摸传感器接触的物体的位置在接触区域1006b中间的右侧。In FIG. 10A , differential signal values for the sensor elements represented in data structure 1000 are obtained by a scan operation at a given point in time. This differential signal value indicates that a contact is present in contact area 1006a in the bottom portion of the touch sensor. The differential signal value also indicates that tail effects exist in the tail effect region 1008 . In FIG. 10B , differential values for the sensor elements represented in data structure 1000 have been corrected for tail effects 1008 according to techniques described herein. For example, adjustment values corresponding to tailing effects have been calculated for sensor elements in the touch sensor, and these adjustment values have been subtracted from corresponding differential signal values stored in data structure 1000 . Thus, in FIG. 10B , data structure 1000 stores corrected differential signal values for each sensor element in contact region 1006 b and corrected tail region 1018 . Thus, FIG. 10A shows the original signal plot with tail effects present, while FIG. 10B shows the corrected signal plot with the tail effects removed according to the techniques described herein. After tailing correction is applied, as shown in FIG. 10B , the location of the object in contact with the touch sensor is to the right of the middle of the contact area 1006b.
在使用双布线触摸传感器的实施例中,RX索引值(例如,诸如在上面的等式1、3和4使用的“rxIndex”值)应当在触摸传感器末端总是“0”(即使这个RX索引值对应于在该序列中的最后RX电极),并且最接近触摸传感器中间的RX电极(或传感器元件)应当具有等于从触摸传感器边缘的这个RX电极的增量数的RX索引值。换句话说,为了尾端效应校正计算的目的,RX电极的索引应当从“0”开始并从藉此RX电极被布线的触摸传感器的侧面增加。因此,在双布线触摸面板的情况下,为了本文所述的尾端效应校正计算的目的(例如,如上面的等式1、3和4),可能需要RX电极的RX索引值的再次映射。例如,关于图10A,RX索引值“10”到“18”(针对底部的九个RX电极)应当在计算尾端效应校正之前,分别被再次映射到“9”到“0”的值。这是本文所述的技术可以保存在单层触摸传感器中的尾端效应和RX索引值之间存在的相关性的一种方式而且唯一方式—就是说,尾端效应增加与接触下的RX电极的RX索引值的增加成比例。In embodiments using a dual-wiring touch sensor, the RX index value (e.g., the "rxIndex" value such as used in Equations 1, 3, and 4 above) should always be "0" at the end of the touch sensor (even if this RX index value corresponds to the last RX electrode in the sequence), and the RX electrode (or sensor element) closest to the middle of the touch sensor should have an RX index value equal to the number of increments of this RX electrode from the edge of the touch sensor. In other words, for the purposes of tailing correction calculations, the RX electrodes should be indexed starting at "0" and increasing from the side of the touch sensor through which the RX electrodes are routed. Thus, in the case of a dual wiring touch panel, remapping of the RX index values of the RX electrodes may be required for the purposes of the tailing correction calculations described herein (eg, as Equations 1, 3 and 4 above). For example, with respect to FIG. 10A , the RX index values "10" to "18" (for the bottom nine RX electrodes) should be remapped to values of "9" to "0", respectively, before calculating the tail effect correction. This is one and only way in which the techniques described herein can preserve the correlation that exists between tailing effects and RX index values in a single layer touch sensor—that is, tailing effects increase with the RX electrode under contact. The RX index value increases proportionally.
用于校正尾端效应的方法示例Example of method used to correct for tail effects
图11示出用于校正尾端效应的示例方法。图11中的方法步骤在后文被描述为通过处理逻辑来执行(例如,诸如图1中的处理逻辑102)。不过需要指出,各个实施和实施例可以使用各种并且可能多个组件来执行图11中的方法的操作。例如,在各个实施例中,处理逻辑可以以各种方式来实施,所述各种方式包括但不限于:作为一组存储的软件和/或固件指令,当其被一个或多个处理器执行时,其可操作执行一个或多个操作;作为一个或多个计算装置可执行的一个或多个软件组件(例如,软件模块,函数库,编译和/或解译的面向对象的类、动态链接库等);以及作为一个或多个软件组件和一个或多个硬件组件(例如,处理器、微控制器、专用集成电路(ASIC)等)的任何组合。在另一示例中,在各个实施例中的处理逻辑可以在单集成组件中实施或其功能可以分布在可以执行某些附加操作和功能的两个或多个组件中。因此,在后文中,图11中如通过处理逻辑执行的方法的描述应被视为说明性的含义而非限制性的含义。Figure 11 illustrates an example method for correcting for tail effects. The method steps in FIG. 11 are hereinafter described as being performed by processing logic (eg, such as processing logic 102 in FIG. 1 ). It should be noted, however, that various implementations and embodiments may employ various and possibly multiple components to perform the operations of the method in FIG. 11 . For example, in various embodiments, processing logic may be implemented in various ways, including but not limited to: as a stored set of software and/or firmware instructions that when executed by one or more processors when it is operable to perform one or more operations; as one or more computing devices executable one or more software components (e.g., software modules, function libraries, compiled and/or interpreted object-oriented classes, dynamic link libraries, etc.); and as any combination of one or more software components and one or more hardware components (eg, processors, microcontrollers, application-specific integrated circuits (ASICs), etc.). In another example, processing logic in various embodiments may be implemented in a single integrated component or its functionality may be distributed among two or more components that may perform certain additional operations and functions. Accordingly, hereinafter, the description of the method in FIG. 11 as performed by processing logic should be considered in an illustrative sense rather than a restrictive sense.
在块1100到1170,处理逻辑执行扫描操作。在块1100,作为扫描操作的部分,处理逻辑接收从传感器阵列测量的多个测量结果。该测量结果受导电体在传感器阵列的触摸表面的接触影响(例如,诸如笔尖或用户的手指)。在某些实施例中,通过处理逻辑接收的测量结果可以包括用于传感器阵列中全部传感器元件(或一部分)的差分信号值;在其他实施例中,处理逻辑可以接收来自传感器元件的原始测量结果(例如,原始信号计数)并可以计算对应的差分信号值。At blocks 1100 through 1170, processing logic performs scan operations. At block 1100, processing logic receives a plurality of measurements measured from a sensor array as part of a scanning operation. This measurement is affected by the contact of an electrical conductor (eg, such as the tip of a stylus or a user's finger) on the touch surface of the sensor array. In some embodiments, the measurements received by the processing logic may include differential signal values for all (or a portion) of the sensor elements in the sensor array; in other embodiments, the processing logic may receive raw measurements from the sensor elements (for example, raw signal counts) and the corresponding differential signal values can be calculated.
在接收和/或计算对应于所收到的测量结果的差分信号值后,在块1102中,处理逻辑执行将变量(“txIndex”)初始化到零的操作,该变量表示针对其正执行计算的当前TX电极的TX索引值。After receiving and/or calculating the differential signal value corresponding to the received measurement, in block 1102, processing logic performs an operation of initializing a variable ("txIndex") to zero, which represents the index for which the calculation is being performed. The TX index value of the current TX electrode.
在块1104中,处理逻辑确定是否有需要被处理的任何剩余TX电极。例如,处理逻辑执行存储在“txIndex”变量中的值与变量或常数(“txLast”)比较的比较操作,该变量或常数(“txLast”)表示作为扫描操作的一部分需要被处理的TX电极的总和(例如,诸如传感器阵列中的TX电极的总和)。如果“txIndex”变量小于“txLast”变量,那么,至少当前TX电极仍需要被处理,并且该处理逻辑继续执行在块1112至1128中的操作。如果“txIndex”变量不小于“txLast”变量,那么,用于所有TX电极的传感器元件的差分信号值均已被处理,并且该处理逻辑继续执行在块1130中的操作。In block 1104, processing logic determines whether there are any remaining TX electrodes that need to be processed. For example, the processing logic performs a compare operation in which the value stored in the "txIndex" variable is compared to a variable or constant ("txLast") that represents the number of TX electrodes that need to be processed as part of the scan operation. summation (eg, such as the summation of TX electrodes in a sensor array). If the "txIndex" variable is less than the "txLast" variable, then at least the current TX electrode still needs to be processed, and the processing logic continues to perform operations in blocks 1112-1128. If the "txIndex" variable is not less than the "txLast" variable, then the differential signal values for the sensor elements of all TX electrodes have been processed and the processing logic continues with operations at block 1130 .
块1110包括块1112至1126,该块包括处理逻辑执行计算(例如,根据上面的等式2)近似当前TX电极的尾端效应信号(由“txIndex”变量指示)的最佳拟合线的斜率参数值a的操作。如果传感器阵列被双布线,那么,处理逻辑执行在块1110中的操作(例如,在块1112至1126中的操作)两次—即,一次针对藉此布线RX电极的传感器阵列的每个部分。需要指出的是,当执行用于传感器阵列的底部部分的这些操作时,从这个部分布线的RX电极的RX索引值可能需要如上所述被再次映射(例如,为了保存尾端效应与RX索引值之间存在的相关性)。Block 1110 includes blocks 1112 to 1126 which include processing logic to perform calculations (e.g., according to Equation 2 above) to approximate the slope of the best-fit line for the current TX electrode's tail-effect signal (indicated by the "txIndex" variable) The operation for the parameter value a. If the sensor array is dual-wired, then processing logic performs the operations in block 1110 (eg, the operations in blocks 1112-1126) twice—ie, once for each portion of the sensor array through which RX electrodes are wired. It should be noted that when performing these operations for the bottom portion of the sensor array, the RX index values of the RX electrodes routed from this portion may need to be remapped as described above (e.g., to preserve tail effects vs. RX index values correlation between them).
在块1112中,处理逻辑执行将变量(“rxIndex”)初始化到零的操作,该变量表示针对其正执行计算的当前RX电极(沿当前TX电极)的RX索引值。In block 1112, processing logic performs an operation to initialize a variable ("rxIndex") to zero, which represents the RX index value for the current RX electrode (along the current TX electrode) for which the calculation is being performed.
在块1114中,处理逻辑执行将变量(“snsSum”)初始化到零的操作,该变量表示被包括在计算当前TX电极的斜率参数(或系数)值a中的传感器元件(沿当前TX电极形成的)的RX索引值的总和。In block 1114, processing logic performs an operation to initialize a variable ("snsSum") representing the sensor elements (formed along the current TX electrode) that are included in calculating the slope parameter (or coefficient) value a for the current TX electrode to zero. The sum of the RX index values of ).
在块1116中,处理逻辑确定是否有需要被处理用于当前TX电极的任何剩余RX电极。例如,处理逻辑执行存储在“rxIndex”变量中的值与变量或常数(“txLast”)比较的比较操作,该变量或常数(“txLast”)表示需要被处理用于当前TX电极的RX电极的总数。如果“rxIndex”变量小于“rxLast”变量,那么,至少当前RX电极仍需要被处理,并且该处理逻辑继续执行在块1118至1124中的操作。如果“rxIndex”变量不小于“rxLast”变量,那么,来自沿当前TX电极的所有RX电极的差分信号值已被处理,并且处理逻辑继续执行在块1126中的操作(该块计算当前TX电极的斜率参数值a)。In block 1116, processing logic determines whether there are any remaining RX electrodes that need to be processed for the current TX electrode. For example, the processing logic performs a compare operation in which the value stored in the "rxIndex" variable is compared to a variable or constant ("txLast") that represents the number of RX electrodes that need to be processed for the current TX electrode. total. If the "rxIndex" variable is less than the "rxLast" variable, then at least the current RX electrode still needs to be processed, and the processing logic continues to perform operations in blocks 1118-1124. If the "rxIndex" variable is not less than the "rxLast" variable, then differential signal values from all RX electrodes along the current TX electrode have been processed and processing logic continues with operations in block 1126 (which calculates the current TX electrode's Slope parameter value a).
在块1118中,处理逻辑确定当前RX电极的差分信号值是否被包括在用于当前TX电极的斜率参数值a的计算中。例如,如果当前RX电极的差分信号值大于“0”并小于尾端效应阈值,那么,处理逻辑包括在该计算中的这个差分信号值。需要指出,这个差分信号值实际是通过当前RX电极(如通过变量“rxIndex”指示)和当前TX电极(如通过变量“txIndex”指示)形成的“当前”传感器元件的差分信号值。为进行此确定,处理逻辑可以执行下列操作(该操作是比较操作运算元的布尔运算):In block 1118, processing logic determines whether the differential signal value for the current RX electrode is included in the calculation of the slope parameter value a for the current TX electrode. For example, if the differential signal value of the current RX electrode is greater than "0" and less than the tail end effect threshold, then processing logic includes this differential signal value in the calculation. Note that this differential signal value is actually the differential signal value of the "current" sensor element formed by the current RX electrode (as indicated by the variable "rxIndex") and the current TX electrode (as indicated by the variable "txIndex"). To make this determination, processing logic may perform the following operation (which is a Boolean operation on the operands of the comparison operation):
信号>0并且信号<阈值signal > 0 and signal < threshold
其中“信号”是存储当前传感器元件的差分信号值的变量,以及“阈值”是存储正被用于被处理扫描操作的(固定或自适应)尾端效应阈值的变量。如果“信号”变量是在“0”与“阈值”之间的变量,那么,当前传感器元件需要被包括在用于当前TX电极的斜率参数值a的计算中,并且处理逻辑继续执行在块1120和1122中的操作。如果“信号”变量不是在“0”和“阈值”之间的变量,那么,当前传感器元件需要被该计算跳过/排除,并且处理逻辑继续执行在块1124中的操作。where "signal" is a variable storing the differential signal value of the current sensor element, and "threshold" is a variable storing the (fixed or adaptive) tail effect threshold being used for the scan operation being processed. If the "signal" variable is a variable between "0" and "threshold", then the current sensor element needs to be included in the calculation of the slope parameter value a for the current TX electrode, and processing logic continues at block 1120 and operations in 1122. If the "signal" variable is not a variable between "0" and "threshold", then the current sensor element needs to be skipped/excluded from the calculation and processing logic continues to perform operations in block 1124 .
在块1120中,处理逻辑确定被包括在用于当前TX电极的斜率参数值a的计算中的传感器元件的差分信号值的总和。例如,处理逻辑向到目前为止被处理的用于当前TX电极的差分信号值的当前累加总和添加当前传感器元件的差分信号值(该传感器元件通过“rxIndex”变量指示的当前RX电极和通过“txIndex”变量指示的当前TX电极形成)。为执行添加,处理逻辑可以执行下列操作In block 1120, processing logic determines the sum of the differential signal values of the sensor elements that were included in the calculation of the slope parameter value a for the current TX electrode. For example, processing logic adds the differential signal value for the current sensor element (the current RX electrode indicated by the "rxIndex" variable and the current RX electrode indicated by the "txIndex" variable) to the current accumulated sum of the differential signal values for the current TX electrode processed so far. " variable indicates the current TX electrode formation). To perform the addition, the processing logic can do the following
总和[txIndex]=总和[txIndex]+信号sum[txIndex] = sum[txIndex] + signal
其中,“总和[txIndex]”是存储用于当前TX电极的差分信号值的累加总和(例如,由到目前为止已被处理的用于当前TX电极的RX电极形成的传感器元件的差分信号值)的变量,以及“信号”是存储正被处理的当前传感器元件的差分信号值的变量。where "sum[txIndex]" is the accumulated sum stored for the differential signal values for the current TX electrode (e.g. the differential signal values of the sensor elements formed by the RX electrodes for the current TX electrode that have been processed so far) is a variable, and "signal" is a variable that stores the differential signal value of the current sensor element being processed.
在块1122中,处理逻辑确定被包括在用于当前TX电极的计算(例如,根据上面的等式2)中的传感器元件的RX索引值的总和。例如,处理逻辑将该RX索引值添加到沿当前TX电极形成的传感器元件的包括在计算用于当前TX电极的斜率参数值a中的RX索引值的当前累加总和中。为执行添加,处理逻辑可以执行下列操作In block 1122, processing logic determines the sum of the sensor element's RX index values to be included in the calculation (eg, according to Equation 2 above) for the current TX electrode. For example, processing logic adds the RX index value to the current accumulated sum of the RX index values of the sensor elements formed along the current TX electrode included in calculating the slope parameter value a for the current TX electrode. To perform the addition, the processing logic can do the following
snsNum=snsNum+rxIndexsnsNum=snsNum+rxIndex
该操作将“rxIndex”变量添加到“snsNum”变量,从而将当前电极的RX索引值有效添加到到目前为止已被处理用于当前TX电极的传感器元件的RX索引值的累加总和中。This operation adds the "rxIndex" variable to the "snsNum" variable, effectively adding the current electrode's RX index value to the cumulative sum of the RX index values of the sensor elements that have been processed so far for the current TX electrode.
在块1124中,处理逻辑设定需要被处理的下一个RX电极的RX索引值并继续执行在块1116中的操作。例如,处理逻辑执行操作In block 1124 , processing logic sets the RX index value of the next RX electrode that needs to be processed and proceeds with operations in block 1116 . For example, the processing logic performs the operation
rxIndex++rxIndex++
该操作向“rxIndex”变量添加“1”,以便指示下一个RX电极现在变成供处理的当前RX电极;此后,处理逻辑继续在块1116中的操作。This operation adds a "1" to the "rxIndex" variable to indicate that the next RX electrode now becomes the current RX electrode for processing; thereafter, processing logic continues operation in block 1116 .
在来自沿当前TX电极的所有RX电极的差分信号值已被处理后,处理逻辑在块1116中确定当前“rxIndex”变量不小于“rxLast”变量。因此,处理逻辑继续在块1126中的操作。After the differential signal values from all RX electrodes along the current TX electrode have been processed, processing logic determines in block 1116 that the current "rxIndex" variable is not less than the "rxLast" variable. Accordingly, processing logic continues operation at block 1126 .
在块1126中,处理逻辑计算当前TX电极的斜率参数值a,并存储与当前TX电极相关联的这个参数值。例如,处理逻辑执行操作In block 1126, processing logic calculates a slope parameter value a for the current TX electrode and stores this parameter value associated with the current TX electrode. For example, the processing logic performs the operation
Coef[txIndex]=总和[txIndex]/snsNumCoef[txIndex] = Sum[txIndex]/snsNum
其中,“Coef[txIndex]”是存储用于当前TX电极的斜率参数值a的变量,“总和[txIndex]”是存储用于校正尾端效应的沿当前TX电极的传感器元件的差分信号值的总和的变量,以及“snsNum”是存储用于校正尾端效应的用于当前TX电极的传感器元件的RX索引值的总和的变量。where "Coef[txIndex]" is the variable that stores the value of the slope parameter a for the current TX electrode, and "Sum[txIndex]" is the variable that stores the value of the differential signal of the sensor elements along the current TX electrode used to correct for tail effects The variable of the sum, and "snsNum" is a variable storing the sum of the RX index values of the sensor elements for the current TX electrode for correcting the tail effect.
在块1128中,处理逻辑设定需要被处理的下一个TX电极的TX索引值并继续执行在块1104中的操作。例如,处理逻辑执行操作In block 1128 , processing logic sets the TX index value of the next TX electrode that needs to be processed and proceeds with operations in block 1104 . For example, the processing logic performs the operation
txIndex++txIndex++
该操作向“txIndex”变量添加“1”,以便指示下一个TX电极现在变成供处理的当前TX电极;此后,处理逻辑继续在块1104中的操作。This operation adds a "1" to the "txIndex" variable to indicate that the next TX electrode now becomes the current TX electrode for processing; thereafter, processing logic continues operation in block 1104 .
在用于所有TX电极的差分信号值已被处理后,处理逻辑在块1104中确定当前“txIndex”变量不小于“txLast”变量。因此,处理逻辑继续在块1130中的操作。After the differential signal values for all TX electrodes have been processed, processing logic determines in block 1104 that the current "txIndex" variable is not less than the "txLast" variable. Accordingly, processing logic continues operation at block 1130 .
在块1130中,处理逻辑确定对应于在每个TX电极上的传感器元件的尾端效应的调整值,并且随后通过从每个此类差分信号值减去其相应的调整值,校正在每个TX电极上的这些传感器元件的差分信号值。用于调整传感器元件尾端效应的差分信号值的两个示例方法在下面关于图12和13进行描述。In block 1130, processing logic determines adjustment values corresponding to the tailing effects of the sensor elements on each TX electrode, and then corrects for the tailing effect at each such differential signal value by subtracting its corresponding adjustment value from each such differential signal value. The differential signal value of these sensor elements on the TX electrodes. Two example methods for adjusting the differential signal value for sensor element tail effects are described below with respect to FIGS. 12 and 13 .
在块1150中,处理逻辑使用尾端效应已校正的信号值来执行局部/最大值搜索并计算导电体在传感器阵列上的定位位置。例如,在某些实施例中,处理逻辑可以搜索存储在特定局部最大阈值之外的单个局部最大值的尾端效应已校正信号值的数据结构,其中,所述单个局部最大值是该数据结构中大于包围它的信号值的信号值。处理逻辑可以将每个信号值和其邻近值中的每个进行比较,并且当其邻近值没有更高值时,可以判定给定的信号值是局部最大值。此后,处理逻辑使用(例如,在矩心定位算法中)关于已发现局部最大值的信息,以便计算导电体在传感器阵列上的接触位置(例如,诸如触摸坐标和/或定位矩心)。In block 1150, processing logic uses the tail-effect corrected signal values to perform a local/maximum search and calculate the location of the electrical conductor on the sensor array. For example, in some embodiments, processing logic may search a data structure that stores tail-effect-corrected signal values for a single local maximum outside a particular local maximum threshold, where the single local maximum is the data structure A signal value in which is greater than the signal values surrounding it. Processing logic may compare each signal value to each of its neighbors, and may decide that a given signal value is a local maximum when its neighbors have no higher value. Thereafter, processing logic uses (eg, in a centroid location algorithm) information about the local maxima found to calculate the contact location of the electrical conductor on the sensor array (eg, such as touch coordinates and/or a location centroid).
在某些实施例中,可能仅在计算导电体在传感器阵列上的定位位置的阶段需要尾端效应校正。因此,在这些实施例中完成位置计算后,处理逻辑可以执行在块1160中的操作以恢复每个TX电极的尾端效应校正。例如,在这些实施例中,处理逻辑可以执行上面等式4所述的计算,以便在在对应数据结构中恢复作为块1100中的扫描操作的部分收到/获得的原始差分信号值。此类尾端效应恢复将确保基于存储在数据结构中的数据的任何随后下游处理被正确执行。In some embodiments, tail-end effect correction may only be required at the stage of calculating the location of electrical conductors on the sensor array. Thus, after the position calculations are complete in these embodiments, processing logic may perform the operations in block 1160 to restore the tail-effect corrections for each TX electrode. For example, in these embodiments, processing logic may perform the calculation described above in Equation 4 to recover, in a corresponding data structure, the original differential signal values received/obtained as part of the scan operation in block 1100 . Such tail effect recovery will ensure that any subsequent downstream processing based on the data stored in the data structure is performed correctly.
在某些实施例中,处理逻辑在块1170中可以(可选)更新存储的用于传感器阵列的各传感器元件的基准值。通常,此类基准值被存储在固件中并定期维持以便确保传感器阵列的准确操作。例如,由于装置操作的条件(例如,温度、湿度等)可能改变,所以至少某些扫描操作可以经配置定期计算校正并向所存储的基准值应用该校正。In some embodiments, processing logic may (optionally) update stored reference values for each sensor element of the sensor array in block 1170 . Typically, such baseline values are stored in firmware and maintained periodically in order to ensure accurate operation of the sensor array. For example, as the conditions under which the device operates (eg, temperature, humidity, etc.) may change, at least some scan operations may be configured to periodically calculate and apply corrections to the stored baseline values.
在恢复尾端效应校正和/或更新基准值后,处理逻辑返回到块1100并继续处理下一个扫描操作。After resuming the tail effect correction and/or updating the baseline value, processing logic returns to block 1100 and continues processing the next scan operation.
图12示出根据某些实施例调整尾端效应的信号值的示例方法。例如,图12的方法可以被执行为如上所述的图11的块1130中的操作的一部分。图12中的方法步骤在后文被描述为通过处理逻辑来执行(例如,诸如图1中的处理逻辑102)。不过需要指出,各个实施和实施例可以使用各种并且可能多个组件来执行图12中的方法的操作。例如,在各个实施例中,处理逻辑可以以各种方式实施,所述各种方式包括但不限于:作为一组存储软件和/或固件指令,当其被一个或多个处理器执行时,其可操作执行一个或多个操作;作为一个或多个计算装置可执行的一个或多个软件组件;作为一个或多个软件组件和一个或多个硬件组件的任何组合;以及作为单个集成组件或作为可以执行附加操作的两个或多个组件。因此,在后文中,图12中如通过处理逻辑执行的方法的描述应被视为说明性的含义而非限制性的含义。Figure 12 illustrates an example method of adjusting signal values for tail effects in accordance with certain embodiments. For example, the method of FIG. 12 may be performed as part of the operations in block 1130 of FIG. 11 as described above. The method steps in FIG. 12 are hereinafter described as being performed by processing logic (eg, such as processing logic 102 in FIG. 1 ). It should be noted, however, that various implementations and embodiments may use various, and possibly multiple, components to perform the operations of the method in FIG. 12 . For example, in various embodiments, processing logic may be implemented in various ways including, but not limited to: as a set of stored software and/or firmware instructions that, when executed by one or more processors, It is operable to perform one or more operations; as one or more software components executable by one or more computing devices; as any combination of one or more software components and one or more hardware components; and as a single integrated component Or as two or more components that can perform additional operations. Accordingly, hereinafter, the description of the method in FIG. 12 as performed by processing logic should be considered in an illustrative sense rather than a restrictive sense.
在块1204,用于传感器阵列的TX电极的斜率参数(或系数)值a已被计算并以与它们对应的TX电极相关联的方式被存储。例如,作为任何给定扫描操作的一部分,处理逻辑可以保持(在存储器中或固件存储上)存储被计算(例如,根据图11中的块1102-1128)用于传感器阵列的TX电极的参数值的阵列。At block 1204, slope parameter (or coefficient) values a for the TX electrodes of the sensor array have been calculated and stored in association with their corresponding TX electrodes. For example, as part of any given scan operation, processing logic may keep stored (in memory or on firmware storage) parameter values that are calculated (e.g., according to blocks 1102-1128 in FIG. 11 ) for the TX electrodes of the sensor array array of .
参考图12,在块1132中,处理逻辑执行将变量(“txIndex”)初始化到零的操作,该变量表示针对其正执行计算的当前TX电极的TX索引值。Referring to FIG. 12, in block 1132, processing logic performs an operation to initialize a variable ("txIndex") to zero representing the TX index value for the current TX electrode for which the calculation is being performed.
在块1134中,处理逻辑确定是否有需要被处理的任何剩余TX电极。例如,处理逻辑执行存储在“txIndex”变量中的值与变量或常数(“txLast”)比较的比较操作,该变量或常数(“txLast”)表示需要被处理用于尾端效应调整的TX电极的总数(例如,诸如传感器阵列中的TX电极的总数)。如果“txIndex”变量小于“txLast”变量,那么,至少当前TX电极仍需要被处理,并且该处理逻辑继续执行在块1136A至1144中的操作。如果“txIndex”变量不小于“txLast”变量,那么,用于所有TX电极的传感器元件的差分信号值均已被处理,并且该处理逻辑继续进行在块1250中的操作。In block 1134, processing logic determines whether there are any remaining TX electrodes that need to be processed. For example, the processing logic performs a compare operation in which the value stored in the "txIndex" variable is compared to a variable or constant ("txLast") that represents the TX electrodes that need to be processed for tail effect adjustment (eg, such as the total number of TX electrodes in a sensor array). If the "txIndex" variable is less than the "txLast" variable, then at least the current TX electrode still needs to be processed, and the processing logic continues to perform operations in blocks 1136A-1144. If the "txIndex" variable is not less than the "txLast" variable, then the differential signal values for the sensor elements of all TX electrodes have been processed and the processing logic continues with operations in block 1250 .
在块1136A中,处理逻辑执行将变量(“rxIndex”)初始化到零的操作,该变量表示针对其正执行计算的当前RX电极(沿当前TX电极)的RX索引值。In block 1136A, processing logic performs an operation to initialize a variable ("rxIndex") to zero, which represents the RX index value for the current RX electrode (along the current TX electrode) for which the calculation is being performed.
在块1138中,处理逻辑确定是否有需要被处理用于当前TX电极的任何剩余RX电极。例如,处理逻辑执行存储在“rxIndex”变量中的值与变量或常数(“txLast”)比较的比较操作,该变量或常数(“txLast”)表示需要被处理用于当前TX电极的RX电极的总数。如果“rxIndex”变量小于“rxLast”变量,那么,至少当前RX电极仍需要被处理,并且该处理逻辑继续执行在块1140和1142中的操作。如果“rxIndex”变量不小于“rxLast”变量,那么,来自沿当前TX电极的RX电极的差分信号值已被处理,并且处理逻辑继续执行在块1144中的操作(该块设定用于处理的下一个TX电极)。In block 1138, processing logic determines whether there are any remaining RX electrodes that need to be processed for the current TX electrode. For example, the processing logic performs a compare operation in which the value stored in the "rxIndex" variable is compared to a variable or constant ("txLast") that represents the number of RX electrodes that need to be processed for the current TX electrode. total. If the "rxIndex" variable is less than the "rxLast" variable, then at least the current RX electrode still needs to be processed, and the processing logic continues to perform operations in blocks 1140 and 1142 . If the "rxIndex" variable is not less than the "rxLast" variable, then the differential signal value from the RX electrodes along the current TX electrode has been processed, and processing logic continues with operations in block 1144 (which sets the next TX electrode).
在块1140中,处理逻辑调整用于当前传感器元件(其通过“rxIndex”变量指示的当前RX电极和“txIndex”变量指示的当前TX电极形成)的尾端效应的差分信号值。例如,处理逻辑执行下列操作In block 1140, processing logic adjusts the differential signal value for the tail effect of the current sensor element formed by the current RX electrode indicated by the "rxIndex" variable and the current TX electrode indicated by the "txIndex" variable. For example, the processing logic performs the following actions
信号校正=信号—Coef[txIndex]*rxIndexSignalCorrection = Signal - Coef[txIndex]*rxIndex
其中,“信号校正”是存储如被调整用于尾端效应的当前传感器元件的差分信号值的变量,“信号”是存储正被处理的当前传感器元件的测量/获得差分信号值的变量,以及“Coef[txIndex]”是已被计算和存储用于当前TX电极的斜率参数值a的变量。需要指出,值(即,乘积)“Coef[txIndex]*rxIndex”表示校正当前传感器元件的尾端效应的调整值。where "signalcorrection " is the variable storing the differential signal value of the current sensor element as adjusted for tail effects, "signal" is the variable storing the measured/obtained differential signal value of the current sensor element being processed, and "Coef[txIndex]" is a variable that has been calculated and stored for the slope parameter value a of the current TX electrode. Note that the value (ie, the product) "Coef[txIndex]*rxIndex" represents an adjustment value that corrects for the tailing effect of the current sensor element.
在块1142中,处理逻辑设定需要被处理的下一个RX电极的RX索引值并继续在块1138中的操作。例如,处理逻辑执行操作In block 1142 , processing logic sets the RX index value of the next RX electrode that needs to be processed and continues operation in block 1138 . For example, the processing logic performs the operation
rxIndex++rxIndex++
该操作向“rxIndex”变量添加“1”,以便指示下一个RX电极现在变成供处理的当前RX电极;此后,处理逻辑继续在块1138中的操作。This operation adds a "1" to the "rxIndex" variable to indicate that the next RX electrode now becomes the current RX electrode for processing; thereafter, processing logic continues operation in block 1138 .
在来自沿当前TX电极的所有RX电极的差分信号值已被处理后,处理逻辑在块1138中确定当前“rxIndex”变量不小于“rxLast”变量。因此,处理逻辑继续在块1144中的操作。After the differential signal values from all RX electrodes along the current TX electrode have been processed, processing logic determines in block 1138 that the current "rxIndex" variable is not less than the "rxLast" variable. Accordingly, processing logic continues operation at block 1144 .
在块1144中,处理逻辑设定需要被处理的下一个TX电极的TX索引值并继续在块1134中的操作。例如,处理逻辑执行操作In block 1144 , processing logic sets the TX index value of the next TX electrode that needs to be processed and continues operation in block 1134 . For example, the processing logic performs the operation
txIndex++txIndex++
该操作向“txIndex”变量添加“1”,以便指示下一个TX电极现在变成供处理的当前TX电极;此后,处理逻辑继续在块1134中的操作。This operation adds a "1" to the "txIndex" variable to indicate that the next TX electrode now becomes the current TX electrode for processing; thereafter, processing logic continues operation in block 1134 .
在所有TX电极的传感器元件的差分信号值以上述方式调整后,处理逻辑在块1134中确定当前“txIndex”变量不小于“txLast”变量。因此,处理逻辑继续在块1250中的操作。After the differential signal values of the sensor elements of all TX electrodes are adjusted in the manner described above, processing logic determines in block 1134 that the current "txIndex" variable is not less than the "txLast" variable. Accordingly, processing logic continues operation at block 1250 .
在块1250中,处理逻辑执行在图11中的块1150中描述的操作(例如,诸如使用尾端效应已校正信号值计算导电体在传感器阵列上的定位位置)。In block 1250, processing logic performs the operations described in block 1150 in FIG. 11 (eg, such as calculating the location of the electrical conductor on the sensor array using the tail-effect corrected signal values).
附加特征和替代实施例的示例Examples of Additional Features and Alternative Embodiments
在某些实施例中,本文所述的用于校正尾端效应的技术可以提供以避免在某些操作情况下可能由信号不一致引起的缺点中的某些缺点。In certain embodiments, the techniques described herein for correcting for tail effects may provide for avoiding some of the disadvantages that may arise from signal inconsistencies under certain operating conditions.
例如,在大导电体下(例如,诸如胖手指)信号不良接地的情况下,可能具有使“环形(donut)”接触区域排序的下沉。当在传感器阵列上被检测到时,此类“环形”接触可能引起某些内部传感器元件被认为具有尾端效应(例如,具有低于尾端效应阈值的差分信号值),而实际上,它们是在接触。换句话说,这些差分信号值可以低到足以在用于最佳拟合线性近似的尾端效应阈值之下。因此,当尾端效应校正如前面所述被应用时,由大导电体引起的信号值中的下沉(“环形”孔)将变得更大,并且由于从已经很低的差分信号值减去尾端效应调整,可能增加接触区域分离的可能性。不过,此类接触区域分离通常是不良的,因为它可能引起两个单独接触的检测(和位置计算)而不是实际的大导电体(例如,诸如胖手指)的单个接触。For example, in the case of poor grounding of a signal under a large electrical conductor (eg, such as a fat finger), it is possible to have a sinker ordering a "donut" contact area. When detected on a sensor array, such "ring-shaped" contacts may cause certain internal sensor elements to be perceived as tailing (e.g., having a differential signal value below a tailing threshold), when in fact they is in touch. In other words, these differential signal values can be low enough to be below the tail effect threshold for the best fit linear approximation. Therefore, when tail effect correction is applied as previously described, the dip in the signal value (the "ring" hole) caused by the large conductor will become larger and due to the subtraction from the already low differential signal value De-tailing adjustments that may increase the likelihood of contact region separation. However, such contact area separation is generally undesirable because it may result in the detection (and position calculation) of two separate contacts rather than the actual single contact of a large electrical conductor (eg, such as a fat finger).
为解决这个缺点,在某些实施例中,本文所述的技术提供仅校正在具有最大RX索引值的传感器元件下游的那些传感器元件的尾端效应。(需要指出,在此背景下,下游指的是远离藉此布线RX电极的传感器阵列边缘的方向。)To address this shortcoming, in some embodiments, the techniques described herein provide for correcting tailing effects only for those sensor elements downstream of the sensor element with the largest RX index value. (It should be noted that in this context, downstream refers to a direction away from the edge of the sensor array through which the RX electrodes are routed.)
图13示出考虑大导电体(例如,诸如胖手指)接触的调整尾端效应并避免接触区域分离的示例方法。图13中的方法包括如图12中的方法的相同块,除了如与图12中的块1136A相比,藉此选择不同元件的块1136B以外。FIG. 13 illustrates an example method of adjusting for tail effects and avoiding separation of contact areas to account for contacts of large electrical conductors (eg, such as fat fingers). The method in FIG. 13 includes the same blocks as the method in FIG. 12 , except for block 1136B whereby different elements are selected as compared to block 1136A in FIG. 12 .
图13中的各块的操作在后文被描述为通过处理逻辑来执行(例如,诸如图1中的处理逻辑102)。不过需要指出,各个实施和实施例可以使用不同并且可能多个组件来执行图13中的方法。因此,在后文中,图13中如通过处理逻辑执行的方法的描述应被视为说明性的含义而非限制性的含义。The operations of the blocks in FIG. 13 are hereinafter described as being performed by processing logic (eg, such as processing logic 102 in FIG. 1 ). It should be noted, however, that various implementations and embodiments may use different and possibly multiple components to perform the method in FIG. 13 . Accordingly, hereinafter, the description of the method in FIG. 13 as performed by processing logic should be considered in an illustrative sense rather than a restrictive sense.
在块1304,用于传感器阵列的TX电极的斜率参数(或系数)值a已被计算并以与它们对应的TX电极相关联的方式被存储。在块1132中,处理逻辑执行将“txIndex”变量初始化到零的操作,“txIndex”变量表示当前TX电极的TX索引值。在块1134中,处理逻辑确定是否有需要被处理的任何剩余TX电极。例如,如果“txIndex”变量小于“txLast”变量,那么,至少当前TX电极仍需要被处理,并且该处理逻辑继续执行在块1136B至1144中的操作。如果“txIndex”变量不小于“txLast”变量,那么,用于所有TX电极的传感器元件的差分信号值均已被处理,并且该处理逻辑继续进行在块1350中的操作。At block 1304, slope parameter (or coefficient) values a for the TX electrodes of the sensor array have been calculated and stored in association with their corresponding TX electrodes. In block 1132, processing logic performs an operation to initialize a "txIndex" variable to zero, which represents the TX index value of the current TX electrode. In block 1134, processing logic determines whether there are any remaining TX electrodes that need to be processed. For example, if the "txIndex" variable is less than the "txLast" variable, then at least the current TX electrode still needs to be processed, and the processing logic continues to perform operations in blocks 1136B-1144. If the "txIndex" variable is not less than the "txLast" variable, then the differential signal values for the sensor elements of all TX electrodes have been processed and the processing logic continues with operations in block 1350 .
在块1136B中,处理逻辑仅选择对其RX电极在作为正被处理的扫描操作的一部分被检测到具有最大差分信号值的RX电极下游的那些传感器元件的尾端效应调整。例如,处理逻辑将“rxIndex”变量初始化到高于变量(“rxMax”)值的值,变量(“rxMax”)表示沿当前TX电极被检测到具有最高差分信号值的RX电极的RX索引值。为执行该初始化,处理逻辑可以执行下列操作In block 1136B, processing logic selects tailing adjustments only for those sensor elements whose RX electrodes are downstream of the RX electrode that was detected to have the largest differential signal value as part of the scan operation being processed. For example, processing logic initializes the "rxIndex" variable to a value higher than the value of the variable ("rxMax") representing the RX index value of the RX electrode detected along the current TX electrode with the highest differential signal value. To perform this initialization, the processing logic can do the following
rxIndex=rxMax+1rxIndex=rxMax+1
为了上述操作的目的,用于每个TX电极的“rxMax”变量可以被找到并在线性近似系数计算期间,以与该TX电极相关联的方式保存(例如,作为图11中块1112至1124中的操作的一部分)。通过以这种方式设定“rxlndex”变量,本文所述的技术提供将仅被校正用于其RX索引值在所有TX电极的“rxMax”索引值范围之外的那些传感器元件的差分信号值。如果传感器阵列是双布线的,那么,块1136B中的操作可以被单独应用于藉此布线RX电极的传感器阵列的每一面。For the purposes of the above operations, the "rxMax" variable for each TX electrode can be found and saved in a manner associated with that TX electrode during linear approximation coefficient calculations (e.g., as part of the operation). By setting the "rxlndex" variable in this manner, the techniques described herein provide differential signal values that will only be corrected for those sensor elements whose RX index values are outside the range of "rxMax" index values for all TX electrodes. If the sensor array is dual wired, then the operations in block 1136B may be applied individually to each side of the sensor array through which the RX electrodes are wired.
在块1138中,处理逻辑确定是否有需要被处理用于当前TX电极的任何剩余RX电极。例如,如果“rxIndex”变量小于“rxLast”变量,那么,至少当前RX电极仍需要被处理,并且该处理逻辑继续执行在块1140和1142中的操作。如果“rxIndex”变量不小于“rxLast”变量,那么,来自沿当前TX电极的RX电极的差分信号值已被处理,并且处理逻辑继续执行在块1144中的操作(该块设定用于处理的下一个TX电极)。In block 1138, processing logic determines whether there are any remaining RX electrodes that need to be processed for the current TX electrode. For example, if the "rxIndex" variable is less than the "rxLast" variable, then at least the current RX electrode still needs to be processed, and the processing logic continues to perform operations in blocks 1140 and 1142 . If the "rxIndex" variable is not less than the "rxLast" variable, then the differential signal value from the RX electrodes along the current TX electrode has been processed, and processing logic continues with operations in block 1144 (which sets the next TX electrode).
在块1140中,处理逻辑调整用于当前传感器元件(其通过“rxIndex”变量指示的当前RX电极和“txIndex”变量指示的当前TX电极形成)的尾端效应的差分信号值。例如,处理逻辑执行下列操作In block 1140, processing logic adjusts the differential signal value for the tail effect of the current sensor element formed by the current RX electrode indicated by the "rxIndex" variable and the current TX electrode indicated by the "txIndex" variable. For example, the processing logic performs the following actions
信号校正=信号—Coef[txIndex]*rxIndexSignalCorrection = Signal - Coef[txIndex]*rxIndex
需要指出,值(即,乘积)“Coef[txIndex]*rxIndex”表示校正当前传感器元件的尾端效应的调整值。Note that the value (ie, the product) "Coef[txIndex]*rxIndex" represents an adjustment value that corrects for the tailing effect of the current sensor element.
在块1142中,处理逻辑设定需要被处理的下一个RX电极的RX索引值并继续在块1138中的操作。在来自沿当前TX电极的选定RX电极的差分信号值已被处理后,在块1138中处理逻辑确定当前“rxIndex”变量不小于“rxLast”变量。因此,处理逻辑继续在块1144中的操作。在块1144中处理逻辑设定需要被处理的下一个TX电极的TX索引值并继续在块1134中的操作。在所有TX电极的传感器元件的差分信号值被以上述方式调整后,在块1134中处理逻辑确定当前“txIndex”变量不小于“txLast”变量。因此,处理逻辑继续在块1350中的操作。在块1350中,处理逻辑执行在图11中的块1150中描述的操作(例如,诸如使用尾端效应已校正信号值计算导电体在传感器阵列上的定位位置的操作)。In block 1142 , processing logic sets the RX index value of the next RX electrode that needs to be processed and continues operation in block 1138 . After the differential signal values from selected RX electrodes along the current TX electrode have been processed, processing logic determines in block 1138 that the current "rxIndex" variable is not less than the "rxLast" variable. Accordingly, processing logic continues operation at block 1144 . Processing logic sets the TX index value of the next TX electrode that needs to be processed in block 1144 and continues operation in block 1134 . After the differential signal values of the sensor elements of all TX electrodes are adjusted in the manner described above, processing logic determines in block 1134 that the current "txIndex" variable is not less than the "txLast" variable. Accordingly, processing logic continues operation at block 1350 . In block 1350, processing logic performs the operations described in block 1150 in FIG. 11 (eg, operations such as calculating the location of electrical conductors on the sensor array using the tail-effect corrected signal values).
在某些实施例中,本文所述的技术的简单(例如,更快)实施可以包括计算仅用于在接触区域中间的那些TX电极的斜率参数值,以及调整仅通过那些TX电极形成的那些传感器元件的尾端效应。在这些实施例中,用于校正尾端效应的方法类似于在图11和12中示出的方法,除了取代循环通过所有TX电极以外,这些方法将提供仅选择TX电极的子集的操作(例如,诸如仅包括在接触区域中间的那些TX电极的子集)。In some embodiments, a simple (e.g., faster) implementation of the techniques described herein may include calculating slope parameter values for only those TX electrodes that are in the middle of the contact area, and adjusting those formed by only those TX electrodes. Tail effects of sensor elements. In these embodiments, the methods used to correct for tailing effects are similar to those shown in Figures 11 and 12, except that instead of cycling through all TX electrodes, these methods will provide operations that select only a subset of the TX electrodes ( For example, such as only including a subset of those TX electrodes in the middle of the contact area).
在某些实施例中,本文所述的用于校正尾端效应的技术不仅可以用于互电容式传感器阵列,而且可以用于具有自电容设计的传感器阵列。本文所述的技术的此类应用对于自电容式传感器阵列是可能的,因为它们也提供能够被激活并且能够产生能被分析的信号分布图的多个传感器。此外,本文所述的技术不只与电容式感应应用相关联,而且可以用于其他感应技术(例如,去除光学感应应用中的阴影),以及可用于提供能够接收与线性分布图耦合的寄生信号的传感器元件阵列的任何其他类型的设计。In certain embodiments, the techniques described herein for correcting for tail effects can be used not only for mutual capacitive sensor arrays, but also for sensor arrays with self capacitive designs. Such applications of the techniques described herein are possible with self-capacitive sensor arrays because they also provide multiple sensors that can be activated and that can generate signal profiles that can be analyzed. Furthermore, the techniques described here are not only relevant to capacitive sensing applications, but can also be used in other sensing techniques (e.g., shadow removal in optical sensing applications), as well as in providing Any other type of design of an array of sensor elements.
本文所述的用于校正尾端效应的技术的各个实施例可以包括各种操作。这些操作可以通过硬件组件、软件、固件或它们的组合来执行。如本文所使用的,术语“耦合于”可以意指直接耦合后通过一个或多个插入组件间接耦合。本文所述的在各个总线上提供的任何信号可以与其他信号时分多路复用并被在一个或多个公用总线上提供。另外,各电路组件或各块之间的互连可以被示出为各总线或单信号线。每个总线可以另选是一个或多个单信号线,以及每个单信号线可以另选是各总线。Various embodiments of the techniques for correcting for tail effects described herein may include various operations. These operations may be performed by hardware components, software, firmware or a combination thereof. As used herein, the term "coupled to" may mean directly coupled followed by indirect coupling through one or more intervening components. Any of the signals described herein provided on individual buses may be time multiplexed with other signals and provided on one or more common buses. Additionally, the interconnections between circuit components or blocks may be shown as buses or as single signal lines. Each bus may alternatively be one or more single signal lines, and each single signal line may alternatively be individual buses.
特定实施例可以被实施为计算机程序产品,该程序产品可以包括储存在非临时性计算机可读介质(例如,诸如易失性储存器和/或非易失性储存器)上。这些指令可用于编程包括一个或多个通用或专用处理器(例如,诸如中央处理单元或CPU)或其等效物(例如,诸如处理核,处理引擎,微控制器等)的一个或多个装置,使得当该指令被处理器或其等效物执行时,该指令促使该装置执行所述的用于校正本文所述的尾端效应的操作。计算机可读介质还可以包括用于以机器(例如,诸如装置或计算机)可读的形式(例如,诸如软件、处理应用)存储或传送信息的一个或多个机制。非临时性计算机可读存储介质可以包括但不限于电磁存储介质(例如,软盘、硬盘等)、光学存储介质(例如,CD-ROM)、磁光存储介质、只读存储器(ROM)、随机存取存储器(RAM)、可擦除可编程存储器(例如,EPROM和EEPROM)、闪存或适用于存储信息的另一种现在已知或以后开发类型的介质。Certain embodiments may be implemented as a computer program product, which may include storage on a non-transitory computer-readable medium such as, for example, volatile and/or non-volatile storage. These instructions may be used to program one or more processors including one or more general or special purpose processors (eg, such as central processing units or CPUs) or their equivalents (eg, such as processing cores, processing engines, microcontrollers, etc.) means, such that when executed by a processor or its equivalent, the instructions cause the means to perform the described operations for correcting the tail effects described herein. A computer-readable medium may also include one or more mechanisms for storing or transmitting information in a form (eg, such as software, processing application) readable by a machine (eg, such as an apparatus or a computer). Non-transitory computer-readable storage media may include, but are not limited to, electromagnetic storage media (e.g., floppy disks, hard disks, etc.), optical storage media (e.g., CD-ROM), magneto-optical storage media, read-only memory (ROM), random access memory (RAM), erasable programmable memory (eg, EPROM and EEPROM), flash memory, or another now known or later developed type of media suitable for storing information.
虽然本文方法的操作以特定次序示出和描述,但是每种方法的操作次序可以被改变,使得特定操作可以以相反次序执行,或使得特定操作可与其他操作至少部分并行执行。在其他实施例中,各指令或不同操作的子操作可以以间歇和/或交替的方式。Although operations of methods herein are shown and described in a particular order, the order of operations of each method may be altered such that certain operations may be performed in reverse order or such that certain operations may be performed at least in part in parallel with other operations. In other embodiments, instructions or sub-operations of different operations may be performed intermittently and/or alternately.
在前述说明书中,本发明已关于其特定示例性实施例进行了描述。不过很显然,可以对其做出各种更改和改变,而不偏离如在所附权利要求中阐述的本发明的较广阔的实质和范围。因此,本说明书和附图应被视为是示例性的含义而不是限制性的含义。In the foregoing specification, the invention has been described with respect to specific exemplary embodiments thereof. It will however be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361754028P | 2013-01-18 | 2013-01-18 | |
| US61/754,028 | 2013-01-18 | ||
| US13/800,468US8866490B1 (en) | 2013-01-18 | 2013-03-13 | Method and apparatus for eliminating tail effect in touch applications |
| US13/800,468 | 2013-03-13 | ||
| US201361785131P | 2013-03-14 | 2013-03-14 | |
| US61/785,131 | 2013-03-14 | ||
| US14/038,423US8866491B2 (en) | 2011-02-24 | 2013-09-26 | Tail effect correction for SLIM pattern touch panels |
| US14/038,423 | 2013-09-26 | ||
| PCT/US2013/062331WO2014113086A1 (en) | 2013-01-18 | 2013-09-27 | Tail effect correction for slim pattern touch panels |
| Publication Number | Publication Date |
|---|---|
| CN105027038A CN105027038A (en) | 2015-11-04 |
| CN105027038Btrue CN105027038B (en) | 2017-08-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380064976.9AActiveCN105027038B (en) | 2013-01-18 | 2013-09-27 | Device, method and system for correcting tail effect |
| Country | Link |
|---|---|
| CN (1) | CN105027038B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106339143B (en)* | 2016-08-29 | 2022-04-15 | 京东方科技集团股份有限公司 | Touch substrate and touch screen |
| CN107844221A (en)* | 2016-09-21 | 2018-03-27 | 晨星半导体股份有限公司 | Mutual capacitance type touch panel |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101093333A (en)* | 2006-06-21 | 2007-12-26 | 三菱电机株式会社 | Display device |
| CN201540548U (en)* | 2008-04-25 | 2010-08-04 | 苹果公司 | Touch sensor panel and manufacturing system thereof as well as corresponding handheld electronic equipment |
| CN102541334A (en)* | 2010-12-30 | 2012-07-04 | 上海天马微电子有限公司 | Touch display device and method of manufacturing the same |
| US8294687B1 (en)* | 2012-02-23 | 2012-10-23 | Cypress Semiconductor Corporation | False touch filtering for capacitance sensing systems |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8300019B2 (en)* | 2008-07-15 | 2012-10-30 | Apple Inc. | Capacitive sensor coupling correction |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101093333A (en)* | 2006-06-21 | 2007-12-26 | 三菱电机株式会社 | Display device |
| CN201540548U (en)* | 2008-04-25 | 2010-08-04 | 苹果公司 | Touch sensor panel and manufacturing system thereof as well as corresponding handheld electronic equipment |
| CN102541334A (en)* | 2010-12-30 | 2012-07-04 | 上海天马微电子有限公司 | Touch display device and method of manufacturing the same |
| US8294687B1 (en)* | 2012-02-23 | 2012-10-23 | Cypress Semiconductor Corporation | False touch filtering for capacitance sensing systems |
| Publication number | Publication date |
|---|---|
| CN105027038A (en) | 2015-11-04 |
| Publication | Publication Date | Title |
|---|---|---|
| US8866491B2 (en) | Tail effect correction for SLIM pattern touch panels | |
| US9389258B2 (en) | SLIM sensor design with minimum tail effect | |
| CN103534673B (en) | Bifurcated capacitive sensor pattern | |
| US8901944B2 (en) | Lattice structure for capacitance sensing electrodes | |
| CN106170750B (en) | Water repellency on capacitive sensors | |
| US9529485B2 (en) | Trace pattern for touch-sensing application | |
| US8754662B1 (en) | Flipped cell sensor pattern | |
| US9658726B2 (en) | Single layer sensor pattern | |
| US8410795B1 (en) | Serpentine touch sensor pattern | |
| US9201106B1 (en) | Self shielding capacitance sensing panel | |
| CN105637458B (en) | Single layer sensor pattern | |
| US9391610B2 (en) | Single layer touchscreen with ground insertion | |
| CN102929422B (en) | Force sensing capacitive hybrid touch sensor | |
| US8508502B2 (en) | Capacitive touchscreen system with touch position encoding during analog-to-digital conversion | |
| CN102667693B (en) | Mesh structure for applications related to capacitive sensing electrodes | |
| US9705495B2 (en) | Asymmetric sensor pattern | |
| KR101441970B1 (en) | Touch sensor ic, apparatus for sensing touch and method for compensating a touch coordinate of the same | |
| US8866490B1 (en) | Method and apparatus for eliminating tail effect in touch applications | |
| CN105027038B (en) | Device, method and system for correcting tail effect | |
| US9495050B1 (en) | Sensor pattern with signal-spreading electrodes | |
| WO2014113086A1 (en) | Tail effect correction for slim pattern touch panels |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C41 | Transfer of patent application or patent right or utility model | ||
| TA01 | Transfer of patent application right | Effective date of registration:20151224 Address after:American California Applicant after:Parade Technologies, Ltd. Address before:American California Applicant before:Cypress Semiconductor Corp. | |
| GR01 | Patent grant | ||
| GR01 | Patent grant |