技术领域technical field
本发明涉及成像卫星任务合成技术领域,具体涉及一种合成成像卫星元任务的方法及装置。The invention relates to the technical field of task synthesis of imaging satellites, in particular to a method and device for synthesizing meta-tasks of imaging satellites.
背景技术Background technique
成像卫星具有一次成像范围大、成像成本低等特点,已广泛应用于国防、环保、农业、气象、灾害应急等领域。然而,成像卫星研制、发射和维护成本高,尽管随着卫星应用技术的发展,越来越多的成像卫星升入太空,但相对于人类日益增长的成像需求,卫星资源仍然异常宝贵。为了最优化地利用成像卫星资源,卫星任务规划尤为重要。卫星任务规划即综合考虑卫星成像能力及任务需求等约束,以安排任务收益和最大为优化目标,确定要执行的任务及执行这些任务的时间窗起止时间。一些典型的任务规划算法包括贪婪算法,禁忌搜索,线性规划算法,遗传算法,进化算法,启发式算法,拉格朗日松弛技术等。Imaging satellites have the characteristics of large imaging range and low imaging cost at one time, and have been widely used in national defense, environmental protection, agriculture, meteorology, disaster emergency and other fields. However, the development, launch and maintenance costs of imaging satellites are high. Although more and more imaging satellites are launched into space with the development of satellite application technology, satellite resources are still extremely precious compared to the growing imaging needs of human beings. In order to optimize the use of imaging satellite resources, satellite mission planning is particularly important. Satellite mission planning is to comprehensively consider the constraints of satellite imaging capabilities and mission requirements, with the optimization goal of arranging mission revenue and maximization, and determine the tasks to be performed and the start and end times of the time windows for performing these tasks. Some typical task planning algorithms include greedy algorithm, tabu search, linear programming algorithm, genetic algorithm, evolutionary algorithm, heuristic algorithm, Lagrangian relaxation technique, etc.
当不同成像任务对应的观测目标相距较近时,可通过调整星载传感器的成像侧摆角,延长传感器的开机时间,对多个观测目标进行任务合成观测。卫星成像任务合成是指按照一定规则把若干个能被一颗卫星一次过境执行的元任务合并成一个任务。如图1(a0)和1(a1)所示,一个卫星的传感器在经过观测目标上空时,以一定的幅宽和长度拍摄一个条带。条带的长度和宽度由卫星的高度,传感器的视场角,传感器的侧摆角和传感器的持续观测时间决定。一般而言,卫星的高度和传感器视场角是固定的,我们可以通过调整传感器的侧摆角和持续观测时间来决定覆盖观测目标条带的位置与大小。本文所研究的成像目标为点目标,卫星一次观测即可完成成像。一个观测目标可以视为一个元任务,而临近的两个或多个任务可以合并为一个任务。如图1(b0)、1(b1)、1(c0)和1(c1)所示,两个观测任务T1和T2可以合并成一个任务,通过卫星的一次拍摄就可以完成。研究卫星成像任务合成有着重要的意义。首先,这可以避免卫星频繁的侧摆活动,减少开关机次数,有利于保护卫星传感器。其次,一些成像卫星每个轨道圈次内的侧视成像次数具有严格限制,取任务合成观测,那么卫星飞行一圈能完成更多的观测任务。另外,任务合成可以减少任务规划的解空间,提高卫星的使用率。因此,考虑任务合成对提高现有成像卫星的观测能力至关重要。任务合成对于卫星减少传感器开关机次数及侧摆次数,减少能量消耗,完成更多任务具有重要的意义。When the observation targets corresponding to different imaging tasks are relatively close to each other, the imaging roll angle of the spaceborne sensor can be adjusted to prolong the start-up time of the sensor, and composite observations can be performed on multiple observation targets. Satellite imaging task synthesis refers to combining several meta-tasks that can be executed by one satellite in one transit into one task according to certain rules. As shown in Figure 1(a0) and 1(a1), the sensor of a satellite shoots a strip with a certain width and length when it passes over the observation target. The length and width of the strip are determined by the height of the satellite, the field of view of the sensor, the roll angle of the sensor and the continuous observation time of the sensor. Generally speaking, the altitude of the satellite and the field of view of the sensor are fixed, and we can determine the position and size of the band covering the observation target by adjusting the roll angle of the sensor and the continuous observation time. The imaging target studied in this paper is a point target, and the satellite can complete the imaging in one observation. An observation target can be regarded as a meta-task, and two or more adjacent tasks can be combined into one task. As shown in Figure 1(b0), 1(b1), 1(c0) and 1(c1), the two observation tasks T1 and T2 can be combined into one task, which can be completed by one shot of the satellite. It is of great significance to study the synthesis of satellite imaging tasks. First of all, this can avoid frequent side swing activities of the satellite, reduce the number of power on and off, and help protect the satellite sensor. Secondly, some imaging satellites have a strict limit on the number of side-view imaging in each orbital cycle. If the mission composite observation is taken, then the satellite can complete more observation tasks in one orbit. In addition, mission synthesis can reduce the solution space of mission planning and improve the utilization rate of satellites. Therefore, it is crucial to consider task composition to improve the observation capabilities of existing imaging satellites. Task synthesis is of great significance for satellites to reduce the number of sensor switches and side swings, reduce energy consumption, and complete more tasks.
卫星任务合成方法应用于卫星任务规划中时,我们需要判断两个元任务什么情况下可以进行合成,以及怎样构建合成任务。如图1(a0)和1(a1)所示,地面上的目标,能被卫星一次过境完成观测,那么称之为元任务。令S={s1,s2,…,sM}表示成像卫星资源集合。一个元任务通常绑定一个时间窗口任务执行时长和一个侧摆角其中和表示时间窗口的开始时间和结束时间。为方便表示,本文以下部分中省略上标s。举例来说,第s个卫星上的第i个元任务则表示为Ti={Wi,di,θi}。When the satellite mission synthesis method is applied to satellite mission planning, we need to judge when two meta-tasks can be synthesized and how to construct the synthesis task. As shown in Figure 1(a0) and 1(a1), the target on the ground can be observed by the satellite in one transit, so it is called a meta-task. Let S={s1 ,s2 ,...,sM } denote a set of imaging satellite resources. a meta task Usually bound to a time window task execution time and a roll angle in and Indicates the start time and end time of the time window. For convenience of presentation, the superscript s is omitted in the following part of this paper. For example, the i-th meta-task on the s-th satellite is expressed as Ti ={Wi , di ,θi }.
任务Ti若能够被一颗卫星执行,那么必然是在此卫星的可见时间窗口中选择一段不少于di的时段,即If the task Ti can be executed by a satellite, then it is necessary to select a period of time not less than di in the visible time window of the satellite, that is,
其中tsi和tei分别表示任务开始执行的时刻和结束的时刻,wsi和wei也分别是任务Ti的最早开始时间和最晚结束时间Among them, tsi and tei represent the start time and end time of the task respectively, and wsi and wei are also the earliest start time of task Ti and the latest end time
假设Ti,j是一个合成任务,它由两个元任务Ti和Tj合成。当实际执行Ti,j的时间大于任务所需要的执行时长di,j时,那么将会浪费一部分宝贵的卫星资源来完成这个任务。Suppose Ti,j is a composition task, which is composed of two meta-tasks Ti and Tj . When the actual execution time of Ti,j is longer than the execution time di,j required by the task, a part of precious satellite resources will be wasted to complete the task.
合成任务时间窗口的冗余时间指的是,当任务的实际执行时间大于任务所需要的执行时间时,即tei,j-tsi,j>di,j,那么时间窗口中有一部分时间被浪费,这部分时间被称为冗余时间。The redundant time of the synthetic task time window means that when the actual execution time of the task is greater than the required execution time of the task, that is, tei,j -tsi,j >di,j , then there is a part of the time in the time window Wasted, this part of the time is called redundant time.
从图1(a0)和1(a1)可知,地面目标1,2,和3可以作为3个元任务T1,T2和T3,通过两颗卫星完成观测成像。如图1(b0)、1(b1)、1(c0)和1(c1)所示,卫星也可以通过执行合成任务T1,2和元任务T3来完成对这三个目标的成像。图1(b0)和1(b1)与1(c0)和1(c1)的不同之处在于,前者的合成时间窗口中存在冗余时间,而后者并没有。It can be seen from Fig. 1(a0) and 1(a1) that ground targets 1, 2, and 3 can be used as three meta-tasks T1 , T2 and T3 to complete observation and imaging by two satellites. As shown in Figures 1(b0), 1(b1), 1(c0) and 1(c1), satellites can also complete the imaging of these three targets by executing synthetic tasks T1,2 and meta-task T3 . Figures 1(b0) and 1(b1) differ from 1(c0) and 1(c1) in that there is redundant time in the synthetic time window of the former, but not in the latter.
一些对考虑任务合成的卫星任务规划问题的研究认为,若成像任务T1和T2能够进行合成,必须满足以下两个条件[18,19,20,22,23]:Some studies on the satellite mission planning problem considering task synthesis believe that if the imaging tasks T1 and T2 can be combined, the following two conditions must be met [18, 19, 20, 22, 23]:
其中Δds,Δθs分别表示卫星s的单次成像开机时间和视场角。Among them, Δds and Δθs respectively represent the single imaging start-up time and field angle of satellite s.
若成像任务T1和T2能够进行合成,那么合成任务T1,2的时间窗口和侧摆角为:If the imaging tasks T1 and T2 can be combined, then the time window and roll angle of the combined tasks T1 and 2 are:
这种常规合成方式没有考虑合成任务的执行时长。任务的执行时长是指根据成像卫星的轨道参数和成像任务的地理位置所计算出的,是卫星对该任务进行成像的时间。在任务调度的过程中这个时间不会变化,因而也可以看成是成像任务的一种属性。当卫星轨道较高或星载传感器视场范围较大时,卫星的可见时间窗口长度往往大于卫星对目标观测所需的实际时间,卫星执行成像任务仅需在可见时间窗口中选取一段时间成像即可。这种任务合成的方式,使得合成时间窗口中存在冗余时间,如图1(b0)和1(b1)所示。在卫星任务规划中,若采取上述常规任务合成的思想,有可能导致有些原本可以合成的任务无法合成,同时合成的成像任务要求的成像持续时间不是理论上的最短时间;另外,合成后的成像侧摆角也不是理论上最小的能同时观测到任务T1和T2对应观测目标的成像侧摆角。This conventional compositing method does not take into account the execution time of compositing tasks. The execution time of the task is calculated according to the orbital parameters of the imaging satellite and the geographic location of the imaging task, and is the time for the satellite to image the task. This time will not change during the task scheduling process, so it can also be regarded as an attribute of the imaging task. When the orbit of the satellite is high or the field of view of the spaceborne sensor is large, the length of the visible time window of the satellite is often longer than the actual time required for the satellite to observe the target. Can. This way of task synthesis makes redundant time exist in the synthesis time window, as shown in Figure 1(b0) and 1(b1). In satellite mission planning, if the above-mentioned idea of conventional task synthesis is adopted, some tasks that could have been synthesized may not be able to be synthesized. At the same time, the imaging duration required by the synthesized imaging task is not the shortest in theory; in addition, the synthesized imaging task The roll angle is not the theoretically smallest imaging roll angle that can simultaneously observe the corresponding observation targets of tasksT1 andT2 .
由此可知,常规的任务合成方法构造的合成任务不能充分利用卫星资源,从而造成卫星资源的浪费。It can be seen that the synthetic tasks constructed by conventional task synthesis methods cannot make full use of satellite resources, resulting in a waste of satellite resources.
发明内容Contents of the invention
本发明的目的在于,提供一种合成成像卫星元任务的方法及装置,能够充分利用卫星资源,从而能够节省卫星资源。The object of the present invention is to provide a method and device for synthesizing imaging satellite meta-tasks, which can make full use of satellite resources, thereby saving satellite resources.
为此目的,一方面,本发明提出一种合成成像卫星元任务的方法,包括:For this purpose, on the one hand, the present invention proposes a method for synthesizing imaging satellite meta-tasks, comprising:
S1,获取处于同一成像卫星传感器的视场角范围内的多个元任务T1,T2,T3,…,Tn;S1, acquiring multiple meta-tasks T1 , T2 , T3 , ..., Tn within the field of view of the same imaging satellite sensor;
S2,根据所述多个元任务T1,T2,T3,…,Tn生成第一中间任务和第二中间任务;所述第一中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θx、wsx、wex和dx,所述第二中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θy、wsy、wey和dy;S2. Generate a first intermediate task and a second intermediate task according to the plurality of meta-tasks T1 , T2 , T3 , ..., Tn ; the roll angle of the first intermediate task, the start time of the time window, The end time and the shortest execution time are θx , wsx , wex and dx respectively, the side swing angle of the second intermediate task, the start time, end time and shortest execution time of the time window are θy , wsy respectively , wey and dy ;
S3,判断所述θx、wsx、wex和dx,以及所述θy、wsy、wey和dy是否满足S3, judging whether the θx , wsx , wex and dx , and the θy , wsy , wey and dy satisfy
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs;(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ;
或(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,or (wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs ,
其中,所述Δds,Δθs分别表示所述成像卫星s的单次成像开机时间和视场角,Wherein, the Δds and Δθs respectively represent the single imaging start-up time and field angle of the imaging satellite s,
若满足,则将所述多个元任务T1,T2,T3,…,Tn合成为合成任务,If so, combine the multiple meta-tasks T1 , T2 , T3 ,..., Tn into a combined task,
若满足If satisfied
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs,(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ,
所述合成任务的侧摆角为θx,y,The roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,The shortest execution time of the synthesis task is dx,y ,
若满足If satisfied
(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,(wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs ,
所述合成任务的侧摆角为θx,y,The roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,Wx和Wy分别为第一中间任务的时间窗口和第二中间任务的时间窗口,The shortest execution duration of the synthetic task is dx, y , Wx and Wy are the time window of the first intermediate task and the time window of the second intermediate task respectively,
另一方面,本发明提出一种合成成像卫星元任务的装置,包括:On the other hand, the present invention proposes a device for synthesizing imaging satellite meta-tasks, including:
获取单元,用于获取处于同一成像卫星传感器的视场角范围内的多个元任务T1,T2,T3,…,Tn;An acquisition unit, configured to acquire multiple meta-tasks T1 , T2 , T3 , ..., Tn within the field of view range of the same imaging satellite sensor;
中间任务生成单元,用于根据所述多个元任务T1,T2,T3,…,Tn生成第一中间任务和第二中间任务;所述第一中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θx、wsx、wex和dx,所述第二中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θy、wsy、wey和dy;An intermediate task generating unit, configured to generate a first intermediate task and a second intermediate task according to the plurality of meta-tasks T1 , T2 , T3 , ..., Tn ; the roll angle and time of the first intermediate task The start time, end time and shortest execution time of the window are θx , wsx , wex and dx respectively, and the roll angle of the second intermediate task, the start time, end time and shortest execution time of the time window are respectively θy , wsy , wey and dy ;
合成任务生成单元,用于判断所述θx、wsx、wex和dx,以及所述θy、wsy、wey和dy是否满足A synthesis task generating unit, used to judge whether the θx , wsx , wex and dx , and the θy , wsy , wey and dy satisfy
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs;(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ;
或(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,or (wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs ,
其中,所述Δds,Δθs分别表示所述成像卫星s的单次成像开机时间和视场角,Wherein, the Δds and Δθs respectively represent the single imaging start-up time and field angle of the imaging satellite s,
若满足,则将所述多个元任务T1,T2,T3,…,Tn合成为合成任务,If so, combine the multiple meta-tasks T1 , T2 , T3 ,..., Tn into a combined task,
若满足If satisfied
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs,(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ,
所述合成任务的侧摆角为θx,y,The roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,The shortest execution time of the synthesis task is dx,y ,
若满足If satisfied
(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,(wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs ,
所述合成任务的侧摆角为θx,y,The roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,Wx和Wy分别为第一中间任务的时间窗口和第二中间任务的时间窗口,The shortest execution duration of the synthetic task is dx, y , Wx and Wy are the time window of the first intermediate task and the time window of the second intermediate task respectively,
本发明实施例所述的合成成像卫星元任务的方法及装置,处于同一成像卫星传感器的视场角范围内的多个元任务合成的合成任务的相较于常规的合成方法合成的合成任务侧摆角最小,且时间窗口没有冗余时间,因而较之常规的任务合成方法,能将更多的任务进行合成,并且合成的合成任务的侧摆角度更小,执行时间更短,因而能够减少星载传感器的开机次数,减少卫星的能量损耗,从而能够节省卫星资源。In the method and device for synthesizing imaging satellite meta-tasks described in the embodiments of the present invention, the synthesizing tasks synthesized by multiple meta-tasks within the field of view of the same imaging satellite sensor are compared with the synthesizing tasks synthesized by conventional synthesizing methods. The swing angle is the smallest, and the time window has no redundant time, so more tasks can be synthesized compared with the conventional task synthesis method, and the side swing angle of the synthesized task is smaller, and the execution time is shorter, so it can reduce The number of start-ups of spaceborne sensors reduces the energy loss of satellites, thereby saving satellite resources.
附图说明Description of drawings
图1为本发明合成成像卫星元任务的方法一实施例的流程示意图;Fig. 1 is a schematic flow chart of an embodiment of a method for synthesizing imaging satellite meta-tasks in the present invention;
图2中(a0)为卫星成像任务的示意图,(a1)为卫星成像任务的时间窗口的示意图,(b0)为常规卫星成像任务合成的示意图,(b1)为常规卫星成像任务合成的合成任务的时间窗口的示意图,(c0)为本发明合成成像卫星元任务的方法另一实施例中卫星成像任务合成的示意图,(c1)为本发明合成成像卫星元任务的方法另一实施例中卫星成像任务合成的合成任务的时间窗口的示意图;In Fig. 2, (a0) is a schematic diagram of satellite imaging tasks, (a1) is a schematic diagram of the time window of satellite imaging tasks, (b0) is a schematic diagram of the synthesis of conventional satellite imaging tasks, and (b1) is the synthesis task of conventional satellite imaging tasks (c0) is a schematic diagram of the synthesis of satellite imaging tasks in another embodiment of the method for synthesizing imaging satellite meta-tasks of the present invention, (c1) is a schematic diagram of satellite imaging task synthesis in another embodiment of the method for synthesizing imaging satellite meta-tasks of the present invention Schematic illustration of the time window of the synthesis task for imaging task synthesis;
图3为任务T1和任务T2的时间窗相对位置分布示意图;Fig. 3 is a schematic diagram of the relative position distribution of the time windows of taskT1 and taskT2 ;
图4为对图3中所示的任务T1和任务T2合成的合成任务的时间窗口的示意图;FIG. 4 is a schematic diagram of a time window of a synthetic task synthesized from task T1 and task T2 shown in FIG. 3;
图5为任务Ti和Tj的时间窗口的交集示意图;Fig. 5 is the intersection schematic diagram of the time window of task Ti and Tj ;
图6为本发明合成成像卫星元任务的装置一实施例的方框结构示意图。FIG. 6 is a block diagram of an embodiment of the device for synthesizing imaging satellite meta-tasks according to the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are the Some, but not all, embodiments are invented. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
如图1所示,本实施例公开一种合成成像卫星元任务的方法,包括:As shown in Figure 1, this embodiment discloses a method for synthesizing imaging satellite meta-tasks, including:
S1,获取处于同一成像卫星传感器的视场角范围内的多个元任务T1,T2,T3,…,Tn;S1, acquiring multiple meta-tasks T1 , T2 , T3 , ..., Tn within the field of view of the same imaging satellite sensor;
S2,根据所述多个元任务T1,T2,T3,…,Tn生成第一中间任务和第二中间任务;所述第一中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θx、wsx、wex和dx,所述第二中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θy、wsy、wey和dy;S2. Generate a first intermediate task and a second intermediate task according to the plurality of meta-tasks T1 , T2 , T3 , ..., Tn ; the roll angle of the first intermediate task, the start time of the time window, The end time and the shortest execution time are θx , wsx , wex and dx respectively, the side swing angle of the second intermediate task, the start time, end time and shortest execution time of the time window are θy , wsy respectively , wey and dy ;
S3,判断所述θx、wsx、wex和dx,以及所述θy、wsy、wey和dy是否满足S3, judging whether the θx , wsx , wex and dx , and the θy , wsy , wey and dy satisfy
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs;(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ;
或(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,or (wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs ,
其中,所述Δds,Δθs分别表示所述成像卫星s的单次成像开机时间和视场角,Wherein, the Δds and Δθs respectively represent the single imaging start-up time and field angle of the imaging satellite s,
若满足,则将所述多个元任务T1,T2,T3,…,Tn合成为合成任务,If so, combine the multiple meta-tasks T1 , T2 , T3 ,..., Tn into a combined task,
若满足If satisfied
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs,(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ,
所述合成任务的侧摆角为θx,y,The roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,The shortest execution time of the synthesis task is dx,y ,
若满足If satisfied
(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,所述合成任务的侧摆角为θx,y,(wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs , the roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,Wx和Wy分别为第一中间任务的时间窗口和第二中间任务的时间窗口,The shortest execution duration of the synthetic task is dx, y , Wx and Wy are the time window of the first intermediate task and the time window of the second intermediate task respectively,
本发明实施例所述的合成成像卫星元任务的方法,处于同一成像卫星传感器的视场角范围内的多个元任务合成的合成任务的相较于常规的合成方法合成的合成任务侧摆角最小,且时间窗口没有冗余时间,因而较之常规的任务合成方法,能将更多的任务进行合成,并且合成的合成任务的侧摆角度更小,执行时间更短,因而能够减少星载传感器的开机次数,减少卫星的能量损耗,从而能够节省卫星资源。In the method for synthesizing imaging satellite meta-tasks described in the embodiment of the present invention, the side swing angle of the synthetic task synthesized by multiple meta-tasks within the field of view of the same imaging satellite sensor is compared with the synthetic task side roll angle synthesized by the conventional synthesis method It is the smallest, and there is no redundant time in the time window, so compared with the conventional task synthesis method, more tasks can be combined, and the side swing angle of the combined task is smaller, and the execution time is shorter, so it can reduce the spaceborne The number of times the sensor is turned on reduces the energy loss of the satellite, thereby saving satellite resources.
可选地,在本发明合成成像卫星元任务的方法的另一实施例中,若n大于2,Optionally, in another embodiment of the method for synthesizing imaging satellite meta-tasks of the present invention, if n is greater than 2,
所述根据所述多个元任务T1,T2,T3,…,Tn生成第一中间任务和第二中间任务,包括:The generating the first intermediate task and the second intermediate task according to the plurality of meta-tasks T1 , T2 , T3 , ..., Tn includes:
将所述多个元任务T1,T2,T3,…,Tn合成为合成任务T1,n-1,Synthesizing the plurality of meta-tasks T1 , T2 , T3 , ..., Tn into synthetic tasks T1, n-1 ,
根据所述合成任务T1,n-1和所述元任务Tn生成第一中间任务和第二中间任务;generating a first intermediate task and a second intermediate task according to the composite task T1, n-1 and the meta-task Tn ;
所述θx=max(max(θ1,0),max(θ2,0),...max(θn,0)),The θx =max(max(θ1 ,0),max(θ2 ,0),...max(θn ,0)),
所述said
所述said
所述said
所述θy=min(min(θ1,0),min(θ2,0),...min(θn,0)),The θy =min(min(θ1 ,0),min(θ2 ,0),...min(θn ,0)),
所述said
所述said
所述said
其中,θp(p∈(1,2,…,n))为元任务Tp的侧摆角,所述wsn、wen和dn分别为元任务Tn的时间窗口的开始时间、结束时间和最短执行时长,所述ws1,n-1、we1,n-1和d1,n-1分别为所述合成任务T1,n-1的时间窗口的开始时间、结束时间和最短执行时长。Among them, θp (p∈(1,2,...,n)) is the roll angle of the meta-task Tp , and the wsn , wen and dn are the start time and time of the time window of the meta-task Tn respectively. The end time and the shortest execution time, the ws1,n-1 , we1,n-1 and d1,n-1 are the start time and end time of the time window of the synthesis task T1,n- 1 respectively and the minimum execution time.
可选地,在本发明合成成像卫星元任务的方法的另一实施例中,若n为2,Optionally, in another embodiment of the method for synthesizing imaging satellite meta-tasks of the present invention, if n is 2,
所述θx=max(max(θ1,0),max(θ2,0)),The θx = max(max(θ1 ,0),max(θ2 ,0)),
所述said
所述said
所述said
所述θy=min(min(θ1,0),min(θ2,0)),The θy =min(min(θ1 ,0),min(θ2 ,0)),
所述said
所述said
所述said
ws1、ws2、we1、we2、d1和d2分别表示元任务T1的时间窗口的开始时间、元任务T2的时间窗口的开始时间、元任务T1的时间窗口的结束时间、元任务T2的时间窗口的结束时间、元任务T1的时间窗口的最短执行时长和元任务T2的时间窗口的最短执行时长。ws1 , ws2 , we1 , we2 , d1 and d2 denote the start time of the time window of meta-task T1 , the start time of the time window of meta-task T2 , and the end of the time window of meta-task T1 Time, the end time of the time window of metataskT2 , the shortest execution duration of the time window of metataskT1 and the shortest execution duration of the time window of metataskT2 .
不失一般性,假设两个元任务Ti和Tj,且Ti比Tj的时间窗口开始的更早(wsi≤wsj),则任务Ti和Tj能够合成的充分必要条件是(wsj+dj)-(wei-di)≤Δds或|θi-θj|≤Δθs,其中|θi-θj|指两个元任务侧摆角之差的绝对值。Without loss of generality, assuming two meta-tasks Ti and Tj , and Ti starts earlier than the time window of Tj (wsi ≤ wsj ), then the necessary and sufficient conditions for the synthesis of tasks Ti and Tj is (wsj +dj )-(wei -di )≤Δds or |θi -θj |≤Δθs , where |θi -θj | refers to the difference between two meta-task roll angles Absolute value.
对于一个元任务Ti,它的最短执行时长di是确定的,实际执行此任务时可在可见时间窗口中任意连续不小于di的时段内执行。而对于合成任务,其最短执行时长则是卫星同时能完成元任务的最短时间。因此,最短执行时长依赖于两个元任务时间窗口的交集以及它们各自的执行时长。两个元任务Ti和Tj的时间窗口[wsi,wei]与[wsj,wej]在时间上存在三种关系:相离、相交、包含。按两时间窗口的重叠长度|W1∩2|与任务Ti,Tj的执行时间di,dj三者的大小关系分为|W1∩2|<min(d1,d2)和|W1∩2|≥min(d1,d2)。图3中按两时间窗口之间的集合关系及时间窗口重叠长度与任务T1和T2的执行时长之间大小关系,列出了成像任务T1和成像任务T2的时间窗相对位置分布的9种情况,图4为图3中各个情况合成的合成任务的时间窗口。任务Ti和Tj能够合成的充分必要条件是(wsj+dj)-(wei-di)≤Δds,说明如下:For a meta-task Ti , its shortest execution duration di is definite, and it can be executed in any continuous period not less than di in the visible time window when actually executing this task. For synthetic tasks, the minimum execution time is the shortest time that the satellite can complete the meta-task at the same time. Therefore, the minimum execution time depends on the intersection of the two metatask time windows and their respective execution times. There are three relationships between the time windows [wsi , wei ] and [wsj , wej ] of two meta-tasks Ti and Tj in time: separation, intersection and inclusion.Accordingtotheoverlapping lengthofthe two time windows| W1∩2 | and |W1∩2 |≥min(d1 ,d2 ). In Figure 3, according to the set relationship between the two time windows and the relationship between the overlapping length of time windows and the execution duration of tasks T1 and T2 , the relative position distribution of the time windows of imaging task T1 and imaging task T2 is listed 9 cases, Fig. 4 shows the time window of the synthesis task synthesized by each case in Fig. 3 . The necessary and sufficient condition for the synthesis of tasks Ti and Tj is (wsj +dj )-(wei -di )≤Δds , which is explained as follows:
证明充分性,即证明当(wsj+dj)-(wei-di)≤Δds成立时,两个元任务Ti和Tj能够合成,即当(wsj+dj)-(wei-di)≤Δds成立时,存在时间窗口与元任务Ti和Tj的可见时间窗口重叠度分别大于或等于元任务的执行时长di,dj,且该时间窗口长度小于卫星传感器单次最大开机时长Δds。即证明存在使得成立的时间窗口W=[ws,we]。Proof of sufficiency, that is, prove that when (wsj +dj )-(wei -di )≤Δds is established, two meta-tasks Ti and Tj can be synthesized, that is, when (wsj +dj )- When (wei -di )≤Δds holds true, the overlapping degrees of the existing time window and the visible time windows of meta-tasks Ti and Tj are respectively greater than or equal to the execution duration di and dj of meta-tasks, and the length of the time window It is less than the single maximum power-on time Δds of the satellite sensor. that is, to prove that there exists such that Established time window W=[ws, we].
1)当|Wi∩Wj|≤min(di,dj)时,1) When |Wi ∩Wj |≤min(di ,dj ),
令ws=wei-di,we=wsj+dj,那么|W∩Wi|=di,|W∩Wj|=dj,则we-ws=(wsj+dj)-(wei-di)≤Δds。因此,式成立。Let ws=wei -di , we=wsj +dj , then |W∩Wi |=di , |W∩Wj |=dj , then we-ws=(wsj +dj ) -(wei -di )≤Δds . Therefore, the formula established.
2)当|Wi∩Wj|≥min(di,dj)时,2) When |Wi ∩Wj |≥min(di ,dj ),
不失一般性,假设di≥dj。令ws=wsi,we=wei,则W=Wi。由于Wi是一个元任务的时间窗口,可得di≤|Wi|≤Δds。又因|Wi∩Wj|≥min(di,dj)=dj,所以|W∩Wj|≥dj。因此,式成立。Without loss of generality, it is assumed that di ≥ dj . Let ws=wsi , we=wei , then W=Wi . Since Wi is a time window of a meta-task, it can be obtained that di ≤|Wi |≤Δds . And because |Wi ∩Wj |≥min(di ,dj )=dj , so |W∩Wj |≥dj . Therefore, the formula established.
证明必要性,即证明当两个元任务Ti和Tj能够合成时,(wsj+dj)-(wei-di)≤Δds必成立。To prove the necessity, that is, to prove that (wsj +dj )-(wei -di )≤Δds must hold when two meta-tasks Ti and Tj can be synthesized.
如果两个元任务的时间窗口可以合并,那么合成任务的时间窗口Wi,j=[wsi,j,wei,j]必然满足If the time windows of two meta-tasks can be merged, then the time window Wi ,j =[wsi,j ,wei,j ] of the composite task must satisfy
由于|Wi,j∩Wi|≥di,可知wsi,j≤wei-di。同理,由|Wi,j∩Wj|≥dj,可得wei,j≥wsj+dj。所以(wsj+dj)-(wei-di)≤wei,j-wsi,j≤Δds。因此(wsj+dj)-(wei-di)≤Δds。Since |Wi,j ∩Wi |≥di , we know that wsi,j ≤wei -di . Similarly, from |Wi,j ∩Wj |≥dj , we can get wei,j ≥wsj +dj . So (wsj +dj )-(wei -di )≤wei,j -wsi,j ≤Δds . Therefore (wsj +dj )−(wei −di )≦Δds .
当合成任务的时间窗口中不存在冗余时间且其侧摆角最小,那么此任务称之为紧凑合成任务。不失一般性,假设两个元任务Ti和Tj,且Ti比Tj的时间窗口开始的更早(wsi≤wsj),那么如果元任务Ti和Tj可以合成为一个紧凑合成任务Ti,j={Wi,j,di,j,θi,j},则合成任务的开始时间wsi,j,结束时间wei,j,最短执行时长di,j,最小成像侧摆角θi,j分别为:When there is no redundant time in the time window of the synthetic task and its roll angle is the smallest, then this task is called a compact synthetic task. Without loss of generality, assuming two meta-tasks Ti and Tj , and Ti starts earlier than the time window of Tj (wsi ≤ wsj ), then if meta-tasks Ti and Tj can be synthesized into one Compact synthesis task Ti,j = {Wi,j ,di,j ,θi,j }, then the start time wsi,j of the synthesis task, the end time wei,j , the shortest execution time di,j , and the minimum imaging roll angles θi, j are respectively:
这里我们假设侧摆角|θi|大于或等于|θj|。Here we assume that the roll angle |θi | is greater than or equal to |θj |.
下面将分两种情况证明元任务Ti和Tj合成的合成任务Ti,j={Wi,j,di,j,θi,j}的时间窗口没有冗余时间。The following two cases will be used to prove that there is no redundant time in the time window of the synthesis taskT i,j ={Wi,j ,di,j ,θi,j } of meta-task T i and Tj synthesis.
1)|Wi∩Wj|≤min(di,dj)1)|Wi ∩Wj |≤min(di ,dj )
当|Wi∩Wj|≤min(di,dj)时,元任务Ti的最晚开始时间wei-di和元任务Tj的最早结束时间wsj+dj都包含在合成时间窗口内。因此这两个元任务可以被卫星一次观测成像。因此,合成任务的最短执行时长为(wsj+dj)-(wei-di)。故式成立。相应地,本发明实施例合成的合成任务的时间窗口为[(wei-di),(wsj+dj)]。故公式和成立。When |Wi ∩Wj |≤min(di ,dj ), the latest start time wei -di of meta-task Ti and the earliest end time wsj +dj of meta-task Tj are included in within the synthesis time window. Therefore, these two meta-tasks can be imaged by satellite observation at one time. Therefore, the shortest execution time of the synthesis task is (wsj +dj )-(wei -di ). old style established. Correspondingly, the time window of the synthesis task synthesized in the embodiment of the present invention is [(wei -di ),(wsj +dj )]. So the formula and established.
2)|Wi∩Wj|≥min(di,dj)2)|Wi ∩Wj |≥min(di ,dj )
如公式所示,dij≥max(di,dj)。当|Wi∩Wj|≥min(di,dj)时,元任务的二者之一的执行时长实际要小于两个元任务时间窗口的交集。因此,合成任务Ti,j的最短执行时长di,j等于max(di,dj)。而合成任务Ti,j时间窗口的最早开始时间和最晚结束时间要依赖于di、dj和|Wi∩Wj|。such as formula As shown, dij ≥ max(di ,dj ). When |Wi ∩Wj |≥min(di , dj ), the execution time of one of the two meta-tasks is actually shorter than the intersection of the time windows of the two meta-tasks. Therefore, the shortest execution time d i,j of the synthesis task T i,j is equal to max(di ,dj ). However, the earliest start time and latest end time of the synthetic task Ti,j time window depend on di , dj and |Wi ∩Wj |.
不失一般性,假设di≥dj。时间窗口的交集为Wi∩j=[wsi∩j,wei∩j],(wsi∩j为时间窗口交集的开始时间,wei∩j为时间窗口交集的结束时间)。如图5所示,黑色直线框代表两时间窗口的交集,其开始时间为wsi∩j,结束时间为wei∩j。紧凑合成任务的时间窗口最早开始时间应该为max(wsi,wsj+dj-di),最晚结束时间为min(wei,wej,wei∩j-dj+di)。Without loss of generality, it is assumed that di ≥ dj . The intersection of time windows is Wi∩j =[wsi∩j , wei∩j ], (wsi∩j is the start time of time window intersection, wei∩j is the end time of time window intersection). As shown in Figure 5, the black straight box represents the intersection of two time windows, whose start time is wsi∩j and end time is wei∩j . The earliest start time of the time window of the compact synthesis task should be max(wsi ,wsj +dj -di ), and the latest end time should be min(wei ,wej ,wei∩j -dj +di ) .
如果两个元任务可以进行合成,那么它们必须同时处于卫星传感器的视场角范围内。也就是两个元任务的侧摆角之差不能超过传感器的视场角的大小。那么合成任务的侧摆角则由此传感器的视场角以及每个元任务的侧摆角决定。For two meta-tasks to be composited, they must both be within the field of view of the satellite sensor. That is, the difference between the roll angles of the two meta-tasks cannot exceed the size of the field of view of the sensor. Then the roll angle of the composite task is determined by the field of view of the sensor and the roll angle of each meta-task.
任务Ti和Tj能够合成的充分必要条件是|θi-θj|≤Δθs(为便于书写,下面以Δθ代替Δθs),说明如下:The necessary and sufficient condition for the synthesis of tasks Ti and Tj is that |θi -θj |≤Δθs (for ease of writing, Δθs will be replaced by Δθ below), which is explained as follows:
充分性的证明如下:The proof of sufficiency is as follows:
若一个侧摆角θi,j,如果它能满足If a roll angle θi,j , if it can satisfy
那么此侧摆角θi,j是可行的。也就是说,就侧摆角而言,元任务Ti和Tj可以合成。Then this roll angle θi,j is feasible. That is, meta-tasks Ti and Tj can be synthesized in terms of roll angle.
给定侧摆角的一个值由于|θi-θj|≤Δθ,则-Δθ≤θi-θj≤Δθ,-Δθ≤θj-θi≤Δθ,那么A value for a given roll angle Since |θi -θj |≤Δθ, then -Δθ≤θi -θj ≤Δθ, -Δθ≤θj -θi ≤Δθ, then
所以同理,so In the same way,
因此,therefore,
必要性的证明如下:The proof of necessity is as follows:
如果元任务Ti和Tj可以合成,这两个任务必然能被一次观测完成,那么它们必定处于卫星一个扫描带下。故这两个元任务的侧摆角之差必然小于卫星传感器视场角,即|θi-θj|≤Δθ。所以必然条件成立。If the meta-tasks Ti and Tj can be synthesized, these two tasks must be completed by one observation, then they must be under one scanning zone of the satellite. Therefore, the difference between the roll angles of these two meta-tasks must be smaller than the field of view angle of the satellite sensor, that is, |θi -θj |≤Δθ. So the necessary condition holds.
下面将分两种情况证明式本发明实施例合成的合成任务的侧摆角是所有可行的侧摆角中的最小角。不失一般性,假设元任务Ti的侧摆角大于Tj的侧摆角,即|θi|>|θj|。The following two cases will be used to prove that the roll angle of the synthetic task synthesized by the embodiment of the present invention is the minimum angle among all feasible roll angles. Without loss of generality, assume that the roll angle of the meta-task Ti is greater than that of Tj , ie |θi | > |θj |.
(1)θi≥0(1) θi ≥ 0
如果那么已知|θi-θj|≤Δθ,那么所以是一个可行的侧摆角。if So It is known that |θi -θj |≤Δθ, then so is a feasible roll angle.
假定存在一个更小的角那么此时表明元任务Ti已经不在传感器视场角范围内。因此,是合成任务的最小侧摆角。Suppose there is a smaller angle So At this time, it indicates that the meta-task Ti is no longer within the field of view of the sensor. therefore, is the minimum roll angle for the synthetic task.
如果那么已知|θi|≥|θj|,有θi>θj>-θi,则因此,0是合成任务的最小侧摆角。if So It is known that |θi |≥|θj |, if θi >θj >-θi , then Therefore, 0 is the minimum roll angle for the synthetic task.
由此可知是所有可行的侧摆角中的最小角。From this we can see is the smallest of all feasible roll angles.
(2)θi<0(2) θi <0
如果则又已知|θi-θj|≤Δθ及|θi|≥|θj|,那么θj-θi≤Δθ,则所以是一个可行的侧摆角。假定存在一个更小的角θ′,则可得此时表明元任务Ti已经不在传感器视场角范围内。因此,是合成任务的最小侧摆角。if but It is also known that |θi -θj |≤Δθ and |θi |≥|θj |, then θj -θi ≤Δθ, then so is a feasible roll angle. Suppose there is a smaller angle θ′, then Available At this time, it indicates that the meta-task Ti is no longer within the field of view of the sensor. therefore, is the minimum roll angle for the synthetic task.
如果则由|θi|≥|θj|可知θi≤θj≤-θi,所以因此,0是合成任务的最小侧摆角。if but From |θi |≥|θj |, we know that θi ≤ θj ≤ -θi , so Therefore, 0 is the minimum roll angle for the synthetic task.
因此,是所有可行的侧摆角中的最小角。therefore, is the smallest of all feasible roll angles.
如图6所示,本实施例公开一种合成成像卫星元任务的装置,包括:As shown in Figure 6, this embodiment discloses a device for synthesizing imaging satellite meta-tasks, including:
获取单元1,用于获取处于同一成像卫星传感器的视场角范围内的多个元任务T1,T2,T3,…,Tn;An acquisition unit 1, configured to acquire multiple meta-tasks T1 , T2 , T3 , ..., Tn within the field of view of the same imaging satellite sensor;
中间任务生成单元2,用于根据所述多个元任务T1,T2,T3,…,Tn生成第一中间任务和第二中间任务;所述第一中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θx、wsx、wex和dx,所述第二中间任务的侧摆角、时间窗口的开始时间、结束时间和最短执行时长分别为θy、wsy、wey和dy;An intermediate task generation unit 2, configured to generate a first intermediate task and a second intermediate task according to the plurality of meta-tasks T1 , T2 , T3 , ..., Tn ; the roll angle of the first intermediate task, The start time, end time and shortest execution time of the time window are θx , wsx , wex and dx respectively, and the roll angle of the second intermediate task, the start time, end time and shortest execution time of the time window are respectively be θy , wsy , wey and dy ;
合成任务生成单元3,用于判断所述θx、wsx、wex和dx,以及所述θy、wsy、wey和dy是否满足Synthetic task generation unit 3, used to judge whether the θx , wsx , wex and dx , and the θy , wsy , wey and dy satisfy
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs;(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ;
或(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,or (wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs ,
其中,所述Δds,Δθs分别表示所述成像卫星s的单次成像开机时间和视场角,Wherein, the Δds and Δθs respectively represent the single imaging start-up time and field angle of the imaging satellite s,
若满足,则将所述多个元任务T1,T2,T3,…,Tn合成为合成任务,If so, combine the multiple meta-tasks T1 , T2 , T3 ,..., Tn into a combined task,
若满足If satisfied
(wsy+dy)-(wex-dx)≤Δds(wsx≤wsy)以及|θx-θy|≤Δθs,(wsy +dy )-(wex -dx )≤Δds (wsx ≤wsy ) and |θx -θy |≤Δθs ,
所述合成任务的侧摆角为θx,y,The roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,The shortest execution time of the synthesis task is dx,y ,
若满足If satisfied
(wsx+dx)-(wey-dy)≤Δds(wsy<wsx)以及|θx-θy|≤Δθs,(wsx +dx )-(wey -dy )≤Δds (wsy <wsx ) and |θx -θy |≤Δθs ,
所述合成任务的侧摆角为θx,y,The roll angle of the synthetic task is θx,y ,
所述合成任务的时间窗口的开始时间为wsx,y,The start time of the time window of the synthesis task is wsx,y ,
所述合成任务的时间窗口的结束时间为wex,y,The end time of the time window of the synthesis task is wex,y ,
所述合成任务的最短执行时长为dx,y,Wx和Wy分别为第一中间任务的时间窗口和第二中间任务的时间窗口,The shortest execution duration of the synthetic task is dx, y , Wx and Wy are the time window of the first intermediate task and the time window of the second intermediate task respectively,
本发明实施例所述的合成成像卫星元任务的装置,处于同一成像卫星传感器的视场角范围内的多个元任务合成的合成任务的相较于常规的合成方法合成的合成任务侧摆角最小,且时间窗口没有冗余时间,因而较之常规的任务合成方法,能将更多的任务进行合成,并且合成的合成任务的侧摆角度更小,执行时间更短,因而能够减少星载传感器的开机次数,减少卫星的能量损耗,从而能够节省卫星资源。In the device for synthesizing imaging satellite meta-tasks described in the embodiment of the present invention, the side swing angle of the synthetic task synthesized by multiple meta-tasks within the field of view range of the same imaging satellite sensor is compared with the synthetic task synthesized by the conventional synthesis method It is the smallest, and there is no redundant time in the time window, so compared with the conventional task synthesis method, more tasks can be combined, and the side swing angle of the combined task is smaller, and the execution time is shorter, so it can reduce the spaceborne The number of times the sensor is turned on reduces the energy loss of the satellite, thereby saving satellite resources.
可选地,在本发明合成成像卫星元任务的装置的另一实施例中,若n大于2,Optionally, in another embodiment of the device for synthesizing imaging satellite meta-tasks of the present invention, if n is greater than 2,
所述中间任务生成单元,包括:The intermediate task generation unit includes:
第一合成子单元,用于将所述多个元任务T1,T2,T3,…,Tn合成为合成任务T1,n-1,The first synthesizing subunit is used to synthesize the plurality of meta-tasks T1 , T2 , T3 , ..., Tn into synthesizing tasks T1, n-1 ,
第二合成子单元,用于根据所述合成任务T1,n-1和所述元任务Tn生成第一中间任务和第二中间任务;A second synthesis subunit, configured to generate a first intermediate task and a second intermediate task according to the synthesis task T1, n-1 and the meta-taskTn ;
所述θx=max(max(θ1,0),max(θ2,0),...max(θn,0)),The θx =max(max(θ1 ,0),max(θ2 ,0),...max(θn ,0)),
所述said
所述said
所述said
所述θy=min(min(θ1,0),min(θ2,0),...min(θn,0)),The θy =min(min(θ1 ,0),min(θ2 ,0),...min(θn ,0)),
所述said
所述said
所述said
其中,θp(p∈(1,2,…,n))为元任务Tp的侧摆角,所述wsn、wen和dn分别为元任务Tn的时间窗口的开始时间、结束时间和最短执行时长,所述ws1,n-1、we1,n-1和d1,n-1分别为所述合成任务T1,n-1的时间窗口的开始时间、结束时间和最短执行时长。Among them, θp (p∈(1,2,...,n)) is the roll angle of the meta-task Tp , and the wsn , wen and dn are the start time and time of the time window of the meta-task Tn respectively. The end time and the shortest execution time, the ws1,n-1 , we1,n-1 and d1,n-1 are the start time and end time of the time window of the synthesis task T1,n- 1 respectively and the minimum execution time.
可选地,在本发明合成成像卫星元任务的装置的另一实施例中,若n为2,Optionally, in another embodiment of the device for synthesizing imaging satellite meta-tasks of the present invention, if n is 2,
所述θx=max(max(θ1,0),max(θ2,0)),The θx = max(max(θ1 ,0),max(θ2 ,0)),
所述said
所述said
所述said
所述θy=min(min(θ1,0),min(θ2,0)),The θy =min(min(θ1 ,0),min(θ2 ,0)),
所述said
所述said
所述said
ws1、ws2、we1、we2、d1和d2分别表示元任务T1的时间窗口的开始时间、元任务T2的时间窗口的开始时间、元任务T1的时间窗口的结束时间、元任务T2的时间窗口的结束时间、元任务T1的时间窗口的最短执行时长和元任务T2的时间窗口的最短执行时长。ws1 , ws2 , we1 , we2 , d1 and d2 denote the start time of the time window of meta-task T1 , the start time of the time window of meta-task T2 , and the end of the time window of meta-task T1 Time, the end time of the time window of metataskT2 , the shortest execution duration of the time window of metataskT1 and the shortest execution duration of the time window of metataskT2 .
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described in conjunction with the accompanying drawings, those skilled in the art can make various modifications and variations without departing from the spirit and scope of the present invention. within the bounds of the requirements.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510205076.2ACN105005841B (en) | 2015-04-27 | 2015-04-27 | The method and device of compound imaging satellite Meta task |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510205076.2ACN105005841B (en) | 2015-04-27 | 2015-04-27 | The method and device of compound imaging satellite Meta task |
| Publication Number | Publication Date |
|---|---|
| CN105005841A CN105005841A (en) | 2015-10-28 |
| CN105005841Btrue CN105005841B (en) | 2018-06-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510205076.2AExpired - Fee RelatedCN105005841B (en) | 2015-04-27 | 2015-04-27 | The method and device of compound imaging satellite Meta task |
| Country | Link |
|---|---|
| CN (1) | CN105005841B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108052759A (en)* | 2017-12-25 | 2018-05-18 | 航天恒星科技有限公司 | A kind of more star task observation plan method for solving of agility and system based on genetic algorithm |
| CN109409775B (en)* | 2018-11-14 | 2020-10-09 | 中国电子科技集团公司第五十四研究所 | Satellite joint observation task planning method |
| CN109741837B (en)* | 2018-12-24 | 2020-12-11 | 深圳航天东方红海特卫星有限公司 | On-satellite autonomous imaging task planning system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101894367A (en)* | 2010-05-26 | 2010-11-24 | 中国人民解放军国防科学技术大学 | Target Clustering Method for Imaging Satellite Observation Scheduling |
| CN102298540A (en)* | 2011-06-22 | 2011-12-28 | 航天东方红卫星有限公司 | Method for scheduling task with preferential comprehensive benefit |
| CN102867107A (en)* | 2012-08-16 | 2013-01-09 | 中国人民解放军国防科学技术大学 | Multi-imaging satellite emergency task dynamic scheduling method |
| CN104063749A (en)* | 2014-06-28 | 2014-09-24 | 中国人民解放军国防科学技术大学 | Imaging satellite autonomous mission planning algorithm based on receding horizon control |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101894367A (en)* | 2010-05-26 | 2010-11-24 | 中国人民解放军国防科学技术大学 | Target Clustering Method for Imaging Satellite Observation Scheduling |
| CN102298540A (en)* | 2011-06-22 | 2011-12-28 | 航天东方红卫星有限公司 | Method for scheduling task with preferential comprehensive benefit |
| CN102867107A (en)* | 2012-08-16 | 2013-01-09 | 中国人民解放军国防科学技术大学 | Multi-imaging satellite emergency task dynamic scheduling method |
| CN104063749A (en)* | 2014-06-28 | 2014-09-24 | 中国人民解放军国防科学技术大学 | Imaging satellite autonomous mission planning algorithm based on receding horizon control |
| Title |
|---|
| "成像卫星任务规划模型、算法及其应用";贺仁杰 等;《系统工程理论与实践》;20110315;第31卷(第3期);第411-422页* |
| "考虑任务合成的成像卫星调度问题";白保存 等;《航空学报》;20091125;第30卷(第11期);第2165-2171页* |
| Publication number | Publication date |
|---|---|
| CN105005841A (en) | 2015-10-28 |
| Publication | Publication Date | Title |
|---|---|---|
| CN105005841B (en) | The method and device of compound imaging satellite Meta task | |
| Wang et al. | Design of agile satellite constellation based on hybrid-resampling particle swarm optimization method | |
| CN102354288B (en) | Imaging quality priority task scheduling method | |
| Hu et al. | Matrix weighted multisensor data fusion for INS/GNSS/CNS integration | |
| WO2019084719A1 (en) | Image processing method and unmanned aerial vehicle | |
| CN101894367A (en) | Target Clustering Method for Imaging Satellite Observation Scheduling | |
| CN102298540A (en) | Method for scheduling task with preferential comprehensive benefit | |
| US20210034078A1 (en) | Dynamic generation of restricted flight zones for drones | |
| CN110032203B (en) | A cluster multi-satellite single target gaze attitude cooperative control method and system | |
| Liang et al. | Design and development of ground control system for tethered uav | |
| Huang et al. | A method for covert video surveillance of a car or a pedestrian by an autonomous aerial drone via trajectory planning | |
| Dhahbane et al. | Attitude determination and attitude estimation in aircraft and spacecraft navigation. A survey | |
| Lin et al. | Hybrid algorithms for satellite imaging scheduling | |
| Kullmann | The Satellite’s Progeny: Digital Chorography in the Age of Drone Vision | |
| Guan et al. | Multi-camera networks for motion parameter estimation of an aircraft | |
| Chau et al. | Advancing Mesoscale MLT Dynamics Analysis in Northern Norway through Multistatic Radar and Physics-Informed Machine Learning | |
| Haque et al. | Continuum: A New Observing Strategies-Based Framework for Hyper-Local Situational Awareness | |
| Sankaranayanan et al. | Vehicle tracking using acoustic and video sensors | |
| Rango et al. | Employing UAVs to acquire detailed vegetation and bare ground data for assessing rangeland health | |
| Vargas et al. | Gravity Wave Activity over the Andes Lidar Observatory (ALO) Generated by the July 2, 2019 Full Solar Eclipse Observed in Chile. | |
| Gotz et al. | LIGO/Virgo S190630ag: no counterpart candidate in the SVOM/GWAC observations | |
| Denton et al. | Tracking Arctic Sea Ice Buoys With Radar Reflectors | |
| Mertes et al. | Glacial Velocity Changes of Batura Glacier, Western Karakoram Himalaya | |
| Li et al. | Initial results of 3D topographic mapping using Lunar reconnaissance orbiter camera (LROC) stereo imagery | |
| Wei et al. | LIGO/Virgo S190828l: no counterpart candidate in the SVOM/GWAC observations |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20180622 Termination date:20210427 | |
| CF01 | Termination of patent right due to non-payment of annual fee |