技术领域technical field
本发明涉及一种反射阳极电极结构及制造方法,具体涉及一种用于有机发光装置的反射阳极电极的制造方法及由该方法制造的反射阳极电极。The invention relates to a reflective anode electrode structure and a manufacturing method, in particular to a method for manufacturing a reflective anode electrode used in an organic light-emitting device and the reflective anode electrode manufactured by the method.
背景技术Background technique
有机发光二极管(OLED)显示器是一种通过使用发光的有机发光二极管来显示图像的自发光显示装置。通过控制激子从激发态回落时产生的能量来产生光。通过电子和空穴在有机发射层中结合来产生激子。通常有机发光二极管显示器包括晶体管驱动矩阵和有机发光二极管显示单元。An organic light emitting diode (OLED) display is a self-luminous display device that displays images by using light-emitting organic light-emitting diodes. Light is generated by controlling the energy produced when excitons fall back from an excited state. Excitons are generated by combining electrons and holes in the organic emissive layer. Generally, an OLED display includes a transistor driving matrix and an OLED display unit.
使用单晶硅作为衬底制作晶体管驱动矩阵,由于单晶硅具有非常高的迁移率,所以可以实现非常高的分辨率。使用单晶硅作为衬底制作的有机发光二极管显示器的显示尺寸通常小于1英寸,属于微型有源矩阵有机发光二极管显示器。为了实现微显示器件的较高分辨率,通常器件的阳极像素大小在2um~20um的量级。同时使用硅基板作为衬底,需要制作顶发射的有机发光二极管器件。因此希望器件阳极,一方面要具有较高的反射率,另一方面要保持空气中的稳定性,同时需要实现精细刻蚀图形化能力。专利CN 101459226等报道使用Al、Mo、Cr、Ti等作为阳极使用,但是Mo、Cr等材料在半导体代工厂中通常不使用。因此为了实现OLED电极工艺与代工厂工艺实现兼容,同时还能实现高性能的OLED器件工艺,需要开发新型的电极结构和制作工艺。Single crystal silicon is used as a substrate to make a transistor drive matrix, and since single crystal silicon has very high mobility, very high resolution can be achieved. The display size of organic light emitting diode displays fabricated using single crystal silicon as a substrate is usually less than 1 inch, which belongs to micro active matrix organic light emitting diode displays. In order to achieve a higher resolution of the micro-display device, usually the size of the anode pixel of the device is in the order of 2um-20um. At the same time, using a silicon substrate as a substrate requires the fabrication of top-emitting organic light-emitting diode devices. Therefore, it is hoped that the anode of the device must have high reflectivity on the one hand, and maintain stability in the air on the other hand, and at the same time need to achieve fine etching and patterning capabilities. Patent CN 101459226 and other reports use Al, Mo, Cr, Ti, etc. as anodes, but materials such as Mo, Cr, etc. are usually not used in semiconductor foundries. Therefore, in order to achieve compatibility between OLED electrode technology and foundry technology, and to achieve high-performance OLED device technology, it is necessary to develop new electrode structures and manufacturing processes.
发明内容Contents of the invention
本发明的目的是针对目前的有机发光二极管阳极因所使用的材料不能实现规模化生产的问题,发明一种能使用半导体代工厂中的通常使用的Al和TiN制造的OLED器件反射阳极,同时提供其制作方法。The purpose of the present invention is to solve the problem that the current organic light-emitting diode anode cannot realize large-scale production due to the materials used, and to invent a reflective anode for OLED devices that can be manufactured using Al and TiN commonly used in semiconductor foundries, while providing its production method.
本发明的技术方案之一是:One of technical solutions of the present invention is:
一种有源矩阵式有机发光显示器的反射阳极,其特征是它由基板4和依次生长在基板4上第一金属层1及第二金属层2组成,中间隔离层3将第一金属层1和第二金属层2分隔成一个个相互隔离的像素电极。A reflective anode for an active matrix organic light-emitting display, which is characterized in that it consists of a substrate 4 and a first metal layer 1 and a second metal layer 2 grown sequentially on the substrate 4, and an intermediate isolation layer 3 separates the first metal layer 1 and the second metal layer 2 to form pixel electrodes that are isolated from each other.
所述的基板4为硅片或玻璃。The substrate 4 is silicon wafer or glass.
所述的第一金属层1材料为铝,厚度为100nm~700nm;第二金属层2材料为氮化钛,厚度为5nm~20nm。The material of the first metal layer 1 is aluminum, with a thickness of 100nm-700nm; the material of the second metal layer 2 is titanium nitride, with a thickness of 5nm-20nm.
所述的中间隔离层3的厚度为500nm~900nm;所用的材料为无机材料或有机聚合物材料。The thickness of the intermediate isolation layer 3 is 500nm-900nm; the materials used are inorganic materials or organic polymer materials.
本发明的技术方案之二是:The second technical scheme of the present invention is:
一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法,其特征是:A method for manufacturing a reflective anode of a silicon-based active matrix organic light-emitting display, characterized in that:
首先,在基板上分别制备第一金属层和第二金属层;Firstly, preparing the first metal layer and the second metal layer on the substrate respectively;
其次,然后使用光刻图形化方法,形成独立的像素结构;Secondly, then use photolithographic patterning method to form independent pixel structure;
最后,在像素的间隙处制备中间隔离层进行分隔。Finally, an intermediate isolation layer is prepared at the gap between the pixels for separation.
制作像素间隙处的中间隔离层是先采用PECVD方法沉积制备SiO2或SiNx材料层,然后进行抛光磨平电极表面层,暴露出第二金属层。The intermediate isolation layer at the pixel gap is firstly deposited by PECVD to prepare a SiO2 or SiNx material layer, and then polished to flatten the electrode surface layer to expose the second metal layer.
制作像素间隙处的中间隔离层是先使用旋涂方法制备有机聚合物材料层,然后进行曝光显影处理,暴露出第二金属层。To fabricate the intermediate isolation layer at the pixel gap, first prepare an organic polymer material layer by using a spin coating method, and then perform exposure and development treatment to expose the second metal layer.
本发明的技术方案之三是:The third technical solution of the present invention is:
一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法,其特征是:A method for manufacturing a reflective anode of a silicon-based active matrix organic light-emitting display, characterized in that:
首先,在基板上制备第一金属层,然后使用光刻图形化方法,形成第一层像素结构;First, prepare the first metal layer on the substrate, and then use photolithographic patterning to form the first layer of pixel structure;
其欠,在第一层像素结构间隙处制备中间隔离层进行分隔,再进行抛光磨平暴露出第一金属层;In addition, an intermediate isolation layer is prepared at the gap between the pixel structures of the first layer for separation, and then polished to expose the first metal layer;
第三,在第一层金属上制备第二层金属,然后使用光刻图形化方法,在第二金属层上与第一金属层上的第一层像素结构相对位置处形成第二层像素结构;Third, prepare a second layer of metal on the first layer of metal, and then use a photolithographic patterning method to form a second layer of pixel structure on the second metal layer at a position opposite to the first layer of pixel structure on the first metal layer ;
第四,在第二层像素结构间隙处制备中间隔离层进行分隔,再进行抛光磨平暴露出第二金属层;用于分隔第一金属层上的第一层像素结构的中间隔离层并与用于分隔第二金属层上的第二像素结构的是间隔离层相贯通。Fourth, prepare an intermediate isolation layer at the gap between the pixel structures of the second layer for separation, and then polish and flatten to expose the second metal layer; for separating the intermediate isolation layer of the first layer of pixel structure on the first metal layer and What is used to separate the second pixel structures on the second metal layer is that the isolation layer is penetrated.
本发明的技术方案之四是:The fourth technical solution of the present invention is:
一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法,其特征是:A method for manufacturing a reflective anode of a silicon-based active matrix organic light-emitting display, characterized in that:
首先,在基板上制备阳极电极图形光刻胶;First, prepare an anode electrode pattern photoresist on the substrate;
其次,在图形化的光刻胶上连续沉积第一金属层和第二金属层;Secondly, depositing the first metal layer and the second metal layer continuously on the patterned photoresist;
第三,使用有机溶剂对光刻胶进行剥离去胶,形成金属图形化电极层;Third, use an organic solvent to peel off the photoresist to form a metal patterned electrode layer;
第四,向图形化电极层上的像素电极间隙处填充中间隔离层;Fourth, filling the intermediate isolation layer to the pixel electrode gap on the patterned electrode layer;
最后,对中间隔离层进行表面处理暴露出第二金属层。Finally, surface treatment is performed on the intermediate isolation layer to expose the second metal layer.
本发明的技术方案之五是:The fifth technical solution of the present invention is:
一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法,其特征是:A method for manufacturing a reflective anode of a silicon-based active matrix organic light-emitting display, characterized in that:
首先,在基板上制备第一层金属层;First, prepare the first metal layer on the substrate;
其次,对第一层金属层进行图形化处理形成第一层像素结构;Secondly, the first layer of metal layer is patterned to form the first layer of pixel structure;
第三,在第一层像素结构间隙之间填充材料形成中间隔离层,中间隔离层为SiO2或SiNx。Thirdly, a material is filled between the gaps of the pixel structures of the first layer to form an intermediate isolation layer, and the intermediate isolation layer is SiO2 or SiNx.
第四,对所形成的中间隔离层进行研磨抛光处理,露出第一金属层;Fourth, grinding and polishing the formed intermediate isolation layer to expose the first metal layer;
第五,在第一金属层上沉积第二金属层;Fifth, depositing a second metal layer on the first metal layer;
第六,使用光刻图形化方法,在第二金属层上与第一金属层上的第一层像素结构相对位置处形成第二层像素结构。Sixthly, using a photolithographic patterning method, a second layer of pixel structure is formed on the second metal layer at a position opposite to the first layer of pixel structure on the first metal layer.
本发明的有益效果是:The beneficial effects of the present invention are:
本发明实现了OLED电极工艺与代工厂之间的工艺兼容,同时还能实现高性能的OLED器件工艺。The invention realizes the process compatibility between the OLED electrode process and the foundry, and at the same time realizes the high-performance OLED device process.
本发明电极结构简单,可靠性好,制造工艺简单易行,有利于提高生产效率,提高成品率,降低工艺成本。The electrode of the invention has simple structure, good reliability and simple and easy manufacturing process, which is beneficial to improving production efficiency, increasing yield and reducing process cost.
附图说明Description of drawings
图1是本发明阳极结构示意图之一。Fig. 1 is one of the schematic diagrams of the anode structure of the present invention.
图2是本发明阳极结构示意图之二。Fig. 2 is the second schematic diagram of the anode structure of the present invention.
图3是本发明阳极结构示意图之三。Fig. 3 is the third schematic diagram of the anode structure of the present invention.
具体实施方式Detailed ways
下面结构附图和实施例对本发明作进一步的说明。The following structural drawings and embodiments further illustrate the present invention.
实施例一。Embodiment one.
如图1所示:As shown in Figure 1:
一种有源矩阵式有机发光显示器的反射阳极的制作方法,它包括以下步骤:A method for manufacturing a reflective anode of an active-matrix organic light-emitting display, comprising the following steps:
(1)在硅基(或玻璃)底板4上使用溅射金属沉积的方法,连续沉积制备金属Al层1和TiN层2。(1) The metal Al layer 1 and the TiN layer 2 are prepared by continuous deposition on the silicon base (or glass) substrate 4 by sputtering metal deposition.
(2)在步骤(1)中,Al层的厚度为100nm~700nm,TiN层的厚度为5nm~20nm。(2) In step (1), the thickness of the Al layer is 100 nm to 700 nm, and the thickness of the TiN layer is 5 nm to 20 nm.
(3)在步骤(1)中制备完金属薄膜后,在薄膜上旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。(3) After preparing the metal thin film in step (1), spin-coat the i-line photoresist on the thin film, perform exposure and development and other processes, and realize the required anode electrode pattern on the photoresist. Then use methods such as dry etching to etch the metal film, and finally remove the photoresist to realize the patterning of the metal film.
(4)在步骤(3)制作完成之后,使用化学汽相沉积等方法,沉积一层SiO2层,用于将金属阳极之间的间隙填充形成中间隔离层3。(4) After step (3) is completed, a layer of SiO2 is deposited by using methods such as chemical vapor deposition to fill the gap between the metal anodes to form the intermediate isolation layer 3 .
(5)在步骤(4)之后,对背板顶部的SiO2层进行抛光,直到露出金属阳极层停止。(5) After step (4), polish theSiO2 layer on top of the backplate until the metal anode layer is exposed.
实施例二。Embodiment two.
如图2所示:as shown in picture 2:
一种有源矩阵式有机发光显示器的反射阳极的制作方法,它包括以下步骤:A method for manufacturing a reflective anode of an active-matrix organic light-emitting display, comprising the following steps:
(1)在硅基(或玻璃)底板4上使用溅射金属沉积的方法,连续沉积制备金属Al层2和TiN层3。(1) The metal Al layer 2 and the TiN layer 3 are prepared by continuous deposition on the silicon base (or glass) substrate 4 by sputtering metal deposition.
(2)在步骤(1)中,Al层的厚度为100nm~700nm,TiN层的厚度为5nm~20nm。(2) In step (1), the thickness of the Al layer is 100 nm to 700 nm, and the thickness of the TiN layer is 5 nm to 20 nm.
(3)在步骤(1)中制备完金属薄膜后,在薄膜上旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。(3) After preparing the metal thin film in step (1), spin-coat the i-line photoresist on the thin film, perform exposure and development and other processes, and realize the required anode electrode pattern on the photoresist. Then use methods such as dry etching to etch the metal film, and finally remove the photoresist to realize the patterning of the metal film.
(4)在步骤(3)制作完成之后,使用旋涂等方法制备有机聚合物材料,如聚酰亚胺、光刻胶材料等,形成中间隔离层3。(4) After step (3) is completed, an organic polymer material, such as polyimide, photoresist material, etc., is prepared by methods such as spin coating to form an intermediate isolation layer 3 .
(5)在步骤(4)之后,对有机聚合物材料层进行曝光显影处理,暴露出第二层金属TiN,同时中间隔离层高度高于TiN层高度。(5) After step (4), the organic polymer material layer is exposed and developed to expose the second layer of metal TiN, and the height of the intermediate isolation layer is higher than that of the TiN layer.
实施例三。Embodiment three.
如图3所示:As shown in Figure 3:
一种有源矩阵式有机发光显示器的反射阳极的制作方法,它包括以下步骤:A method for manufacturing a reflective anode of an active-matrix organic light-emitting display, comprising the following steps:
(1)在硅基(或玻璃)底板4上使用溅射金属沉积的方法,沉积制备金属Al层1,Al层的厚度为100nm~500nm。(1) A metal Al layer 1 is deposited and prepared on a silicon-based (or glass) base plate 4 by sputtering metal deposition, and the thickness of the Al layer is 100 nm to 500 nm.
(2)在金属Al层1上,旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。(2) Spin-coat i-line photoresist on the metal Al layer 1, perform exposure and development and other processes, and realize the required anode electrode pattern on the photoresist. Then use methods such as dry etching to etch the metal film, and finally remove the photoresist to realize the patterning of the metal film.
(3)在步骤(2)制作完成之后,使用化学汽相沉积等方法,沉积一层SiO2层,用于将金属阳极之间的间隙填充,形成中间隔离层3。(3) After step (2) is completed, a layer of SiO2 is deposited by using methods such as chemical vapor deposition to fill the gap between the metal anodes to form the intermediate isolation layer 3 .
(4)在步骤(3)之后,对背板顶部的SiO2层进行抛光,直到露出金属阳极Al层停止。(4) After step (3), theSiO2 layer on the top of the backplate is polished until the exposed metal anode Al layer stops.
(5)在步骤(4)之后,使用溅射金属沉积的方法,沉积制备金属TiN层2,TiN层的厚度为5nm~20nm。在金属TiN层上,旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。(5) After the step (4), the metal TiN layer 2 is deposited and prepared by sputtering metal deposition method, and the thickness of the TiN layer is 5nm-20nm. On the metal TiN layer, spin-coat the i-line photoresist, perform exposure and development and other processes, and realize the required anode electrode pattern on the photoresist. Then use methods such as dry etching to etch the metal film, and finally remove the photoresist to realize the patterning of the metal film.
实施例四。Embodiment four.
一种有源矩阵式有机发光显示器的反射阳极的制作方法,它包括以下步骤:A method for manufacturing a reflective anode of an active-matrix organic light-emitting display, comprising the following steps:
(1)在硅基(或玻璃)底板4上使用溅射金属沉积的方法,沉积制备金属Al层1,Al层的厚度为100nm~500nm。(1) A metal Al layer 1 is deposited and prepared on a silicon-based (or glass) base plate 4 by sputtering metal deposition, and the thickness of the Al layer is 100 nm to 500 nm.
(2)在金属Al层1上,旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。(2) Spin-coat i-line photoresist on the metal Al layer 1, perform exposure and development and other processes, and realize the required anode electrode pattern on the photoresist. Then use methods such as dry etching to etch the metal film, and finally remove the photoresist to realize the patterning of the metal film.
(3)在步骤(2)制作完成之后,使用化学汽相沉积等方法,沉积一层SiO2层,用于将金属阳极之间的间隙填充,形成中间隔离层3。(3) After step (2) is completed, a layer of SiO2 is deposited by using methods such as chemical vapor deposition to fill the gap between the metal anodes to form the intermediate isolation layer 3 .
(4)在步骤(3)之后,对背板顶部的SiO2层进行抛光,直到露出金属阳极Al层停止。(4) After step (3), theSiO2 layer on the top of the backplate is polished until the exposed metal anode Al layer stops.
(5)在步骤(4)之后,使用溅射金属沉积的方法,沉积制备金属TiN层2,TiN层的厚度为5nm~20nm。在金属TiN层上,旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。然后使用干法刻蚀等方法,对金属薄膜进行刻蚀,最后再将光刻胶去除,实现金属薄膜的图形化。(5) After the step (4), the metal TiN layer 2 is deposited and prepared by sputtering metal deposition method, and the thickness of the TiN layer is 5nm-20nm. On the metal TiN layer, spin-coat the i-line photoresist, perform exposure and development and other processes, and realize the required anode electrode pattern on the photoresist. Then use methods such as dry etching to etch the metal film, and finally remove the photoresist to realize the patterning of the metal film.
(6)在步骤(5)制作完成之后,使用旋涂等方法制备有机聚合物材料,如聚酰亚胺、光刻胶材料等,形成中间隔离层3。(6) After step (5) is completed, an organic polymer material, such as polyimide, photoresist material, etc., is prepared by methods such as spin coating to form an intermediate isolation layer 3 .
(7)在步骤(6)之后,对有机聚合物材料层进行曝光显影处理,暴露出第二层金属TiN,同时中间隔离层高度高于TiN层高度。(7) After step (6), the organic polymer material layer is exposed and developed to expose the second layer of metal TiN, and the height of the intermediate isolation layer is higher than that of the TiN layer.
实施例五。Embodiment five.
一种硅基有源矩阵式有机发光显示器的反射阳极的制作方法,它包括以下步骤:A method for manufacturing a reflective anode of a silicon-based active matrix organic light-emitting display, comprising the following steps:
(1)在硅基(或玻璃)底板4上,旋涂上i-line的光刻胶,进行曝光显影等工序,在光刻胶上实现需要的阳极电极图形。(1) Spin-coat i-line photoresist on the silicon-based (or glass) base plate 4, perform exposure and development processes, and realize the required anode electrode pattern on the photoresist.
(2)在步骤(1)之后,在图形化的光刻胶上,使用电子束蒸发等金属沉积的方法,连续沉积制备金属Al层1和TiN层2,Al层的厚度为100nm~500nm,TiN层的厚度为5nm~20nm。(2) After step (1), on the patterned photoresist, use electron beam evaporation and other metal deposition methods to continuously deposit and prepare the metal Al layer 1 and TiN layer 2, the thickness of the Al layer is 100nm-500nm, The thickness of the TiN layer is 5nm-20nm.
(3)在步骤(2)之后,使用有机溶剂对光刻胶进行剥离去胶,最后形成金属图形化电极层。(3) After step (2), the photoresist is stripped and deglued by using an organic solvent, and finally a metal patterned electrode layer is formed.
(4)在步骤(3)制作完成之后,使用旋涂等方法制备有机聚合物材料,如聚酰亚胺、光刻胶材料等,形成中间隔离层3。(4) After step (3) is completed, an organic polymer material, such as polyimide, photoresist material, etc., is prepared by methods such as spin coating to form an intermediate isolation layer 3 .
(5)在步骤(4)之后,对有机聚合物材料层进行曝光显影处理,暴露出第二层金属TiN。(5) After step (4), exposing and developing the organic polymer material layer to expose the second layer of metal TiN.
本发明未涉及部分与现有技术相同或可采用现有技术加以实现。The part not involved in the present invention is the same as the prior art or can be realized by adopting the prior art.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510301935.8ACN104934548A (en) | 2015-06-04 | 2015-06-04 | Reflection anode of active matrix type organic light emitting display and manufacturing method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510301935.8ACN104934548A (en) | 2015-06-04 | 2015-06-04 | Reflection anode of active matrix type organic light emitting display and manufacturing method thereof |
| Publication Number | Publication Date |
|---|---|
| CN104934548Atrue CN104934548A (en) | 2015-09-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510301935.8APendingCN104934548A (en) | 2015-06-04 | 2015-06-04 | Reflection anode of active matrix type organic light emitting display and manufacturing method thereof |
| Country | Link |
|---|---|
| CN (1) | CN104934548A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107275455A (en)* | 2017-07-25 | 2017-10-20 | 南京迈智芯微光电科技有限公司 | A kind of electrode preparation method of the si-based light-emitting device based on stripping technology |
| CN107331786A (en)* | 2017-06-23 | 2017-11-07 | 安徽熙泰智能科技有限公司 | The manufacture method of OLED micro-display devices anode construction and the anode construction |
| CN107452770A (en)* | 2017-05-22 | 2017-12-08 | 茆胜 | The anode electrode structure and preparation method of organic TOP EMISSION DISPLAY DEVICESThe, display |
| CN109888120A (en)* | 2018-12-29 | 2019-06-14 | 昆山维信诺科技有限公司 | OLED display and its manufacturing method |
| CN110246982A (en)* | 2019-06-17 | 2019-09-17 | 南京国兆光电科技有限公司 | The reflection anode and production method of active matrix type organic luminous display device |
| WO2021114573A1 (en)* | 2019-12-13 | 2021-06-17 | 南京国兆光电科技有限公司 | Structure of reflective anode in silicon-based active matrix organic light-emitting display |
| CN113054148A (en)* | 2021-03-16 | 2021-06-29 | 安徽熙泰智能科技有限公司 | Preparation method of PDL (Poly L) capable of avoiding cathode fracture |
| CN113793906A (en)* | 2021-08-30 | 2021-12-14 | 南京国兆光电科技有限公司 | Silicon-based active matrix OLED display and manufacturing method thereof |
| CN113793908A (en)* | 2021-09-08 | 2021-12-14 | 南京国兆光电科技有限公司 | Silicon-based active matrix organic light-emitting display and manufacturing method thereof |
| CN115377116A (en)* | 2022-05-31 | 2022-11-22 | 京东方科技集团股份有限公司 | Display substrate and display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1735289A (en)* | 2004-08-13 | 2006-02-15 | 株式会社半导体能源研究所 | Light-emitting device using light-emitting element, driving method of light-emitting element, and lighting equipment |
| CN101494196A (en)* | 2009-01-22 | 2009-07-29 | 中国科学院上海微系统与信息技术研究所 | Method for preparing low-voltage, low power consumption, high-density phase-change memory cell array |
| CN101800286A (en)* | 2009-02-11 | 2010-08-11 | 中国科学院微电子研究所 | Preparation method of organic field effect transistor integrated circuit based on top gate structure |
| CN102468450A (en)* | 2010-11-17 | 2012-05-23 | 上海广电电子股份有限公司 | Manufacturing method of organic light emitting display device |
| US20140361261A1 (en)* | 2013-06-07 | 2014-12-11 | Samsung Display Co., Ltd. | Organic light-emitting display apparatus and method of manufacturing the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1735289A (en)* | 2004-08-13 | 2006-02-15 | 株式会社半导体能源研究所 | Light-emitting device using light-emitting element, driving method of light-emitting element, and lighting equipment |
| CN101494196A (en)* | 2009-01-22 | 2009-07-29 | 中国科学院上海微系统与信息技术研究所 | Method for preparing low-voltage, low power consumption, high-density phase-change memory cell array |
| CN101800286A (en)* | 2009-02-11 | 2010-08-11 | 中国科学院微电子研究所 | Preparation method of organic field effect transistor integrated circuit based on top gate structure |
| CN102468450A (en)* | 2010-11-17 | 2012-05-23 | 上海广电电子股份有限公司 | Manufacturing method of organic light emitting display device |
| US20140361261A1 (en)* | 2013-06-07 | 2014-12-11 | Samsung Display Co., Ltd. | Organic light-emitting display apparatus and method of manufacturing the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107452770A (en)* | 2017-05-22 | 2017-12-08 | 茆胜 | The anode electrode structure and preparation method of organic TOP EMISSION DISPLAY DEVICESThe, display |
| CN107331786A (en)* | 2017-06-23 | 2017-11-07 | 安徽熙泰智能科技有限公司 | The manufacture method of OLED micro-display devices anode construction and the anode construction |
| CN107275455A (en)* | 2017-07-25 | 2017-10-20 | 南京迈智芯微光电科技有限公司 | A kind of electrode preparation method of the si-based light-emitting device based on stripping technology |
| CN109888120A (en)* | 2018-12-29 | 2019-06-14 | 昆山维信诺科技有限公司 | OLED display and its manufacturing method |
| CN110246982A (en)* | 2019-06-17 | 2019-09-17 | 南京国兆光电科技有限公司 | The reflection anode and production method of active matrix type organic luminous display device |
| WO2020253432A1 (en)* | 2019-06-17 | 2020-12-24 | 南京国兆光电科技有限公司 | Reflective anode of active matrix organic light emitting device and manufacturing method therefor |
| WO2021114573A1 (en)* | 2019-12-13 | 2021-06-17 | 南京国兆光电科技有限公司 | Structure of reflective anode in silicon-based active matrix organic light-emitting display |
| CN113054148A (en)* | 2021-03-16 | 2021-06-29 | 安徽熙泰智能科技有限公司 | Preparation method of PDL (Poly L) capable of avoiding cathode fracture |
| CN113793906A (en)* | 2021-08-30 | 2021-12-14 | 南京国兆光电科技有限公司 | Silicon-based active matrix OLED display and manufacturing method thereof |
| CN113793906B (en)* | 2021-08-30 | 2024-03-01 | 南京国兆光电科技有限公司 | Silicon-based active matrix OLED display and manufacturing method thereof |
| CN113793908A (en)* | 2021-09-08 | 2021-12-14 | 南京国兆光电科技有限公司 | Silicon-based active matrix organic light-emitting display and manufacturing method thereof |
| CN115377116A (en)* | 2022-05-31 | 2022-11-22 | 京东方科技集团股份有限公司 | Display substrate and display device |
| CN115377116B (en)* | 2022-05-31 | 2024-10-22 | 京东方科技集团股份有限公司 | Display substrate and display device |
| Publication | Publication Date | Title |
|---|---|---|
| CN104934548A (en) | Reflection anode of active matrix type organic light emitting display and manufacturing method thereof | |
| CN110112172B (en) | Full-color micron LED display chip based on gallium nitride nanohole array/quantum dot hybrid structure and preparation method thereof | |
| CN104966723B (en) | A kind of organic LED array substrate, preparation method and display device | |
| CN104201188B (en) | OLED pixel unit and its preparation method, display panel and display device | |
| WO2016074554A1 (en) | Pixel unit and manufacturing method thereof, light-emitting device and display device | |
| WO2020253432A1 (en) | Reflective anode of active matrix organic light emitting device and manufacturing method therefor | |
| CN109801954A (en) | Array substrate and its manufacturing method, display panel and display device | |
| CN102629671B (en) | Preparation method of organic electroluminescent device of silicon base micro display | |
| CN107134543B (en) | Array substrate and manufacturing method thereof, and display device | |
| WO2014183340A1 (en) | Metal oxide thin-film transistor and preparation method therefor | |
| CN102709243B (en) | Organic light-emitting diode display panel and manufacturing method thereof | |
| WO2019127685A1 (en) | Manufacturing method of display panel, display panel, and display device | |
| CN101097946A (en) | Organic light emitting display device and manufacturing method thereof | |
| CN102969333A (en) | Luminous display back plane, method for preparing pixel definition layer thereof and display device | |
| CN211654862U (en) | Reflection anode structure of silicon-based active matrix organic light-emitting display | |
| CN108321311A (en) | The preparation method and silicon substrate OLED display modules of silicon substrate OLED | |
| CN110416257A (en) | Display panel backplane structure, its preparation method and top emission display panel | |
| CN108231857A (en) | OLED microcavity structure and preparation method thereof, display device | |
| WO2013056596A1 (en) | Organic lighting display panel and manufacturing method thereof | |
| CN109300967B (en) | Manufacturing method of display substrate, display substrate and display device | |
| CN105575910A (en) | Preparation method of thin-film transistor substrate, thin-film transistor substrate and liquid crystal panel | |
| CN101393891A (en) | A method for preparing a silver electrode on the surface of a silicon-based organic light-emitting microdisplay device | |
| KR102378358B1 (en) | Method of manufacturing mask for deposition | |
| CN100485954C (en) | Structure and method for improving image quality of organic light emitting diode integrated color filter | |
| CN116017999A (en) | A kind of manufacturing method of quantum dot light conversion film |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20150923 | |
| RJ01 | Rejection of invention patent application after publication |