Movatterモバイル変換


[0]ホーム

URL:


CN104877677A - Mesoporous silica/carbon dot nanometer composite and preparation method thereof - Google Patents

Mesoporous silica/carbon dot nanometer composite and preparation method thereof
Download PDF

Info

Publication number
CN104877677A
CN104877677ACN201510290711.1ACN201510290711ACN104877677ACN 104877677 ACN104877677 ACN 104877677ACN 201510290711 ACN201510290711 ACN 201510290711ACN 104877677 ACN104877677 ACN 104877677A
Authority
CN
China
Prior art keywords
carbon quantum
sba
quantum dot
preparation
mesoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510290711.1A
Other languages
Chinese (zh)
Other versions
CN104877677B (en
Inventor
田博士
刘少华
王振领
李春阳
胡彬
王梦楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhoukou Normal University
Original Assignee
Zhoukou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhoukou Normal UniversityfiledCriticalZhoukou Normal University
Priority to CN201510290711.1ApriorityCriticalpatent/CN104877677B/en
Publication of CN104877677ApublicationCriticalpatent/CN104877677A/en
Application grantedgrantedCritical
Publication of CN104877677BpublicationCriticalpatent/CN104877677B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

Translated fromChinese

本发明公开了介孔二氧化硅/碳量子点纳米复合材料及其制备方法,包括如下步骤:第一步采用三嵌段共聚物P123为模板合成了较大孔径(约8 nm)的六方有序介孔二氧化硅SBA-15;第二步将介孔SBA-15二氧化硅在一定浓度的柠檬酸水溶液中浸渍吸附,将柠檬酸分子填充到介孔SBA-15的孔道内;第三步是将负载有柠檬酸的SBA-15在箱式电阻炉焙烧,即得到介孔二氧化硅/碳量子点纳米复合材料。本发明是将碳量子点均匀负载到介孔SBA-15的孔道内,制备了一种具有有序介孔结构和荧光性能的多功能纳米复合材料,该发明具有制备工艺简单、反应条件温和绿色环保的优点。The invention discloses a mesoporous silica/carbon quantum dot nanocomposite material and a preparation method thereof. Sequenced mesoporous silica SBA-15; the second step is to impregnate and adsorb mesoporous SBA-15 silica in a certain concentration of citric acid aqueous solution, and fill the citric acid molecules into the pores of mesoporous SBA-15; the third The first step is to bake the SBA-15 loaded with citric acid in a box-type resistance furnace to obtain the mesoporous silica/carbon quantum dot nanocomposite material. The present invention uniformly loads carbon quantum dots into the pores of mesoporous SBA-15, and prepares a multifunctional nanocomposite material with ordered mesoporous structure and fluorescent properties. The invention has the advantages of simple preparation process, mild reaction conditions and green The advantages of environmental protection.

Description

Translated fromChinese
介孔二氧化硅/碳量子点纳米复合材料及其制备方法Mesoporous silica/carbon quantum dot nanocomposite material and preparation method thereof

技术领域technical field

本发明涉及的是一种介孔二氧化硅/碳量子点纳米复合材料,本发明还涉及的是一种介孔二氧化硅/碳量子点纳米复合材料的制备方法。The invention relates to a mesoporous silica/carbon quantum dot nanocomposite material, and also relates to a preparation method of the mesoporous silica/carbon quantum dot nanocomposite material.

背景技术Background technique

介孔二氧化硅具有较大的孔径(大于2 nm),巨大的比表面积和孔体积,高度有序的孔排列,孔径尺寸在广泛范围内可调。此外,其表面有丰富的硅羟基,易于进行表面修饰和改性。其中,SBA-15介孔二氧化硅具有高度有序六方排列的圆柱形孔道,孔径可达到约8 nm,有利于在其孔道内组装客体分子和作为客体分子反应的微反应器。与传统介孔二氧化硅MCM-41相比,SBA-15热稳定性和机械性能显著提高。近年来,将药物分子负载到介孔二氧化硅孔道内,并用于控制药物释放的研究正成为研究的热点课题之一。但是,由于其表面基团单一,在某些领域又限制了其应用范围。因此,对介孔二氧化硅表面和孔道进行修饰改性,以赋予其更多的性能引起了人们极大的兴趣。Mesoporous silica has large pore diameter (greater than 2 nm), huge specific surface area and pore volume, highly ordered pore arrangement, and pore size can be adjusted in a wide range. In addition, its surface is rich in silanol, which is easy for surface modification and modification. Among them, SBA-15 mesoporous silica has highly ordered hexagonal cylindrical channels with a pore size of about 8 nm, which is conducive to the assembly of guest molecules in its channels and microreactors that act as guest molecule reactions. Compared with traditional mesoporous silica MCM-41, SBA-15 has significantly improved thermal stability and mechanical properties. In recent years, the study of loading drug molecules into the pores of mesoporous silica for controlled drug release is becoming one of the hot research topics. However, due to its single surface group, its application range is limited in some fields. Therefore, modifying the surface and channels of mesoporous silica to endow it with more properties has attracted great interest.

碳量子点是一种单分散、尺寸较小的类球形纳米材料,在光照情况下可以发出明亮的光。与其他荧光材料相比,碳量子点具有化学稳定较高、无毒、良好的水溶性和生物相容性等特性,在生物成像、生物标记和药物控制释放等领域具有巨大的发展潜力和应用前景,越来越受到研究人员的关注和重视,相关报道也日益增多。因此,若将介孔二氧化硅材料与碳量子点进行复合,将得到一种新型的多功能复合材料,将在生物标记、细胞成像和药物控制释放方面具有重要的研究意义和潜在的应用价值。Carbon quantum dots are monodisperse, small-sized spherical nanomaterials that can emit bright light under light conditions. Compared with other fluorescent materials, carbon quantum dots have the characteristics of high chemical stability, non-toxicity, good water solubility and biocompatibility, and have great development potential and applications in the fields of bioimaging, biomarkers and drug controlled release. The prospect has been paid more and more attention and attention by researchers, and related reports are increasing day by day. Therefore, if mesoporous silica materials are combined with carbon quantum dots, a new type of multifunctional composite material will be obtained, which will have important research significance and potential application value in biomarkers, cell imaging and controlled drug release. .

目前,已有不少有关荧光介孔二氧化硅复合材料的报道,如将传统的有机荧光材料或CdSe等无机量子嫁接在介孔二氧化硅表面或孔道内,但有机荧光材料具有荧光衰减和猝灭的缺点,而无机金属类量子点有一定的毒性,大大限制了其应用范围,不利于在生物领域内得到应用。At present, there have been many reports on fluorescent mesoporous silica composite materials, such as grafting traditional organic fluorescent materials or inorganic quantum materials such as CdSe on the surface or channels of mesoporous silica, but organic fluorescent materials have fluorescence attenuation and The shortcoming of quenching, while inorganic metal quantum dots have certain toxicity, which greatly limits its application range, which is not conducive to its application in the biological field.

发明内容Contents of the invention

本发明的目的是将具有荧光性能的碳量子点与介孔二氧化硅进行复合,得到一种既具有介孔结构又具有荧光性能的多功能复合材料,提供一种介孔二氧化硅/碳量子点纳米复合材料及其制备方法。The purpose of the present invention is to compound carbon quantum dots with fluorescent properties and mesoporous silica to obtain a multifunctional composite material with both mesoporous structure and fluorescent properties, and to provide a mesoporous silica/carbon Quantum dot nanocomposite material and preparation method thereof.

为实现上述目的,本发明采用以下技术方案:To achieve the above object, the present invention adopts the following technical solutions:

介孔二氧化硅/碳量子点纳米复合材料及其制备方法,包括如下步骤:Mesoporous silica/carbon quantum dot nanocomposite material and preparation method thereof, comprising the following steps:

步骤一,介孔二氧化硅SBA-15的制备,首先将2-3 g三嵌段共聚物P123加入到100ml 2.0 mol/L的稀盐酸中,在30-42 ℃恒温水浴中搅拌2-8 h后,剧烈搅拌过程中逐滴加入4-6 g正硅酸乙酯,滴完后30-42℃恒温继续搅拌12-24 h,然后将该混合溶液转移至75-85 ℃烘箱内老化12-24 h,冷却至室温后抽滤,用去离子水洗涤至无泡沫,室温晾干,最后在空气气氛中逐渐升温至530-550 ℃后焙烧5-6 h,即得白色粉末状物质;Step 1, the preparation of mesoporous silica SBA-15, first add 2-3 g triblock copolymer P123 to 100ml 2.0 mol/L dilute hydrochloric acid, stir in 30-42 ℃ constant temperature water bath for 2-8 After hours, add 4-6 g tetraethyl orthosilicate dropwise during vigorous stirring, continue stirring at a constant temperature of 30-42 °C for 12-24 h after dropping, and then transfer the mixed solution to an oven at 75-85 °C for aging for 12 hours. -24 h, after cooling to room temperature, filter with suction, wash with deionized water until there is no foam, dry at room temperature, and finally heat up to 530-550 °C in air atmosphere and roast for 5-6 h to obtain a white powdery substance;

步骤二,介孔二氧化硅/碳量子点前驱体的制备,将步骤一制备的0.1-0.2 g白色粉末状物质加入到10-20 mL 30-60 mg/mL的柠檬酸溶液中,超声波分散10-20 min后密封,然后在室温下磁力搅拌10-20 h,将搅拌后的混合液依次经过抽滤、15-20 mL去离子水淋洗、抽滤后在室温下晾干,最后将过滤后得到的固体物质转移到100-120 oC的烘箱中干燥1-2 h,即得介孔二氧化硅/碳量子点前驱体;Step 2, preparation of mesoporous silica/carbon quantum dot precursor, add 0.1-0.2 g of white powdery substance prepared in step 1 to 10-20 mL of 30-60 mg/mL citric acid solution, ultrasonically disperse Seal after 10-20 min, then magnetically stir at room temperature for 10-20 h, filter the stirred mixture successively, rinse with 15-20 mL deionized water, and dry at room temperature after suction filtration. The solid matter obtained after filtration is transferred to an oven at 100-120o C for 1-2 h to obtain the mesoporous silica/carbon quantum dot precursor;

步骤三,碳量子点在介孔SBA-15孔道内的生长,将步骤三制备的SBA-15/碳量子点前驱体在管式电阻炉中进行焙烧,然后自然冷却至室温,即得到黄褐色粉末,焙烧时间2.5-3.5h、焙烧气氛为氮气、温度300-350℃;Step 3, the growth of carbon quantum dots in the mesoporous SBA-15 channel, the SBA-15/carbon quantum dot precursor prepared in step 3 is roasted in a tubular resistance furnace, and then naturally cooled to room temperature, that is, yellowish brown Powder, calcination time 2.5-3.5h, calcination atmosphere is nitrogen, temperature 300-350℃;

步骤四,介孔二氧化硅/碳量子点的制备,将步骤三经过焙烧后的黄褐色粉末先用去离子水洗涤到滤液呈无色,然后经过无水乙醇淋洗、抽滤,最后在温度为55-60oC下真空干燥10-12h,即得介孔二氧化硅/碳量子点纳米复合材料,产物记为SBA-15/碳量子点。Step 4, the preparation of mesoporous silica/carbon quantum dots, the tan powder after step 3 was roasted was first washed with deionized water until the filtrate was colorless, then rinsed with absolute ethanol, suction filtered, and finally in Vacuum drying at a temperature of 55-60o C for 10-12 hours to obtain a mesoporous silica/carbon quantum dot nanocomposite material, and the product is denoted as SBA-15/carbon quantum dot.

所述步骤二中所用柠檬酸溶液为柠檬酸溶解在去离子水中,或溶解在乙醇中,或溶解在丙酮中制备而成。The citric acid solution used in the second step is prepared by dissolving citric acid in deionized water, ethanol, or acetone.

所述步骤二中加入柠檬酸溶液的浓度为0.03-0.06 g/mL。The concentration of the citric acid solution added in the step 2 is 0.03-0.06 g/mL.

所述步骤二中每0.1 g 固体粉末所用去离子水的体积至少为15 m L, 淋洗次数至少为两次。The volume of deionized water used per 0.1 g of solid powder in the second step is at least 15 mL, and the number of washing times is at least twice.

所述步骤一和步骤三中焙烧前的升温速率为10-20 ℃/min。The heating rate before roasting in step 1 and step 3 is 10-20°C/min.

本发明针对现有技术中介孔二氧化硅、荧光材料以及荧光介孔二氧化硅复合材料存在的问题和缺陷,首先采用浸渍吸附法将柠檬酸填充到介孔SBA-15孔道内外,并通过控制洗涤条件洗去SBA-15外表面吸附的柠檬酸,从而使能柠檬酸分子主要负载到SBA-15孔道内,然后柠檬酸分子经过高温煅烧处理而生成具有荧光性能的碳量子点。本发明利用介孔二氧化硅SBA-15孔道限阈作用,将碳量子点均匀地填充到SBA-15孔道内,避免了孔道堵塞;采用无毒、水溶性较好和发光性能稳定的碳量子点为发光材料;采用制备工艺简单,反应条件温和的方法制备了介孔二氧化硅/碳量子点复合材料。虽然国内外已有不少有关荧光介孔二氧化硅材料的研究与应用,但有关将碳量子点组装到孔径较大的介孔二氧化硅孔内并用于药物载体的研究尚属空白。The present invention aims at the problems and defects existing in mesoporous silica, fluorescent materials and fluorescent mesoporous silica composite materials in the prior art. The washing conditions wash away the citric acid adsorbed on the outer surface of SBA-15, so that the citric acid molecules can be mainly loaded into the SBA-15 pores, and then the citric acid molecules are calcined at high temperature to generate carbon quantum dots with fluorescent properties. The invention utilizes the threshold-limiting effect of mesoporous silica SBA-15 channels to evenly fill carbon quantum dots into the SBA-15 channels, avoiding channel blockage; using non-toxic, water-soluble and stable carbon quantum dots The dots are luminescent materials; the mesoporous silicon dioxide/carbon quantum dot composite material is prepared by a method with simple preparation process and mild reaction conditions. Although there have been many studies and applications on fluorescent mesoporous silica materials at home and abroad, the research on the assembly of carbon quantum dots into mesoporous silica pores with large pore size and used as drug carriers is still blank.

本发明制备的介孔二氧化硅/碳量子点纳米复合材料具有以下几个特点:1)采用介孔SBA-15为主体材料,一是其良好的热稳定性非常适合采用煅烧的方法制备碳量子点,二是其较大的孔径和均匀的孔道适于客体分子柠檬酸的负载并用作生成碳量子点的微反应器,从而达到介孔二氧化硅与碳量子点在分子水平上的复合。2)由于碳量子点在孔道内的均匀填充,所得的复合材料仍具有两端开口的孔结构,适合用作纳米药物载体来控制和跟踪药物的释放。3)制备工艺简单,反应条件温和,适合工业化大规模生产。期望该复合材料在药物的可控释放和跟踪方面得到应用。The mesoporous silica/carbon quantum dot nanocomposite material prepared by the present invention has the following characteristics: 1) Mesoporous SBA-15 is used as the main material, and its good thermal stability is very suitable for preparing carbon by calcination. Quantum dots, the second is that its large pore size and uniform channels are suitable for the loading of guest molecule citric acid and used as a microreactor for generating carbon quantum dots, so as to achieve the compounding of mesoporous silica and carbon quantum dots at the molecular level . 2) Due to the uniform filling of carbon quantum dots in the pores, the resulting composite still has a pore structure with both ends open, which is suitable for use as nano-drug carriers to control and track the release of drugs. 3) The preparation process is simple, the reaction conditions are mild, and it is suitable for large-scale industrial production. The composite material is expected to be applied in the controlled release and tracking of drugs.

附图说明Description of drawings

图1为没有负载碳量子点的介孔SBA-15 SEM照片。Figure 1 is the SEM photo of mesoporous SBA-15 without carbon quantum dots.

图2为负载有碳量子点的介孔SBA-15 SEM照片。Figure 2 is the SEM photo of mesoporous SBA-15 loaded with carbon quantum dots.

图3 SBA-15和SBA-15/碳量子点复合材料XRD图谱。Fig. 3 XRD patterns of SBA-15 and SBA-15/carbon quantum dot composites.

图4碳量子点、SBA-15/碳量子点复合材料和SBA-15的FT-IR图谱。Figure 4 FT-IR spectra of carbon quantum dots, SBA-15/carbon quantum dot composites and SBA-15.

图5 SBA-15和SBA-15/碳量子点复合材料的N2 吸附-脱附等温线。Fig.5 N adsorption–desorption isotherms of SBA-15 and SBA-15/carbon quantum dot composites.

图6 SBA-15和SBA-15/碳量子点复合材料的孔径分布。Fig. 6 Pore size distribution of SBA-15 and SBA-15/carbon quantum dot composites.

图7 SBA-15/碳量子点复合材料的荧光光谱。Fig. 7 Fluorescence spectra of SBA-15/carbon quantum dot composites.

具体实施方式Detailed ways

实施例1Example 1

介孔二氧化硅/碳量子点纳米复合材料及其制备方法,包括如下步骤:Mesoporous silica/carbon quantum dot nanocomposite material and preparation method thereof, comprising the following steps:

步骤一,介孔二氧化硅SBA-15的制备,首先将2-3 g三嵌段共聚物P123加入到100 ml 2.0 mol/L的稀盐酸中,在30-42 ℃恒温水浴中搅拌2-8 h后,剧烈搅拌过程中逐滴加入4-6 g正硅酸乙酯,滴完后30-42℃恒温继续搅拌12-24h,然后将该混合溶液转移至75-85 ℃烘箱内老化12-24 h,冷却至室温后抽滤,用去离子水洗涤至无泡沫,室温晾干,最后在空气气氛中逐渐升温至530-550℃后焙烧5-6 h,即得白色粉末状物质;Step 1, the preparation of mesoporous silica SBA-15, first add 2-3 g triblock copolymer P123 to 100 ml 2.0 mol/L dilute hydrochloric acid, stir in a constant temperature water bath at 30-42 ℃ for 2- After 8 hours, add 4-6 g tetraethyl orthosilicate dropwise during vigorous stirring, and continue stirring at a constant temperature of 30-42°C for 12-24 hours after the dropping, then transfer the mixed solution to an oven at 75-85°C for aging for 12 hours. -24 h, after cooling to room temperature, filter with suction, wash with deionized water until there is no foam, dry at room temperature, and finally heat up to 530-550°C in air atmosphere and roast for 5-6 h to obtain a white powdery substance;

步骤二, 介孔二氧化硅/碳量子点前驱体的制备,将步骤一制备的0.1-0.2 g白色粉末状物质加入到10-20 mL 30-60 mg/mL的柠檬酸溶液中,超声波分散10-20 min后密封,然后在室温下磁力搅拌10-20 h,将搅拌后的混合液依次经过抽滤、15-20 mL去离子水淋洗、抽滤后在室温下晾干,最后将过滤后得到的固体物质转移到100-120 oC的烘箱中干燥1-2h,即得介孔二氧化硅/碳量子点前驱体;Step 2, preparation of mesoporous silica/carbon quantum dot precursor, adding 0.1-0.2 g of the white powdery substance prepared in step 1 to 10-20 mL of 30-60 mg/mL citric acid solution, ultrasonically dispersed Seal after 10-20 min, then magnetically stir at room temperature for 10-20 h, filter the stirred mixture successively, rinse with 15-20 mL deionized water, and dry at room temperature after suction filtration. The solid matter obtained after filtering is transferred to an oven at 100-120o C for 1-2 hours to dry to obtain the mesoporous silica/carbon quantum dot precursor;

步骤三,碳量子点在介孔SBA-15孔道内的生长,将步骤二制备的SBA-15/碳量子点前驱体在管式电阻炉中进行焙烧,然后自然冷却至室温,即得到黄褐色粉末,焙烧时间2.5-3.5 h、焙烧气氛为氮气、温度300-350 ℃;Step 3, the growth of carbon quantum dots in the mesoporous SBA-15 channel, the SBA-15/carbon quantum dot precursor prepared in step 2 is roasted in a tubular resistance furnace, and then naturally cooled to room temperature to obtain yellowish brown Powder, calcination time 2.5-3.5 h, calcination atmosphere is nitrogen, temperature 300-350 ℃;

步骤四,介孔二氧化硅/碳量子点的制备,将步骤三经过焙烧后的黄褐色粉末先用去离子水洗涤到滤液呈无色,然后经过无水乙醇淋洗、抽滤,最后在温度为55-60 oC下真空干燥10-12 h,即得介孔二氧化硅/碳量子点纳米复合材料,产物记为SBA-15/碳量子点。Step 4, the preparation of mesoporous silica/carbon quantum dots, the tan powder after step 3 was roasted was first washed with deionized water until the filtrate was colorless, then rinsed with absolute ethanol, suction filtered, and finally in Vacuum drying at a temperature of 55-60o C for 10-12 h to obtain a mesoporous silica/carbon quantum dot nanocomposite material, and the product is denoted as SBA-15/carbon quantum dot.

所述步骤二中所用柠檬酸溶液为柠檬酸溶解在去离子水中,或溶解在乙醇中,或溶解在丙酮中制备而成。The citric acid solution used in the second step is prepared by dissolving citric acid in deionized water, ethanol, or acetone.

所述步骤二中加入柠檬酸溶液的浓度为0.03-0.06 g/mL。The concentration of the citric acid solution added in the step 2 is 0.03-0.06 g/mL.

所述步骤二中每0.1 g 固体粉末所用去离子水的体积至少为15 m L, 淋洗次数至少为两次。The volume of deionized water used per 0.1 g of solid powder in the second step is at least 15 mL, and the number of washing times is at least twice.

所述步骤一和步骤三中焙烧前的升温速率为10-20 ℃/min。The heating rate before roasting in step 1 and step 3 is 10-20°C/min.

实施例2Example 2

步骤一,介孔二氧化硅SBA-15的制备,介孔二氧化硅的制备以非离子表面活性剂-三嵌段共聚物EO20PO70EO20 为模板剂,采用典型的溶胶-凝胶法制得,具体制备过程是:取2-3 g 三嵌段共聚物(P123, Ma≈5800)于锥形瓶中,加入2.0 mol/L 的稀盐酸100 mL 和去离子水 15 mL,40℃恒温水浴搅拌6 h。剧烈搅拌下逐滴加入4-6 g 正硅酸乙酯,滴完后40℃恒温继续搅拌24 h,然后将该溶液转移至烘箱内80℃下老化24 h。冷却至室温后抽滤,用去离子水洗涤至无泡沫,室温晾干,最后在空气气氛中逐渐升温至550 ℃焙烧6 h,即得白色粉末状SBA-15,升温速率1 oC/min。Step 1, the preparation of mesoporous silica SBA-15, the preparation of mesoporous silica using non-ionic surfactant-triblock copolymer EO20 PO70 EO20 as template, using typical sol-gel The specific preparation process is: take 2-3 g tri-block copolymer (P123, Ma≈5800) in a conical flask, add 2.0 mol/L dilute hydrochloric acid 100 mL and deionized water 15 mL, 40 ℃ Stir in a constant temperature water bath for 6 h. Add 4-6 g of tetraethyl orthosilicate dropwise under vigorous stirring, and continue stirring at a constant temperature of 40°C for 24 h after the dropping, and then transfer the solution to an oven for aging at 80°C for 24 h. After cooling to room temperature, filter with suction, wash with deionized water until there is no foam, dry at room temperature, and finally heat up to 550 °C for 6 h in an air atmosphere to obtain white powder SBA-15 at a heating rate of 1o C/min .

步骤二, 介孔二氧化硅/碳量子点前驱体的制备,取0.1 g 焙烧法脱除模板剂P123的介孔SBA-15于50m L锥形瓶中,再加入15 mL 30 mg/mL 的柠檬酸水溶液中,超声波分散15 min,使二者形成均匀的悬混液后密封,室温下磁力搅拌12 h。然后将混合液转移到布式漏斗中,抽滤5min,然后用15 mL去离子水淋洗两次,继续抽滤10 min后将滤饼在室温下晾干,然后转移到烘箱中100 oC干燥2 h。柠檬酸溶液是将0.03g柠檬酸加入与100mL的去离子水中制备而成。Step 2, preparation of mesoporous silica/carbon quantum dot precursor, take 0.1 g of mesoporous SBA-15 from which the templating agent P123 was removed by roasting method, and add 15 mL of 30 mg/mL In the aqueous solution of citric acid, ultrasonically disperse for 15 min to form a uniform suspension, seal it, and stir magnetically for 12 h at room temperature. Then the mixture was transferred to a Buchner funnel, filtered with suction for 5 min, rinsed twice with 15 mL of deionized water, continued to filter with suction for 10 min, and the filter cake was dried at room temperature, and then transferred to an oven at 100o C Dry for 2 h. The citric acid solution was prepared by adding 0.03 g of citric acid to 100 mL of deionized water.

步骤三,碳量子点在介孔SBA-15孔道内的生长,将步骤二制备的样品置于陶瓷坩埚中,在管式电阻炉中300 oC焙烧2.5小时、焙烧气氛为氮气、升温速率为10/oC。Step 3, the growth of carbon quantum dots in the mesoporous SBA-15 channel, the sample prepared in step 2 was placed in a ceramic crucible, and roasted in a tubular resistance furnace at 300o C for 2.5 hours, the roasting atmosphere was nitrogen, and the heating rate was 10/o C.

步骤四,介孔二氧化硅/碳量子点的制备,将焙烧后步骤三制备的样品冷却至室温,将制备的黄褐色粉末转移到布式漏斗上,抽滤并用大量去离子水洗涤,直到滤液呈无色,然后再用20 m L无水乙醇淋洗两次,再抽滤10min。将样品转移到蒸发皿中, 60 oC真空干燥12h,所得产物即为SBA-15/碳量子点复合材料。Step 4, the preparation of mesoporous silica/carbon quantum dots, cooling the sample prepared in step 3 after roasting to room temperature, transferring the prepared tan powder to a Buchner funnel, suction filtering and washing with a large amount of deionized water until The filtrate was colorless, then rinsed twice with 20 mL of absolute ethanol, and then suction filtered for 10 min. Transfer the sample to an evaporating dish, and dry it in vacuum at 60o C for 12 hours, and the obtained product is the SBA-15/carbon quantum dot composite material.

实施例3Example 3

步骤一,介孔二氧化硅SBA-15的制备,介孔二氧化硅的制备以非离子表面活性剂-三嵌段共聚物EO20PO70EO20 为模板剂,采用典型的溶胶-凝胶法制得,具体制备过程是:取2.5 g 三嵌段共聚物(P123, Ma≈5800)于锥形瓶中,加入2.0 mol/L 的稀盐酸100 mL 和去离子水 20 mL,35℃恒温水浴搅拌8 h。剧烈搅拌下逐滴加入5g 正硅酸乙酯,滴完后40℃恒温继续搅拌24 h,然后将该溶液转移至烘箱内75℃下老化20 h。冷却至室温后抽滤,用去离子水洗涤至无泡沫,室温晾干,最后在空气气氛中逐渐升温至530℃焙烧6 h,即得白色粉末状SBA-15,升温速率2oC/min。Step 1, the preparation of mesoporous silica SBA-15, the preparation of mesoporous silica using non-ionic surfactant-triblock copolymer EO20 PO70 EO20 as template, using typical sol-gel The specific preparation process is as follows: take 2.5 g of tri-block copolymer (P123, Ma≈5800) in a conical flask, add 100 mL of 2.0 mol/L dilute hydrochloric acid and 20 mL of deionized water, and place in a constant temperature water bath at 35 °C Stir for 8 h. Under vigorous stirring, 5 g of tetraethyl orthosilicate was added dropwise, and after the drop was completed, stirring was continued at a constant temperature of 40 °C for 24 h, and then the solution was transferred to an oven for aging at 75 °C for 20 h. After cooling to room temperature, filter with suction, wash with deionized water until there is no foam, dry at room temperature, and finally heat up to 530°C for 6 h in an air atmosphere to obtain white powder SBA-15 at a heating rate of 2o C/min .

步骤二,介孔二氧化硅/碳量子点前驱体的制备,取0.2 g 焙烧法脱除模板剂P123的介孔SBA-15于50 m L锥形瓶中,再加入15 mL 30 mg/mL 的柠檬酸乙醇溶液中,超声波分散15 min,使二者形成均匀的悬混液后密封,室温下磁力搅拌20 h。然后将混合液转移到布式漏斗中,抽滤5min,然后用15 mL去离子水淋洗三次,继续抽滤10 min后将滤饼在室温下晾干,然后转移到烘箱中120 oC干燥1.5 h。柠檬酸溶液是将0.05g柠檬酸加入与100mL的乙醇中制备而成。Step 2, the preparation of mesoporous silica/carbon quantum dot precursor, take 0.2 g of mesoporous SBA-15 from the template agent P123 by roasting method, and put it into a 50 mL conical flask, then add 15 mL of 30 mg/mL In the ethanol solution of citric acid, ultrasonically disperse for 15 min to form a uniform suspension, seal it, and stir magnetically at room temperature for 20 h. Then the mixture was transferred to a Buchner funnel, filtered with suction for 5 min, rinsed with 15 mL of deionized water three times, continued to filter with suction for 10 min, and then the filter cake was dried at room temperature, and then transferred to an oven for drying at 120o C. 1.5 h. The citric acid solution was prepared by adding 0.05 g of citric acid to 100 mL of ethanol.

步骤三,碳量子点在介孔SBA-15孔道内的生长,将步骤二制备的样品置于陶瓷坩埚中,在管式电阻炉中350 oC焙烧3小时、焙烧气氛为氮气、升温速率为20/oC。然后将焙烧后的样品冷却至室温,将制备的黄褐色粉末转移到布式漏斗上,抽滤并用大量去离子水洗涤,直到滤液呈无色,然后再用20 m L无水乙醇淋洗两次,再抽滤10 min。Step 3, the growth of carbon quantum dots in the mesoporous SBA-15 channel, the sample prepared in step 2 was placed in a ceramic crucible, and roasted in a tubular resistance furnace at 350o C for 3 hours, the roasting atmosphere was nitrogen, and the heating rate was 20/o C. Then the calcined sample was cooled to room temperature, the prepared tan powder was transferred to a Buchner funnel, filtered and washed with a large amount of deionized water until the filtrate was colorless, and then rinsed with 20 mL absolute ethanol for two times, and then filtered for 10 min.

步骤四,介孔二氧化硅/碳量子点的制备,将焙烧后步骤三制备的样品冷却至室温,将制备的黄褐色粉末转移到布式漏斗上,抽滤并用大量去离子水洗涤,直到滤液呈无色,然后再用20 m L无水乙醇淋洗两次,再抽滤10min。将样品转移到蒸发皿中,55oC真空干燥10h,所得产物即为SBA-15/碳量子点复合材料。Step 4, the preparation of mesoporous silica/carbon quantum dots, cooling the sample prepared in step 3 after roasting to room temperature, transferring the prepared tan powder to a Buchner funnel, suction filtering and washing with a large amount of deionized water until The filtrate was colorless, then rinsed twice with 20 mL of absolute ethanol, and then suction filtered for 10 min. The sample was transferred to an evaporating dish and dried in vacuum at 55o C for 10 h, and the obtained product was the SBA-15/carbon quantum dot composite material.

实施例4Example 4

步骤一,介孔二氧化硅SBA-15的制备,介孔二氧化硅的制备以非离子表面活性剂-三嵌段共聚物EO20PO70EO20 为模板剂,采用典型的溶胶-凝胶法制得,具体制备过程是:取2.2 g 三嵌段共聚物(P123, Ma≈5800)于锥形瓶中,加入2.0 mol/L 的稀盐酸100 mL 和去离子水 20 mL,40℃恒温水浴搅拌3 h。剧烈搅拌下逐滴加入5.5g正硅酸乙酯,滴完后30℃恒温继续搅拌24 h,然后将该溶液转移至烘箱内80℃下老化12h。冷却至室温后抽滤,用去离子水洗涤至无泡沫,室温晾干,最后在空气气氛中逐渐升温至550℃焙烧5h,即得白色粉末状SBA-15,升温速率10oC/min。Step 1, the preparation of mesoporous silica SBA-15, the preparation of mesoporous silica using non-ionic surfactant-triblock copolymer EO20 PO70 EO20 as template, using typical sol-gel The specific preparation process is as follows: take 2.2 g of tri-block copolymer (P123, Ma≈5800) in a conical flask, add 100 mL of 2.0 mol/L dilute hydrochloric acid and 20 mL of deionized water, and place in a constant temperature water bath at 40 °C Stir for 3 h. Under vigorous stirring, 5.5 g of ethyl orthosilicate was added dropwise. After the dropping was completed, stirring was continued at a constant temperature of 30° C. for 24 h, and then the solution was transferred to an oven for aging at 80° C. for 12 h. After cooling to room temperature, filter with suction, wash with deionized water until there is no foam, dry at room temperature, and finally heat up to 550°C for 5 hours in an air atmosphere to obtain white powder SBA-15 at a heating rate of 10o C/min.

步骤二,介孔二氧化硅/碳量子点前驱体的制备,取0.1g 焙烧法脱除模板剂P123的介孔SBA-15于50m L锥形瓶中,再加入20 mL 30 mg/mL 的柠檬酸丙酮溶液中,超声波分散20 min,使二者形成均匀的悬混液后密封,室温下磁力搅拌10 h。然后将混合液转移到布式漏斗中,抽滤5 min,然后用15 mL去离子水淋洗四次,继续抽滤10 min后将滤饼在室温下晾干,然后转移到烘箱中115 oC干燥1.5 h。柠檬酸溶液是将0.04g柠檬酸加入与100mL的丙酮中制备而成。Step 2, the preparation of mesoporous silica/carbon quantum dot precursor, take 0.1g of mesoporous SBA-15 from the template agent P123 by roasting method and put it into a 50mL Erlenmeyer flask, then add 20mL of 30 mg/mL In the citric acid acetone solution, ultrasonically disperse for 20 min to form a uniform suspension, seal it, and stir magnetically for 10 h at room temperature. Then the mixture was transferred to a Buchner funnel, filtered with suction for 5 min, rinsed with 15 mL of deionized water four times, continued to filter with suction for 10 min, and then the filter cake was dried at room temperature, and then transferred to an oven at 115° C. C drying for 1.5 h. The citric acid solution was prepared by adding 0.04 g of citric acid to 100 mL of acetone.

步骤三,碳量子点在介孔SBA-15孔道内的生长,将步骤二制备的样品置于陶瓷坩埚中,在管式电阻炉中310 oC焙烧3小时、焙烧气氛为氮气、升温速率为20/oC。然后将焙烧后的样品冷却至室温,将制备的黄褐色粉末转移到布式漏斗上,抽滤并用大量去离子水洗涤,直到滤液呈无色,然后再用20 m L无水乙醇淋洗两次,再抽滤10 min。Step 3, the growth of carbon quantum dots in the mesoporous SBA-15 channel, the sample prepared in step 2 was placed in a ceramic crucible, and roasted in a tubular resistance furnace at 310o C for 3 hours, the roasting atmosphere was nitrogen, and the heating rate was 20/o C. Then the calcined sample was cooled to room temperature, the prepared tan powder was transferred to a Buchner funnel, filtered and washed with a large amount of deionized water until the filtrate was colorless, and then rinsed with 20 mL absolute ethanol for two times, and then filtered for 10 min.

步骤四,介孔二氧化硅/碳量子点的制备,将焙烧后步骤三制备的样品冷却至室温,将制备的黄褐色粉末转移到布式漏斗上,抽滤并用大量去离子水洗涤,直到滤液呈无色,然后再用20 m L无水乙醇淋洗两次,再抽滤10min。将样品转移到蒸发皿中,60oC真空干燥11h,所得产物即为SBA-15/碳量子点复合材料。Step 4, the preparation of mesoporous silica/carbon quantum dots, cooling the sample prepared in step 3 after roasting to room temperature, transferring the prepared tan powder to a Buchner funnel, suction filtering and washing with a large amount of deionized water until The filtrate was colorless, then rinsed twice with 20 mL of absolute ethanol, and then suction filtered for 10 min. The sample was transferred to an evaporating dish and dried in vacuum at 60o C for 11 h, and the obtained product was the SBA-15/carbon quantum dot composite material.

实施例5-16Example 5-16

实施步骤如实施例2,具体工艺参数如表1所示:Implementation step is as embodiment 2, and concrete process parameter is as shown in table 1:

实验检测结果Experimental test results

本实验测试当中采用的样品为实施例2制得,XRD图谱测试采用仪器的型号为:D8 FOCUS(德国Bruker),激发和发射光谱图采用仪器型号为:FLS920P(英国爱丁堡),傅里叶变换红外光谱采用仪器型号为:(美国热电),N2吸附脱附等温线测试采用仪器型号:ASAP 2020 HD88(美国麦克公司),扫描电子显微镜照片采用的仪器型号为:Quanta 200(美国FEI公司)。The sample used in this experiment test is made in Example 2. The model of the XRD pattern test is: D8 FOCUS (Germany Bruker), the model of the excitation and emission spectrum is: FLS920P (Edinburgh, UK), Fourier transform The instrument model used for the infrared spectrum is: (Thermo Electric of the United States), the instrument model used for theN2 adsorption-desorption isotherm test: ASAP 2020 HD88 (Mike Company of the United States), the instrument model used for the scanning electron microscope photo is: Quanta 200 (FEI Company of the United States) .

SEM测试:从样品图1和图2的照片可以看出,SBA-15/碳量子点复合材料具有与SBA-15相似的形貌,均为约3-5微米的棒状结构。同时,未观察到SBA-15外表面碳量子点的存在,表明碳量子点主要分布在SBA-15的孔道内。SEM test: It can be seen from the photos of the sample Figure 1 and Figure 2 that the SBA-15/carbon quantum dot composite material has a similar morphology to SBA-15, both of which are rod-like structures of about 3-5 microns. At the same time, the existence of carbon quantum dots on the outer surface of SBA-15 was not observed, indicating that carbon quantum dots were mainly distributed in the pores of SBA-15.

XRD测试:图3中a为SBA-15的衍射图谱,b为碳量子点负载SBA-15后的衍射图谱,从样品图3的图谱可以看出,碳量子点负载的SBA-15的孔道内后产物仍然具有有序的六方介孔结构,说明在SBA-15孔道内合成碳量子点过程中未破坏SBA-15的有序介孔孔结构。   XRD test: in Figure 3, a is the diffraction pattern of SBA-15, and b is the diffraction pattern of SBA-15 loaded with carbon quantum dots. The final product still has an ordered hexagonal mesoporous structure, indicating that the ordered mesoporous structure of SBA-15 was not destroyed during the synthesis of carbon quantum dots in the SBA-15 channel. the

FT-IR测试:图4中a、b、c分别为碳量子点、SBA-15/碳量子点复合材料、SBA-15的FT-IR图谱。从图4中可以看出,SBA-15/碳量子点复合材料除了SBA-15的典型吸收峰外,还在2927cm-1、801 cm-1处出现碳量子点的特征吸收峰,表明碳量子点已成功负载到SBA-15孔道内。FT-IR test: a, b, and c in Figure 4 are the FT-IR spectra of carbon quantum dots, SBA-15/carbon quantum dot composites, and SBA-15, respectively. It can be seen from Figure 4 that in addition to the typical absorption peaks of SBA-15, SBA-15/carbon quantum dot composites also have characteristic absorption peaks of carbon quantum dots at 2927 cm-1 and 801 cm-1, indicating that carbon quantum dots Points have been successfully loaded into the SBA-15 channel.

N2吸附-脱附等温测试:图5中,a 、b 分别为SBA-15和SBA-15/碳量子点复合材料的N2 吸附-脱附等温线。从样品的低温N2吸附-脱附等温线来看,SBA-15和SBA-15/碳量子点复合材料的吸附等温线均为典型的介孔材料的吸附等温线(IV型等温线),表明SBA-15/碳量子点复合材料为典型的介孔材料。此外,由图5还可以看出,SBA-15/碳量子点复合材料的吸、脱附曲线滞后环为典型的H1型滞后环,表明碳量子点填充到SBA-15孔道复合材料仍具有两端开口的孔结构,碳量子点并未堵塞SBA-15的孔道。从图6(a 、分别为SBA-15和SBA-15/碳量子点复合材料的孔径分布)。从样品的吸附孔径分布图可以看出,SBA-15/碳量子点复合材料的孔径与SBA-15项目比大约减少了0.7 nm,表明碳量子点确实填充到了SBA-15的孔道内。表2的数据进一步证实碳量子点成功负载到介孔二氧化硅SBA-15孔道内。N2 adsorption-desorption isotherm test: In Figure 5, a and b are the N 2 adsorption-desorption isotherms of SBA-15 and SBA-15/carbon quantum dot composites, respectively. From the low-temperature N2 adsorption-desorption isotherms of the samples, the adsorption isotherms of SBA-15 and SBA-15/carbon quantum dot composites are typical adsorption isotherms of mesoporous materials (type IV isotherms), indicating that SBA-15/carbon quantum dot composites are typical mesoporous materials. In addition, it can also be seen from Figure 5 that the hysteresis loop of the adsorption and desorption curves of the SBA-15/carbon quantum dot composite material is a typical H1 type hysteresis loop, indicating that the carbon quantum dots filled into the SBA-15 pore composite material still has two The pore structure is open at the end, and the carbon quantum dots did not block the pores of SBA-15. From Fig. 6 (a, the pore size distributions of SBA-15 and SBA-15/CQD composites, respectively). It can be seen from the adsorption pore size distribution diagram of the sample that the pore size of the SBA-15/carbon quantum dot composite material is about 0.7 nm less than that of the SBA-15 project, indicating that the carbon quantum dots are indeed filled into the pores of the SBA-15. The data in Table 2 further confirmed that carbon quantum dots were successfully loaded into the pores of mesoporous silica SBA-15.

荧光发射和激发光谱测试:图7为SBA-15/碳量子点复合材料的荧光发射和激发光谱,可以看出,以260nm紫外为激发波长,SBA-15/碳量子点复合材料在510 nm有强烈的发射峰,表明该复合材料具有较好的发光性能。Fluorescence emission and excitation spectrum test: Figure 7 is the fluorescence emission and excitation spectrum of SBA-15/carbon quantum dot composite material, as can be seen, with 260nm ultraviolet as excitation wavelength, SBA-15/carbon quantum dot composite material has The strong emission peak indicates that the composite material has good luminescence performance.

Claims (5)

CN201510290711.1A2015-05-292015-05-29 Preparation method of mesoporous silica/carbon quantum dot nanocomposite materialExpired - Fee RelatedCN104877677B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201510290711.1ACN104877677B (en)2015-05-292015-05-29 Preparation method of mesoporous silica/carbon quantum dot nanocomposite material

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201510290711.1ACN104877677B (en)2015-05-292015-05-29 Preparation method of mesoporous silica/carbon quantum dot nanocomposite material

Publications (2)

Publication NumberPublication Date
CN104877677Atrue CN104877677A (en)2015-09-02
CN104877677B CN104877677B (en)2016-10-05

Family

ID=53945359

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201510290711.1AExpired - Fee RelatedCN104877677B (en)2015-05-292015-05-29 Preparation method of mesoporous silica/carbon quantum dot nanocomposite material

Country Status (1)

CountryLink
CN (1)CN104877677B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105086993A (en)*2015-09-112015-11-25天津市中环量子科技有限公司Fluorescent quantum dot micro-nano encapsulated composite material structure
CN105733556A (en)*2016-03-212016-07-06天津市中环量子科技有限公司Quantum-dot composite fluorescent particles and LED module
CN105754594A (en)*2016-01-292016-07-13华南农业大学Fluorescent carbon dot/mesoporous molecular sieve composite luminescent material as well as preparation and application of fluorescent carbon dot/mesoporous molecular sieve composite luminescent material
CN106092984A (en)*2016-06-072016-11-09广东省汕头市质量计量监督检测所A kind of fluorescence analysis method based on passivation carbon quantum dot and application thereof
CN106379905A (en)*2016-08-262017-02-08华南理工大学Carbon-doped luminescent mesoporous silica, preparation method thereof and application thereof
CN106517216A (en)*2016-11-032017-03-22北京化工大学Biodegradable mesoporous carbon and silicon nano-sphere and method for preparing same
CN106590656A (en)*2016-12-062017-04-26喀什大学Preparation method of near-infrared long afterglow luminescent nanometer particle
CN106675558A (en)*2017-01-162017-05-17华南农业大学 Carbon quantum dots/Eu3+/mesoporous alumina composite luminescent material and its preparation and application
CN106669602A (en)*2016-12-062017-05-17清华大学Preparation method and application of carbon dot/mesoporous silica composite material
CN106847357A (en)*2017-02-132017-06-13东莞市联洲知识产权运营管理有限公司The method of coagulant sedimentation absorption method Combined Treatment radioactivity uranium-containing waste water
CN106920955A (en)*2017-02-212017-07-04中山职业技术学院A kind of carbon point base silicon dioxide composite material and its application in electrode of lithium cell
CN107434972A (en)*2017-08-112017-12-05中国农业科学院农业质量标准与检测技术研究所A kind of molecular-sieve carbon quantum dot probe and preparation method thereof and the application in the detection of acid organic gas
CN108048074A (en)*2018-01-152018-05-18湖北大学A kind of hybrid inorganic-organic fluorescent nano particles for emitting glory and preparation method thereof
CN109135734A (en)*2018-07-242019-01-04中北大学The duct SBA-15 confinement fluorescent carbon point composite material and preparation method thereof
CN109370567A (en)*2018-12-072019-02-22西南政法大学A kind of preparation method of silicon ball carbon dots powder and its application in latent fingerprint identification
CN109650377A (en)*2019-01-302019-04-19东华大学A method of mesoporous silicon dioxide modified carbon dots are prepared with hydro-thermal method
CN109705627A (en)*2019-01-302019-05-03东华大学 A method for preparing mesoporous silica modified carbon dots by calcination
CN109971469A (en)*2017-12-272019-07-05Tcl集团股份有限公司The preparation method of carbon quantum dot
CN111100633A (en)*2019-12-242020-05-05丹阳市朗宁光电子科技有限公司Luminescent medium for generating white light by laser driving and preparation method thereof
CN111285351A (en)*2018-12-062020-06-16中国科学院宁波材料技术与工程研究所 A kind of carbon quantum dot and preparation method thereof
CN111349436A (en)*2018-12-242020-06-30Tcl集团股份有限公司Preparation method of quantum dots
CN113321945A (en)*2021-06-222021-08-31华南农业大学Preparation method and application of carbon quantum dot regulated aluminum phosphite crystal
CN113600220A (en)*2021-06-232021-11-05宁夏大学Carbon nitride high-load dispersion NiS photocatalytic degradation material and preparation method thereof
CN113881428A (en)*2021-09-162022-01-04复旦大学Method for solid-phase synthesis of high-quality fluorescent carbon dots in air by using mesoporous molecular sieve as template
CN114716890A (en)*2022-01-122022-07-08南京大学 A kind of preparation method of self-healing coating with expired drug cephalexin as corrosion inhibitor
CN115322774A (en)*2022-06-202022-11-11爱科美材料科技(南通)有限公司Temperature-resistant green light fluorescent powder and preparation method thereof
CN116440940A (en)*2023-06-142023-07-18北京兴德通医药科技股份有限公司Carbon quantum dot catalyst, preparation method thereof and prepared carbon quantum dot
CN118165637A (en)*2024-04-032024-06-11泰安聚仁新材料有限公司 A modified waterborne polyurethane and preparation method thereof
CN119191582A (en)*2024-12-022024-12-27成都纳海川科技有限公司 Scale inhibitor and dispersant, preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102994080A (en)*2012-12-072013-03-27上海大学Method for preparing fluoresent carbon nanoparticles
CN103466600A (en)*2013-09-262013-12-25沈阳大学Preparation method of environment-friendly low-toxic fluorescent carbon nano particle liquor
CN103484111A (en)*2013-09-132014-01-01中国科学院宁波材料技术与工程研究所Meso-porous silicon fluorescent material and manufacturing method
CN103771391A (en)*2014-01-212014-05-07中国计量学院Preparation method of water-soluble carbon nanoparticles having fluorescent properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102994080A (en)*2012-12-072013-03-27上海大学Method for preparing fluoresent carbon nanoparticles
CN103484111A (en)*2013-09-132014-01-01中国科学院宁波材料技术与工程研究所Meso-porous silicon fluorescent material and manufacturing method
CN103466600A (en)*2013-09-262013-12-25沈阳大学Preparation method of environment-friendly low-toxic fluorescent carbon nano particle liquor
CN103771391A (en)*2014-01-212014-05-07中国计量学院Preparation method of water-soluble carbon nanoparticles having fluorescent properties

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MANISH KR MISHRA,等: "Carbon nanodot–ORMOSIL fluorescent paint and films", 《J. MATER. CHEM. C》*

Cited By (43)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105086993A (en)*2015-09-112015-11-25天津市中环量子科技有限公司Fluorescent quantum dot micro-nano encapsulated composite material structure
WO2017041327A1 (en)*2015-09-112017-03-16天津市中环量子科技有限公司Fluorescent quantum dot micro-nano encapsulated composite material structure
CN105754594A (en)*2016-01-292016-07-13华南农业大学Fluorescent carbon dot/mesoporous molecular sieve composite luminescent material as well as preparation and application of fluorescent carbon dot/mesoporous molecular sieve composite luminescent material
CN105733556A (en)*2016-03-212016-07-06天津市中环量子科技有限公司Quantum-dot composite fluorescent particles and LED module
CN106092984A (en)*2016-06-072016-11-09广东省汕头市质量计量监督检测所A kind of fluorescence analysis method based on passivation carbon quantum dot and application thereof
CN106092984B (en)*2016-06-072019-04-26广东省汕头市质量计量监督检测所A kind of fluorescence analysis method and its application based on passivation carbon quantum dot
CN106379905A (en)*2016-08-262017-02-08华南理工大学Carbon-doped luminescent mesoporous silica, preparation method thereof and application thereof
CN106517216A (en)*2016-11-032017-03-22北京化工大学Biodegradable mesoporous carbon and silicon nano-sphere and method for preparing same
CN106669602B (en)*2016-12-062019-07-02清华大学 A kind of preparation method and application of carbon dots/mesoporous silica composite material
CN106669602A (en)*2016-12-062017-05-17清华大学Preparation method and application of carbon dot/mesoporous silica composite material
CN106590656B (en)*2016-12-062018-11-02喀什大学A kind of preparation method of the long-persistence luminous nano particle of near-infrared
CN106590656A (en)*2016-12-062017-04-26喀什大学Preparation method of near-infrared long afterglow luminescent nanometer particle
CN106675558B (en)*2017-01-162019-02-19华南农业大学 Carbon quantum dots/Eu3+/mesoporous alumina composite luminescent material and its preparation and application
CN106675558A (en)*2017-01-162017-05-17华南农业大学 Carbon quantum dots/Eu3+/mesoporous alumina composite luminescent material and its preparation and application
CN106847357A (en)*2017-02-132017-06-13东莞市联洲知识产权运营管理有限公司The method of coagulant sedimentation absorption method Combined Treatment radioactivity uranium-containing waste water
CN106920955A (en)*2017-02-212017-07-04中山职业技术学院A kind of carbon point base silicon dioxide composite material and its application in electrode of lithium cell
CN107434972A (en)*2017-08-112017-12-05中国农业科学院农业质量标准与检测技术研究所A kind of molecular-sieve carbon quantum dot probe and preparation method thereof and the application in the detection of acid organic gas
CN107434972B (en)*2017-08-112019-10-25中国农业科学院农业质量标准与检测技术研究所 A molecular sieve-carbon quantum dot probe and its preparation method and application in the detection of acidic organic gases
CN109971469B (en)*2017-12-272020-12-11Tcl科技集团股份有限公司Preparation method of carbon quantum dots
CN109971469A (en)*2017-12-272019-07-05Tcl集团股份有限公司The preparation method of carbon quantum dot
CN108048074A (en)*2018-01-152018-05-18湖北大学A kind of hybrid inorganic-organic fluorescent nano particles for emitting glory and preparation method thereof
CN109135734B (en)*2018-07-242022-01-14中北大学Preparation method of SBA-15 pore-channel limited fluorescent carbon dot composite material
CN109135734A (en)*2018-07-242019-01-04中北大学The duct SBA-15 confinement fluorescent carbon point composite material and preparation method thereof
CN111285351B (en)*2018-12-062021-10-12中国科学院宁波材料技术与工程研究所Carbon quantum dot and preparation method thereof
CN111285351A (en)*2018-12-062020-06-16中国科学院宁波材料技术与工程研究所 A kind of carbon quantum dot and preparation method thereof
CN109370567A (en)*2018-12-072019-02-22西南政法大学A kind of preparation method of silicon ball carbon dots powder and its application in latent fingerprint identification
CN111349436A (en)*2018-12-242020-06-30Tcl集团股份有限公司Preparation method of quantum dots
CN109705627A (en)*2019-01-302019-05-03东华大学 A method for preparing mesoporous silica modified carbon dots by calcination
CN109650377A (en)*2019-01-302019-04-19东华大学A method of mesoporous silicon dioxide modified carbon dots are prepared with hydro-thermal method
CN111100633A (en)*2019-12-242020-05-05丹阳市朗宁光电子科技有限公司Luminescent medium for generating white light by laser driving and preparation method thereof
CN113321945A (en)*2021-06-222021-08-31华南农业大学Preparation method and application of carbon quantum dot regulated aluminum phosphite crystal
CN113600220A (en)*2021-06-232021-11-05宁夏大学Carbon nitride high-load dispersion NiS photocatalytic degradation material and preparation method thereof
CN113600220B (en)*2021-06-232023-11-07宁夏大学 Carbon nitride high-loading dispersed NiS photocatalytic degradation material and preparation method
CN113881428B (en)*2021-09-162023-10-31复旦大学Method for solid-phase synthesis of high-quality fluorescent carbon dots in air by taking mesoporous molecular sieve as template
CN113881428A (en)*2021-09-162022-01-04复旦大学Method for solid-phase synthesis of high-quality fluorescent carbon dots in air by using mesoporous molecular sieve as template
CN114716890A (en)*2022-01-122022-07-08南京大学 A kind of preparation method of self-healing coating with expired drug cephalexin as corrosion inhibitor
CN115322774A (en)*2022-06-202022-11-11爱科美材料科技(南通)有限公司Temperature-resistant green light fluorescent powder and preparation method thereof
CN115322774B (en)*2022-06-202023-12-05爱科美材料科技(南通)有限公司Wen Luguang-resistant fluorescent powder and preparation method thereof
CN116440940A (en)*2023-06-142023-07-18北京兴德通医药科技股份有限公司Carbon quantum dot catalyst, preparation method thereof and prepared carbon quantum dot
CN116440940B (en)*2023-06-142023-08-15北京兴德通医药科技股份有限公司Carbon quantum dot catalyst, preparation method thereof and prepared carbon quantum dot
CN118165637A (en)*2024-04-032024-06-11泰安聚仁新材料有限公司 A modified waterborne polyurethane and preparation method thereof
CN119191582A (en)*2024-12-022024-12-27成都纳海川科技有限公司 Scale inhibitor and dispersant, preparation method and application thereof
CN119191582B (en)*2024-12-022025-02-07成都纳海川科技有限公司 Scale inhibitor and dispersant, preparation method and application thereof

Also Published As

Publication numberPublication date
CN104877677B (en)2016-10-05

Similar Documents

PublicationPublication DateTitle
CN104877677B (en) Preparation method of mesoporous silica/carbon quantum dot nanocomposite material
CN103738969B (en) Mesoporous silica and preparation method thereof
KR101750584B1 (en)Process For Producing Porous Silica, and Porous Silica
CN110759348B (en)Preparation method of silicon dioxide material with hierarchical pore structure
CN103011182B (en)Synthesis method of vesicular mesoporous silicon dioxide
CN101575514A (en)Mesoporous rare earth phosphate fluophor and preparation method thereof
CN102674379B (en)Hollow mesoporous silicon dioxide nano particles and method for preparing same
CN105800684B (en)Monodisperse of the size less than 100 nm, porous crystalline TiOx nano ball and preparation method thereof
CN101186286A (en) Preparation method of ordered porous hydroxyapatite material
CN101948139A (en)Method for preparing novel mesoporous silica nano balls
CN110407192A (en) Preparation of three-dimensional ordered hierarchical porous carbon photonic crystals using metal-organic frameworks
JP2012017233A (en)Method for producing silica nanotube associated product
CN101264892A (en) A preparation method of double-channel mesoporous silica hollow spheres
Tian et al.One‐Pot Template‐Free Synthesis of NaYF4 Upconversion Hollow Nanospheres for Bioimaging and Drug Delivery
CN104746178B (en)A kind of preparation method of the silicate double-layer hollow nanofiber with multilevel hierarchy
JP2013542157A (en) Production of irregular porous silicon dioxide material and application of fatty alcohol polyoxyethylene ether in its production
CN102583434B (en)Method for preparing ZSM-5 zeolite molecular sieve microspheres
CA2789502A1 (en)Fabrication of disordered porous silicon dioxide material and the use of fatty alcohol polyoxyethylene ether in such fabrication
CN101704527B (en) Shape-controllable monodisperse mesoporous silica nanoparticles and its synthesis method
CN102583404A (en)Mesoporous silicon dioxide nanometer particle and preparation method
CN106517227B (en)A kind of method that microwave method quickly prepares the SBA-15 of corynebacterium
CN110028072B (en) A kind of preparation method of manganese-doped mesoporous silica nanoparticles
CN1792788A (en)Process for preparing silicon dioxide hollow ball material with hexagonal phase penetrating mesopore orbit
CN103787345B (en)Multilayer vesicular mesoporous silicon dioxide with adjustable number of layers and synthetic method thereof
CN102050461A (en)Multi-level structure mesoporous zeolite material and preparation method thereof

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
EXSBDecision made by sipo to initiate substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20161005

Termination date:20170529


[8]ページ先頭

©2009-2025 Movatter.jp