Movatterモバイル変換


[0]ホーム

URL:


CN104866829A - Cross-age face verify method based on characteristic learning - Google Patents

Cross-age face verify method based on characteristic learning
Download PDF

Info

Publication number
CN104866829A
CN104866829ACN201510270145.8ACN201510270145ACN104866829ACN 104866829 ACN104866829 ACN 104866829ACN 201510270145 ACN201510270145 ACN 201510270145ACN 104866829 ACN104866829 ACN 104866829A
Authority
CN
China
Prior art keywords
feature
image
layer
cross
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510270145.8A
Other languages
Chinese (zh)
Other versions
CN104866829B (en
Inventor
王朝晖
翟欢欢
刘纯平
季怡
龚声蓉
葛瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou UniversityfiledCriticalSuzhou University
Priority to CN201510270145.8ApriorityCriticalpatent/CN104866829B/en
Publication of CN104866829ApublicationCriticalpatent/CN104866829A/en
Application grantedgrantedCritical
Publication of CN104866829BpublicationCriticalpatent/CN104866829B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a cross-age face verify method based on characteristic learning; the method comprises the following steps: 1, obtaining to-be compared two face images; 2, using a face characteristic point positioning method to carry out align operation for the two face images; 3, respectively carrying out feature extraction for each image, wherein the extraction method includes the following steps: a, automatically extracting high-level meaning characteristics through a depth convolution nerve network; b, calculating LBP histogram characteristics of the image; c, fusing the characteristics obtained in the a and b steps, and expressing characteristic vectors; 4, using a cosine similarity method to calculate a distance between the characteristic vectors obtained by the step3, and determining whether the two images are from a same person or not. The method firstly uses the depth network to cross-age face verify, and creatively combines the handwork design LBP histogram characteristics with depth network autonomous learning characteristics, thus realizing complementation between high-rise meaning characteristic and lower characteristics, and providing better accuracy.

Description

Translated fromChinese
一种基于特征学习的跨年龄人脸验证方法A cross-age face verification method based on feature learning

技术领域technical field

本发明涉及一种人脸验证方法,具体涉及一种跨年龄的人脸验证方法,尤其是基于特征学习的跨年龄人脸验证方法。The invention relates to a face verification method, in particular to a cross-age face verification method, in particular to a cross-age face verification method based on feature learning.

背景技术Background technique

人脸,作为识别一个人最显著的区域,被广泛地应用于各种场合的身份识别。一般来说,人脸的识别方法包括四个步骤:人脸图像采集及检测、人脸图像预处理、人脸图像特征提取、人脸匹配与验证。通常使用一些人工设定的特征描述子,例如LBP、SIFT和Gabor等,来表示人脸数据,利用余弦距离来度量一对图像的相似度,从而实现判断验证。Face, as the most prominent area to identify a person, is widely used in various occasions for identification. Generally speaking, the face recognition method includes four steps: face image acquisition and detection, face image preprocessing, face image feature extraction, face matching and verification. Usually, some artificially set feature descriptors, such as LBP, SIFT, and Gabor, are used to represent face data, and the cosine distance is used to measure the similarity of a pair of images to achieve judgment verification.

但是随着年龄的增长,人的脸部会不可避免地产生变化。在一些场合,只是一个人不同年龄段的照片,例如只有十几年前的照片,需要将备选人员的头像与已有的线索进行比对验证,以达到目的,这就要求进行跨年龄人脸验证。所谓跨年龄人脸验证,就是给定一些不同年龄段的人脸图像,判定这些人脸图像是否属于同一个人。如果人脸验证方法能够应对人脸随着年龄的增长而产生的变化,在档案管理系统、安全验证系统、公安系统的罪犯身份识别、银行和海关的监控等领域,将具有广阔的应用前景。But as we age, our face inevitably changes. In some occasions, it is just a photo of a person of different ages, for example, a photo of only a dozen years ago. It is necessary to compare and verify the avatar of the candidate with the existing clues to achieve the purpose, which requires a cross-age person Face verification. The so-called cross-age face verification is to determine whether these face images belong to the same person given some face images of different age groups. If the face verification method can cope with the changes of the face with age, it will have broad application prospects in the fields of file management systems, security verification systems, criminal identification in public security systems, and monitoring of banks and customs.

为了实现跨年龄验证,大多数传统的方法是对年龄进行建模,通过设计人脸成长模型来进行跨年龄的人脸验证。然而,这类方法往往需要依赖先验,比如说个体的实际年龄,而并不是所有数据集都能够提供年龄信息。In order to achieve cross-age verification, most of the traditional methods are to model age, and carry out cross-age face verification by designing a face growth model. However, such methods often need to rely on priors, such as the actual age of the individual, and not all data sets can provide age information.

深度学习方法模拟人脑的层次处理结构,以简洁的表达方式刻画数据丰富的内在信息,它是一种高度非线性的模型,具有超强的数据拟合能力和学习能力,表达能力更强,更能刻画数据丰富的内在信息。深度网络可以无监督地从数据中学习到特征,这种方式学习到的特征也符合人类感知世界的机理,而且通过深度学习方法学习到的特征往往具有一定的语义特征。中国发明专利申请CN104573679A公开了一种监控场景下基于深度学习的人脸识别系统,包括视频采集单元、人脸检测单元、匹配显示单元、存储单元,其中,检测单元中设置有人脸差别模块,人脸差别模块利用深度学习模块建立的神经网络模型进行人脸判别,该深度学习模块为5层神经网络层。该方法试图利用深度学习方法实现人脸的快速识别,但是采用5层神经网络层难以达到预期目标,因此,该公开文件中并未能提供识别准确率的评估数据。The deep learning method simulates the hierarchical processing structure of the human brain, and describes the rich internal information of the data in a concise way. It is a highly nonlinear model with super data fitting ability and learning ability, and stronger expression ability. It can better describe the intrinsic information rich in data. Deep networks can learn features from data unsupervised. The features learned in this way also conform to the mechanism of human perception of the world, and the features learned through deep learning methods often have certain semantic features. Chinese invention patent application CN104573679A discloses a face recognition system based on deep learning in a monitoring scene, including a video acquisition unit, a face detection unit, a matching display unit, and a storage unit. The face difference module uses the neural network model established by the deep learning module for face discrimination, and the deep learning module is a 5-layer neural network layer. This method attempts to use deep learning methods to achieve rapid face recognition, but it is difficult to achieve the desired goal by using a 5-layer neural network layer. Therefore, the public document does not provide evaluation data for recognition accuracy.

就人脸验证中最关键的步骤特征提取而言,目前主要存在两个问题:As far as feature extraction is the most critical step in face verification, there are currently two main problems:

1、人脸图像的单调性。目前已知的大量人脸数据集中,人脸图像往往是比较单调的,而且目前大多数方法都是在单尺度上做的,这样提取的特征往往不够丰富,不足以表征人脸。1. Monotonicity of face images. In the large number of face datasets currently known, the face images are often relatively monotonous, and most current methods are done on a single scale, so the extracted features are often not rich enough to represent the face.

2、另一个值得关注的问题就是特征的获取。传统的人脸验证采用的都是手工设计的特征,这种特征针对性比较高,但是一般都是低层特征,往往不包含语义信息,而且泛化能力不强。随着大数据时代的到来,数据量也越来越大,如何自动地获取特征成为一个值得研究的课题。2. Another issue worthy of attention is the acquisition of features. Traditional face verification uses hand-designed features, which are highly targeted, but are generally low-level features, often do not contain semantic information, and the generalization ability is not strong. With the advent of the era of big data, the amount of data is also increasing, how to automatically obtain features has become a topic worth studying.

发明内容Contents of the invention

本发明的发明目的是提供一种基于特征学习的跨年龄人脸验证方法,以提高跨年龄人脸验证的准确率。The purpose of the present invention is to provide a feature learning-based cross-age face verification method to improve the accuracy of cross-age face verification.

为达到上述发明目的,本发明采用的技术方案是:一种基于特征学习的跨年龄人脸验证方法,包括如下步骤:In order to achieve the above-mentioned purpose of the invention, the technical solution adopted in the present invention is: a method for face verification across ages based on feature learning, comprising the following steps:

(1)获取待对比的两幅人脸图像;(1) Obtain two face images to be compared;

(2)利用人脸特征点定位的方法对两幅人脸图像进行对齐操作;(2) Utilize the method of facial feature point location to carry out alignment operation to two pieces of human face images;

(3)分别对每幅图像进行特征提取,所述特征提取为:(3) Carry out feature extraction to each image respectively, described feature extraction is:

①通过深度卷积神经网络自动提取高层语义特征;① Automatically extract high-level semantic features through deep convolutional neural networks;

②计算图像的LBP直方图特征;② Calculate the LBP histogram feature of the image;

③将①和②中获得的特征进行融合,得到图像的特征,表达为特征向量;这里采用的融合方法是将两部分的特征向量连接成一个特征向量。③Fuse the features obtained in ① and ② to obtain the features of the image and express them as feature vectors; the fusion method used here is to connect the two parts of the feature vectors into one feature vector.

(4)采用余弦相似度方法计算步骤(3)获得的两幅图像的特征向量之间的距离,据此判断两幅图像是否来自同一人。(4) Calculate the distance between the feature vectors of the two images obtained in step (3) by using the cosine similarity method, and judge whether the two images are from the same person accordingly.

优选的技术方案,步骤(2)中,采用Flandmark方法进行对齐操作。In the preferred technical solution, in step (2), the Flandmark method is used to perform the alignment operation.

上述技术方案中,所述深度卷积神经网络由下列各层依次构成:输入层、第一卷积层、第一最大池化层、第二卷积层、第二最大池化层、第三卷积层、第三最大池化层、第四卷积层、全连接层、输出层。In the above technical solution, the deep convolutional neural network is sequentially composed of the following layers: an input layer, a first convolutional layer, a first maximum pooling layer, a second convolutional layer, a second maximum pooling layer, a third Convolutional layer, third maximum pooling layer, fourth convolutional layer, fully connected layer, output layer.

其中,所述第一卷积层设有20个卷积核大小为4×4波器,第一最大池化层,池化的步长为2,第二卷积层设有40个卷积核大小为3×3的滤波器,第二最大池化层,池化步长为2,第三卷积层设有60个卷积核大小为4×4的滤波器,第三最大池化层,池化步长为2,第四卷积层设有60个卷积核大小为3×3的滤波器。Wherein, the first convolutional layer is provided with 20 convolution kernels with a size of 4×4 filters, the first maximum pooling layer has a pooling step size of 2, and the second convolutional layer is provided with 40 convolutional layers. A filter with a kernel size of 3×3, a second maximum pooling layer with a pooling step size of 2, a third convolutional layer with 60 filters with a convolution kernel size of 4×4, and a third maximum pooling Layer, the pooling step size is 2, and the fourth convolutional layer is equipped with 60 filters with a convolution kernel size of 3×3.

上述技术方案中,所述输出层中设置有一个K类的softmax分类器,K为要分类的数目。In the above technical solution, a K-class softmax classifier is set in the output layer, and K is the number to be classified.

LBP直方图特征的计算方法是,给定一幅图像I,图像I的金字塔表示为:                                               ,其中是高斯核,k是金字塔的层数;G表示得到的图像金字塔,(x,y)表示像素的位置。The calculation method of the LBP histogram feature is, given an image I, the pyramid of the image I is expressed as: ,in Is the Gaussian kernel, k is the number of layers of the pyramid; G represents the obtained image pyramid, and (x, y) represents the position of the pixel.

对于金字塔的每一层分成8×8的块,每个块统计LBP直方图,将每个块的LBP直方图连接成一个向量,图像的LBP金字塔表示为:For each layer of the pyramid, it is divided into 8×8 blocks, and the LBP histogram of each block is counted, and the LBP histogram of each block is connected into a vector, and the LBP pyramid of the image is expressed as:

,其中,L(I)是对图像进行映射的一个表述。 , where L(I) is a representation for mapping images.

余弦相似度计算方法为,The calculation method of cosine similarity is:

图像i的特征向量为The feature vector of image i is ,

图像j的特征向量为The feature vector of image j is ,

式中,n为特征的个数,为图像i的第n个特征,为图像j的第n个特征;In the formula, n is the number of features, is the nth feature of image i, is the nth feature of image j;

图像i和图像j的特征向量之间的余弦相似度计算公式为:The cosine similarity calculation formula between the feature vectors of image i and image j is:

,k为特征向量中特征的序号。 , k is the serial number of the feature in the feature vector.

由于上述技术方案运用,本发明与现有技术相比具有下列优点:Due to the use of the above-mentioned technical solutions, the present invention has the following advantages compared with the prior art:

1、本发明采用九层深度卷积神经网络来自动地获取人脸图像的高层语义特征,它的权值共享降低了网络模型的复杂度,这也是首次将深度网络应用到跨年龄人脸验证。1. The present invention uses a nine-layer deep convolutional neural network to automatically obtain high-level semantic features of face images, and its weight sharing reduces the complexity of the network model. This is the first time that a deep network is applied to cross-age face verification .

2、本发明创造性地将手工设计的LBP直方图特征与深度网络自主学习的特征进行融合,实现高层语义特征与低层特征的互补,实验结果表明其具有更好的准确率。2. The present invention creatively fuses the manually designed LBP histogram features with the features learned by the deep network autonomously to realize the complementarity of high-level semantic features and low-level features. Experimental results show that it has better accuracy.

附图说明Description of drawings

图1是本发明实施例中方法的框架构图;Fig. 1 is a framework diagram of the method in the embodiment of the present invention;

图2是实施例中使用的深度卷积神经网络架构图;Fig. 2 is a deep convolutional neural network architecture diagram used in an embodiment;

图3是实施例中使用的CACD数据集示例图;Fig. 3 is the example diagram of the CACD dataset used in the embodiment;

图4是实施例中结果的ROC曲线图。Fig. 4 is a ROC curve graph of the results in Examples.

具体实施方式Detailed ways

下面结合附图及实施例对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing and embodiment:

实施例一:Embodiment one:

一种基于特征学习的跨年龄人脸验证方法,参见图1所示,包括如下步骤:(1)获取待对比的两幅人脸图像;A cross-age face verification method based on feature learning, as shown in Figure 1, comprises the following steps: (1) obtaining two face images to be compared;

(2)利用人脸特征点定位的方法对两幅人脸图像进行对齐操作;(2) Utilize the method of facial feature point location to carry out alignment operation to two pieces of human face images;

在不受约束的环境条件下,人脸图像不可避免地会受到面部表情、光照或者遮挡的影响,当两张图像的人脸部分没有充分对齐的时候,这种影响会被放大。Under unconstrained environmental conditions, face images are inevitably affected by facial expressions, lighting, or occlusions, and this effect is amplified when the face parts of two images are not sufficiently aligned.

人脸特征点定位的目的是在人脸检测的基础上,进一步确定脸部特征点(眼睛、眉毛、鼻子、嘴巴、脸部外轮廓)的位置。定位算法的基本思路是:人脸的纹理特征和各个特征点之间的位置约束结合。早期的面部特征点定位主要集中在几个关键点的定位上,比如说眼睛和嘴巴的中心。后来,研究者们发现加入更多的特征点约束能够有效地提高准确率,增强稳定性。在本实施例中,采用Flandmark方法来进行人脸对齐。它是一个检测面部关键点的开源代码库,而且可以实现实时的对齐操作。The purpose of facial feature point positioning is to further determine the position of facial feature points (eyes, eyebrows, nose, mouth, and facial contour) on the basis of face detection. The basic idea of the positioning algorithm is: the combination of the texture features of the face and the position constraints between each feature point. Early facial feature point localization mainly focused on the localization of several key points, such as the center of eyes and mouth. Later, researchers found that adding more feature point constraints can effectively improve accuracy and enhance stability. In this embodiment, the Flandmark method is used for face alignment. It is an open source code library for detecting facial key points, and can achieve real-time alignment operation.

(3)分别对每幅图像进行特征提取,所述特征提取为:(3) Carry out feature extraction to each image respectively, described feature extraction is:

①通过深度卷积神经网络(DCNN)自动提取高层语义特征;① Automatically extract high-level semantic features through deep convolutional neural network (DCNN);

本实施例中,利用卷积操作和池化操作用来层次地提取图像中的视觉特征,从局部低层特征到全局高层特征。其中包含4个卷积层,每个卷积层后面接一个最大池化层。在每一个卷积层,层内神经元的权值是共享的,而层间权值不存在共享。最后是两个全连接层,倒数第二层的输出即为得到的粗糙的特征,最后一层是输出层,输出的是每幅人脸图像对应的最大概率的人脸图像对应的ID号,也就是每一幅图像对应的类别。In this embodiment, convolution operations and pooling operations are used to extract visual features in an image hierarchically, from local low-level features to global high-level features. It contains 4 convolutional layers, each followed by a maximum pooling layer. In each convolutional layer, the weights of neurons in the layer are shared, but there is no sharing of weights between layers. Finally, there are two fully connected layers. The output of the penultimate layer is the rough feature obtained. The last layer is the output layer, which outputs the ID number corresponding to the face image with the highest probability corresponding to each face image. That is, the category corresponding to each image.

具体地,参见附图2所示,DCNN的整体结构中,一个大小为55×47的经过对齐处理的人脸图像输入到卷积神经网络的第一个卷积层,第一层有20个卷积核大小为4×4的滤波器。得到了20张特征图,然后这些特征图输入到一个最大池化层,池化步长为2。然后池化层的输出作为下一个卷积层的输入,这个卷积层有40个卷积核为3×3的滤波器。这三层主要的工作时提取图像的低层特征比如说简单的边缘特征。在图像局部有小的变动的时候,最大池化使得我们卷积层得到的结果更加鲁棒。而之前提到的2D人脸对齐,使得整个网络对于人脸一些细微的调整有更好的适应性。我们的第三个卷积层设有60个卷积核大小为4×4的滤波器,然后进行第三次最大池化,池化步长为2,最后的第四层卷积层设有60个卷积核大小为3×3的滤波器。经过DCNN的逐层提取,得到了一系列的人脸特征。将特征提取的过程定义为f=Conv(x,q),其中Conv(.)表示卷积神经网络的特征提取函数,x表示输入的图像, f代表得到的特征向量,q表示的是DCNN中需要学习的参数。Specifically, as shown in Figure 2, in the overall structure of DCNN, an aligned face image with a size of 55×47 is input to the first convolutional layer of the convolutional neural network, and the first layer has 20 A filter with a kernel size of 4×4. 20 feature maps are obtained, and then these feature maps are input into a max pooling layer with a pooling step size of 2. The output of the pooling layer is then used as the input to the next convolutional layer, which has 40 filters with a convolution kernel of 3×3. The main work of these three layers is to extract the low-level features of the image, such as simple edge features. When there are small local changes in the image, the maximum pooling makes the results obtained by our convolutional layer more robust. The 2D face alignment mentioned earlier makes the whole network more adaptable to some minor adjustments of the face. Our third convolutional layer has 60 filters with a convolution kernel size of 4×4, and then performs the third maximum pooling with a pooling step of 2, and the final fourth convolutional layer has 60 filters with a kernel size of 3×3. After layer-by-layer extraction of DCNN, a series of face features are obtained. The process of feature extraction is defined as f=Conv(x,q), where Conv(.) represents the feature extraction function of the convolutional neural network, x represents the input image, f represents the obtained feature vector, and q represents the DCNN parameters to be learned.

最后一个全连接层的输出将被送到一个K类的softmax分类器中,K表示的要分类的数目,这个分类器产生一个类标签的分布。给定一个输入,假设其中第k个输出为,然后softmax分类器的激活函数即为:The output of the last fully connected layer will be fed into a softmax classifier of K classes, where K represents the number of classes to be classified, and this classifier produces a distribution of class labels. Given an input, suppose the kth output is , and then the activation function of the softmax classifier is:

训练的目的是最大化每幅人脸图像被分到正确的face_id的概率,这个问题就可以转化为最小化每个训练样本的交叉熵损失函数。如果说k是一个训练样本正确的标签值,那么这个损失函数可以定义为:. 可以采用随机梯度下降的方法来对这个损失函数进行最小化计算,梯度下降采用的是最经典的BP算法。在一个卷积层,上一层的特征maps被一个可学习的卷积核进行卷积,然后通过一个激活函数,就可以得到输出特征map,每一个输出map可能是多个输入map的值。The purpose of training is to maximize the probability that each face image is assigned to the correct face_id, and this problem can be transformed into minimizing the cross-entropy loss function of each training sample. If k is the correct label value of a training sample, then this loss function can be defined as: . The stochastic gradient descent method can be used to minimize the loss function. The gradient descent adopts the most classic BP algorithm. In a convolutional layer, the feature maps of the previous layer are convoluted by a learnable convolution kernel, and then through an activation function, the output feature map can be obtained. Each output map may be the value of multiple input maps.

②计算图像的LBP直方图特征;② Calculate the LBP histogram feature of the image;

LBP直方图特征的计算方法是,给定一幅图像I,图像I的金字塔表示为:,其中是高斯核,s是金字塔的层数;The calculation method of the LBP histogram feature is, given an image I, the pyramid of the image I is expressed as: ,in Is the Gaussian kernel, s is the number of layers of the pyramid;

对于金字塔的每一层分成8×8的块,每个块统计LBP直方图,将每个块的LBP直方图连接成一个向量,图像的LBP金字塔表示为:For each layer of the pyramid, it is divided into 8×8 blocks, and the LBP histogram of each block is counted, and the LBP histogram of each block is connected into a vector, and the LBP pyramid of the image is expressed as:

③将①和②中获得的特征进行融合,得到图像的特征,表达为特征向量;③Fuse the features obtained in ① and ② to obtain the features of the image and express them as feature vectors;

(4)采用余弦相似度方法计算步骤(3)获得的两幅图像的特征向量之间的距离,据此判断两幅图像是否来自同一人。(4) Calculate the distance between the feature vectors of the two images obtained in step (3) by using the cosine similarity method, and judge whether the two images are from the same person accordingly.

余弦相似度计算方法为,The calculation method of cosine similarity is:

图像i的特征向量为The feature vector of image i is ,

图像j的特征向量为The feature vector of image j is ,

式中,n为特征的个数,为图像i的第n个特征,为图像j的第n个特征;In the formula, n is the number of features, is the nth feature of image i, is the nth feature of image j;

图像i和图像j的特征向量之间的余弦相似度计算公式为:The cosine similarity calculation formula between the feature vectors of image i and image j is:

,k为特征向量中特征的序号。 , k is the serial number of the feature in the feature vector.

通过在给定标签的数据集上进行训练,对分类器的参数进行微调,能够使得本实施例的分类器性能更好。By performing training on a data set with a given label and fine-tuning the parameters of the classifier, the performance of the classifier in this embodiment can be improved.

以下进一步通过具体的比对来说明本发明的效果。The effects of the present invention will be further illustrated through specific comparisons below.

实验在CACD(Cross-Age Celebrity Dataset)年龄数据集以及LFW数据集上进行。CACD年龄数据集包含超过160000张来自2000个不同的人的人脸图像,每个人有多张不同年龄阶段的图像,年龄跨度为16到62岁。由于在LFW数据集中,大多数人都只有一张图片,因此用这个数据集来进行训练是不太可行的,因此,采用了CelebFaces+这个数据集进行模型的训练,这个数据集包含来自10177个不同的人的202599张图片,而LFW和CelebFaces数据集中的人基本相同,因此可以在这个上面训练好模型然后在LFW数据集上进行测试。实验硬件环境:Window 7,Core i7处理器,主频为3.4G,内存为8G。代码运行环境是:Matlab 2013a。The experiment is carried out on the CACD (Cross-Age Celebrity Dataset) age dataset and the LFW dataset. The CACD age dataset contains more than 160,000 face images from 2,000 different people, and each person has multiple images of different ages, ranging from 16 to 62 years old. Since most people have only one picture in the LFW data set, it is not feasible to use this data set for training. Therefore, the CelebFaces+ data set is used for model training. This data set contains 10177 different There are 202,599 pictures of people, and the people in the LFW and CelebFaces datasets are basically the same, so the model can be trained on this and then tested on the LFW dataset. Experimental hardware environment: Window 7, Core i7 processor, main frequency is 3.4G, memory is 8G. The code running environment is: Matlab 2013a.

在实验中,用True Positive Rate(TPR)-False Positive Rate(TPR)来衡量实验的效果。TPR和FPR定义如下:In the experiment, True Positive Rate (TPR)-False Positive Rate (TPR) is used to measure the effect of the experiment. TPR and FPR are defined as follows:

1, 在CACD数据集上的实验1, Experiments on the CACD dataset

数据集示例参见附图3所示。An example of the data set is shown in Figure 3.

对于不同的相似性度量方法,结果如表1所示。For different similarity measurement methods, the results are shown in Table 1.

表1 不同相似性度量方法的比较Table 1 Comparison of different similarity measurement methods

度量方法measurement method准确率 (%)Accuracy (%)距离 distance86.386.3欧氏距离Euclidean distance81.481.4巴氏距离Bass distance82.182.1余弦相似度cosine similarity89.589.5

对本发明的算法用ROC曲线进行了评估,并与其他方法进行对比。进行对比实验的方法有:梯度方向金字塔(GOP)、范数、Bayesian+PointFive Face(PFF)。在本实验中,测试集包含了2000对正样本和2000对负样本。实验结果的ROC曲线如图4所示。The algorithm of the present invention is evaluated with ROC curve and compared with other methods. The methods for comparative experiments are: Gradient Oriented Pyramid (GOP), Norm, Bayesian+PointFive Face (PFF). In this experiment, the test set contains 2000 pairs of positive samples and 2000 pairs of negative samples. The ROC curve of the experimental results is shown in Figure 4.

从图4可以看出,采用本发明的方法(DCNN+LBPH)相较于其他方法而言,结果上有一定程度的提高。It can be seen from Figure 4 that compared with other methods, the method of the present invention (DCNN+LBPH) has improved the results to a certain extent.

在设置好的CACD数据集子集上,也对验证的准确率进行了评估,与其它方法的比较如表2所示。On the set subset of the CACD dataset, the accuracy of the verification is also evaluated, and the comparison with other methods is shown in Table 2.

表2:Table 2:

方法method验证的准确率(%)Validation accuracy (%)High-Dimensional LBPHigh-Dimensional LBP81.681.6Hidden Factor AnalysisHidden Factor Analysis84.484.4Cross-Age Reference CodingCross-Age Reference Coding87.687.6DCNN+LBPH(本实施例)DCNN+LBPH (this embodiment)89.589.5人工,平均值manual, average85.785.7人工,投票法manual, voting94.294.2

2, 在LFW数据集上的实验2, Experiments on the LFW dataset

LFW数据集是一个人脸识别领域的标准数据集。在这个庞大的数据集中,加入一些限制,比如年龄、强光照或者表情的变化之后,任何超越当前算法的小小的进步都是很不容易的。The LFW dataset is a standard dataset in the field of face recognition. In this huge data set, after adding some restrictions, such as age, strong lighting or expression changes, any small progress beyond the current algorithm is not easy.

跑完训练集后,本实施例在LFW view2这个子集中进行验证的工作,这个子集已经列出了所有的同一人脸图像对以及非同一人脸图像对。采取跟CACD数据集上的实验同样的方法,第一步是获取一个准确的人脸表达,然后计算它们的相似度来验证是否属于同一个个体。本发明的方法引入了深度学习框架,与其他算法相比,实验结果如表3所示。可见,本发明的方法在准确率上是优于之前其他方法的。After running the training set, this embodiment performs verification work in the subset of LFW view2, which has listed all the same face image pairs and non-identical face image pairs. Taking the same method as the experiments on the CACD dataset, the first step is to obtain an accurate face expression, and then calculate their similarity to verify whether they belong to the same individual. The method of the present invention introduces a deep learning framework. Compared with other algorithms, the experimental results are shown in Table 3. It can be seen that the method of the present invention is superior to other previous methods in terms of accuracy.

表3table 3

方法method准确率 (%)Accuracy (%)PLDAPLDA90.0790.07Joint Bayesianjoint Bayesian90.9090.90Linear rectified unitsLinear rectified units80.7380.73GSMLGSML84.1884.18OSS, TSS, fullOSS, TSS, full86.8386.83DCNN+LBPH(本实施例)DCNN+LBPH (this embodiment)91.4091.40

Claims (8)

Translated fromChinese
1. 一种基于特征学习的跨年龄人脸验证方法,其特征在于,包括如下步骤:1. A cross-age face verification method based on feature learning, is characterized in that, comprises the steps:(1)获取待对比的两幅人脸图像;(1) Obtain two face images to be compared;(2)利用人脸特征点定位的方法对两幅人脸图像进行对齐操作;(2) Utilize the method of facial feature point location to carry out alignment operation to two pieces of human face images;(3)分别对每幅图像进行特征提取,所述特征提取为:(3) Carry out feature extraction to each image respectively, described feature extraction is:①通过深度卷积神经网络自动提取高层语义特征;① Automatically extract high-level semantic features through deep convolutional neural networks;②计算图像的LBP直方图特征;② Calculate the LBP histogram feature of the image;③将①和②中获得的特征进行融合,得到图像的特征,表达为特征向量;③Fuse the features obtained in ① and ② to obtain the features of the image and express them as feature vectors;(4)采用余弦相似度方法计算步骤(3)获得的两幅图像的特征向量之间的距离,据此判断两幅图像是否来自同一人。(4) Calculate the distance between the feature vectors of the two images obtained in step (3) by using the cosine similarity method, and judge whether the two images are from the same person accordingly.2. 根据权利要求1所述的基于特征学习的跨年龄人脸验证方法,其特征在于:步骤(2)中,采用Flandmark方法进行对齐操作。2. The cross-age face verification method based on feature learning according to claim 1, characterized in that: in step (2), the Flandmark method is used to carry out the alignment operation.3. 根据权利要求1所述的基于特征学习的跨年龄人脸验证方法,其特征在于:所述深度卷积神经网络由下列各层依次构成:输入层、第一卷积层、第一最大池化层、第二卷积层、第二最大池化层、第三卷积层、第三最大池化层、第四卷积层、全连接层、输出层。3. The cross-age face verification method based on feature learning according to claim 1, wherein: the deep convolutional neural network is composed of the following layers successively: input layer, the first convolutional layer, the first maximum Pooling layer, second convolutional layer, second maximum pooling layer, third convolutional layer, third maximum pooling layer, fourth convolutional layer, fully connected layer, output layer.4. 根据权利要求3所述的基于特征学习的跨年龄人脸验证方法,其特征在于:所述第一卷积层设有20个卷积核大小为4×4波器,第一最大池化层,池化的步长为2,第二卷积层设有40个卷积核大小为3×3的滤波器,第二最大池化层,池化步长为2,第三卷积层设有60个卷积核大小为4×4的滤波器,第三最大池化层,池化步长为2,第四卷积层设有60个卷积核大小为3×3的滤波器。4. The cross-age face verification method based on feature learning according to claim 3, characterized in that: the first convolution layer is provided with 20 convolution kernels with a size of 4 × 4 filters, and the first maximum pool layer, the pooling step size is 2, the second convolution layer is equipped with 40 filters with a convolution kernel size of 3×3, the second maximum pooling layer, the pooling step size is 2, and the third convolution The first layer has 60 filters with a convolution kernel size of 4×4, the third maximum pooling layer has a pooling step size of 2, and the fourth convolution layer has 60 filters with a convolution kernel size of 3×3 device.5. 根据权利要求3所述的基于特征学习的跨年龄人脸验证方法,其特征在于:所述输出层中设置有一个K类的softmax分类器,K为要分类的数目。5. the cross-age face verification method based on feature learning according to claim 3, is characterized in that: the softmax classifier of a K class is set in the described output layer, and K is the number to be classified.6. 根据权利要求1所述的基于特征学习的跨年龄人脸验证方法,其特征在于:LBP直方图特征的计算方法是,给定一幅图像I,图像I的金字塔表示为:                                               ,其中是高斯核,k是金字塔的层数;G表示得到的图像金字塔,(x,y)表示像素的位置;6. the cross-age face verification method based on feature learning according to claim 1, is characterized in that: the calculation method of LBP histogram feature is, given an image I, the pyramid of image I is expressed as: ,in Is the Gaussian kernel, k is the number of layers of the pyramid; G represents the obtained image pyramid, (x, y) represents the position of the pixel;对于金字塔的每一层分成8×8的块,每个块统计LBP直方图,将每个块的LBP直方图连接成一个向量,图像的LBP金字塔表示为:For each layer of the pyramid, it is divided into 8×8 blocks, and the LBP histogram of each block is counted, and the LBP histogram of each block is connected into a vector, and the LBP pyramid of the image is expressed as:其中,L(I)是对图像进行映射的一个表述。 Among them, L(I) is a representation for mapping images.7. 根据权利要求1所述的基于特征学习的跨年龄人脸验证方法,其特征在于:步骤(3)之③中,融合的方法是将两部分的特征向量连接成一个特征向量。7. The cross-age face verification method based on feature learning according to claim 1, characterized in that: in step (3) ③, the method of fusion is to connect the feature vectors of two parts into one feature vector.8. 根据权利要求1所述的基于特征学习的跨年龄人脸验证方法,其特征在于:余弦相似度计算方法为,8. The cross-age face verification method based on feature learning according to claim 1, characterized in that: the cosine similarity calculation method is,图像i的特征向量为The feature vector of image i is ,图像j的特征向量为The feature vector of image j is ,式中,n为特征的个数,为图像i的第n个特征,为图像j的第n个特征;In the formula, n is the number of features, is the nth feature of image i, is the nth feature of image j;图像i和图像j的特征向量之间的余弦相似度计算公式为:The cosine similarity calculation formula between the feature vectors of image i and image j is:,k为特征向量中特征的序号。 , k is the serial number of the feature in the feature vector.
CN201510270145.8A2015-05-252015-05-25 A cross-age face verification method based on feature learningActiveCN104866829B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201510270145.8ACN104866829B (en)2015-05-252015-05-25 A cross-age face verification method based on feature learning

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201510270145.8ACN104866829B (en)2015-05-252015-05-25 A cross-age face verification method based on feature learning

Publications (2)

Publication NumberPublication Date
CN104866829Atrue CN104866829A (en)2015-08-26
CN104866829B CN104866829B (en)2019-02-19

Family

ID=53912650

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201510270145.8AActiveCN104866829B (en)2015-05-252015-05-25 A cross-age face verification method based on feature learning

Country Status (1)

CountryLink
CN (1)CN104866829B (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105550658A (en)*2015-12-242016-05-04蔡叶荷Face comparison method based on high-dimensional LBP (Local Binary Patterns) and convolutional neural network feature fusion
CN105844227A (en)*2016-03-212016-08-10湖南君士德赛科技发展有限公司Driver identity authentication method for school bus safety
CN105956572A (en)*2016-05-152016-09-21北京工业大学In vivo face detection method based on convolutional neural network
CN106022287A (en)*2016-05-272016-10-12广东顺德中山大学卡内基梅隆大学国际联合研究院Over-age face verification method based on deep learning and dictionary representation
CN106022380A (en)*2016-05-252016-10-12中国科学院自动化研究所Individual identity identification method based on deep learning
CN106096535A (en)*2016-06-072016-11-09广东顺德中山大学卡内基梅隆大学国际联合研究院A kind of face verification method based on bilinearity associating CNN
CN106203533A (en)*2016-07-262016-12-07厦门大学The degree of depth based on combined training study face verification method
CN106227718A (en)*2016-07-182016-12-14中国民航大学Land based on CNN sky call semantic consistency method of calibration
CN106326868A (en)*2016-08-262017-01-11江苏华通晟云科技有限公司Face identification method based on cosine similarity measure learning
CN106485235A (en)*2016-10-242017-03-08厦门美图之家科技有限公司A kind of convolutional neural networks generation method, age recognition methods and relevant apparatus
CN106557743A (en)*2016-10-262017-04-05桂林电子科技大学A kind of face characteristic extraction system and method based on FECNN
CN106599926A (en)*2016-12-202017-04-26上海寒武纪信息科技有限公司Expression picture pushing method and system
CN106650573A (en)*2016-09-132017-05-10华南理工大学Cross-age face verification method and system
CN106650650A (en)*2016-12-142017-05-10广东顺德中山大学卡内基梅隆大学国际联合研究院Cross-age face recognition method
CN106709448A (en)*2016-12-212017-05-24华南理工大学Face convolutional neural network-based traditional Chinese medicine constitution recognition method
CN106980834A (en)*2017-03-242017-07-25中山大学A kind of automatic classification method of facial image
CN107053168A (en)*2016-12-092017-08-18南京理工大学A kind of target identification method and hot line robot based on deep learning network
CN107341463A (en)*2017-06-282017-11-10北京飞搜科技有限公司A kind of face characteristic recognition methods of combination image quality analysis and metric learning
CN107480575A (en)*2016-06-072017-12-15深圳市商汤科技有限公司The training method of model, across age face identification method and corresponding device
CN107507286A (en)*2017-08-022017-12-22五邑大学A kind of bi-mode biology feature based on face and handwritten signature is registered system
CN107590449A (en)*2017-08-312018-01-16电子科技大学A kind of gesture detecting method based on weighted feature spectrum fusion
CN107590478A (en)*2017-09-262018-01-16四川长虹电器股份有限公司A kind of age estimation method based on deep learning
CN107622225A (en)*2017-07-272018-01-23成都信息工程大学 Face Recognition Method Based on Independent Component Analysis Network
CN107818314A (en)*2017-11-222018-03-20北京达佳互联信息技术有限公司Face image processing method, device and server
CN107871099A (en)*2016-09-232018-04-03北京眼神科技有限公司Face detection method and apparatus
CN108229269A (en)*2016-12-312018-06-29深圳市商汤科技有限公司Method for detecting human face, device and electronic equipment
CN108604383A (en)*2015-12-042018-09-28奇跃公司Reposition system and method
CN108960412A (en)*2018-06-292018-12-07北京京东尚科信息技术有限公司Image-recognizing method, device and computer readable storage medium
CN109255289A (en)*2018-07-272019-01-22电子科技大学A kind of across aging face identification method generating model based on unified formula
CN109344774A (en)*2018-10-082019-02-15国网经济技术研究院有限公司Thermal power station target identification method in remote sensing image
CN109766998A (en)*2019-01-142019-05-17温岭市非普电气有限公司 A Feature Pyramid Network Structure Based on MobileNet Acceleration
CN109815864A (en)*2019-01-112019-05-28浙江工业大学 A transfer learning-based age recognition method for face images
CN109886121A (en)*2019-01-232019-06-14浙江大学 An Occlusion Robust Face Keypoint Localization Method
CN110322509A (en)*2019-06-262019-10-11重庆邮电大学Object localization method, system and computer equipment based on level Class Activation figure
WO2019223254A1 (en)*2018-05-212019-11-28北京亮亮视野科技有限公司Construction method for multi-scale lightweight face detection model and face detection method based on model
CN111710424A (en)*2020-06-192020-09-25浙江新芮信息科技有限公司 Catering personnel health monitoring method, device and computer-readable storage medium
CN111881721A (en)*2020-06-102020-11-03广东芯盾微电子科技有限公司Cross-age face recognition method, system, device and storage medium
CN112287965A (en)*2020-09-212021-01-29卓尔智联(武汉)研究院有限公司Image quality detection model training method and device and computer equipment
CN112766157A (en)*2021-01-202021-05-07乐山师范学院Cross-age face image recognition method based on disentanglement representation learning
US11256090B2 (en)2015-03-052022-02-22Magic Leap, Inc.Systems and methods for augmented reality
CN114155567A (en)*2020-09-082022-03-08京东方科技集团股份有限公司 Target detection method and device, storage medium and electronic device
US11315214B2 (en)2017-03-172022-04-26Magic Leap, Inc.Mixed reality system with color virtual content warping and method of generating virtual con tent using same
US11361585B2 (en)*2018-06-112022-06-14Zkteco Usa LlcMethod and system for face recognition via deep learning
US11379948B2 (en)2018-07-232022-07-05Magic Leap, Inc.Mixed reality system with virtual content warping and method of generating virtual content using same
US11410269B2 (en)2017-03-172022-08-09Magic Leap, Inc.Mixed reality system with virtual content warping and method of generating virtual content using same
US11423626B2 (en)2017-03-172022-08-23Magic Leap, Inc.Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
US11429183B2 (en)2015-03-052022-08-30Magic Leap, Inc.Systems and methods for augmented reality
US11536973B2 (en)2016-08-022022-12-27Magic Leap, Inc.Fixed-distance virtual and augmented reality systems and methods
US11711668B2 (en)2017-01-232023-07-25Magic Leap, Inc.Localization determination for mixed reality systems

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20110103695A1 (en)*2009-11-042011-05-05Canon Kabushiki KaishaImage processing apparatus and image processing method
CN102663413A (en)*2012-03-092012-09-12中盾信安科技(江苏)有限公司Multi-gesture and cross-age oriented face image authentication method
CN103902964A (en)*2012-12-312014-07-02深圳先进技术研究院Face recognition method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20110103695A1 (en)*2009-11-042011-05-05Canon Kabushiki KaishaImage processing apparatus and image processing method
CN102663413A (en)*2012-03-092012-09-12中盾信安科技(江苏)有限公司Multi-gesture and cross-age oriented face image authentication method
CN103902964A (en)*2012-12-312014-07-02深圳先进技术研究院Face recognition method

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BOR-CHUN CHEN ETAL: "Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval", 《EUROPEAN CONFERENCE ON COMPUTER VISION》*
W. ZHAO ETAL: "Face Recognition: A Literature Survey", 《ACM COMPUTING SURVEYS》*
YANIV TAIGMAN ETAL: "DeepFace: Closing the Gap to Human-Level Performance in Face Verification", 《2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION》*
付晓峰: "基于二元模式的人脸识别与表情识别研究", 《中国博士学位论文全文数据库 信息科技辑》*
张雯 等: "基于局部二值模式和深度学习的人脸识别", 《计算机应用》*
黄非非: "基于LBP的人脸识别研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》*

Cited By (69)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US12386417B2 (en)2015-03-052025-08-12Magic Leap, Inc.Systems and methods for augmented reality
US11429183B2 (en)2015-03-052022-08-30Magic Leap, Inc.Systems and methods for augmented reality
US11619988B2 (en)2015-03-052023-04-04Magic Leap, Inc.Systems and methods for augmented reality
US11256090B2 (en)2015-03-052022-02-22Magic Leap, Inc.Systems and methods for augmented reality
CN108604383A (en)*2015-12-042018-09-28奇跃公司Reposition system and method
US11288832B2 (en)2015-12-042022-03-29Magic Leap, Inc.Relocalization systems and methods
CN105550658A (en)*2015-12-242016-05-04蔡叶荷Face comparison method based on high-dimensional LBP (Local Binary Patterns) and convolutional neural network feature fusion
CN105844227A (en)*2016-03-212016-08-10湖南君士德赛科技发展有限公司Driver identity authentication method for school bus safety
CN105956572A (en)*2016-05-152016-09-21北京工业大学In vivo face detection method based on convolutional neural network
CN106022380A (en)*2016-05-252016-10-12中国科学院自动化研究所Individual identity identification method based on deep learning
CN106022287A (en)*2016-05-272016-10-12广东顺德中山大学卡内基梅隆大学国际联合研究院Over-age face verification method based on deep learning and dictionary representation
CN107480575B (en)*2016-06-072020-09-22深圳市商汤科技有限公司Model training method, trans-age face recognition method and corresponding device
CN107480575A (en)*2016-06-072017-12-15深圳市商汤科技有限公司The training method of model, across age face identification method and corresponding device
CN106096535B (en)*2016-06-072020-10-23广东顺德中山大学卡内基梅隆大学国际联合研究院 A face verification method based on bilinear joint CNN
CN106096535A (en)*2016-06-072016-11-09广东顺德中山大学卡内基梅隆大学国际联合研究院A kind of face verification method based on bilinearity associating CNN
CN106227718A (en)*2016-07-182016-12-14中国民航大学Land based on CNN sky call semantic consistency method of calibration
CN106203533A (en)*2016-07-262016-12-07厦门大学The degree of depth based on combined training study face verification method
CN106203533B (en)*2016-07-262019-09-20厦门大学 Deep learning face verification method based on hybrid training
US11536973B2 (en)2016-08-022022-12-27Magic Leap, Inc.Fixed-distance virtual and augmented reality systems and methods
CN106326868A (en)*2016-08-262017-01-11江苏华通晟云科技有限公司Face identification method based on cosine similarity measure learning
CN106650573A (en)*2016-09-132017-05-10华南理工大学Cross-age face verification method and system
CN106650573B (en)*2016-09-132019-07-16华南理工大学 A cross-age face verification method and system
CN107871099A (en)*2016-09-232018-04-03北京眼神科技有限公司Face detection method and apparatus
CN106485235A (en)*2016-10-242017-03-08厦门美图之家科技有限公司A kind of convolutional neural networks generation method, age recognition methods and relevant apparatus
CN106485235B (en)*2016-10-242019-05-03厦门美图之家科技有限公司A kind of convolutional neural networks generation method, age recognition methods and relevant apparatus
CN106557743A (en)*2016-10-262017-04-05桂林电子科技大学A kind of face characteristic extraction system and method based on FECNN
CN106557743B (en)*2016-10-262020-04-24桂林电子科技大学Facial feature extraction system and method based on FECNN
CN107053168A (en)*2016-12-092017-08-18南京理工大学A kind of target identification method and hot line robot based on deep learning network
CN106650650B (en)*2016-12-142020-04-24广东顺德中山大学卡内基梅隆大学国际联合研究院Cross-age face recognition method
CN106650650A (en)*2016-12-142017-05-10广东顺德中山大学卡内基梅隆大学国际联合研究院Cross-age face recognition method
CN106599926A (en)*2016-12-202017-04-26上海寒武纪信息科技有限公司Expression picture pushing method and system
CN106709448A (en)*2016-12-212017-05-24华南理工大学Face convolutional neural network-based traditional Chinese medicine constitution recognition method
CN108229269A (en)*2016-12-312018-06-29深圳市商汤科技有限公司Method for detecting human face, device and electronic equipment
US11182591B2 (en)2016-12-312021-11-23Shenzhen Sensetime Technology Co, LtdMethods and apparatuses for detecting face, and electronic devices
US11711668B2 (en)2017-01-232023-07-25Magic Leap, Inc.Localization determination for mixed reality systems
US11315214B2 (en)2017-03-172022-04-26Magic Leap, Inc.Mixed reality system with color virtual content warping and method of generating virtual con tent using same
US11978175B2 (en)2017-03-172024-05-07Magic Leap, Inc.Mixed reality system with color virtual content warping and method of generating virtual content using same
US11410269B2 (en)2017-03-172022-08-09Magic Leap, Inc.Mixed reality system with virtual content warping and method of generating virtual content using same
US11423626B2 (en)2017-03-172022-08-23Magic Leap, Inc.Mixed reality system with multi-source virtual content compositing and method of generating virtual content using same
CN106980834A (en)*2017-03-242017-07-25中山大学A kind of automatic classification method of facial image
CN107341463B (en)*2017-06-282020-06-05苏州飞搜科技有限公司Face feature recognition method combining image quality analysis and metric learning
CN107341463A (en)*2017-06-282017-11-10北京飞搜科技有限公司A kind of face characteristic recognition methods of combination image quality analysis and metric learning
CN107622225A (en)*2017-07-272018-01-23成都信息工程大学 Face Recognition Method Based on Independent Component Analysis Network
CN107622225B (en)*2017-07-272020-04-03成都信息工程大学 Face recognition method based on independent component analysis network
CN107507286A (en)*2017-08-022017-12-22五邑大学A kind of bi-mode biology feature based on face and handwritten signature is registered system
CN107590449A (en)*2017-08-312018-01-16电子科技大学A kind of gesture detecting method based on weighted feature spectrum fusion
CN107590478A (en)*2017-09-262018-01-16四川长虹电器股份有限公司A kind of age estimation method based on deep learning
CN107818314A (en)*2017-11-222018-03-20北京达佳互联信息技术有限公司Face image processing method, device and server
WO2019223254A1 (en)*2018-05-212019-11-28北京亮亮视野科技有限公司Construction method for multi-scale lightweight face detection model and face detection method based on model
US11361585B2 (en)*2018-06-112022-06-14Zkteco Usa LlcMethod and system for face recognition via deep learning
CN108960412A (en)*2018-06-292018-12-07北京京东尚科信息技术有限公司Image-recognizing method, device and computer readable storage medium
US11379948B2 (en)2018-07-232022-07-05Magic Leap, Inc.Mixed reality system with virtual content warping and method of generating virtual content using same
US12190468B2 (en)2018-07-232025-01-07Magic Leap, Inc.Mixed reality system with virtual content warping and method of generating virtual content using same
US11790482B2 (en)2018-07-232023-10-17Magic Leap, Inc.Mixed reality system with virtual content warping and method of generating virtual content using same
CN109255289B (en)*2018-07-272021-10-26电子科技大学Cross-aging face recognition method based on unified generation model
CN109255289A (en)*2018-07-272019-01-22电子科技大学A kind of across aging face identification method generating model based on unified formula
CN109344774A (en)*2018-10-082019-02-15国网经济技术研究院有限公司Thermal power station target identification method in remote sensing image
CN109815864A (en)*2019-01-112019-05-28浙江工业大学 A transfer learning-based age recognition method for face images
CN109766998A (en)*2019-01-142019-05-17温岭市非普电气有限公司 A Feature Pyramid Network Structure Based on MobileNet Acceleration
CN109886121B (en)*2019-01-232021-04-06浙江大学Human face key point positioning method for shielding robustness
CN109886121A (en)*2019-01-232019-06-14浙江大学 An Occlusion Robust Face Keypoint Localization Method
CN110322509A (en)*2019-06-262019-10-11重庆邮电大学Object localization method, system and computer equipment based on level Class Activation figure
CN111881721A (en)*2020-06-102020-11-03广东芯盾微电子科技有限公司Cross-age face recognition method, system, device and storage medium
CN111881721B (en)*2020-06-102021-03-30广东芯盾微电子科技有限公司Cross-age face recognition method, system, device and storage medium
CN111710424A (en)*2020-06-192020-09-25浙江新芮信息科技有限公司 Catering personnel health monitoring method, device and computer-readable storage medium
WO2022052785A1 (en)*2020-09-082022-03-17京东方科技集团股份有限公司Target detection method and apparatus, and storage medium and electronic device
CN114155567A (en)*2020-09-082022-03-08京东方科技集团股份有限公司 Target detection method and device, storage medium and electronic device
CN112287965A (en)*2020-09-212021-01-29卓尔智联(武汉)研究院有限公司Image quality detection model training method and device and computer equipment
CN112766157A (en)*2021-01-202021-05-07乐山师范学院Cross-age face image recognition method based on disentanglement representation learning

Also Published As

Publication numberPublication date
CN104866829B (en)2019-02-19

Similar Documents

PublicationPublication DateTitle
CN104866829A (en)Cross-age face verify method based on characteristic learning
US11195051B2 (en)Method for person re-identification based on deep model with multi-loss fusion training strategy
CN106096538B (en)Face identification method and device based on sequencing neural network model
CN111325115B (en) Adversarial cross-modal person re-identification method and system with triple constraint loss
Zhang et al.Improving multiview face detection with multi-task deep convolutional neural networks
CN105956560B (en)A kind of model recognizing method based on the multiple dimensioned depth convolution feature of pondization
CN109063666A (en)The lightweight face identification method and system of convolution are separated based on depth
CN103279768B (en)A kind of video face identification method based on incremental learning face piecemeal visual characteristic
CN102938065B (en)Face feature extraction method and face identification method based on large-scale image data
CN109255289B (en)Cross-aging face recognition method based on unified generation model
CN106650806A (en)Cooperative type deep network model method for pedestrian detection
CN108427921A (en)A kind of face identification method based on convolutional neural networks
CN103020602B (en)Based on the face identification method of neural network
CN106778796A (en)Human motion recognition method and system based on hybrid cooperative model training
CN109344856B (en)Offline signature identification method based on multilayer discriminant feature learning
CN108921019A (en)A kind of gait recognition method based on GEI and TripletLoss-DenseNet
CN107220598B (en)Iris image classification method based on deep learning features and Fisher Vector coding model
CN108520213A (en) A face beauty prediction method based on multi-scale depth
CN107330412A (en)A kind of face age estimation method based on depth rarefaction representation
CN106407958A (en)Double-layer-cascade-based facial feature detection method
CN106096517A (en)A kind of face identification method based on low-rank matrix Yu eigenface
CN107818299A (en)Face recognition algorithms based on fusion HOG features and depth belief network
CN110738071A (en)face algorithm model training method based on deep learning and transfer learning
CN114155572B (en) Facial expression recognition method and system
CN110880010A (en)Visual SLAM closed loop detection algorithm based on convolutional neural network

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
EXSBDecision made by sipo to initiate substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp