Movatterモバイル変換


[0]ホーム

URL:


CN104864874B - A kind of inexpensive single gyro dead reckoning navigation method and system - Google Patents

A kind of inexpensive single gyro dead reckoning navigation method and system
Download PDF

Info

Publication number
CN104864874B
CN104864874BCN201510345399.1ACN201510345399ACN104864874BCN 104864874 BCN104864874 BCN 104864874BCN 201510345399 ACN201510345399 ACN 201510345399ACN 104864874 BCN104864874 BCN 104864874B
Authority
CN
China
Prior art keywords
mrow
msub
gyro
carrier
heading angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510345399.1A
Other languages
Chinese (zh)
Other versions
CN104864874A (en
Inventor
韩勇强
田晓春
李楠
徐建华
刘星桥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BITfiledCriticalBeijing Institute of Technology BIT
Priority to CN201510345399.1ApriorityCriticalpatent/CN104864874B/en
Publication of CN104864874ApublicationCriticalpatent/CN104864874A/en
Application grantedgrantedCritical
Publication of CN104864874BpublicationCriticalpatent/CN104864874B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明针对传统的导航系统存在的成本较高、体积重量较大、航向误差积累等问题,提供了一种低成本单陀螺航位推算导航方法及系统,该系统利用航向感应传感器(如磁传感器,亦可为偏振光传感器)提供航向参考,采用1个光学陀螺(敏感轴指天向)与航向传感器组合提供高精度动态航向,两个加速度计负责测量载体姿态,一个里程计提供载体里程增量,利用航向、姿态、里程信息进行航位推算,从而计算载体位置,具有小体积、低功耗、低成本等诸多优点。

The present invention aims at the problems of high cost, large volume and weight, accumulation of heading errors and the like in the traditional navigation system, and provides a low-cost single gyro dead reckoning navigation method and system. The system uses a heading induction sensor (such as a magnetic sensor , can also be used as a polarized light sensor) to provide heading reference, using an optical gyroscope (sensitive axis pointing to the sky) and heading sensor combination to provide high-precision dynamic heading, two accelerometers are responsible for measuring the attitude of the carrier, and one odometer provides the mileage increase of the carrier It uses heading, attitude, and mileage information for dead reckoning to calculate the position of the carrier. It has many advantages such as small size, low power consumption, and low cost.

Description

Translated fromChinese
一种低成本单陀螺航位推算导航方法及系统A low-cost single gyro dead reckoning navigation method and system

技术领域technical field

本发明涉及一种单陀螺导航技术,具体涉及一种低成本单陀螺航位推算导航方法及系统。The invention relates to a single gyro navigation technology, in particular to a low-cost single gyro dead reckoning navigation method and system.

背景技术Background technique

在军、民领域中的各类设备上,惯性导航系统作为一种现代化导航设备已被广泛应用。惯性导航系统主要分为平台式惯性导航系统和捷联式惯性导航系统两大类。捷联惯性导航系统和平台式惯性导航系统一样,能精确提供载体的姿态、地速、经纬度等导航参数。As a kind of modern navigation equipment, inertial navigation system has been widely used in all kinds of equipment in the military and civilian fields. Inertial navigation systems are mainly divided into two categories: platform inertial navigation systems and strapdown inertial navigation systems. The strapdown inertial navigation system, like the platform inertial navigation system, can accurately provide navigation parameters such as the carrier's attitude, ground speed, longitude and latitude.

捷联惯性导航系统有以下独特优点:去掉了复杂的平台机械系统,系统结构极为简单,减小了系统的体积和重量,同时降低了成本,简化了维修,提高了可靠性。目前的导航系统通常由3个陀螺、3个加速度计组成,虽然具有选配的灵活性,但是由于使用3个陀螺造成了成本、体积、重量等的增加。The strapdown inertial navigation system has the following unique advantages: the complex platform mechanical system is removed, the system structure is extremely simple, the volume and weight of the system are reduced, the cost is reduced, the maintenance is simplified, and the reliability is improved. The current navigation system usually consists of 3 gyroscopes and 3 accelerometers. Although it has the flexibility of matching, the use of 3 gyroscopes increases the cost, size, and weight.

因此,有必要研究出一种低成本单陀螺航位推算导航方法及系统,从而解决现有技术的上述缺陷。Therefore, it is necessary to develop a low-cost single gyro dead reckoning navigation method and system, so as to solve the above-mentioned defects in the prior art.

发明内容Contents of the invention

针对捷联导航系统存在的成本较高、航向误差积累、体积、重量较大等问题,本发明提供了一种低成本单陀螺航位推算导航方法及系统,该系统利用航向感应传感器(如磁传感器,亦可为偏振光传感器)提供航向参考,采用1个光学陀螺(敏感轴指天向)与航向传感器组合提供高精度动态航向,两个加速度计负责测量载体姿态,一个里程计提供载体里程增量,利用航向、姿态、里程信息进行航位推算,从而计算载体位置,具有小体积、低功耗、低成本等诸多优点。Aiming at the problems of high cost, accumulation of heading errors, large volume, and heavy weight in strapdown navigation systems, the present invention provides a low-cost single gyro dead reckoning navigation method and system. The system utilizes heading induction sensors (such as magnetic The sensor can also be used as a polarized light sensor) to provide a heading reference, using an optical gyroscope (the sensitive axis points to the direction of the sky) and a heading sensor to provide high-precision dynamic heading, two accelerometers are responsible for measuring the attitude of the carrier, and an odometer provides the carrier mileage Incremental, using heading, attitude, and mileage information for dead reckoning to calculate the position of the carrier, it has many advantages such as small size, low power consumption, and low cost.

本发明请求提供了一种低成本单陀螺航位推算导航方法,该方法包括以下步骤:The present invention requests to provide a kind of low-cost single-gyroscope dead reckoning navigation method, and this method comprises the following steps:

步骤S101,利用磁感应计与光学陀螺计算载体系x轴的航向角ψ;Step S101, using the magnetic induction meter and the optical gyroscope to calculate the heading angle ψ of the x-axis of the carrier system;

假设初始阶段,磁感应计受磁场环境扰动较小,则通过1分钟的静止状态,对磁感应计的航向角输出作平滑,得到初始航向角ψ0Assuming that in the initial stage, the magnetic induction meter is less disturbed by the magnetic field environment, then after 1 minute of static state, the heading angle output of the magnetic induction meter is smoothed to obtain the initial heading angle ψ0 ;

采用光学陀螺辅助磁感应计进行航向角计算,利用光学陀螺输出进行航向角更新:Use the optical gyro-assisted magnetic induction meter to calculate the heading angle, and use the output of the optical gyro to update the heading angle:

ψi=ψi-1i-1iesin(L)cos(θ) (1)ψi =ψi-1i-1ie sin(L)cos(θ) (1)

其中,(i-1)-i表示一个采样周期(Ts),ψi为i时刻的航向角,Ωi-1为(i-1)-i时刻的陀螺输出(单位为弧度),Ωie为一个采样周期内的地球自转角度,L为当地纬度,θ为载体俯仰角;Among them, (i-1)-i represents a sampling period (Ts), ψi is the heading angle at time i, Ωi-1 is the gyro output (in radians) at time (i-1)-i, Ωie is the rotation angle of the earth within a sampling period, L is the local latitude, and θ is the pitch angle of the carrier;

陀螺测量值存在漂移,会导致航向角误差随时间积累,利用磁感应计对陀螺的积累误差进行补偿,令ψG=ψi表示i时刻陀螺解算的航向角,ψM表示磁感应计解算到的航向角;There is drift in the measured value of the gyro, which will cause the heading angle error to accumulate over time. The accumulated error of the gyro is compensated by the magnetic induction meter. Let ψG = ψi represent the heading angle calculated by the gyro at time i, and ψM represents the value calculated by the magnetic induction meter to heading angle;

当满足如下条件时,利用ψM替换ψi以消除陀螺漂移等因素的航向角累计误差:When the following conditions are met, use ψM to replace ψi to eliminate the cumulative error of heading angle due to factors such as gyro drift:

条件1:tgyro>T,其中tgyro为陀螺推算时间,T为某常值参数;Condition 1: tgyro > T, where tgyro is the gyro calculation time, and T is a constant value parameter;

条件2:公式(2)成立。Condition 2: Formula (2) is established.

其中表示一个平滑周期Tsmooth内的ψG均值,表示一个平滑周期内ψM均值;将一个平滑周期分为k个子周期,即Tsmooth=k*Ts;δψi表示第i个子周期内的ψG与ψM差值,即J为航向角波动阈值;in Indicates the mean value of ψG within a smoothing period Tsmooth , Indicates the average value of ψM in a smoothing period; divides a smoothing period into k sub-periods, that is, Tsmooth = k*Ts; δψi represents the difference between ψG and ψM in the i-th sub-period, namely J is the heading angle fluctuation threshold;

不等式左侧第一项反映磁感应计与陀螺解算航向角的常值偏差,第二项反映磁感应计受磁场影响的波动程度;当不等式成立时,表明磁感应计周围磁场无异常波动,可以用ψM替换ψi以消除陀螺漂移等因素的航向角累计误差;The first item on the left side of the inequality reflects the constant value deviation between the magnetic induction meter and the gyroscope to solve the heading angle, and the second item reflects the fluctuation degree of the magnetic induction meter affected by the magnetic field; when the inequality is established, it indicates that there is no abnormal fluctuation in the magnetic field around the magnetic induction meter.M replaces ψi to eliminate the cumulative error of heading angle due to factors such as gyro drift;

步骤S102,利用加速计A1计算载体俯仰角θ;Step S102, using the accelerometer A1 to calculate the carrier pitch angle θ;

加速度计A1计算载体俯仰角θ的公式如下(见公式3),The formula for calculating the pitch angle θ of the carrier by the accelerometer A1 is as follows (see formula 3),

其中a1表示加速度计A1的测量输出量,g为重力加速度,定义载体车头上扬时θ角为正;Among them, a1 represents the measurement output of the accelerometer A1, g is the acceleration of gravity, and the θ angle is defined as positive when the front of the carrier is raised;

ab的计算过程如公式5,6所示:The calculation process of ab is shown in formulas 5 and 6:

ab=x2 (5)ab =x2 (5)

x2(k+1)=x2(k)-h*r*sat(g(k),δ) (6)x2 (k+1)=x2 (k)-h*r*sat(g(k), δ) (6)

其中:in:

z1(k)=e(k)+hx2(k) (9)z1 (k)=e(k)+hx2 (k) (9)

δ=hr,δ1=hδ (10)δ=hr, δ1 =hδ (10)

e(k)=x1(k)-v(k) (11)e(k)=x1 (k)-v(k) (11)

x1(k+1)=x1(k)+hx2(k) (12)x1 (k+1)=x1 (k)+hx2 (k) (12)

x2(k)为加速度输出,h为采样步长,r为输入调节参数,依据实际信号特性人为选取,用来调节微分器性能,δ是中间变量,为平滑周期;v(k)为速度,x1(k)表示预测速度,v(k)为v的离散形式;x2 (k) is the acceleration output, h is the sampling step size, r is the input adjustment parameter, which is artificially selected according to the actual signal characteristics, and is used to adjust the performance of the differentiator, δ is an intermediate variable, which is the smoothing period; v(k) is the speed , x1 (k) represents the predicted speed, v(k) is the discrete form of v;

由公式6-12联立,进而通过ab=x2,可以获得abBy combining formulas 6-12, and then ab = x2 , ab can be obtained;

最后由公式3获得载体俯仰角θ;Finally, the carrier pitch angle θ is obtained by formula 3;

步骤S103,利用里程计计算一个采样周期的里程增量Δs;Step S103, using the odometer to calculate the mileage increment Δs of one sampling period;

一个采样周期的里程增量为:The mileage increment of a sampling period is:

Δs=KN (13)Δs=KN (13)

其中,脉冲数N为里程计一个采样周期内的脉冲数;K为里程系数,需要事先标定,N为里程计脉冲数;Among them, the number of pulses N is the number of pulses in one sampling period of the odometer; K is the mileage coefficient, which needs to be calibrated in advance, and N is the number of pulses of the odometer;

步骤S104,计算载体在行驶过程中的位置(坐标);Step S104, calculating the position (coordinates) of the carrier during driving;

假设载体的初始坐标为(X0,Y0),载体在行驶过程中,k时刻的坐标(Xk,Yk)可通过公式(14)得到:Assuming that the initial coordinates of the carrier are (X0 , Y0 ), the coordinates (Xk , Yk ) at time k of the carrier during driving can be obtained by formula (14):

其中ψi、θi、Δsi分别为第i个采样周期的航向角、俯仰角、里程增量。Among them, ψi , θi , and Δsi are the heading angle, pitch angle, and mileage increment of the i-th sampling period, respectively.

本申请还请求保护一种低成本单陀螺航位推算导航系统,包括:This application also requests protection of a low-cost single gyro dead reckoning navigation system, including:

姿态测量单元,包括光学陀螺,磁感应计,两个加速度计,其中姿态测量单元坐标系选取前-左-上分别作为x-y-z;光学陀螺敏感轴与z轴重合指向天向;两个加速度计敏感轴分别指向x和y轴方向;磁感应计零位指向x轴方向;姿态测量单元将各个光学陀螺,磁感应计,两个加速度计的信号传输给信号采集电路;The attitude measurement unit includes an optical gyro, a magnetic induction meter, and two accelerometers. The coordinate system of the attitude measurement unit is selected as x-y-z respectively from the front-left-top; the sensitive axis of the optical gyro coincides with the z-axis and points to the sky; the sensitive axes of the two accelerometers Pointing to the x and y axis directions respectively; the zero position of the magnetic induction meter points to the x axis direction; the attitude measurement unit transmits the signals of each optical gyroscope, magnetic induction meter, and two accelerometers to the signal acquisition circuit;

信号采集电路,用于将接收的信号经过A/D转换,通过串行通信接口发送给处理器;The signal acquisition circuit is used to convert the received signal through A/D and send it to the processor through the serial communication interface;

里程计,用于将载体轮胎的转动转换为脉冲,通过信号采集电路送给处理器;The odometer is used to convert the rotation of the carrier tire into pulses and send them to the processor through the signal acquisition circuit;

处理器,接收信号采集电路发送的信号,得到载体的位置、速度、姿态,并计算载体的位置。The processor receives the signal sent by the signal acquisition circuit, obtains the position, speed and attitude of the carrier, and calculates the position of the carrier.

进一步的,处理器计算载体的位置是通过上述的导航方法获得的。Further, the position of the carrier calculated by the processor is obtained through the above-mentioned navigation method.

附图说明Description of drawings

图1为本发明的低成本单陀螺航位推算导航方法的流程示意图;Fig. 1 is the schematic flow sheet of low-cost single gyro dead reckoning navigation method of the present invention;

图2为本发明的导航系统的结构示意图;Fig. 2 is the structural representation of navigation system of the present invention;

具体实施方式detailed description

下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.

如图1所示,本发明提出了一种低成本单陀螺航位推算导航方法,在该方法中以本地地理坐标系(东-北-天,E-N-U)作为导航坐标系(n系),包括如下步骤:As shown in Fig. 1, the present invention proposes a kind of low-cost single gyroscope dead reckoning navigation method, in this method with the local geographic coordinate system (East-North-day, E-N-U) as the navigation coordinate system (n system), including Follow the steps below:

步骤S101,利用磁感应计与光学陀螺计算载体系(b系)x轴的航向角ψ;Step S101, using the magnetic induction meter and the optical gyroscope to calculate the heading angle ψ of the x-axis of the carrier system (system b);

假设初始阶段,磁感应计受磁场环境扰动较小,则通过1分钟的静止状态,对磁感应计的航向角输出作平滑,得到初始航向角ψ0Assuming that in the initial stage, the magnetic induction meter is less disturbed by the magnetic field environment, the initial heading angle ψ0 is obtained by smoothing the heading angle output of the magnetic induction meter through a static state of 1 minute.

磁感应计的输出易受磁场波动的影响,因此本发明采用光学陀螺辅助磁感应计进行航向角计算,利用光学陀螺输出进行航向角更新(公式(1)),The output of the magnetic induction meter is easily affected by the fluctuation of the magnetic field, so the present invention uses the optical gyroscope to assist the magnetic induction meter to calculate the heading angle, and utilizes the optical gyroscope output to update the heading angle (formula (1)),

ψi=ψi-1i-1iesin(L)cos(θ) (1)ψi =ψi-1i-1ie sin(L)cos(θ) (1)

其中,(i-1)-i表示一个采样周期(Ts),ψi为i时刻的航向角,Ωi-1为(i-1)-i时刻的陀螺输出(单位为弧度),Ωie为一个采样周期内的地球自转角度,L为当地纬度,θ为载体俯仰角。Among them, (i-1)-i represents a sampling period (Ts), ψi is the heading angle at time i, Ωi-1 is the gyro output (in radians) at time (i-1)-i, Ωie is the rotation angle of the earth in one sampling period, L is the local latitude, and θ is the pitch angle of the carrier.

陀螺测量值存在漂移,会导致航向角误差随时间积累,本发明利用磁感应计对陀螺的积累误差进行补偿。令ψG=ψi表示i时刻陀螺解算的航向角,ψM表示磁感应计解算到的航向角。There is drift in the measured value of the gyro, which will lead to the accumulation of the heading angle error with time, and the present invention uses the magnetic induction meter to compensate the accumulated error of the gyro. Let ψGi represent the heading angle calculated by the gyro at time i, and ψM represent the heading angle calculated by the magnetic induction computer.

当满足如下条件时,利用ψM替换ψi以消除陀螺漂移等因素的航向角累计误差:When the following conditions are met, use ψM to replace ψi to eliminate the cumulative error of heading angle due to factors such as gyro drift:

条件1:tgyro>T,其中tgyro为陀螺推算时间,T为某常值参数;Condition 1: tgyro > T, where tgyro is the gyro calculation time, and T is a constant value parameter;

条件2:公式(2)成立。Condition 2: Formula (2) is established.

其中表示一个平滑周期Tsmooth内的ψG均值,表示一个平滑周期内ψM均值;将一个平滑周期分为k个子周期,即Tsmooth=k*Ts;δψi表示第i个子周期内的ψG与ψM差值,即J为航向角波动阈值。in Indicates the mean value of ψG within a smoothing period Tsmooth , Indicates the average value of ψM in a smoothing period; divides a smoothing period into k sub-periods, that is, Tsmooth = k*Ts; δψi represents the difference between ψG and ψM in the i-th sub-period, namely J is the heading angle fluctuation threshold.

不等式左侧第一项反映磁感应计与陀螺解算航向角的常值偏差,第二项反映磁感应计受磁场影响的波动程度。当不等式成立时,表明磁感应计周围磁场无异常波动,可以用ψM替换ψi以消除陀螺漂移等因素的航向角累计误差。The first item on the left side of the inequality reflects the constant value deviation between the magnetic induction meter and the gyroscope to solve the heading angle, and the second item reflects the fluctuation degree of the magnetic induction meter affected by the magnetic field. When the inequality holds true, it indicates that there is no abnormal fluctuation in the magnetic field around the magnetic induction meter, and ψi can be replaced by ψM to eliminate the cumulative error of heading angle due to factors such as gyro drift.

步骤S102,利用加速计A1计算载体俯仰角θ;Step S102, using the accelerometer A1 to calculate the carrier pitch angle θ;

加速度计A1计算载体俯仰角θ的公式如下(见公式3),The formula for calculating the pitch angle θ of the carrier by the accelerometer A1 is as follows (see formula 3),

其中a1表示加速度计A1的测量输出量,g为重力加速度,定义载体车头上扬时θ角为正。载体有前向加速度ab时,A1加速度输出为a1=gsin(θ)+ab,因此需要扣除加速度对俯仰角的影响。Among them, a1 represents the measurement output of the accelerometer A1, g is the acceleration of gravity, and the angle θ is defined as positive when the front of the carrier is raised. When the carrier has a forward acceleration ab , the acceleration output of A1 is a1=gsin(θ)+ab , so the influence of the acceleration on the pitch angle needs to be deducted.

本发明利用里程计信号经过二阶微分得到x轴向的加速度。里程计输出信号为一个采样周期的里程增量Δs,则速度为:The present invention uses the odometer signal to obtain the acceleration in the x-axis through second-order differentiation. The output signal of the odometer is the mileage increment Δs of one sampling period, then the speed is:

v=Δs/Ts (4)v=Δs/Ts (4)

若要得到载体前向加速度ab,需要对速度v进行微分,而再次利用上式直接微分会进一步放大噪声。V(k)是v的离散形式。To obtain the forward acceleration ab of the carrier, it is necessary to differentiate the velocity v, and the direct differentiation of the above formula will further amplify the noise. V(k) is the discrete form of v.

ab的计算过程如公式5,6所示:The calculation process of ab is shown in formulas 5 and 6:

ab=x2 (5)ab =x2 (5)

x2(k+1)=x2(k)-h*r*sat(g(k),δ) (6)x2 (k+1)=x2 (k)-h*r*sat(g(k), δ) (6)

其中:in:

z1(k)=e(k)+hx2(k) (9)z1 (k)=e(k)+hx2 (k) (9)

δ=hr,δ1=hδ (10)δ=hr, δ1 =hδ (10)

e(k)=x1(k)-v(k) (11)e(k)=x1 (k)-v(k) (11)

x1(k+1)=x1(k)+hx2(k) (12)x1 (k+1)=x1 (k)+hx2 (k) (12)

x2(k)为加速度输出,h为采样步长,r为输入调节参数,依据实际信号特性人为选取,用来调节微分器性能,δ是中间变量,可解释为平滑周期;v(k)为速度,x1(k)表示预测速度,v(k)为v的离散形式。x2 (k) is the acceleration output, h is the sampling step size, r is the input adjustment parameter, which is artificially selected according to the actual signal characteristics, and is used to adjust the performance of the differentiator, δ is an intermediate variable, which can be interpreted as a smoothing period; v(k) is the speed, x1 (k) represents the predicted speed, and v(k) is the discrete form of v.

由公式6-12联立,进而通过ab=x2,可以获得abCombining formulas 6-12 and further ab = x2 , ab can be obtained.

最后由公式3获得载体俯仰角θ。Finally, the pitch angle θ of the carrier is obtained by formula 3.

步骤S103,利用里程计计算一个采样周期的里程增量Δs;Step S103, using the odometer to calculate the mileage increment Δs of one sampling period;

一个采样周期的里程增量为:The mileage increment of a sampling period is:

Δs=KN (13)Δs=KN (13)

其中,脉冲数N为里程计一个采样周期内的脉冲数;K为里程系数,需要事先标定,N为里程计脉冲数。Among them, the number of pulses N is the number of pulses in one sampling period of the odometer; K is the mileage coefficient, which needs to be calibrated in advance, and N is the number of pulses of the odometer.

步骤S104,计算载体在行驶过程中的位置(坐标);Step S104, calculating the position (coordinates) of the carrier during driving;

假设载体的初始坐标为(X0,Y0),载体在行驶过程中,k时刻的坐标(Xk,Yk)可通过公式(14)得到:Assuming that the initial coordinates of the carrier are (X0 , Y0 ), the coordinates (Xk , Yk ) at time k of the carrier during driving can be obtained by formula (14):

其中ψi、θi、Δsi分别为第i个采样周期的航向角、俯仰角、里程增量。Among them, ψi , θi , and Δsi are the heading angle, pitch angle, and mileage increment of the i-th sampling period, respectively.

下面通过图2对本发明的导航系统作进一步的介绍。Next, the navigation system of the present invention will be further introduced through FIG. 2 .

如图2,低成本单陀螺航位推算导航系统100包括:As shown in Figure 2, the low cost single gyro dead reckoning navigation system 100 includes:

姿态测量单元101,包括光学陀螺,磁感应计,两个加速度计,其中姿态测量单元坐标系选取前-左-上分别作为x-y-z;光学陀螺敏感轴与z轴重合指向天向;两个加速度计敏感轴分别指向x和y轴方向;磁感应计零位指向x轴方向;姿态测量单元将各个光学陀螺,磁感应计,两个加速度计的信号传输给信号采集电路102;The attitude measurement unit 101 includes an optical gyroscope, a magnetic induction meter, and two accelerometers, wherein the coordinate system of the attitude measurement unit is selected as x-y-z respectively in front-left-up; the sensitive axis of the optical gyro coincides with the z-axis and points to the sky; the two accelerometers are sensitive The axes point to the x and y-axis directions respectively; the zero position of the magnetic induction meter points to the x-axis direction; the attitude measurement unit transmits the signals of each optical gyroscope, magnetic induction meter and two accelerometers to the signal acquisition circuit 102;

信号采集电路102,用于将接收的信号经过A/D转换,通过串行通信接口发送给处理器;The signal acquisition circuit 102 is used to convert the received signal through A/D and send it to the processor through the serial communication interface;

里程计103,用于将载体轮胎的转动转换为脉冲,通过信号采集电路送给处理器;The odometer 103 is used to convert the rotation of the carrier tire into pulses and send them to the processor through the signal acquisition circuit;

处理器104,接收信号采集电路发送的信号,得到载体的位置、速度、姿态,并计算载体的位置。The processor 104 receives the signal sent by the signal acquisition circuit, obtains the position, speed, and attitude of the carrier, and calculates the position of the carrier.

处理器计算载体的位置是通过权前述的导航方法获得的。The processor calculates the position of the carrier is obtained through the aforementioned navigation method.

应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples, and those skilled in the art can make improvements or transformations according to the above descriptions, and all these improvements and transformations should belong to the protection scope of the appended claims of the present invention.

Claims (1)

Translated fromChinese
1.一种低成本单陀螺航位推算导航方法,其特征在于,该方法包括如下步骤:1. a low-cost single gyroscope dead reckoning navigation method is characterized in that the method comprises the steps:步骤S101,利用磁感应计与光学陀螺计算载体系x轴的航向角ψ;Step S101, using the magnetic induction meter and the optical gyroscope to calculate the heading angle ψ of the x-axis of the carrier system;假设初始阶段,磁感应计受磁场环境扰动较小,则通过1分钟的静止状态,对磁感应计的航向角输出作平滑,得到初始航向角ψ0Assuming that in the initial stage, the magnetic induction meter is less disturbed by the magnetic field environment, then after 1 minute of static state, the heading angle output of the magnetic induction meter is smoothed to obtain the initial heading angle ψ0 ;采用光学陀螺辅助磁感应计进行航向角计算,利用光学陀螺输出进行航向角更新:Use the optical gyro-assisted magnetic induction meter to calculate the heading angle, and use the output of the optical gyro to update the heading angle:ψi=ψi-1i-1iesin(L)cos(θ) (1)ψi =ψi-1i-1ie sin(L)cos(θ) (1)其中,(i-1)~i表示一个采样周期Ts,ψi为i时刻的航向角,Ωi-1为(i-1)~i时刻的陀螺输出,单位为弧度,Ωie为一个采样周期内的地球自转角度,L为当地纬度,θ为载体俯仰角;Among them, (i-1)~i represents a sampling period Ts, ψi is the heading angle at time i, Ωi-1 is the gyro output at time (i-1)~i, the unit is radian, and Ωie is a sampling The rotation angle of the earth in the period, L is the local latitude, θ is the pitch angle of the carrier;陀螺测量值存在漂移,会导致航向角误差随时间积累,利用磁感应计对陀螺的积累误差进行补偿,令ψG=ψi表示i时刻陀螺解算的航向角,ψM表示磁感应计解算到的航向角;There is drift in the measured value of the gyro, which will cause the heading angle error to accumulate over time. The accumulated error of the gyro is compensated by the magnetic induction meter. Let ψG = ψi represent the heading angle calculated by the gyro at time i, and ψM represents the value calculated by the magnetic induction meter to heading angle;当满足如下条件时,利用ψM替换ψi以消除陀螺漂移等因素的航向角累计误差:When the following conditions are met, use ψM to replace ψi to eliminate the cumulative error of heading angle due to factors such as gyro drift:条件1:tgyro>T,其中tgyro为陀螺推算时间,T为某常值参数;Condition 1: tgyro > T, where tgyro is the gyro calculation time, and T is a constant value parameter;条件2:公式(2)成立;Condition 2: formula (2) is established; <mrow> <mo>(</mo> <mrow> <mover> <msubsup> <mi>&amp;psi;</mi> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>m</mi> <mi>o</mi> <mi>o</mi> <mi>t</mi> <mi>h</mi> </mrow> </msub> <mi>G</mi> </msubsup> <mo>&amp;OverBar;</mo> </mover> <mo>-</mo> <mover> <msubsup> <mi>&amp;psi;</mi> <msub> <mi>T</mi> <mrow> <mi>s</mi> <mi>m</mi> <mi>o</mi> <mi>o</mi> <mi>t</mi> <mi>h</mi> </mrow> </msub> <mi>M</mi> </msubsup> <mo>&amp;OverBar;</mo> </mover> </mrow> <mo>)</mo> <mo>+</mo> <mfrac> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mfrac> <mrow> <msub> <mi>&amp;delta;&amp;psi;</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>&amp;delta;&amp;psi;</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> </mrow> <mi>k</mi> </mfrac> <mo>&lt;</mo> <mi>J</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow><mrow><mo>(</mo><mrow><mover><msubsup><mi>&amp;psi;</mi><msub><mi>T</mi><mrow><mi>s</mi><mi>m</mi><mi>o</mi><mi>o</mi><mi>t</mi><mi>h</mi></mrow></msub><mi>G</mi></msubsup><mo>&amp;OverBar;</mo></mover><mo>-</mo><mover><msubsup><mi>&amp;psi;</mi><msub><mi>T</mi><mrow><mi>s</mi><mi>m</mi><mi>o</mi><mi>o</mi><mi>t</mi><mi>h</mi></mrow></msub><mi>M</mi></msubsup><mo>&amp;OverBar;</mo></mover></mrow><mo>)</mo><mo>+</mo><mfrac><mrow><msubsup><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><mfrac><mrow><msub><mi>&amp;delta;&amp;psi;</mi><mi>i</mi></msub><mo>-</mo><msub><mi>&amp;delta;&amp;psi;</mi><mrow><mi>i</mi><mo>-</mo><mn>1</mn></mrow></msub></mrow><mrow><mi>T</mi><mi>s</mi></mrow></mfrac></mrow><mi>k</mi></mfrac><mo>&lt;</mo><mi>J</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow>其中表示一个平滑周期Tsmooth内的ψG均值,表示一个平滑周期内ψM均值;将一个平滑周期分为k个子周期,即Tsmooth=k*Ts;δψi表示第i个子周期内的ψG与ψM差值,即J为航向角波动阈值;in Indicates the mean value of ψG within a smoothing period Tsmooth , Indicates the average value of ψM in a smoothing period; divides a smoothing period into k sub-periods, that is, Tsmooth = k*Ts; δψi represents the difference between ψG and ψM in the i-th sub-period, namely J is the heading angle fluctuation threshold;不等式左侧第一项反映磁感应计与陀螺解算航向角的常值偏差,第二项反映磁感应计受磁场影响的波动程度;当不等式成立时,表明磁感应计周围磁场无异常波动,可以用ψM替换ψi以消除陀螺漂移等因素的航向角累计误差;The first item on the left side of the inequality reflects the constant value deviation between the magnetic induction meter and the gyroscope to solve the heading angle, and the second item reflects the fluctuation degree of the magnetic induction meter affected by the magnetic field; when the inequality is established, it indicates that there is no abnormal fluctuation in the magnetic field around the magnetic induction meter.M replaces ψi to eliminate the cumulative error of heading angle due to factors such as gyro drift;步骤S102,利用加速计A1计算载体俯仰角θ;Step S102, using the accelerometer A1 to calculate the carrier pitch angle θ;加速度计A1计算载体俯仰角θ的公式如下,The formula for accelerometer A1 to calculate the carrier pitch angle θ is as follows, <mrow> <mi>&amp;theta;</mi> <mo>=</mo> <mi>arcsin</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mi>a</mi> <mn>1</mn> <mo>-</mo> <msub> <mi>a</mi> <mi>b</mi> </msub> </mrow> <mi>g</mi> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow><mrow><mi>&amp;theta;</mi><mo>=</mo><mi>arcsin</mi><mrow><mo>(</mo><mo>-</mo><mfrac><mrow><mi>a</mi><mn>1</mn><mo>-</mo><msub><mi>a</mi><mi>b</mi></msub></mrow><mi>g</mi></mfrac><mo>)</mo></mrow><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow>其中a1表示加速度计A1的测量输出量,g为重力加速度,定义载体车头上扬时θ角为正;Among them, a1 represents the measurement output of the accelerometer A1, g is the acceleration of gravity, and the θ angle is defined as positive when the front of the carrier is raised;ab的计算过程如公式5,6所示:The calculation process of ab is shown in formulas 5 and 6:ab=x2 (5)ab =x2 (5)x2(k+1)=x2(k)-h*r*sat(g(k),δ) (6)x2 (k+1)=x2 (k)-h*r*sat(g(k), δ) (6)其中:in: <mrow> <mi>g</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>r</mi> <mrow> <mo>(</mo> <mrow> <mi>h</mi> <mo>-</mo> <msqrt> <mrow> <mfrac> <mrow> <mi>&amp;epsiv;</mi> <mo>|</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <msup> <mi>h</mi> <mn>2</mn> </msup> </mrow> </msqrt> </mrow> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&amp;GreaterEqual;</mo> <msub> <mi>&amp;delta;</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>x</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mi>h</mi> </mfrac> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mo>|</mo> <msub> <mi>z</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>|</mo> <mo>&amp;le;</mo> <msub> <mi>&amp;delta;</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow><mrow><mi>g</mi><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>=</mo><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>x</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>-</mo><mi>s</mi><mi>i</mi><mi>g</mi><mi>n</mi><mrow><mo>(</mo><mrow><msub><mi>z</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow><mo>)</mo></mrow><mfrac><mrow><mi>r</mi><mrow><mo>(</mo><mrow><mi>h</mi><mo>-</mo><msqrt><mrow><mfrac><mrow><mi>&amp;epsiv;</mi><mo>|</mo><msub><mi>z</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo></mrow><mn>2</mn></mfrac><mo>+</mo><msup><mi>h</mi><mn>2</mn></msup></mrow></msqrt></mrow><mo>)</mo></mrow></mrow><mn>2</mn></mfrac><mo>,</mo></mrow></mtd><mtd><mrow><mo>|</mo><msub><mi>z</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo><mo>&amp;GreaterEqual;</mo><msub><mi>&amp;delta;</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>x</mi><mn>2</mn></mn>msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>+</mo><mfrac><mrow><msub><mi>z</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow><mi>h</mi></mfrac><mo>,</mo></mrow></mtd><mtd><mrow><mo>|</mo><msub><mi>z</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><mo>|</mo><mo>&amp;le;</mo><msub><mi>&amp;delta;</mi><mn>1</mn></msub></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>8</mn><mo>)</mo></mrow></mrow>z1(k)=e(k)+hx2(k) (9)z1 (k)=e(k)+hx2 (k) (9)δ=hr,δ1=hδ (10)δ=hr, δ1 =hδ (10)e(k)=x1(k)-v(k) (11)e(k)=x1 (k)-v(k) (11)x1(k+1)=x1(k)+hx2(k) (12)x1 (k+1)=x1 (k)+hx2 (k) (12)x2(k)为加速度输出,h为采样步长,r为输入调节参数,依据实际信号特性人为选取,用来调节微分器性能,δ是中间变量,为平滑周期;v(k)为速度,x1(k)表示预测速度,v(k)为v的离散形式;e(k)为预测速度x1(k)与速度v(k)间的偏差;z1(k)为修正后的预测速度;x2 (k) is the acceleration output, h is the sampling step size, r is the input adjustment parameter, which is artificially selected according to the actual signal characteristics, and is used to adjust the performance of the differentiator, δ is an intermediate variable, which is the smoothing period; v(k) is the speed , x1 (k) represents the predicted speed, v(k) is the discrete form of v; e(k) is the deviation between the predicted speed x1 (k) and the speed v(k); z1 (k) is the corrected the predicted speed;由公式6-12联立,进而通过ab=x2,可以获得abBy combining formulas 6-12, and then ab = x2 , ab can be obtained;最后由公式3获得载体俯仰角θ;Finally, the carrier pitch angle θ is obtained by formula 3;步骤S103,利用里程计计算一个采样周期的里程增量Δs;Step S103, using the odometer to calculate the mileage increment Δs of one sampling period;一个采样周期的里程增量为:The mileage increment of a sampling period is:Δs=KN (13)Δs=KN (13)其中,脉冲数N为里程计一个采样周期内的脉冲数;K为里程系数,需要事先标定;Among them, the number of pulses N is the number of pulses in one sampling period of the odometer; K is the mileage coefficient, which needs to be calibrated in advance;步骤S104,计算载体在行驶过程中的位置;Step S104, calculating the position of the carrier during driving;假设载体的初始坐标为(X0,Y0),载体在行驶过程中,k时刻的坐标(Xk,Yk)可通过公式(14)得到:Assuming that the initial coordinates of the carrier are (X0 , Y0 ), the coordinates (Xk , Yk ) at time k of the carrier during driving can be obtained by formula (14): <mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>X</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>X</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;psi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;s</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Y</mi> <mi>k</mi> </msub> <mo>=</mo> <msub> <mi>Y</mi> <mn>0</mn> </msub> <mo>+</mo> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;psi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <msub> <mi>&amp;Delta;s</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow><mrow><mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><msub><mi>X</mi><mi>k</mi></msub><mo>=</mo><msub><mi>X</mi><mn>0</mn></msub><mo>+</mo><msubsup><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><mi>cos</mi><mrow><mo>(</mo><msub><mi>&amp;psi;</mi><mi>i</mi></msub><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>i</mi></msub><mo>)</mo></mrow><msub><mi>&amp;Delta;s</mi><mi>i</mi></msub></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>Y</mi><mi>k</mi></msub><mo>=</mo><msub><mi>Y</mi><mn>0</mn></msub><mo>+</mo><msubsup><mi>&amp;Sigma;</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></msubsup><mi>sin</mi><mrow><mo>(</mo><msub><mi>&amp;psi;</mi><mi>i</mi></msub><mo>)</mo></mrow><mi>cos</mi><mrow><mo>(</mo><msub><mi>&amp;theta;</mi><mi>i</mi></msub><mo>)</mo></mrow><msub><mi>&amp;Delta;s</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mfenced><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>14</mn><mo>)</mo></mrow></mrow>其中ψi、θi、Δsi分别为第i个采样周期的航向角、俯仰角、里程增量。Among them, ψi , θi , and Δsi are the heading angle, pitch angle, and mileage increment of the i-th sampling period, respectively.
CN201510345399.1A2015-06-192015-06-19A kind of inexpensive single gyro dead reckoning navigation method and systemActiveCN104864874B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201510345399.1ACN104864874B (en)2015-06-192015-06-19A kind of inexpensive single gyro dead reckoning navigation method and system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201510345399.1ACN104864874B (en)2015-06-192015-06-19A kind of inexpensive single gyro dead reckoning navigation method and system

Publications (2)

Publication NumberPublication Date
CN104864874A CN104864874A (en)2015-08-26
CN104864874Btrue CN104864874B (en)2017-11-07

Family

ID=53910876

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201510345399.1AActiveCN104864874B (en)2015-06-192015-06-19A kind of inexpensive single gyro dead reckoning navigation method and system

Country Status (1)

CountryLink
CN (1)CN104864874B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105258701A (en)*2015-10-302016-01-20北京自动化控制设备研究所 A low-cost robot localization method based on inertia
CN106767789B (en)*2017-01-122019-12-24南京航空航天大学 An Optimal Pedestrian Heading Fusion Method Based on Adaptive Kalman Filter
CN108917756A (en)*2018-06-122018-11-30四川斐讯信息技术有限公司A kind of course estimation method and system
CN112859139B (en)*2019-11-282023-09-05中移物联网有限公司Gesture measurement method and device and electronic equipment
CN110926447B (en)*2019-12-162022-02-22重庆华渝电气集团有限公司Single-axis fiber-optic gyroscope north-seeking method with autonomous navigation function and attitude navigation method
CN111750846A (en)*2020-08-072020-10-09浙江大学德清先进技术与产业研究院Marine compass and dynamic calibration method thereof
CN112697138B (en)*2020-12-072022-09-27北方工业大学 A method for biomimetic polarization synchronization positioning and composition based on factor graph optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101051089A (en)*2007-04-262007-10-10上海非开挖信息工程技术有限公司Underground pipeline measuring system based on inertial technology and its measuring and its calculating method
CN102353383A (en)*2011-06-162012-02-15浙江大学Method for step counting and mileage reckoning based on single-axis gyroscope
CN103196442A (en)*2013-04-032013-07-10常熟恒基科技有限公司Adaptive vehicle-mounted navigation terminal

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8718938B2 (en)*2007-03-232014-05-06Qualcomm IncorporatedMulti-sensor data collection and/or processing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101051089A (en)*2007-04-262007-10-10上海非开挖信息工程技术有限公司Underground pipeline measuring system based on inertial technology and its measuring and its calculating method
CN102353383A (en)*2011-06-162012-02-15浙江大学Method for step counting and mileage reckoning based on single-axis gyroscope
CN103196442A (en)*2013-04-032013-07-10常熟恒基科技有限公司Adaptive vehicle-mounted navigation terminal

Also Published As

Publication numberPublication date
CN104864874A (en)2015-08-26

Similar Documents

PublicationPublication DateTitle
CN104864874B (en)A kind of inexpensive single gyro dead reckoning navigation method and system
CN103217157B (en)A kind of inertial navigation/odometer independent combined navigation method
CN105021192B (en)A kind of implementation method of the integrated navigation system based on zero-speed correction
CN107588769B (en)Vehicle-mounted strapdown inertial navigation, odometer and altimeter integrated navigation method
CN110221333A (en)A kind of error in measurement compensation method of vehicle-mounted INS/OD integrated navigation system
CN112629538A (en)Ship horizontal attitude measurement method based on fusion complementary filtering and Kalman filtering
CN103245359B (en)A kind of inertial sensor fixed error real-time calibration method in inertial navigation system
CN105698822B (en)Initial Alignment Method between autonomous type inertial navigation based on reversed Attitude Tracking is advanced
CN104501838B (en)SINS Initial Alignment Method
CN103674034B (en)Multi-beam test the speed range finding revise robust navigation method
CN103712622B (en)The gyroscopic drift estimation compensation rotated based on Inertial Measurement Unit and device
CN103149580A (en)Global position system (GPS)/inertial navigation system (INS) combined navigation method based on strong tracking kalman filter (STKF) and wavelet neural network (WNN)
CN104880189B (en)A kind of antenna for satellite communication in motion low cost tracking anti-interference method
CN114323003B (en)Underground mining fusion positioning method based on UWB, IMU and laser radar
CN103925930B (en)A kind of compensation method of gravimeter biax gyrostabilized platform course error effect
CN106403952A (en)Method for measuring combined attitudes of Satcom on the move with low cost
CN105910623B (en)The method for carrying out the correction of course using magnetometer assisted GNSS/MINS tight integration systems
CN114964231B (en)Vehicle-mounted inertial/satellite integrated navigation method based on dual-channel course matching
CN105928515A (en)Navigation system for unmanned plane
CN102052922A (en)Disturbing gravity compensation method for impacts of actual gravity field on inertial navigation system
CN102183260A (en)Low-cost unmanned vehicle navigation method
CN107830873A (en)A kind of high-precision vehicle positioning and orienting method combined based on uniaxial horizontal rotation inertial navigation with odometer
CN111007542B (en)Method for calculating MIMU installation error angle in vehicle-mounted satellite-based enhanced multimode GNSS/MIMU combined navigation
CN104567888A (en) Attitude measurement method of inertial navigation vehicle based on online velocity correction
WO2020021867A1 (en)Geoid measurement method, geoid measurement apparatus, geoid estimation device, and geoid calculation data collection device

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
EXSBDecision made by sipo to initiate substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp