The processing method of I shape thin-walled partsTechnical field
The present invention relates to a kind of processing method of I shape thin-walled parts, belong to field of mechanical technique.
Background technology
Along with Machine Design industry requires to improve constantly to properties of product, the total class of thin-walled parts quantity increases a kind of trend becoming machine industry gradually, to the crudy of thin-walled parts and required precision also more and more higher.As I shape thin-walled parts, part base is all thin-walled, the clamping thin-walled bases such as soft pawl conventional during milling or vice, and add man-hour thin-walled parts and be easily out of shape, the part quality of processing is unstable; Next is that part handling are wasted time and energy, and procedure of processing is loaded down with trivial details, and working (machining) efficiency is low; Thirdly that this kind of part requirements of handling has skilled professional skill.This, with regard to needing a kind of good processing method to improve the processing technology of this kind of part, improves its crudy and efficiency.
Summary of the invention
For overcoming the defect of prior art, the invention provides a kind of processing method of I shape thin-walled parts.
Technical scheme of the present invention is: a kind of processing method of I shape thin-walled parts, and described processing method comprises the following steps:
A, selection cutter: the cutter choosing needs of each process segment, put into cutterhead in order by it;
B, location: workpiece to be added is adopted and axially steps up origin reference location;
The linear velocity that c, setting main shaft of numerical control machine tool rotate and cutting feeding, rough machined linear velocity and cutting feeding are respectively 200 ~ 230m/min, 70 ~ 74mm/min, and accurately machined linear velocity and cutting feeding are respectively 305 ~ 370m/min, 100 ~ 115mm/min;
D, parts fixation: the blank end face of two parts is close to composition blank assembly to end face, a cushion block is placed between two jaws of vice, blank assembly is placed on cushion block, the height of adjustment cushion block, it is high that blank assembly exceeds vice jaw upper surface 1/4 part, rotates and tighten the two jaw clamping blank assemblies that screw rod makes vice;
E, there is the vice of blank assembly to be placed on the workbench of Digit Control Machine Tool clamping, adjust the position of heavy-duty cutter and blank assembly, make the blade of heavy-duty cutter aim at the cutting starting point of blank assembly, vice is fixed tightly on the workbench of Digit Control Machine Tool;
F, roughing: start Digit Control Machine Tool, with the rough machined linear velocity 200 ~ 230m/min of setting, cut feeding 65 ~ 74mm/min, roughing layer thickness 2 ~ 3 millimeters and the roughing number of plies 4 ~ 7 layers, heavy-duty cutter is from one end feed of blank assembly until the other end of blank assembly, the milling cutter trend of initiating terminal got back to by backward feed again, roughing is carried out to blank assembly, repetition milling cutter moves towards, successively cut a to the last machined layer, roughing terminates, and bottom land and cell wall leave 0.5 ~ 1 millimeter of allowance for finish respectively;
G, fine finishining: take off heavy-duty cutter, finishing cutter is contained on knife rest, start Digit Control Machine Tool, with the accurately machined linear velocity 300 ~ 370m/min of setting and cutting feeding 100 ~ 115mm/min, finishing cutter from blank assembly one end along rough machined groove feed until the other end of blank assembly, reverse milling cutter trend of getting back to initiating terminal along rough machined groove feed again, carry out cutting fine finishining to rough machined bottom land and cell wall, when meeting the requirements of precision, fine finishining terminates;
Screw rod is tightened in h, rotation, unclamps two jaws of vice, takes off two the I shape thin-walled parts censorship processed, be up to the standards, the process finishing of part.
The processing method of this I shape thin-walled parts that the present invention relates to, adopt cushion block to support, vice clamps paired part, and part is easy to loading and unloading, processing technology is simple; Process with the direct clamping thin-walled base such as soft pawl or vice the thin-walled parts distortion caused when eliminating milling; Simplify the manufacturing procedure of part, paired processing, I shape thin-walled parts symmetry is good, low amount of feeding layered milling and rigidity installation way, reduce the vibration of cutter and part, improve crudy and the working (machining) efficiency of I shape thin-walled parts, reduce loss and the processing charges of cutter, be applicable to large-scale production and processing.
Detailed description of the invention
A processing method for I shape thin-walled parts, described processing method comprises the following steps:
A, selection cutter: the cutter choosing needs of each process segment, put into cutterhead in order by it;
B, location: workpiece to be added is adopted and axially steps up origin reference location;
The linear velocity that c, setting main shaft of numerical control machine tool rotate and cutting feeding, rough machined linear velocity and cutting feeding are respectively 200 ~ 230m/min, 70 ~ 74mm/min, and accurately machined linear velocity and cutting feeding are respectively 305 ~ 370m/min, 100 ~ 115mm/min;
D, parts fixation: the blank end face of two parts is close to composition blank assembly to end face, a cushion block is placed between two jaws of vice, blank assembly is placed on cushion block, the height of adjustment cushion block, it is high that blank assembly exceeds vice jaw upper surface 1/4 part, rotates and tighten the two jaw clamping blank assemblies that screw rod makes vice;
E, there is the vice of blank assembly to be placed on the workbench of Digit Control Machine Tool clamping, adjust the position of heavy-duty cutter and blank assembly, make the blade of heavy-duty cutter aim at the cutting starting point of blank assembly, vice is fixed tightly on the workbench of Digit Control Machine Tool;
F, roughing: start Digit Control Machine Tool, with the rough machined linear velocity 200 ~ 230m/min of setting, cut feeding 65 ~ 74mm/min, roughing layer thickness 2 ~ 3 millimeters and the roughing number of plies 4 ~ 7 layers, heavy-duty cutter is from one end feed of blank assembly until the other end of blank assembly, the milling cutter trend of initiating terminal got back to by backward feed again, roughing is carried out to blank assembly, repetition milling cutter moves towards, successively cut a to the last machined layer, roughing terminates, and bottom land and cell wall leave 0.5 ~ 1 millimeter of allowance for finish respectively;
G, fine finishining: take off heavy-duty cutter, finishing cutter is contained on knife rest, start Digit Control Machine Tool, with the accurately machined linear velocity 300 ~ 370m/min of setting and cutting feeding 100 ~ 115mm/min, finishing cutter from blank assembly one end along rough machined groove feed until the other end of blank assembly, reverse milling cutter trend of getting back to initiating terminal along rough machined groove feed again, carry out cutting fine finishining to rough machined bottom land and cell wall, when meeting the requirements of precision, fine finishining terminates;
Screw rod is tightened in h, rotation, unclamps two jaws of vice, takes off two the I shape thin-walled parts censorship processed, be up to the standards, the process finishing of part.
The processing method of this I shape thin-walled parts that the present invention relates to, adopt cushion block to support, vice clamps paired part, and part is easy to loading and unloading, processing technology is simple; Process with the direct clamping thin-walled base such as soft pawl or vice the thin-walled parts distortion caused when eliminating milling; Simplify the manufacturing procedure of part, paired processing, I shape thin-walled parts symmetry is good, low amount of feeding layered milling and rigidity installation way, reduce the vibration of cutter and part, improve crudy and the working (machining) efficiency of I shape thin-walled parts, reduce loss and the processing charges of cutter, be applicable to large-scale production and processing.