技术领域technical field
本发明是有关于一种微机电装置,且特别是有关于一种具有PN界面(PN-Junction)的微机电装置。The present invention relates to a micro-electro-mechanical device, and in particular to a micro-electro-mechanical device with a PN-junction.
先前技术prior art
近年来受惠于智慧型手机、平板电脑、体感游戏机等相关电子产品的带动下,使得微机电感测元件,例如加速度计与磁力感测计等,其市场需求均呈现逐年大幅度地成长,因此,国际大厂皆投入大量的研究资源,以开发高性能低成本的微机电感测器。目前微机电感测装置最新的市场趋势是将能供方向资讯的微机电惯性感测器与全球导航定位系统(Global PositioningSystem,GPS)结合,以应用于可自动翻转电子地图的智慧型手机或不受地形与天候限制的汽车导航装置。此外,目前各国际大厂的微机电惯性感测器的技术研究趋势是在于如何将加速度计与能提供方向资讯的磁力感测计整合在同一感测器上(亦即共用质量块的多轴感测技术),以减少感测器的体积,因应现行各种电子产品的轻薄化趋势。此外,不同感测器整合的同时,也需使各轴的量测信号不互相干扰,以提高信号量测的准确度,已成为开发新一代微机电惯性感测器的重要技术关键之一。In recent years, driven by related electronic products such as smart phones, tablet PCs, and somatosensory game consoles, the market demand for micro-electromechanical sensing components, such as accelerometers and magnetic sensors, has shown a substantial growth year by year. Therefore, major international manufacturers have invested a lot of research resources to develop high-performance and low-cost MEMS sensors. At present, the latest market trend of micro-electro-mechanical sensing devices is to combine the micro-electro-mechanical inertial sensors that can provide direction information with the Global Positioning System (Global Positioning System, GPS) to apply to smart phones that can automatically flip electronic maps or are not affected Car navigation devices limited by terrain and weather. In addition, the current technology research trend of micro-electromechanical inertial sensors from major international manufacturers is how to integrate the accelerometer and the magnetic sensor that can provide direction information on the same sensor (that is, a multi-axis sensor with a shared mass block). Sensing technology) to reduce the size of the sensor, in response to the current thinning trend of various electronic products. In addition, while integrating different sensors, it is also necessary to prevent the measurement signals of each axis from interfering with each other, so as to improve the accuracy of signal measurement, which has become one of the important technical keys for the development of a new generation of MEMS inertial sensors.
图1是已知Y轴微机电磁力计的简化示意图。图2是已知Z轴微机电加速度计的简化示意图。请参考图1,传统的Y轴微机电磁力计10可简化为由旋转梁12与可动质量块11所组成。Y轴微机电磁力计10包括可动质量块11、旋转梁12、感应线圈13、感应电极14以及基板15。可动质量块11通过旋转梁12悬浮于基板15及感应电极14上方。可动质量块11适于绕旋转梁12所连成的一轴线进行旋转。在工作状态下,交流电流输入至感应线圈13,此电流频率与可动质量块11的自然频率一致。当外界有磁场B存在时,感应线圈13与磁场B会将产生劳伦兹力F(Lorentz Force),此力F将推动可动质量块11使其产生振动。所产生劳伦兹力F的大小可由下述公式得知:Fig. 1 is a simplified schematic diagram of a known Y-axis microcomputer electromagnetic force meter. Figure 2 is a simplified schematic diagram of a known Z-axis MEMS accelerometer. Please refer to FIG. 1 , the traditional Y-axis microcomputer electromagnetic force gauge 10 can be simplified to be composed of a rotating beam 12 and a movable mass 11 . The Y-axis microcomputer electromagnetic force meter 10 includes a movable mass 11 , a rotating beam 12 , an induction coil 13 , an induction electrode 14 and a substrate 15 . The movable mass 11 is suspended above the substrate 15 and the sensing electrodes 14 through the rotating beam 12 . The movable mass 11 is adapted to rotate around an axis formed by the rotating beams 12 . In the working state, an alternating current is input to the induction coil 13 , and the frequency of this current is consistent with the natural frequency of the movable mass 11 . When there is a magnetic field B outside, the induction coil 13 and the magnetic field B will generate a Lorentz force F (Lorentz Force), and this force F will push the movable mass 11 to make it vibrate. The magnitude of the generated Lorentz force F can be obtained by the following formula:
其中I为电流大小,L为感应线圈13与磁场B方向垂直的向量长度,B为外界的磁场大小。接着,通过感应电极14侦测可动质量块11与感应电极14之间电容的变化,以计算磁力大小。由于感应线圈13是电性耦接至交流电源,因此其电流方向与电压正负大小皆随相位作周期性改变。当输入的交流电压为正电压时,电流由感应线圈13电性耦接至交流电源的一端流入,然后流过可动质量块11上的感应线圈13,接着流至感应线圈13电性连结接地端GND的另一端。可动质量块11的感应线圈13与基板15之间的电位差,会产生正电荷并累积于可动质量块11的下表面,而负电荷累积于基板15的感应电极14上。随着交流电压的上升与下降,累积于可动质量块11下表面与感应电极14上的电荷数目也随之增减。当电压相位改变时(相位角为180°时),交流电压转变为负电压,交流电流的方向变为由感应线圈13电性连结接地端GND的一端流向感应线圈13电性耦接于交流电源的另一端。由于交流电压的改变,使可动质量块11下表面的电位低于基板15,因而造成正电荷累积于基板15的感应电极14上,负电荷累积于可动质量块11的下表面。在交流电压正负转换的瞬间,可动质量块11下表面的与基板15的感应电极14上的带电电荷数量减少,。因而在感应电极14上产生电流。此感应电流会造成读取电路输出的电压信号的改变,进而使Y轴微机电磁力计10感测出错误的磁力大小。Wherein I is the magnitude of the current, L is the vector length of the induction coil 13 perpendicular to the direction of the magnetic field B, and B is the magnitude of the external magnetic field. Next, the change in capacitance between the movable mass 11 and the sensing electrode 14 is detected by the sensing electrode 14 to calculate the magnitude of the magnetic force. Since the induction coil 13 is electrically coupled to the AC power source, the direction of its current and the positive and negative magnitudes of the voltage change periodically with the phase. When the input AC voltage is a positive voltage, the current flows in from one end of the induction coil 13 electrically coupled to the AC power supply, then flows through the induction coil 13 on the movable mass 11, and then flows to the induction coil 13 electrically connected to the ground The other end of the terminal GND. The potential difference between the induction coil 13 of the movable mass 11 and the substrate 15 will generate positive charges and accumulate on the lower surface of the movable mass 11 , while negative charges will accumulate on the induction electrodes 14 of the substrate 15 . As the AC voltage rises and falls, the amount of charges accumulated on the lower surface of the movable mass 11 and the sensing electrodes 14 also increases and decreases accordingly. When the voltage phase changes (when the phase angle is 180°), the AC voltage turns into a negative voltage, and the direction of the AC current changes from the end of the induction coil 13 electrically connected to the ground terminal GND to flow to the induction coil 13 electrically coupled to the AC power supply the other end of the Due to the change of the AC voltage, the potential of the lower surface of the movable mass 11 is lower than that of the substrate 15 , thus causing positive charges to accumulate on the sensing electrodes 14 of the substrate 15 and negative charges to accumulate on the lower surface of the movable mass 11 . At the moment when the positive and negative switching of the AC voltage is performed, the amount of charged charges on the lower surface of the movable mass 11 and the sensing electrode 14 of the substrate 15 decreases. Thus, a current is generated on the sensing electrode 14 . The induced current will cause the voltage signal output by the reading circuit to change, and then the Y-axis microcomputer electromagnetic force gauge 10 will sense wrong magnetic force.
请参考图2,传统的Z轴微机电加速计20包括可动质量块21、扭转梁22、23固定座(图未示)以及感应电极24。旋转梁22位置偏离可动质量块21的中心线,且可动质量块21可绕旋转梁22与固定座23所连成的轴线旋转。当加速度计在Z轴产生加速度Az时,可动质量块21会以扭转梁22、23与固定座所连成的轴线为旋转轴(Y轴),产生类似翘翘板的旋转。接着,通过侦测因可动质量块21与感应电极24间的电容改变,即可计算出在Z轴方向上的加速度大小。Please refer to FIG. 2 , a traditional Z-axis MEMS accelerometer 20 includes a movable mass 21 , torsion beams 22 , 23 fixing seats (not shown) and sensing electrodes 24 . The position of the rotating beam 22 deviates from the centerline of the movable mass 21 , and the movable mass 21 can rotate around the axis formed by the rotating beam 22 and the fixed seat 23 . When the accelerometer generates an acceleration Az on the Z axis, the movable mass 21 will use the axis formed by the torsion beams 22, 23 and the fixed seat as the rotation axis (Y axis) to generate a rotation similar to a seesaw. Then, by detecting the capacitance change between the movable mass 21 and the sensing electrode 24 , the acceleration in the Z-axis direction can be calculated.
然而,若欲在同一结构体上结合上述磁力大小与加速度侦测的功能时,磁力感测信号与加速度的感测信号会产生耦合现象。换言之,当基板上的感应电极在侦测由于Y轴磁力所造成的电容值改变时,也同时侦测到由于Z轴加速度所造成的电容值改变,此将使得磁力感测信号与加速度感测信号互相耦合。换言之,同一量测信号同时包括磁力与加速度量测信号,必须进一步将信号解耦合以获得分别的信号量测值,因而增加电路处理的复杂度。However, if it is desired to combine the above-mentioned functions of magnetic force detection and acceleration detection on the same structure, the magnetic force sensing signal and the acceleration sensing signal will produce a coupling phenomenon. In other words, when the sensing electrode on the substrate detects the capacitance change caused by the Y-axis magnetic force, it also detects the capacitance change caused by the Z-axis acceleration at the same time, which will make the magnetic sensing signal and the acceleration sensing The signals are coupled to each other. In other words, the same measurement signal includes magnetic force and acceleration measurement signals at the same time, and the signals must be further decoupled to obtain separate signal measurement values, thus increasing the complexity of circuit processing.
另一方面,图3A为美国专利编号US2004/0158439的一种可同时量测磁场与加速度的共构感测器。图3B为图3A共构感测器的沿A-A’线的截面示意图。请参考图3A与3B。图3A的共构感测器包括第一与第二可动结构31、32。第一与第二可动结构31、32分别包括弹簧31a、32a用以分别支撑质量块31b、32b。其中第一与第二可动结构31、32互相平行地排列于X-Y平面上。然后在两块质量块31a、32b上给予不同方向的电流。当在相同的磁场(例如在X方向上的磁场﹕Bx)下,两块质量块31a、32b会分别产生方向相反但大小相同的位移(+b,-b)。当有加速度Az时,两质量块31b,32b产生方向相同且大小相同的位移(-a,-a)。因此,当在同时有磁场与加速度存在的环境下,质量块31b的位移总和为-a+b,质量块32b的位移总和为-a-b。计算以上两质量块位移形成的方程式,即可分别求出磁力与加速度所造成的位移,进而分别计算出磁力的大小与加速度的大小。On the other hand, FIG. 3A is a co-constructed sensor capable of simultaneously measuring magnetic field and acceleration according to US Patent No. US2004/0158439. FIG. 3B is a schematic cross-sectional view of the co-constructed sensor in FIG. 3A along line A-A'. Please refer to FIGS. 3A and 3B . The co-construction sensor in FIG. 3A includes first and second movable structures 31 , 32 . The first and second movable structures 31, 32 respectively include springs 31a, 32a for respectively supporting masses 31b, 32b. Wherein the first and second movable structures 31 and 32 are arranged parallel to each other on the X-Y plane. Then, currents in different directions are given to the two masses 31a, 32b. Under the same magnetic field (for example, the magnetic field in the X direction: Bx), the two mass blocks 31a and 32b will respectively produce displacements (+b, -b) in opposite directions but with the same magnitude. When there is an acceleration Az, the two mass blocks 31b, 32b produce displacements (-a, -a) in the same direction and in the same magnitude. Therefore, when there is both a magnetic field and an acceleration, the sum of the displacements of the mass block 31b is -a+b, and the sum of the displacements of the mass block 32b is -a-b. By calculating the equation formed by the displacement of the above two mass blocks, the displacement caused by the magnetic force and the acceleration can be calculated respectively, and then the magnitude of the magnetic force and the magnitude of the acceleration can be calculated respectively.
发明内容Contents of the invention
本申请提出的一种微机电装置包括基板、可动质量块、第一导电层以及第一绝缘层。基板包含设置在其上表面的电极。可动质量块设置于电极上方并包含第一P型半导体层、第一N型半导体层以及第一PN界面。其中第一N型半导体层连接第一P型半导体层,且第一PN界面形成于第一P型半导体层与第一N型半导体层之间的连接面。此外,第一绝缘层设置于可动质量块与第一导电层之间。A micro-electromechanical device proposed by the present application includes a substrate, a movable mass, a first conductive layer and a first insulating layer. The substrate includes electrodes disposed on its upper surface. The movable mass block is arranged above the electrodes and includes a first P-type semiconductor layer, a first N-type semiconductor layer and a first PN interface. Wherein the first N-type semiconductor layer is connected to the first P-type semiconductor layer, and the first PN interface is formed on the connecting surface between the first P-type semiconductor layer and the first N-type semiconductor layer. In addition, the first insulating layer is disposed between the movable mass and the first conductive layer.
本发明提出的另一种微机电装置适于侦测磁力。此微机电装置包括基板、第一绝缘层、第一导电层以及第一弹簧。基板包含设置在其上表面的电极。可动质量块设置在电极上方且适于绕轴线旋转,可动质量块包括第一P型半导体层、第一N型半导体层以及第一PN界面。第一P型半导体层的下表面面向电极,第一N型半导体层的下表面与第一P型半导体层的上表面连接,并且第一PN界面形成于第一P型半导体层与第一N型半导体层的连接面。第一绝缘层设置于第一N型半导体的上表面,且第一导电层设置于第一绝缘层上。第一弹簧沿轴线平行的方向连接可动质量块并且包括第二P型半导体层、第二N型半导体层以及第二PN界面,其中第二P型半导体层连接第一P型半导体层,第二N半导体层的下表面与第二P型半导体层的上表面连接,且第二PN界面形成于第二P型半导体层与第二N型半导体层的连接面。Another MEMS device proposed by the present invention is suitable for detecting magnetic force. The MEMS device includes a substrate, a first insulating layer, a first conductive layer and a first spring. The substrate includes electrodes disposed on its upper surface. The movable mass is arranged above the electrodes and is suitable for rotating around the axis. The movable mass includes a first P-type semiconductor layer, a first N-type semiconductor layer and a first PN interface. The lower surface of the first P-type semiconductor layer faces the electrode, the lower surface of the first N-type semiconductor layer is connected to the upper surface of the first P-type semiconductor layer, and the first PN interface is formed between the first P-type semiconductor layer and the first N Type semiconductor layer connection surface. The first insulating layer is disposed on the upper surface of the first N-type semiconductor, and the first conductive layer is disposed on the first insulating layer. The first spring is connected to the movable mass in a direction parallel to the axis and includes a second P-type semiconductor layer, a second N-type semiconductor layer, and a second PN interface, wherein the second P-type semiconductor layer is connected to the first P-type semiconductor layer, and the second P-type semiconductor layer is connected to the first P-type semiconductor layer. The lower surface of the two N semiconductor layers is connected to the upper surface of the second P-type semiconductor layer, and the second PN interface is formed on the connection surface between the second P-type semiconductor layer and the second N-type semiconductor layer.
本发明提出的的另一种微机电装置包括基板、框架,第一绝缘层、第一导电层、第一弹簧以及第二弹簧。基板包含设置在其上表面的电极。框架设置在电极上方且适于绕轴线旋转。框架包含第一P型半导体层、第一N型半导体层以及第一PN界面。其中第一P型半导体层的下表面面向电极,第一N型半导体层的下表面与第一P型半导体层的上表面相连接,且第一PN界面形成于第一P型半导体层与第一N型半导体层的连接面。第一绝缘层设置于第一N型半导体层的上表面。第一导电层设置于第一绝缘层上。第一弹簧沿与轴线平行的方向连接框架。第二弹簧设置于框架内,并沿与轴线平行的方向连接框架,且第二弹簧与第一弹簧位于同一直线的延伸方向上。Another MEMS device proposed by the present invention includes a substrate, a frame, a first insulating layer, a first conductive layer, a first spring and a second spring. The substrate includes electrodes disposed on its upper surface. A frame is disposed over the electrodes and is adapted to rotate about the axis. The frame includes a first P-type semiconductor layer, a first N-type semiconductor layer and a first PN interface. Wherein the lower surface of the first P-type semiconductor layer faces the electrode, the lower surface of the first N-type semiconductor layer is connected to the upper surface of the first P-type semiconductor layer, and the first PN interface is formed between the first P-type semiconductor layer and the first P-type semiconductor layer. A connecting surface of the N-type semiconductor layer. The first insulating layer is disposed on the upper surface of the first N-type semiconductor layer. The first conductive layer is disposed on the first insulating layer. The first spring is connected to the frame in a direction parallel to the axis. The second spring is arranged in the frame and connected to the frame along the direction parallel to the axis, and the second spring and the first spring are located in the same straight line extending direction.
本发明提出的另一种微机电装置适于侦测磁力与加速度。此微机电装置包括基板、可动质量块、第一绝缘层、第一导电层以及控制与切换单元。基板包含设置于其上表面的电极。可动质量块设置于电极上方且适于绕轴线旋转,可动质量块包括第一P型半导体层、第一N型半导体层以及第一PN界面。第一P型半导体层的下表面面向电极,第一N型半导体层的下表面与第一P型半导体的上表面连接,且第一PN界面形成于第一P型半导体层与第一N型半导体层的连接面。第一绝缘层设置于第一N型半导体层的上表面。第一导电层设置于第一绝缘层上。控制与切换单元单元控制第一导电层的电流供应。Another MEMS device proposed by the present invention is suitable for detecting magnetic force and acceleration. The MEMS device includes a substrate, a movable mass block, a first insulating layer, a first conductive layer and a control and switching unit. The substrate includes electrodes arranged on its upper surface. The movable mass is arranged above the electrodes and is suitable for rotating around the axis. The movable mass includes a first P-type semiconductor layer, a first N-type semiconductor layer and a first PN interface. The lower surface of the first P-type semiconductor layer faces the electrode, the lower surface of the first N-type semiconductor layer is connected to the upper surface of the first P-type semiconductor, and the first PN interface is formed between the first P-type semiconductor layer and the first N-type semiconductor layer. The connection surface of the semiconductor layer. The first insulating layer is disposed on the upper surface of the first N-type semiconductor layer. The first conductive layer is disposed on the first insulating layer. The control and switching unit controls the current supply of the first conductive layer.
附图说明Description of drawings
图1是已知Y轴微机电磁力计结构的示意图。Fig. 1 is a schematic diagram of the structure of a known Y-axis microcomputer electromagnetic force meter.
图2是已知Z轴微机电加速度计结构的示意图。Fig. 2 is a schematic diagram of a known Z-axis MEMS accelerometer structure.
图3A是美国专利US2004/0158493的一种微机电装置的结构示意图。FIG. 3A is a schematic structural diagram of a MEMS device disclosed in US Patent No. 2004/0158493.
图3B是图3A微机电装置结构沿A-A’线的剖面示意图。3B is a schematic cross-sectional view of the structure of the MEMS device in FIG. 3A along line A-A'.
图4是根据本发明一实施例绘示的微机电装置的示意图。FIG. 4 is a schematic diagram of a MEMS device according to an embodiment of the invention.
图5A是根据本发明另一实施例绘示的微机电装置的俯视图。FIG. 5A is a top view of a MEMS device according to another embodiment of the present invention.
图5B是图5A的微机电装置沿A-A’线的剖面示意图。FIG. 5B is a schematic cross-sectional view of the MEMS device in FIG. 5A along line A-A'.
图6A是根据本发明另一实施例绘示的微机电装置的俯视图。FIG. 6A is a top view of a MEMS device according to another embodiment of the present invention.
图6B是图6A的微机电装置沿B-B’线的剖面示意图。FIG. 6B is a schematic cross-sectional view of the MEMS device in FIG. 6A along line B-B'.
图6C是图6A的微机电装置沿C-C’线的剖面示意图。FIG. 6C is a schematic cross-sectional view of the MEMS device in FIG. 6A along line C-C'.
图6D是根据本发明另一实施例绘示的电路系统架构图。FIG. 6D is a structural diagram of a circuit system according to another embodiment of the present invention.
图6E是根据本发明另一实施例绘示的微机电装置的剖面示意图。FIG. 6E is a schematic cross-sectional view of a MEMS device according to another embodiment of the present invention.
图7A是根据本发明另一实施例绘示的微机电装置的俯视图。FIG. 7A is a top view of a MEMS device according to another embodiment of the present invention.
图7B是图7A的微机电装置沿D-D’线的剖面示意图。FIG. 7B is a schematic cross-sectional view of the MEMS device in FIG. 7A along line D-D'.
符号说明Symbol Description
10:Y轴微机电磁力计10: Y-axis microcomputer electromagnetic force gauge
11、21、120、220、320:可动质量块11, 21, 120, 220, 320: movable mass
12、22:旋转梁12, 22: Swivel beam
13:导电线圈13: Conductive coil
14、24:感测电极14, 24: Sensing electrodes
15、25、110、210、310:基板15, 25, 110, 210, 310: substrate
20:Z轴微机电加速计20: Z-axis MEMS accelerometer
23:固定座23: Fixed seat
30:支撑盘30: support plate
31:第一可动结构31: The first movable structure
31b:第一质量块31b: the first mass block
31a、32a、262:弹簧31a, 32a, 262: spring
32:第二可动结构32: Second movable structure
32b:第二质量块32b: Second mass block
33:输入电极33: Input electrode
34:电性接地电极34: Electrical ground electrode
35、36:共用电极35, 36: common electrode
37:第一感测电极37: first sensing electrode
38:第二感测电极38: Second sensing electrode
100、200、300、300’、400、500:微机电装置100, 200, 300, 300’, 400, 500: MEMS devices
111、211、311:电极111, 211, 311: electrodes
130、270、370:第一绝缘层130, 270, 370: first insulating layer
121、221、321:第一P型半导体层121, 221, 321: the first P-type semiconductor layer
122、222、322:第一N型半导体层122, 222, 322: the first N-type semiconductor layer
123、223、323:第一PN界面123, 223, 323: the first PN interface
140、230、330:第一导电层140, 230, 330: first conductive layer
140a、230a、330a:第一端140a, 230a, 330a: first end
140b、230b、330b:第二端140b, 230b, 330b: second end
240、340、350、340’、350’:第一固定座240, 340, 350, 340’, 350’: the first fixed seat
240a、340a’:第一外固定座240a, 340a': the first external fixation seat
240b、340b’:第一内固定座240b, 340b': the first internal fixation seat
241、341’:第一沟槽241, 341': first groove
242、342:第一导电柱242, 342: the first conductive column
250、350:固定座250, 350: fixed seat
250a、350a:外固定座250a, 350a: external fixation seat
250b、350b:内固定座250b, 350b: internal fixation seat
251、351:沟槽251, 351: Groove
252、342、352:导电柱252, 342, 352: conductive pillars
260、360、365:第一弹簧260, 360, 365: first spring
280:绝缘层280: insulating layer
380:第二固定座380: The second fixed seat
380a:第二外固定座380a: Second external fixator
380b:第二内固定座380b: Second internal fixation seat
381:第二沟槽381: Second Groove
382:第二导电柱382: The second conductive column
390、395:第二弹簧390, 395: Second spring
405:压控振荡器405: Voltage Controlled Oscillator
410a、410b:运算放大器410a, 410b: operational amplifiers
410:控制与切换单元410: Control and switching unit
420:感测器420: sensor
425:第一导电层425: first conductive layer
425a:第一端425a: first end
425b:第二端425b: second end
430;控制与切换单元430; control and switching unit
440:第一读取电路440: first read circuit
442;第一输出信号442; first output signal
450:第二读取电路450: Second read circuit
452:第二输出信号452: Second output signal
460:计算与补偿处理器460: Calculation and Compensation Processor
510:镜面层510: mirror layer
520:永久磁铁520: permanent magnet
2212、3212:第二P型半导体层2212, 3212: the second P-type semiconductor layer
2222、3222:第二N型半导体层2222, 3222: the second N-type semiconductor layer
2232、3232:第二PN界面2232, 3232: Second PN interface
2213、3213:第三P型半导体层2213, 3213: the third P-type semiconductor layer
2223、3223:第三N型半导体层2223, 3223:the third N-type semiconductor layer
2233、3233:第三PN界面2233, 3233 : the third PN interface
2302、3302:第二导电层2302, 3302: second conductive layer
2303、3303:第三导电层2303, 3303: the third conductive layer
2702、3702:第二绝缘层2702, 3702: second insulating layer
2703、3703:第三绝缘层2703, 3703: third insulation layer
Az:Z轴加速度Az: Z-axis acceleration
B:磁场B: magnetic field
F:劳伦兹力F: Lorenz force
I:电流I: Current
L:向量长度L: vector length
Vac:交流电源Vac: AC power
S1:底面S1: bottom surface
S2:侧面S2: side
SA:加速度信号SA: acceleration signal
SB:磁力信号SB: Magnetic signal
GND:接地端GND: ground terminal
Vp:第一极化电压Vp: first polarization voltage
Vn:第二极化电压Vn: second polarization voltage
具体实施方式Detailed ways
本发明揭露一种具PN界面(PN-Junction)的微机电装置。此种微机电装置包括可动质量块、导电层以及电极。可动质量块包含P型半导体层与N型半导体层。PN界面形成于P型半导体层与N型半导体层的连接面。当交流电流通过导电层时,此微机电装置可避免读取电路输出的电压发生异常变化。此微机电装置适用于感测加速度及磁力,也可以是一种微机电扫描镜(MEMS scanning micro-mirror)。The invention discloses a MEMS device with a PN interface (PN-Junction). The MEMS device includes a movable mass, a conductive layer and electrodes. The movable mass block includes a P-type semiconductor layer and an N-type semiconductor layer. The PN interface is formed on the connection surface between the P-type semiconductor layer and the N-type semiconductor layer. When an alternating current passes through the conductive layer, the MEMS device can prevent abnormal changes in the output voltage of the reading circuit. The MEMS device is suitable for sensing acceleration and magnetic force, and can also be a MEMS scanning micro-mirror.
本发明所揭露的P型半导体层(P-type semiconductor layer)可以是掺杂(doping)少量P型杂质(impurities)(例如硼、铝、镓、铟等)的硅(Si)材料层或锗(Ge)材料层。The P-type semiconductor layer disclosed in the present invention can be a silicon (Si) material layer or a germanium layer doped with a small amount of P-type impurities (such as boron, aluminum, gallium, indium, etc.) (Ge) material layer.
本发明所揭露的N型半导体层(N-type semiconductor layer)可以是掺杂(doping)少量N型杂质(impurities)(例如氮、磷、砷、锑、等)的硅(Si)材料层或锗(Ge)材料层。The N-type semiconductor layer disclosed in the present invention can be a silicon (Si) material layer doped with a small amount of N-type impurities (such as nitrogen, phosphorus, arsenic, antimony, etc.) or germanium (Ge) material layer.
图4是根据本发明的一实施例绘示微机电装置100的示意图。请参考图4,微机电装置100包括:基板110、电极111、可动质量块120、第一导电层140及第一绝缘层130。电极111设置于基板110的上表面。可动质量块120设置于电极111上方。第一绝缘层130设置于可动质量块120与第一导电层140之间,以使可动质量块120与第一导电层140电性绝缘。FIG. 4 is a schematic diagram illustrating a MEMS device 100 according to an embodiment of the present invention. Please refer to FIG. 4 , the MEMS device 100 includes: a substrate 110 , an electrode 111 , a movable mass 120 , a first conductive layer 140 and a first insulating layer 130 . The electrodes 111 are disposed on the upper surface of the substrate 110 . The movable mass 120 is disposed above the electrode 111 . The first insulating layer 130 is disposed between the movable mass 120 and the first conductive layer 140 to electrically insulate the movable mass 120 from the first conductive layer 140 .
可动质量块120包含:第一P型半导体层121、第一N型半导体层122及第一PN界面123。第一P型半导体层121连接第一N型半导体层122。第一PN界面(PN-junction)123形成于第一P型半导体层121与第一N型半导体层122的连接面。The movable mass 120 includes: a first P-type semiconductor layer 121 , a first N-type semiconductor layer 122 and a first PN interface 123 . The first P-type semiconductor layer 121 is connected to the first N-type semiconductor layer 122 . A first PN-junction (PN-junction) 123 is formed on the connection surface between the first P-type semiconductor layer 121 and the first N-type semiconductor layer 122 .
第一导电层140包括第一端140a与第二端140b。当微机电装置100在工作状态时,第一端140a电性连结接地端GND且第二端140b电性耦接交流电源Vac,以使电流流入第一导电层140。另外,电极111可与第一端140a共同电性连结接地端GND。在本实施例中,也可让第一端140a电性耦接交流电源Vac且让第二端140b电性连结接地端GND,使电流流入第一导电层140。此种情形下,电极111应与第一端140b共同电性连结接地端GND。此外,第一P型半导体层121电性耦接第一极化电压(Vp),第一N型半导体层122电性耦接第二极化电压(Vn),且第二极化电压(Vn)大于或等于第一极化电压(Vp)。本发明的极化电压(polarization voltage)是指能使导体产生电荷的电压或使掺杂(doping)少量P型杂质的半导体层或少量N型杂质的半导体层产生电荷的电压。此时,以微机电装置100感测所在环境中的磁场,便会产生劳伦兹力F。此劳伦兹力F会施加在可动质量块120上,进而使可动质量块120产生位移(translation)或转动(rotation)。可动质量块120的位移或转动会造成第一P型半导体层121与电极111间的电容发生改变。因此,微机电装置100可借着感测出的电容改变,然后通过特用集成电路(ASIC)的计算,求得磁力的大小。此外,在交流电压转换的过程中,由于第二极化电压(Vn)大于或等于第一极化电压(Vp),使第一P型半导体层121与第一N型半导体层122之间具有逆向偏压,因此,在交流电压正负转换的瞬间中,第一P型半导体层121与基板上110的电极111不会有带电电荷的增减,也不会造成读取电路输出的电压信号的改变。如此,微机电装置100量测磁力时,可避免量测到异常的感测信号,以增加量测磁力的准确度。The first conductive layer 140 includes a first end 140a and a second end 140b. When the MEMS device 100 is in the working state, the first terminal 140 a is electrically connected to the ground terminal GND and the second terminal 140 b is electrically coupled to the AC power source Vac, so that current flows into the first conductive layer 140 . In addition, the electrode 111 and the first terminal 140a can be electrically connected to the ground terminal GND. In this embodiment, the first terminal 140 a can also be electrically coupled to the AC power Vac and the second terminal 140 b can be electrically connected to the ground terminal GND, so that current flows into the first conductive layer 140 . In this case, the electrode 111 should be electrically connected to the ground terminal GND together with the first terminal 140b. In addition, the first P-type semiconductor layer 121 is electrically coupled to the first polarization voltage (Vp), the first N-type semiconductor layer 122 is electrically coupled to the second polarization voltage (Vn), and the second polarization voltage (Vn ) is greater than or equal to the first polarization voltage (Vp). The polarization voltage in the present invention refers to the voltage that can make the conductor generate charge or make the semiconductor layer doped with a small amount of P-type impurity or the semiconductor layer with a small amount of N-type impurity generate charge. At this moment, the Lorentz force F is generated by sensing the magnetic field in the environment with the MEMS device 100 . The Lorentz force F is exerted on the movable mass 120 , thereby causing translation or rotation of the movable mass 120 . The displacement or rotation of the movable mass 120 will cause the capacitance between the first P-type semiconductor layer 121 and the electrode 111 to change. Therefore, the MEMS device 100 can obtain the magnitude of the magnetic force through the calculation of the ASIC through the sensed capacitance change. In addition, in the process of AC voltage conversion, because the second polarization voltage (Vn) is greater than or equal to the first polarization voltage (Vp), there is a gap between the first P-type semiconductor layer 121 and the first N-type semiconductor layer 122. Reverse bias, therefore, at the moment of the positive and negative switching of the AC voltage, the first P-type semiconductor layer 121 and the electrode 111 on the substrate 110 will not have the increase or decrease of the charged charge, and will not cause the voltage signal output by the read circuit change. In this way, when the MEMS device 100 measures the magnetic force, abnormal sensing signals can be avoided, so as to increase the accuracy of measuring the magnetic force.
在图4绘示的实施例中,微机电装置100可进行部分的修改,以满足不同的功能需求。例如,可动质量块120可以是一中央部位挖空的框架(frame),以使框架的挖空处可以设置固定座。此外,可以使用多个悬臂梁(cantileverbeam)结构的弹簧来连接可动质量块120,以使可动质量块120产生垂直方向(Z轴)上的位移。也可以使用二个扭转梁(torsional beam)结构的弹簧,沿一轴线连接可动质量块120,以使可动质量块120可依此轴线(两旋转梁的中央连线)产生旋转运动。In the embodiment shown in FIG. 4 , the MEMS device 100 can be partially modified to meet different functional requirements. For example, the movable mass 120 may be a frame with a hollowed out central part, so that a fixed seat can be provided in the hollowed out part of the frame. In addition, a plurality of cantilever beam (cantilever beam) springs can be used to connect the movable mass 120 so that the movable mass 120 can be displaced in the vertical direction (Z axis). It is also possible to use two torsion beam (torsional beam) springs to connect the movable mass 120 along an axis, so that the movable mass 120 can rotate along this axis (the central line connecting the two rotating beams).
在图4绘示的实施例中,微机电装置100也可进行不同的设计,以提升微机电装置100的量测灵敏度。例如,第一导电层140可以是单一的导电层或是多重线圈(coil)的导电层。当第一导电层140是多重线圈(coil)的导电层时,可以增加电流与磁场交互感应而产生的生劳伦兹力,使可动质量块120产生较大的位移量或转动量,进而增加微机电装置100的量测灵敏度。另外,当用二个扭转梁(torsional beam),沿一轴线连接可动质量块120时,此轴线可将可动质量块120分成二部分的质量块。当此轴线到这二部分的质量块的重心的距离不相等时,则会使可动质量块120成为非平衡质量块(unbalancedmass)。如此,当可动质量块120承受到劳伦兹力时,会有较大的转动量,进而增加微机电装置100的量测灵敏度。In the embodiment shown in FIG. 4 , the MEMS device 100 can also be designed differently to improve the measurement sensitivity of the MEMS device 100 . For example, the first conductive layer 140 may be a single conductive layer or a conductive layer of multiple coils. When the first conductive layer 140 is a conductive layer of multiple coils (coil), it can increase the Lorentz force generated by the interaction induction between the current and the magnetic field, so that the movable mass 120 can generate a larger displacement or rotation, and then The measurement sensitivity of the MEMS device 100 is increased. In addition, when two torsion beams are used to connect the movable mass 120 along an axis, the axis can divide the movable mass 120 into two parts of the mass. When the distances from the axis to the centers of gravity of the two parts are not equal, the movable mass 120 becomes an unbalanced mass. In this way, when the movable mass 120 bears the Lorentz force, there will be a larger amount of rotation, thereby increasing the measurement sensitivity of the MEMS device 100 .
图5A是根据本发明另一实施例绘示的微机电装置的俯视图。图5B是图5A的微机电装置沿A-A’线的剖面示意图。请参考图5A及5B,本实施例的微机电装置200适用于侦测Y轴磁力的大小。微机电装置200包括基板210、电极211、可动质量块220、第一导电层230、第一绝缘层270、第一固定座240及第一弹簧260。第一固定座240及电极211分别设置于基板210的上表面。第一绝缘层270可设置于可动质量块220与第一导电层230之间。在一实施例中,第一绝缘层270可设置于可动质量块220上,且第一导电层230可设置于第一绝缘层270上,以使可动质量块220与第一导电层230电性绝缘。第一弹簧260连接第一固定座240及可动质量块220,使可动质量块220悬浮于电极211上方。此外,第一导电层230可以是单圈或多圈的导电线圈,也可以是于可动质量块220的上表面形成整面的导电层。FIG. 5A is a top view of a MEMS device according to another embodiment of the present invention. FIG. 5B is a schematic cross-sectional view of the MEMS device in FIG. 5A along line A-A'. Please refer to FIGS. 5A and 5B , the MEMS device 200 of this embodiment is suitable for detecting the magnitude of the Y-axis magnetic force. The MEMS device 200 includes a substrate 210 , an electrode 211 , a movable mass 220 , a first conductive layer 230 , a first insulating layer 270 , a first fixing base 240 and a first spring 260 . The first fixing base 240 and the electrodes 211 are respectively disposed on the upper surface of the substrate 210 . The first insulating layer 270 can be disposed between the movable mass 220 and the first conductive layer 230 . In one embodiment, the first insulating layer 270 can be disposed on the movable mass 220, and the first conductive layer 230 can be disposed on the first insulating layer 270, so that the movable mass 220 and the first conductive layer 230 Electrically insulated. The first spring 260 connects the first fixed seat 240 and the movable mass 220 , so that the movable mass 220 is suspended above the electrode 211 . In addition, the first conductive layer 230 may be a single-turn or multi-turn conductive coil, or may be a conductive layer formed on the entire upper surface of the movable mass 220 .
微机电装置200的可动质量块220包括第一P型半导体层221、第一N型半导体层222。第一N型半导体层222连接第一P型半导体层221以形成第一PN界面223。换言之,第一PN界面223形成于第一P型半导体层221与第一N型半导体层222之间的连接面。在一实施例中,第一P型半导体层221的下表面面向电极211,第一N型半导体层222其下表面与第一P型半导体层221的上表面连接。第一绝缘层270设置于第一N型半导体层222的上表面,第一导电层230设置于第一绝缘层270上。The movable mass 220 of the MEMS device 200 includes a first P-type semiconductor layer 221 and a first N-type semiconductor layer 222 . The first N-type semiconductor layer 222 is connected to the first P-type semiconductor layer 221 to form a first PN interface 223 . In other words, the first PN interface 223 is formed at the connecting surface between the first P-type semiconductor layer 221 and the first N-type semiconductor layer 222 . In one embodiment, the lower surface of the first P-type semiconductor layer 221 faces the electrode 211 , and the lower surface of the first N-type semiconductor layer 222 is connected to the upper surface of the first P-type semiconductor layer 221 . The first insulating layer 270 is disposed on the upper surface of the first N-type semiconductor layer 222 , and the first conductive layer 230 is disposed on the first insulating layer 270 .
微机电装置200的第一固定座240包括第二P型半导体层2212、第二N型半导体层2222。第二N型半导体层2222连接第二P型半导体层2212以形成第二PN界面2232。也就是说,第二PN界面2232形成于第二P型半导体层2212与第二N型半导体层2222的连接面。此外,第二P型半导体层2212设置于第二N型半导体层2222的底面S1与侧面S2。The first fixing seat 240 of the MEMS device 200 includes a second P-type semiconductor layer 2212 and a second N-type semiconductor layer 2222 . The second N-type semiconductor layer 2222 is connected to the second P-type semiconductor layer 2212 to form a second PN interface 2232 . That is to say, the second PN interface 2232 is formed on the connection surface between the second P-type semiconductor layer 2212 and the second N-type semiconductor layer 2222 . In addition, the second P-type semiconductor layer 2212 is disposed on the bottom surface S1 and the side surface S2 of the second N-type semiconductor layer 2222 .
微机电装置200的第一弹簧260包括第三P型半导体层2213、第三N型半导体层2223。第三N型半导体层2223连接第三P型半导体层2213以形成第三PN界面2233。换言之,第三PN界面2233形成于第三P型半导体层2213与第三N型半导体层2223的连接面。此外,第一弹簧260另包含第三绝缘层2703及第三导电层2303。第三绝缘层2703设置于第三N型半导体层2223上且第三导电层2303设置于第三绝缘层2703上,以使第三N型半导体层2223与第三导电层2303电性绝缘。The first spring 260 of the MEMS device 200 includes a third P-type semiconductor layer 2213 and a third N-type semiconductor layer 2223 . The third N-type semiconductor layer 2223 is connected to the third P-type semiconductor layer 2213 to form a third PN interface 2233 . In other words, the third PN interface 2233 is formed on the connection surface between the third P-type semiconductor layer 2213 and the third N-type semiconductor layer 2223 . In addition, the first spring 260 further includes a third insulating layer 2703 and a third conductive layer 2303 . The third insulating layer 2703 is disposed on the third N-type semiconductor layer 2223 and the third conductive layer 2303 is disposed on the third insulating layer 2703 to electrically insulate the third N-type semiconductor layer 2223 from the third conductive layer 2303 .
第一弹簧260的第三P型半导体层2213连接第二P型半导体层2212且第一弹簧260的第三P型半导体层2213连接可动质量块220的第一P型半导体层221,以形成可使第一P型半导体层221电性耦接第一极化电压(Vp)的电性通道。The third P-type semiconductor layer 2213 of the first spring 260 is connected to the second P-type semiconductor layer 2212 and the third P-type semiconductor layer 2213 of the first spring 260 is connected to the first P-type semiconductor layer 221 of the movable mass 220 to form The first P-type semiconductor layer 221 can be electrically coupled to the electrical channel of the first polarization voltage (Vp).
为了增加电性通道(electrical interconnection),第一固定座240可另包括第一沟槽241。第一沟槽241可将第一固定座240分隔成相互电性绝缘的第一内固定座240b与第一外固定座240a。第一内固定座240b包含第二P型半导体层2212及第二N型半导体层2222。第一外固定座240a包含第二N型半导体层2222。第一内固定座240b的第二P型半导体层2212设置于第一内固定座240b的第二N型半导体层2222的底面S1与侧面S2。In order to increase electrical interconnection, the first fixing seat 240 may further include a first groove 241 . The first groove 241 can separate the first fixing base 240 into a first inner fixing base 240 b and a first outer fixing base 240 a which are electrically insulated from each other. The first internal fixing seat 240b includes a second P-type semiconductor layer 2212 and a second N-type semiconductor layer 2222 . The first external fixing seat 240 a includes a second N-type semiconductor layer 2222 . The second P-type semiconductor layer 2212 of the first inner fixing seat 240b is disposed on the bottom surface S1 and the side surface S2 of the second N-type semiconductor layer 2222 of the first inner fixing seat 240b.
第一固定座240还包括第二绝缘层2702、第二导电层2302及以及导电柱242。第二绝缘层2702设置于第一内固定座240b、第一外固定座240a及第一沟槽241上。第二导电层2302设置于第二绝缘层上2702。导电柱242贯穿第一固定座240a的第二绝缘层2702且连接第一固定座240的第二导电层2302与第一外固定座240a。The first fixing seat 240 further includes a second insulating layer 2702 , a second conductive layer 2302 and a conductive pillar 242 . The second insulating layer 2702 is disposed on the first inner fixing seat 240 b , the first outer fixing seat 240 a and the first groove 241 . The second conductive layer 2302 is disposed on the second insulating layer 2702 . The conductive post 242 penetrates the second insulating layer 2702 of the first fixing seat 240a and connects the second conductive layer 2302 of the first fixing seat 240 with the first outer fixing seat 240a.
第一弹簧260的第三P型半导体层2213连接第一P型半导体层221及第一内固定座240b的第二P型半导体层2212,以形成可使第一P型半导体层221电性耦接第一极化电压(Vp)的电性通道。The third P-type semiconductor layer 2213 of the first spring 260 is connected to the first P-type semiconductor layer 221 and the second P-type semiconductor layer 2212 of the first internal fixing seat 240b, so as to form a structure that can electrically couple the first P-type semiconductor layer 221. The electrical channel connected to the first polarization voltage (Vp).
此外,为了在固定座250上有更多的电性通道(electricalinterconnection),固定座250另包括沟槽251。沟槽251可将固定座250分隔成相互电性绝缘的外固定座250a与内固定座250b。内固定座250b为第二N型半导体层2222。外固定座250a也为第二N型半导体层2222。固定座250还包括第二导电层2302、第二绝缘层2702及以及导电柱252。第二绝缘层2702设置于内固定座250b、外固定座250a以及沟槽251上。第二导电层2302设置于第二绝缘层上2702。导电柱252贯穿固定座250的第二绝缘层2702且连接固定座250的第二导电层2302与外固定座250a。In addition, in order to have more electrical interconnections on the fixing base 250 , the fixing base 250 further includes a groove 251 . The groove 251 can separate the fixing base 250 into an outer fixing base 250 a and an inner fixing base 250 b that are electrically insulated from each other. The inner fixing seat 250b is the second N-type semiconductor layer 2222 . The outer fixing seat 250a is also the second N-type semiconductor layer 2222 . The fixing base 250 further includes a second conductive layer 2302 , a second insulating layer 2702 and a conductive post 252 . The second insulating layer 2702 is disposed on the inner fixing seat 250 b , the outer fixing seat 250 a and the groove 251 . The second conductive layer 2302 is disposed on the second insulating layer 2702 . The conductive post 252 penetrates through the second insulating layer 2702 of the fixing base 250 and connects the second conductive layer 2302 of the fixing base 250 with the outer fixing base 250a.
微机电装置200的弹簧262包括第三N型半导体层2223、第三绝缘层2703及第三导电层2303。第三绝缘层2703设置于第三N型半导体层2223上且第三导电层2303设置于第三绝缘层2703上,使第三N型半导体层2223与第三导电层2303电性绝缘。The spring 262 of the MEMS device 200 includes a third N-type semiconductor layer 2223 , a third insulating layer 2703 and a third conductive layer 2303 . The third insulating layer 2703 is disposed on the third N-type semiconductor layer 2223 and the third conductive layer 2303 is disposed on the third insulating layer 2703 to electrically insulate the third N-type semiconductor layer 2223 from the third conductive layer 2303 .
此外,弹簧262的第三N型半导体层2223连接可动质量块220的第一N型半导体层221及内固定座250b的第二N型半导体层2222,以形成可使第一N型半导体层221电性耦接第二极化电压(Vn)的电性通道。In addition, the third N-type semiconductor layer 2223 of the spring 262 is connected to the first N-type semiconductor layer 221 of the movable mass 220 and the second N-type semiconductor layer 2222 of the inner fixed seat 250b, so as to form the first N-type semiconductor layer that can 221 is electrically coupled to the electrical channel of the second polarization voltage (Vn).
为了使电流能供给至可动质量块220上的第一导电层230,第一弹簧260的第三导电层2303连接第一固定座240的第二导电层2302及第一导电层230的第一端230a,以形成可使第一端230a电性连结接地端GND的电性通道。此外,弹簧262的第三导电层2303连接固定座250的第二导电层2302及第一导电层230的第二端230b,以形成可使第二端230b电性耦接交流电源的电性通道。In order to supply current to the first conductive layer 230 on the movable mass 220, the third conductive layer 2303 of the first spring 260 is connected to the second conductive layer 2302 of the first fixed seat 240 and the first conductive layer 230 of the first conductive layer 230. end 230a to form an electrical channel for electrically connecting the first end 230a to the ground end GND. In addition, the third conductive layer 2303 of the spring 262 is connected to the second conductive layer 2302 of the fixing seat 250 and the second end 230b of the first conductive layer 230 to form an electrical channel for electrically coupling the second end 230b to an AC power source. .
在一实施例中,微机电装置200在进行磁场量测时,可使第一P型半导体层221电性耦接第一极化电压(Vp)且使第一N型半导体层222电性耦接第二极化电压(Vn),其中第二极化电压(Vn)的大于或等于第一极化电压(Vp)。此外,第一导电层230的第一端230a电性连结接地端GND且第一导电层230的第二端230b电性耦接交流电源,并由于第一端230a与第二端230b之间的电位差,而于第一导电层230上产生电流。另外,电极211则是与第一端230a共同电性连结接地端GND。In one embodiment, the MEMS device 200 can electrically couple the first P-type semiconductor layer 221 to the first polarization voltage (Vp) and electrically couple the first N-type semiconductor layer 222 when measuring the magnetic field. Connect to the second polarization voltage (Vn), wherein the second polarization voltage (Vn) is greater than or equal to the first polarization voltage (Vp). In addition, the first end 230a of the first conductive layer 230 is electrically connected to the ground terminal GND and the second end 230b of the first conductive layer 230 is electrically coupled to the AC power supply, and due to the connection between the first end 230a and the second end 230b The potential difference generates a current on the first conductive layer 230 . In addition, the electrode 211 is electrically connected to the ground terminal GND together with the first terminal 230a.
当微机电装置200所在的环境有沿Y轴方向的磁场B或磁场B的分量存在时,第一导电层230中的电流便会与磁场B发生交互作用而产生劳伦兹力F。此劳伦兹力F会施加在可动质量块220上,进而使可动质量块220以A-A’轴线为旋转轴产生转动(rotation)。可动质量块220的转动会造成第一P型半导体层221与电极211间的电容发生改变。因此,微机电装置200可借着感测出的电容改变,然后通过特用集成电路(ASIC)的计算,求得磁力B的大小。When the environment where the MEMS device 200 is located has a magnetic field B or a component of the magnetic field B along the Y-axis, the current in the first conductive layer 230 will interact with the magnetic field B to generate a Lorentz force F. The Lorentz force F is exerted on the movable mass 220, thereby causing the movable mass 220 to rotate around the A-A' axis as the rotation axis. The rotation of the movable mass 220 will cause the capacitance between the first P-type semiconductor layer 221 and the electrode 211 to change. Therefore, the MEMS device 200 can obtain the magnitude of the magnetic force B through the calculation of the ASIC through the sensed capacitance change.
此外,如上述实施例,由于第二极化电压(Vn)大于或等于第一极化电压(Vp),第一P型半导体层221与第二半导体层222之间的第一PN界面223具有逆向偏压。因此,在交流电压转换的过程中,第一P型半导体层221的下表面的电荷维持相同的带电电性。换言之,在交流电压转换的过程中,电极211不会产生感应电流,也不会造成读取电路输出的电压信号的改变。如此,微机电装置200因而能避免量测到异常信号,进而增加微机电装置200量测磁力的准确度。In addition, as in the above embodiments, since the second polarization voltage (Vn) is greater than or equal to the first polarization voltage (Vp), the first PN interface 223 between the first P-type semiconductor layer 221 and the second semiconductor layer 222 has reverse bias. Therefore, during the AC voltage conversion process, the charges on the lower surface of the first P-type semiconductor layer 221 maintain the same chargeability. In other words, during the AC voltage conversion process, the electrode 211 will not generate induced current, nor will it cause changes in the voltage signal output by the reading circuit. In this way, the micro-electro-mechanical device 200 can avoid measuring abnormal signals, thereby increasing the accuracy of the micro-electro-mechanical device 200 in measuring magnetic force.
图6A是根据本发明另一实施例绘示的微机电装置的俯视图,图6B是图6A的微机电装置沿B-B’线的剖面示意图,图6C是图6A的微机电装置沿C-C’线的剖面示意图。请参考图6A、图6B及6C。6A is a top view of a MEMS device according to another embodiment of the present invention, FIG. 6B is a schematic cross-sectional view of the MEMS device in FIG. 6A along line BB', and FIG. 6C is a schematic view of the MEMS device in FIG. 6A along C- Schematic cross-sectional view of line C'. Please refer to FIG. 6A , FIG. 6B and 6C.
微机电装置300包括基板310、电极311、可动质量块320、第一导电层330、第一绝缘层370、第一固定座340,350、第二固定座380、第一弹簧360、365及第二弹簧390、395。The MEMS device 300 includes a substrate 310, an electrode 311, a movable mass 320, a first conductive layer 330, a first insulating layer 370, a first fixing seat 340, 350, a second fixing seat 380, first springs 360, 365 and Second spring 390,395.
第一固定座340、350、第二固定座380及电极311分别设置于基板310的上表面。第一绝缘层370可设置于可动质量块320与第一导电层330之间。更详细地说,第一绝缘层370可设置于可动质量块320上且第一导电层330可设置于第一绝缘层370上,以使可动质量块320与第一导电层330电性绝缘。第一弹簧360、365分别连接第一固定座350,340及可动质量块320。第二弹簧390、395分别连接至第二固定座380及可动质量块320而使可动质量块320悬浮于电极311上方。此外,第一导电层330可以是单圈或多圈的导电线圈,也可以是于可动质量块320的上表面形成整面的导电层。The first fixing seats 340 , 350 , the second fixing seats 380 and the electrodes 311 are respectively disposed on the upper surface of the substrate 310 . The first insulating layer 370 can be disposed between the movable mass 320 and the first conductive layer 330 . In more detail, the first insulating layer 370 can be disposed on the movable mass 320 and the first conductive layer 330 can be disposed on the first insulating layer 370, so that the movable mass 320 and the first conductive layer 330 are electrically connected. insulation. The first springs 360 , 365 are respectively connected to the first fixing seats 350 , 340 and the movable mass 320 . The second springs 390 and 395 are respectively connected to the second fixed base 380 and the movable mass 320 to suspend the movable mass 320 above the electrode 311 . In addition, the first conductive layer 330 may be a single-turn or multi-turn conductive coil, and may also be a conductive layer formed on the entire upper surface of the movable mass 320 .
微机电装置300的可动质量块320包括第一P型半导体层321、第一N型半导体层322。第一N型半导体层322连接第一P型半导体层321以形成第一PN界面323。换言之,第一PN界面323形成于第一P型半导体层321与第一N型半导体层322之间的连接面。举例而言,第一P型半导体层321的下表面面向电极311,第一N型半导体层322其下表面与第一P型半导体层321的上表面连接。此外,第一绝缘层370设置于第一N型半导体层322的上表面,第一导电层330设置于第一绝缘层370上。The movable mass 320 of the MEMS device 300 includes a first P-type semiconductor layer 321 and a first N-type semiconductor layer 322 . The first N-type semiconductor layer 322 is connected to the first P-type semiconductor layer 321 to form a first PN interface 323 . In other words, the first PN interface 323 is formed at the connecting surface between the first P-type semiconductor layer 321 and the first N-type semiconductor layer 322 . For example, the lower surface of the first P-type semiconductor layer 321 faces the electrode 311 , and the lower surface of the first N-type semiconductor layer 322 is connected to the upper surface of the first P-type semiconductor layer 321 . In addition, the first insulating layer 370 is disposed on the upper surface of the first N-type semiconductor layer 322 , and the first conductive layer 330 is disposed on the first insulating layer 370 .
微机电装置300的第一固定座340包括第二P型半导体层3212、第二N型半导体层3222。第二N型半导体层3222连接第二P型半导体层3212以形成第二PN界面3232。也就是说,第二PN界面3232形成于第二P型半导体层3212与第二N型半导体层3222的连接面。此外,第二P型半导体层3212设置于第二N型半导体层3222的底面S1与侧面S2。The first fixing seat 340 of the MEMS device 300 includes a second P-type semiconductor layer 3212 and a second N-type semiconductor layer 3222 . The second N-type semiconductor layer 3222 is connected to the second P-type semiconductor layer 3212 to form a second PN interface 3232 . That is to say, the second PN interface 3232 is formed on the connection surface between the second P-type semiconductor layer 3212 and the second N-type semiconductor layer 3222 . In addition, the second P-type semiconductor layer 3212 is disposed on the bottom surface S1 and the side surface S2 of the second N-type semiconductor layer 3222 .
微机电装置300的第一弹簧365包括第三P型半导体层3213、第三N型半导体层3223。第三N型半导体层3223连接第三P型半导体层3213以形成第三PN界面3233。换言之,第三PN界面3233形成于第三P型半导体层3213与第三N型半导体层3223的连接面。此外,第一弹簧365另包含第三绝缘层3703设置于第三N型半导体层3223上。The first spring 365 of the MEMS device 300 includes a third P-type semiconductor layer 3213 and a third N-type semiconductor layer 3223 . The third N-type semiconductor layer 3223 is connected to the third P-type semiconductor layer 3213 to form a third PN interface 3233 . In other words, the third PN interface 3233 is formed on the connection surface between the third P-type semiconductor layer 3213 and the third N-type semiconductor layer 3223 . In addition, the first spring 365 further includes a third insulating layer 3703 disposed on the third N-type semiconductor layer 3223 .
第一弹簧365的第三P型半导体层3213连接第一固定座340的第二P型半导体层3212。第一固定座340的第二P型半导体层3212包覆第一固定座340的第二N型半导体层3222的整个底面S1。第一弹簧365的第三P型半导体层3213连接可动质量块320的第一P型半导体层321,以形成第一P型半导体层321电性耦接第一极化电压(Vp)的电性通道。The third P-type semiconductor layer 3213 of the first spring 365 is connected to the second P-type semiconductor layer 3212 of the first fixing base 340 . The second P-type semiconductor layer 3212 of the first fixing base 340 covers the entire bottom surface S1 of the second N-type semiconductor layer 3222 of the first fixing base 340 . The third P-type semiconductor layer 3213 of the first spring 365 is connected to the first P-type semiconductor layer 321 of the movable mass 320 to form an electrical connection between the first P-type semiconductor layer 321 and the first polarization voltage (Vp). sexual channel.
为了增加微机电装置300的电性通道,第一固定座350可另包括第一沟槽351。第一沟槽351可将第一固定座350分隔成相互电性绝缘的第一内固定座350b与第一外固定座350a。第一内固定座350b包含第二N型半导体层3222。第一外固定座340a包含第二N型半导体层3222。In order to increase the electrical channel of the MEMS device 300 , the first fixing seat 350 may further include a first groove 351 . The first groove 351 can separate the first fixing base 350 into a first inner fixing base 350 b and a first outer fixing base 350 a which are electrically insulated from each other. The first internal fixing seat 350b includes a second N-type semiconductor layer 3222 . The first external fixing seat 340 a includes a second N-type semiconductor layer 3222 .
第一固定座350还包括第二绝缘层3702、第二导电层3302及以及导电柱352。第二绝缘层3702设置于第一内固定座350b、第一外固定座350a及第一沟槽351上。第二导电层3302设置于第二绝缘层上3702。导电柱352贯穿第一固定座350的第二绝缘层3702且连接第一固定座350的第二导电层3302与第一外固定座350a。The first fixing seat 350 further includes a second insulating layer 3702 , a second conductive layer 3302 and a conductive pillar 352 . The second insulating layer 3702 is disposed on the first inner fixing seat 350 b , the first outer fixing seat 350 a and the first groove 351 . The second conductive layer 3302 is disposed on the second insulating layer 3702 . The conductive post 352 penetrates through the second insulating layer 3702 of the first fixing base 350 and connects the second conductive layer 3302 of the first fixing base 350 with the first outer fixing base 350a.
微机电装置300的另一第一弹簧360包括第三P型半导体层3213、第三N型半导体层3223。第三N型半导体层3223连接第三P型半导体层3213以形成第三PN界面3233。换言之,第三PN界面3233形成于第三P型半导体层3213与第三N型半导体层3223的连接面。此外,第一弹簧360另包含第三绝缘层3703及第三导电层3303。第三绝缘层3703设置于第三N型半导体层3223上。第三导电层3303设置于第三绝缘层3703上,以使第三N型半导体层3223与第三导电层3303电性绝缘。Another first spring 360 of the MEMS device 300 includes a third P-type semiconductor layer 3213 and a third N-type semiconductor layer 3223 . The third N-type semiconductor layer 3223 is connected to the third P-type semiconductor layer 3213 to form a third PN interface 3233 . In other words, the third PN interface 3233 is formed on the connection surface between the third P-type semiconductor layer 3213 and the third N-type semiconductor layer 3223 . In addition, the first spring 360 further includes a third insulating layer 3703 and a third conductive layer 3303 . The third insulating layer 3703 is disposed on the third N-type semiconductor layer 3223 . The third conductive layer 3303 is disposed on the third insulating layer 3703 to electrically insulate the third N-type semiconductor layer 3223 from the third conductive layer 3303 .
第一弹簧360的第三N型半导体层3223连接可动质量块320的第一N型半导体层322及第一内固定座350b的第二N型半导体层3222,以形成可动质量块320的第一N型半导体层322电性耦接第二极化电压(Vn)的电性通道。The third N-type semiconductor layer 3223 of the first spring 360 is connected to the first N-type semiconductor layer 322 of the movable mass 320 and the second N-type semiconductor layer 3222 of the first inner fixed seat 350b to form the movable mass 320 The first N-type semiconductor layer 322 is electrically coupled to the electrical channel of the second polarization voltage (Vn).
微机电装置300的可动质量块320为中央镂空的框架。第二固定座380包含:第二沟槽381,用以将第二固定座380分隔为相互电性绝缘的第二内固定座380b与第二外固定座380a。第二绝缘层3702设置于第二内固定座380b、第二外固定座380a及第二沟槽381上。第二导电层3302,设置于第二绝缘层3702上。导电柱382贯穿第二固定座380的第二绝缘层3702且连接第二固定座380的第二导电层3302及第二内固定座380b。第二内固定座380b包含第二N型半导体层3222。第二外固定座380a包含第二N型半导体层3222。在本实施例中,不会限制第二沟槽381的形状。例如,第二沟槽381的形状可以是一圆形环或一方形环。The movable mass 320 of the MEMS device 300 is a frame hollowed out in the center. The second fixing seat 380 includes: a second groove 381 for separating the second fixing seat 380 into a second inner fixing seat 380b and a second outer fixing seat 380a which are electrically insulated from each other. The second insulating layer 3702 is disposed on the second inner fixing seat 380 b , the second outer fixing seat 380 a and the second groove 381 . The second conductive layer 3302 is disposed on the second insulating layer 3702 . The conductive column 382 penetrates through the second insulating layer 3702 of the second fixing seat 380 and connects the second conductive layer3302 of the second fixing seat 380 and the second inner fixing seat 380b. The second internal fixing seat 380b includes a second N-type semiconductor layer 3222 . The second external fixing seat 380a includes a second N-type semiconductor layer 3222 . In this embodiment, the shape of the second groove 381 is not limited. For example, the shape of the second groove 381 may be a circular ring or a square ring.
微机电装置300的第二弹簧390、395设置于框架320内,并沿B-B’轴线的方向连接可动质量块320。第二弹簧390、395与第一弹簧360、365位于同一轴线B-B’的延伸方向上,使框架320适于绕轴线B-B’旋转。微机电装置300的第二弹簧390、395包括第三N型半导体层3223、第三绝缘层3703及第三导电层3303。第三绝缘层3703设置于第三N型半导体层3223上且第三导电层3303设置于第三绝缘层3703上,使第三N型半导体层3223与第三导电层3303电性绝缘。The second springs 390, 395 of the MEMS device 300 are disposed in the frame 320 and connected to the movable mass 320 along the direction of the B-B' axis. The second springs 390, 395 are located in the same extension direction of the axis B-B' as the first springs 360, 365, so that the frame 320 is adapted to rotate around the axis B-B'. The second springs 390 and 395 of the MEMS device 300 include a third N-type semiconductor layer 3223 , a third insulating layer 3703 and a third conductive layer 3303 . The third insulating layer 3703 is disposed on the third N-type semiconductor layer 3223 and the third conductive layer 3303 is disposed on the third insulating layer 3703 to electrically insulate the third N-type semiconductor layer 3223 from the third conductive layer 3303 .
第二弹簧390、395的第三N型半导体层3223连接可动质量块320的第一N型半导体层322及第二外固定座380a的第二N型半导体层3222,以形成一电性通道。The third N-type semiconductor layer 3223 of the second spring 390, 395 is connected to the first N-type semiconductor layer 322 of the movable mass 320 and the second N-type semiconductor layer 3222 of the second external fixed seat 380a to form an electrical channel .
为了提供电流能给可动质量块320上的第一导电层330,分别需要二条相互绝缘的电性通道。例如,第一弹簧360的第三导电层3303可连接第一固定座350的第二导电层3302及第一导电层330的第一端330a,以形成可使第一端330a电性连结接地端GND的电性通道。第二弹簧390的第三导电层3303连接第二固定座380的第二导电层3302及第一导电层330的第二端330b,以形成可使第二端330b可电性耦接交流电源Vac的电性通道。如此,便能使电流流入可动质量块320上的第一导电层330。In order to provide current energy to the first conductive layer 330 on the movable mass 320 , two electrically insulated channels are required respectively. For example, the third conductive layer 3303 of the first spring 360 can be connected to the second conductive layer 3302 of the first fixing seat 350 and the first end 330a of the first conductive layer 330 to form an electrical connection between the first end 330a and the ground terminal. Electrical channel for GND. The third conductive layer 3303 of the second spring 390 is connected to the second conductive layer 3302 of the second fixing seat 380 and the second end 330b of the first conductive layer 330, so as to form the second end 330b that can be electrically coupled to the AC power Vac. electrical channels. In this way, current can flow into the first conductive layer 330 on the movable mass 320 .
借着不同的电性耦接,微机电装置300具有感测磁场及感测加速度的能力。当微机电装置300要进行磁场量测时,可使第一P型半导体层321电性耦接第一极化电压(Vp),且使第一N型半导体层322电性耦接第二极化电压(Vn),其中第二极化电压(Vn)大于或等于第一极化电压(Vp)。此外,第一导电层330的第一端330a电性连结接地端GND且第一导电层330的第二端330b电性耦接交流电源,以使第一导电层的第一端330a与第二端330b之间具有一电位差而产生交流电流流入第一导电层330。再者,电极311与第一端330a共同电性连结接地端GND。当第一导电层330耦接交流电源的第一端330a与电性连结接地端GND的第二端330b产生与上述高低电位相反的电位差,并且产生交流电流流入第一导电层330。Through different electrical couplings, the MEMS device 300 has the capability of sensing magnetic field and sensing acceleration. When the MEMS device 300 is to measure the magnetic field, the first P-type semiconductor layer 321can be electrically coupled to the first polarization voltage (Vp), and the first N-type semiconductor layer 322 can be electrically coupled to the second polarity. polarization voltage (Vn), wherein the second polarization voltage (Vn) is greater than or equal to the first polarization voltage (Vp). In addition, the first end 330a of the first conductive layer 330 is electrically connected to the ground terminal GND and the second end 330b of the first conductive layer 330 is electrically coupled to an AC power source, so that the first end 330a of the first conductive layer is connected to the second There is a potential difference between the terminals 330b to generate alternating current to flow into the first conductive layer 330 . Furthermore, the electrode 311 and the first terminal 330a are electrically connected to the ground terminal GND. When the first end 330a of the first conductive layer 330 is coupled to the AC power source and the second end 330b is electrically connected to the ground GND, a potential difference opposite to the above-mentioned high and low potentials is generated, and an alternating current flows into the first conductive layer 330 .
当微机电装置300所在的环境有沿Y轴方向的磁场B存在时或沿Y轴方向有磁场B的分量存在时,第一导电层330中的电流便会与磁场B发生交互作用而产生劳伦兹力F。此劳伦兹力F会施加在可动质量块(框架)320上,进而使可动质量块320以B-B’轴线为旋转轴产生转动。可动质量块320的转动会造成第一P型半导体层321与电极311间的电容发生改变。因此,微机电装置300可借着感测出的电容改变,然后通过特用集成电路(ASIC)的计算,求得磁力B的大小。此外,在交流电压转换的过程中,由于第二极化电压(Vn)大于或等于第一极化电压(Vp),第一P型半导体与321与第一N型半导体322之间的第一PN界面323具有逆向偏压使第一P型半导体层321的下表面与电极311分别维持相同的电荷。如此,就能防止第一P型半导体层321与电极311在交流电压转换的过程中产生电荷的增减,电极311因此不会产生感应电流,也不会造成读取电路输出的电压信号的改变。以增加微机电装置200量测磁力时的准确度。When the environment where the microelectromechanical device 300 is located has a magnetic field B along the Y-axis direction or a component of the magnetic field B along the Y-axis direction, the current in the first conductive layer 330 will interact with the magnetic field B to generate fatigue. Renzli F. The Lorentz force F will be exerted on the movable mass (frame) 320, thereby causing the movable mass 320 to rotate around the B-B' axis. The rotation of the movable mass 320 will cause the capacitance between the first P-type semiconductor layer 321 and the electrode 311 to change. Therefore, the MEMS device 300 can obtain the magnitude of the magnetic force B through the calculation of the ASIC through the sensed capacitance change. In addition, during the AC voltage conversion process, since the second polarization voltage (Vn) is greater than or equal to the first polarization voltage (Vp), the first P-type semiconductor and 321 and the first N-type semiconductor 322 between the first The PN interface 323 has a reverse bias voltage so that the lower surface of the first P-type semiconductor layer 321 and the electrode 311 maintain the same charge respectively. In this way, it is possible to prevent the first P-type semiconductor layer 321 and the electrode 311 from increasing or decreasing the charge during the AC voltage conversion process, so that the electrode 311 will not generate an induced current, nor will it cause a change in the voltage signal output by the readout circuit. . In order to increase the accuracy when the MEMS device 200 measures the magnetic force.
在本实施例中,微机电装置300在进行垂直方向(Z轴)的加速度量测时,只要使第一P型半导体层321电性耦接第一极化电压(Vp)且使电极311电性连结接地端GND即可。换言之,微机电装置300在进行Z轴的加速度量测时,无需使电流流入可动质量块320上的第一导电层330。当微机电装置200所在的环境有沿Z轴方向的加速度Az存在时或沿Z轴方向有加速度Az的分量存在时,可动质量块320会以B-B’轴线为旋转轴产生转动。可动质量块320的转动会造成第一P型半导体层321与电极311间的电容发生改变。因此,微机电装置300可借着感测电容的改变,然后通过特用集成电路(ASIC)的计算,求得加速度Az的大小。In this embodiment, when the MEMS device 300 measures the acceleration in the vertical direction (Z axis), it only needs to make the first P-type semiconductor layer 321 electrically coupled to the first polarization voltage (Vp) and make the electrode 311 electrically Just connect it to the ground terminal GND. In other words, the MEMS device 300 does not need to flow current into the first conductive layer 330 on the movable mass 320 when measuring the Z-axis acceleration. When the environment where the MEMS device 200 is located has an acceleration Az along the Z-axis direction or a component of the acceleration Az along the Z-axis direction, the movable mass 320 will rotate around the B-B' axis. The rotation of the movable mass 320 will cause the capacitance between the first P-type semiconductor layer 321 and the electrode 311 to change. Therefore, the MEMS device 300 can obtain the magnitude of the acceleration Az by sensing the change of the capacitance, and then calculating by an application specific integrated circuit (ASIC).
微机电装置300的第一导电层330可以是多重线圈的导电层,以增加电流与磁场交互感应而产生的劳伦兹力,进而提升微机电装置300的量测磁力时的灵敏度。此外,微机电装置300的第一弹簧360、365及第二弹簧390、395沿同一轴线的延伸方向上连接第一可动质量块320时,可形成一旋转轴线B-B’。此轴线可将可动质量块320分成二部分的可动质量块。当此轴线B-B’到这二部分的可动质量块的重心的距离不相等时,则会使可动质量块320成为非平衡质量块(unbalanced mass),进而增加微机电装置300的量测磁力时的灵敏度或量测加速度时的的灵敏度。The first conductive layer 330 of the MEMS device 300 can be a conductive layer of multiple coils, so as to increase the Lorentz force generated by the mutual induction between the current and the magnetic field, thereby improving the sensitivity of the MEMS device 300 when measuring magnetic force. In addition, when the first springs 360, 365 and the second springs 390, 395 of the MEMS device 300 are connected to the first movable mass 320 along the extending direction of the same axis, a rotation axis B-B' can be formed. This axis can divide the movable mass 320 into two parts of the movable mass. When the distances from the axis BB' to the centers of gravity of the movable mass blocks of the two parts are not equal, the movable mass block 320 will become an unbalanced mass block (unbalanced mass), thereby increasing the quantity of the microelectromechanical device 300. Sensitivity when measuring magnetic force or sensitivity when measuring acceleration.
在一实施例中,磁力侦测方向是以Y轴为例,且加速度的侦测方向是以Z轴为例,但本发明并不限制于此。经由适当的调整基版310的方向,即能使微机电装置300可侦测其它轴的磁场大小及其它轴的加速度大小。例如,图6A中的微机电装置300若以Z轴为旋转轴,旋转90度之后,即能感测X轴的磁场大小及Z轴的加速度大小。In one embodiment, the magnetism detection direction is exemplified by the Y axis, and the acceleration detection direction is exemplified by the Z axis, but the invention is not limited thereto. By properly adjusting the direction of the substrate 310 , the MEMS device 300 can detect the magnitude of the magnetic field of other axes and the magnitude of acceleration of other axes. For example, if the MEMS device 300 in FIG. 6A takes the Z-axis as the rotation axis, after rotating 90 degrees, it can sense the magnetic field of the X-axis and the acceleration of the Z-axis.
为了使图6A中的微机电装置300在同时量测磁场及加速度时,避免加速度信号及磁力信号皆产生耦合,本发明提出一种具感测器420的微机电装置400,如图6D所绘示的实施例。微机电装置400包括共构感测器420(如图6D中,虚线框线中所绘示)及特用集成电路芯片(ASIC Chip)(图未示)。感测器420包含第一导电层425,其中,第一导电层425包含第一端425a及第二端425b。特用集成电路芯片(图未示)包含压控振荡器(Voltage-ControlledOscillator;VCO)405、运算放大器(Operational Amplifer;OA)410a,410b、控制与切换单元430、第一读取电路440、第二读取电路450及计算与补偿处理器460。在本实施例中,感测器420可以是如图6A至图6C中的微机电装置300,但本发明并不限制于此。为简化说明,本实施例将以微机电装置300取代部分感测器420的说明。In order to prevent the acceleration signal and the magnetic force signal from coupling when the MEMS device 300 in FIG. 6A measures the magnetic field and acceleration at the same time, the present invention proposes a MEMS device 400 with a sensor 420, as shown in FIG. 6D The example shown. The MEMS device 400 includes a co-constructed sensor 420 (shown in a dotted frame in FIG. 6D ) and an ASIC Chip (not shown). The sensor 420 includes a first conductive layer 425, wherein the first conductive layer 425 includes a first end 425a and a second end 425b. The special integrated circuit chip (not shown in the figure) includes a voltage-controlled oscillator (Voltage-Controlled Oscillator; VCO) 405, an operational amplifier (Operational Amplifer; OA) 410a, 410b, a control and switching unit 430, a first reading circuit 440, a second Two reading circuit 450 and calculation and compensation processor 460 . In this embodiment, the sensor 420 may be the MEMS device 300 as shown in FIGS. 6A to 6C , but the present invention is not limited thereto. To simplify the description, in this embodiment, the MEMS device 300 is used to replace part of the description of the sensor 420 .
在一实施例中,压控振荡器405、运算放大器410a,410b及切换器(图未示)可提供一交流电源(图未示)给第一导电层425。因此,电流可由第一导电层425的第一端425a流入,再经由第一导电层425的第二端425b流出。借着切换器(图未示),电流也可由第一导电层425的第二端425b流入,再经由第一导电层425的第一端425a流出。此外,控制与切换单元430可藉由对压控振荡器405的控制,可控制导电层的电流供应。换言之,控制与切换单元430可控制电流输入至第一导电层425或控制电流未输入至第一导电层425。In one embodiment, the voltage controlled oscillator 405 , operational amplifiers 410 a , 410 b and a switch (not shown in the figure) can provide an AC power (not shown in the figure) to the first conductive layer 425 . Therefore, current can flow in from the first end 425 a of the first conductive layer 425 , and then flow out through the second end 425 b of the first conductive layer 425 . Through the switch (not shown in the figure), the current can also flow in from the second end 425 b of the first conductive layer 425 , and then flow out through the first end 425 a of the first conductive layer 425 . In addition, the control and switching unit 430 can control the current supply of the conductive layer by controlling the voltage-controlled oscillator 405 . In other words, the control and switching unit 430 can control the current to be input to the first conductive layer 425 or control the current not to be input to the first conductive layer 425 .
当控制与切换单元430控制电流输入至第一导电层330、425时,电极311感测因磁力与加速度导致可动质量块320与基板310之间距离改变所造成电容变化并产生第二输入信号(图未示)。控制与切换单元430接收来自电极311的第二输入信号,并选择输出此第二输入信号至第二读取电路450。此第二输入信号包含加速度与磁力所造成的电容变化信号。第二读取电路450读取来自控制与切换单元430的第二输入信号,然后产生第二输出信号452。此第二输出信号452即为加速度值大小与磁力值大小的总和信号。When the control and switching unit 430 controls the current input to the first conductive layer 330, 425, the electrode 311 senses the capacitance change caused by the change of the distance between the movable mass 320 and the substrate 310 due to magnetic force and acceleration and generates a second input signal (not shown). The control and switching unit 430 receives the second input signal from the electrode 311 and selectively outputs the second input signal to the second reading circuit 450 . The second input signal includes capacitance change signals caused by acceleration and magnetic force. The second reading circuit 450 reads the second input signal from the control and switching unit 430 , and then generates a second output signal 452 . The second output signal 452 is the sum signal of the acceleration value and the magnetic force value.
另外,当控制与切换单元430控制电流未输入至第一导电层330、425时,第一导电层330、425上无电流产生。此时,电极311感测因加速度引起的可动质量块320与基板310之间距离变化所造成的电容值改变并产生第一输入信号(图未示)。控制与切换单元430接收来自电极311的第一输入信号,并选择输出此第一输入信号至第一读取电路440。此第一输入信号仅为加速度所造成的电容变化信号。第一读取电路440读取控制与切换单元430的第一输入信号,然后产生第一输出信号442。此第一输出信号442即为加速度值大小的信号。In addition, when the control and switching unit 430 controls that the current is not input into the first conductive layer 330 , 425 , no current is generated on the first conductive layer 330 , 425 . At this time, the electrode 311 senses the change of the capacitance value caused by the change of the distance between the movable mass 320 and the substrate 310 due to the acceleration and generates a first input signal (not shown). The control and switching unit 430 receives the first input signal from the electrode 311 and selectively outputs the first input signal to the first reading circuit 440 . The first input signal is only a capacitance change signal caused by acceleration. The first reading circuit 440 reads a first input signal of the control and switching unit 430 , and then generates a first output signal 442 . The first output signal 442 is a signal of the acceleration value.
计算与补偿处理器460电性耦接至第一读取电路440及第二读取电路450,用以计算第二输出信号452及第一输出信号的差值442。此差值即为磁力大小的值。The calculating and compensating processor 460 is electrically coupled to the first reading circuit 440 and the second reading circuit 450 for calculating the difference 442 between the second output signal 452 and the first output signal. This difference is the value of the magnetic force.
上述的微机电装置400通过分时多工的方式,切换第一读取电路440与第二读取电路450,使之分别轮流读取第一与第二输入信号。微机电装置400因此可避免在同时侦测加速度与磁力信号时,产生量测信号相互耦合的杂讯,有效提升量测准确度。The above MEMS device 400 switches the first reading circuit 440 and the second reading circuit 450 through time-division multiplexing, so that they respectively read the first and second input signals in turn. Therefore, the micro-electro-mechanical device 400 can avoid the noise caused by mutual coupling of the measurement signals when simultaneously detecting the acceleration and magnetic force signals, thereby effectively improving the measurement accuracy.
图6E是根据本发明另一实施例的微机电装置的剖面示意图。图6E的实施例与图6A、6B与6C的实施例类似,因此相同或相似的元件以相同或相似的符号表示,并且不再重复说明。本实施例与图6A、图6B以及图6C的实施例不同的地方在于﹕微机电装置300’的第一固定座340’、350’与图6B中,微机电装置300的第一固定座340、350有着不同设计。FIG. 6E is a schematic cross-sectional view of a MEMS device according to another embodiment of the present invention. The embodiment of FIG. 6E is similar to the embodiment of FIGS. 6A , 6B and 6C, so the same or similar elements are denoted by the same or similar symbols, and the description will not be repeated. The difference between this embodiment and the embodiment of FIG. 6A , FIG. 6B and FIG. 6C is that the first fixing seat 340 ′, 350 ′ of the microelectromechanical device 300 ′ is different from the first fixing seat 340 of the microelectromechanical device 300 in FIG. 6B , 350 have different designs.
第一固定座340’可另包括第一沟槽341’。第一沟槽341’可将第一固定座340’分隔成相互电性绝缘的第一内固定座340’b与第一外固定座340’a。第一内固定座340’b包含第二P型半导体层3212及第二N型半导体层3222。第一外固定座340’a包含第二N型半导体层3222。第一内固定座340’b的第二P型半导体层3212设置于第一内固定座340’b的第二N型半导体层3222的底面S1与侧面S2。The first fixing seat 340' may further include a first groove 341'. The first groove 341' can separate the first fixing seat 340' into a first inner fixing seat 340'b and a first outer fixing seat 340'a which are electrically insulated from each other. The first internal fixing seat 340'b includes a second P-type semiconductor layer 3212 and a second N-type semiconductor layer 3222. The first external fixing seat 340'a includes a second N-type semiconductor layer 3222. The second P-type semiconductor layer 3212 of the first inner fixing seat 340'b is disposed on the bottom surface S1 and the side surface S2 of the second N-type semiconductor layer 3222 of the first inner fixing seat 340'b.
第一固定座340’还包括第二绝缘层3702、第二导电层3302及以及导电柱342。第二绝缘层3702设置于第一内固定座340’b、第一外固定座340’a及第一沟槽341’上。第二导电层3302设置于第二绝缘层上3702。导电柱342贯穿第一固定座340’a的第二绝缘层3702且连接第一固定座340’的第二导电层3302与第一外固定座340’a。The first fixing seat 340' further includes a second insulating layer 3702, a second conductive layer 3302 and a conductive post 342. The second insulating layer 3702 is disposed on the first inner fixing seat 340'b, the first outer fixing seat 340'a and the first groove 341'. The second conductive layer 3302 is disposed on the second insulating layer 3702 . The conductive post 342 penetrates the second insulating layer 3702 of the first fixing base 340'a and connects the second conductive layer 3302 of the first fixing base 340' with the first outer fixing base 340'a.
第一弹簧365的第三P型半导体层3213连接第一P型半导体层321及第一内固定座340’b的第二P型半导体层3212,以形成可使第一P型半导体层321电性耦接第一极化电压(Vp)的电性通道。The third P-type semiconductor layer 3213 of the first spring 365 is connected to the first P-type semiconductor layer 321 and the second P-type semiconductor layer 3212 of the first internal fixing seat 340'b, so as to form the first P-type semiconductor layer 321 electrically The electrical channel is electrically coupled to the first polarization voltage (Vp).
此外,第一内固定座340’的第二P型半导体层3212包覆第二N型半导体层3222的底面S1以及部分侧面S2。第一外固定座340a’则仅具有第二N型半导体层3222。另一方面,微机电装置300’的固定座350’与微机电装置300的固定座350相较,不具有沟槽351。由此,本发明的微机电装置的沟槽与固定座之间的配置关系在不脱离本发明的范围与精神的情形下,可依实际微机电装置使用上电性隔绝的需要而对于沟槽的配置位置作适当的调整。In addition, the second P-type semiconductor layer 3212 of the first inner fixing seat 340' covers the bottom surface S1 and part of the side surface S2 of the second N-type semiconductor layer 3222. The first external fixing seat 340a' only has the second N-type semiconductor layer 3222. On the other hand, compared with the fixing seat 350 of the MEMS device 300, the fixing seat 350' of the MEMS device 300' does not have the groove 351. Thus, the disposition relationship between the groove and the fixing seat of the microelectromechanical device of the present invention can be adjusted according to the needs of electrical isolation in actual use of the microelectromechanical device without departing from the scope and spirit of the present invention. Make appropriate adjustments to the configuration position.
图7A与图7B的实施例与图5A与5B的实施例相似,因此,相同或相似的元件以相同或相似的符号表示,并且不再重复说明。微机电装置500相较微机电装置200还包括一镜面层510配置在可动质量块220上。永久磁铁520设置在质量块220未与第一弹簧260连接的两端外侧。在一实施例中,微机电装置500可以是微机电扫描镜(MEMS scanning micro-mirror)。此微机电扫描镜可应用于投影机的影像投影上。微机电装置500可以通过镜面层510将激光或是光波等反射至萤幕上,而产生影像。更详细而言,在本实施例中,当电流流入可动质量块220的第一导电层230时,电流会与永久磁铁在Y轴方向上产生的磁场交互作用,而产生劳伦兹力,进而使可动质量块220可以依D-D’轴旋转。借着输入电流的大小,即能控制镜面层510的旋转角度,进而使入射的激光光或其它光线能通过镜面层正确的反射至萤幕上,以产生品质良好的投射影像。The embodiment of FIG. 7A and FIG. 7B is similar to the embodiment of FIG. 5A and 5B, therefore, the same or similar elements are denoted by the same or similar symbols, and the description will not be repeated. Compared with the MEMS device 200 , the MEMS device 500 further includes a mirror layer 510 disposed on the movable mass 220 . The permanent magnet 520 is arranged outside the two ends of the mass block 220 not connected with the first spring 260 . In one embodiment, the MEMS device 500 may be a MEMS scanning micro-mirror. The MEMS scanning mirror can be applied to the image projection of the projector. The MEMS device 500 can reflect laser light or light waves to the screen through the mirror layer 510 to generate images. In more detail, in this embodiment, when the current flows into the first conductive layer 230 of the movable mass 220, the current will interact with the magnetic field generated by the permanent magnet in the Y-axis direction to generate a Lorentz force, Furthermore, the movable mass 220 can rotate along the DD' axis. The rotation angle of the mirror layer 510 can be controlled by the magnitude of the input current, so that the incident laser light or other light can be correctly reflected to the screen through the mirror layer to generate a projected image with good quality.
微机电装置500因劳伦兹力而转动时,会造成可动质量块220的第一P型半导体层221与电极211之间的电容改变。借着侦测电容的改变,可计算出可动质量块220的转动量及振动频率。特用集成电路芯片(未示出)因而可利用此转动量及振动频率的资讯,调整输入电压的大小及频率,进而使可动质量块220达到最佳的振动状态,使镜面层510达到最佳的反射效果。When the MEMS device 500 rotates due to the Lorentz force, the capacitance between the first P-type semiconductor layer 221 of the movable mass 220 and the electrode 211 will change. By detecting the change of capacitance, the rotation amount and vibration frequency of the movable mass 220 can be calculated. Therefore, the special integrated circuit chip (not shown) can use the information of the amount of rotation and vibration frequency to adjust the size and frequency of the input voltage, so that the movable mass 220 can reach the best vibration state, and the mirror layer 510 can reach the optimum vibration state. Good reflection effect.
微机电装置500的可动质量块220的第一P型半导体层221可电性耦接第一极化电压(Vp),且使可动质量块220的第一N型半导体层223电性耦接第二极化电压(Vn)。在交流电压转换的过程中,可使第二极化电压(Vn)大于或等于第一极化电压(Vp),第一P型半导体与221与第一N型半导体222之间的第一PN界面223具有逆向偏压使第一P型半导体层221的下表面维持相同的电荷。如此,就能防止第一P型半导体层221与电极211产生电荷的增减。换言之,在交流电压转换过程中,电极不会产生感应电流且读取电路输出的电压信号也不会发生异常。因此,可动质量块能正确的振动而使微机电装置500维持稳定的投影品质。The first P-type semiconductor layer 221 of the movable mass 220 of the MEMS device 500 can be electrically coupled to the first polarization voltage (Vp), and the first N-type semiconductor layer 223 of the movable mass 220 can be electrically coupled to Connect to the second polarization voltage (Vn). In the process of AC voltage conversion, the second polarization voltage (Vn) can be made greater than or equal to the first polarization voltage (Vp), and the first PN between the first P-type semiconductor and 221 and the first N-type semiconductor 222 The interface 223 has a reverse bias to maintain the same charge on the lower surface of the first P-type semiconductor layer 221 . In this way, the first P-type semiconductor layer 221 and the electrode 211 can be prevented from increasing or decreasing in charge. In other words, during the AC voltage conversion process, the electrodes will not generate induced current and the voltage signal output by the reading circuit will not be abnormal. Therefore, the movable mass can vibrate correctly to maintain a stable projection quality of the MEMS device 500 .
综上所述,本发明揭露的微机电装置的可动质量块上具有导电层、绝缘层、P型半导体层与N型半导体层,并且在P型半导体层与N型半导体层之间形成PN界面。因此本发明的微机电装置的质量块结构相较传统的质量块结构可避免因交流电转换的瞬间,造成读取电路输出的电压信号的异常变化,本发明揭露的微机电装置因而增加了感测的准确度。本发明揭露的微机电装置适用于感测加速度或磁力。本发明揭露的微机电装置也适用于同时感测加速度及磁力。此外,本发明揭露的微机电装也可以是其它具PN界面质量块的电容式微机电感测装置,例如是微机电扫描镜(MEMS scanningmicro-mirror)。In summary, the movable mass of the micro-electromechanical device disclosed in the present invention has a conductive layer, an insulating layer, a P-type semiconductor layer, and an N-type semiconductor layer, and a PN layer is formed between the P-type semiconductor layer and the N-type semiconductor layer. interface. Therefore, the mass structure of the micro-electromechanical device of the present invention can avoid the abnormal change of the voltage signal output by the reading circuit due to the moment of alternating current conversion compared with the traditional mass structure, and the micro-electromechanical device disclosed by the present invention thus increases the sensing the accuracy. The MEMS device disclosed in the present invention is suitable for sensing acceleration or magnetic force. The MEMS device disclosed in the present invention is also suitable for sensing acceleration and magnetic force simultaneously. In addition, the micro-electro-mechanical device disclosed in the present invention can also be other capacitive micro-electro-mechanical sensing devices with a PN interface mass, such as a micro-electro-mechanical scanning mirror (MEMS scanning micro-mirror).
虽然结合以上实施例揭露了本发明,然而其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围应以附上的权利要求所界定的为准。Although the present invention has been disclosed in conjunction with the above embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310756460.2ACN104748748B (en) | 2013-12-31 | 2013-12-31 | Micro-electro-mechanical device with PN interface |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310756460.2ACN104748748B (en) | 2013-12-31 | 2013-12-31 | Micro-electro-mechanical device with PN interface |
| Publication Number | Publication Date |
|---|---|
| CN104748748Atrue CN104748748A (en) | 2015-07-01 |
| CN104748748B CN104748748B (en) | 2018-03-06 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310756460.2AActiveCN104748748B (en) | 2013-12-31 | 2013-12-31 | Micro-electro-mechanical device with PN interface |
| Country | Link |
|---|---|
| CN (1) | CN104748748B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106802391A (en)* | 2017-03-24 | 2017-06-06 | 深圳市斯纳达科技有限公司 | Arrangement for testing integrated circuit and its electric conductor component |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5576250A (en)* | 1992-12-28 | 1996-11-19 | Commissariat A L'energie Atomique | Process for the production of accelerometers using silicon on insulator technology |
| CN1217470A (en)* | 1997-11-11 | 1999-05-26 | 李韫言 | Double-electrode monocrystal silicon capacitance acceleration sensor and mfg. method therefor |
| CN1441253A (en)* | 2003-04-09 | 2003-09-10 | 重庆大学 | Full-optical silicon microresonant two-dimensional acceleration sensor |
| US20040036942A1 (en)* | 2001-12-10 | 2004-02-26 | Abu-Ageel Nayef M. | Micro-mechanical system employing electrostatic actuator and fabrication methods of same |
| US20040158439A1 (en)* | 2002-12-10 | 2004-08-12 | Kim Kyoung Soo | Magnetic field and acceleration sensor and method for simultaneously detecting magnetism and acceleration |
| CN1721860A (en)* | 2004-04-05 | 2006-01-18 | 精工电子有限公司 | Capacitive dynamic quantity sensor and semiconductor device |
| CN101320081A (en)* | 2008-07-09 | 2008-12-10 | 东南大学 | A microelectromechanical system magnetic field sensor and measurement method |
| US20100244164A1 (en)* | 2009-03-26 | 2010-09-30 | Honeywell International Inc. | Using pole pieces to guide magnetic flux through a mems device and method of making |
| CN102530825A (en)* | 2010-12-23 | 2012-07-04 | 财团法人工业技术研究院 | MEMS device with electrically insulating structure and method of making the same |
| CN102680917A (en)* | 2012-04-28 | 2012-09-19 | 中国科学院上海微系统与信息技术研究所 | Micro-mechanical magnetic field sensor and preparation method thereof |
| US20120240679A1 (en)* | 2009-12-16 | 2012-09-27 | Y-Sensors Ltd. | Tethered, levitated-mass accelerometer |
| CN102759637A (en)* | 2011-04-26 | 2012-10-31 | 中国科学院上海微系统与信息技术研究所 | MEMS (micro electro mechanical system) triaxial acceleration transducer and manufacture method thereof |
| CN102951602A (en)* | 2011-08-26 | 2013-03-06 | 三星电子株式会社 | Energy conversion device and methods of manufacturing and operating same |
| CN103183306A (en)* | 2011-12-29 | 2013-07-03 | 财团法人工业技术研究院 | Micro-electromechanical device with multiple electrical channels and manufacturing method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5576250A (en)* | 1992-12-28 | 1996-11-19 | Commissariat A L'energie Atomique | Process for the production of accelerometers using silicon on insulator technology |
| CN1217470A (en)* | 1997-11-11 | 1999-05-26 | 李韫言 | Double-electrode monocrystal silicon capacitance acceleration sensor and mfg. method therefor |
| US20040036942A1 (en)* | 2001-12-10 | 2004-02-26 | Abu-Ageel Nayef M. | Micro-mechanical system employing electrostatic actuator and fabrication methods of same |
| US20040158439A1 (en)* | 2002-12-10 | 2004-08-12 | Kim Kyoung Soo | Magnetic field and acceleration sensor and method for simultaneously detecting magnetism and acceleration |
| CN1441253A (en)* | 2003-04-09 | 2003-09-10 | 重庆大学 | Full-optical silicon microresonant two-dimensional acceleration sensor |
| CN1721860A (en)* | 2004-04-05 | 2006-01-18 | 精工电子有限公司 | Capacitive dynamic quantity sensor and semiconductor device |
| CN101320081A (en)* | 2008-07-09 | 2008-12-10 | 东南大学 | A microelectromechanical system magnetic field sensor and measurement method |
| US20100244164A1 (en)* | 2009-03-26 | 2010-09-30 | Honeywell International Inc. | Using pole pieces to guide magnetic flux through a mems device and method of making |
| US20120240679A1 (en)* | 2009-12-16 | 2012-09-27 | Y-Sensors Ltd. | Tethered, levitated-mass accelerometer |
| CN102530825A (en)* | 2010-12-23 | 2012-07-04 | 财团法人工业技术研究院 | MEMS device with electrically insulating structure and method of making the same |
| CN102759637A (en)* | 2011-04-26 | 2012-10-31 | 中国科学院上海微系统与信息技术研究所 | MEMS (micro electro mechanical system) triaxial acceleration transducer and manufacture method thereof |
| CN102951602A (en)* | 2011-08-26 | 2013-03-06 | 三星电子株式会社 | Energy conversion device and methods of manufacturing and operating same |
| CN103183306A (en)* | 2011-12-29 | 2013-07-03 | 财团法人工业技术研究院 | Micro-electromechanical device with multiple electrical channels and manufacturing method thereof |
| CN102680917A (en)* | 2012-04-28 | 2012-09-19 | 中国科学院上海微系统与信息技术研究所 | Micro-mechanical magnetic field sensor and preparation method thereof |
| Title |
|---|
| ERIC DORVEAUX,等: ""Iterative calibration method for inertial and magnetic sensors"", 《JOINT 48TH IEEE CONFERENCE ON DECISION AND CONTROL AND 28TH CHINESE CONTROL CONFERENCE》* |
| 周治良,等: ""电磁力平衡式加速度计原理及检测方法研究"", 《电测与仪表》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106802391A (en)* | 2017-03-24 | 2017-06-06 | 深圳市斯纳达科技有限公司 | Arrangement for testing integrated circuit and its electric conductor component |
| Publication number | Publication date |
|---|---|
| CN104748748B (en) | 2018-03-06 |
| Publication | Publication Date | Title |
|---|---|---|
| TWI538096B (en) | Mems apparatus with pn-junction | |
| US11808574B2 (en) | Micromechanical detection structure of a MEMS multi-axis gyroscope, with reduced drifts of corresponding electrical parameters | |
| US8395381B2 (en) | Micromachined magnetic field sensors | |
| US20240230332A1 (en) | Multi-mass mems motion sensor | |
| US7284429B2 (en) | Micromachined double tuning-fork gyrometer with detection in the plane of the machined wafer | |
| US20120007597A1 (en) | Micromachined offset reduction structures for magnetic field sensing | |
| US7178398B2 (en) | Coplanar proofmasses employable to sense acceleration along three axes | |
| US11287486B2 (en) | 3D MEMS magnetometer and associated methods | |
| US20160154020A1 (en) | Mems gyroscope | |
| US20100127715A1 (en) | Semiconductor physical quantity sensor and control device using the same | |
| US10371715B2 (en) | MEMS accelerometer with proof masses moving in an anti-phase direction | |
| CN112213520B (en) | MEMS acceleration sensor with high accuracy and low sensitivity to temperature and aging | |
| US20120216613A1 (en) | Angular velocity sensor | |
| US20130019681A1 (en) | Vibration gyro element, gyro sensor, and electronic apparatus | |
| EP2693183A1 (en) | On-chip resonant acceleration and pressure sensor | |
| WO2015013827A1 (en) | Mems motion sensor for sub-resonance angular rate sensing | |
| EP2693182A1 (en) | On-chip resonant gyro and pressure sensor | |
| US7412887B2 (en) | Multiple axis acceleration sensor | |
| US11333679B1 (en) | Electrostatically softened accelerometer spring | |
| US20090158847A1 (en) | Angular Velocity Sensor | |
| Efimovskaya et al. | Compact roll-pitch-yaw gyroscope implemented in wafer-level epitaxial silicon encapsulation process | |
| CN104748748A (en) | Micro-electro-mechanical device with PN interface | |
| US20150323323A1 (en) | Gyroscope structure and gyroscope device | |
| TWI781051B (en) | Mems multi-axis angular rate sensor | |
| JP7681855B2 (en) | Acceleration Sensor Device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |