技术领域technical field
本发明属于机器人领域,涉及一种可变刚度关节驱动器,尤其涉及一种采用板簧作为弹性环节,阿基米德螺旋线盘作为同步位移调整机构的可变刚度关节驱动器。本发明还涉及机器人关节刚度的一种调整方法。The invention belongs to the field of robots, and relates to a variable stiffness joint driver, in particular to a variable stiffness joint driver using a leaf spring as an elastic link and an Archimedes spiral coil as a synchronous displacement adjustment mechanism. The invention also relates to a method for adjusting the joint stiffness of the robot.
背景技术Background technique
关节驱动器是机器人的核心部件,其性能的好坏直接影响机器人的整体性能。工业机器人为了实现精确定位以及轨迹跟踪等要求,往往要求关节驱动器具有很大的刚度。然而,机器人在磨削、装配、拧螺丝等操作中,为了防止在操作过程中由于与环境作用力过大而导致机器人或被操作对象受损,通常在实施位置控制的同时,还要限制某些方向的作用力。另外,现实生产中还有更多更复杂的作业,往往需要机器人与人在同一工作空间并且在操作上相互配合才能得以完成。如果机器人刚性太大,当遇到意外碰撞时,往往会造成严重的人身财产安全损失。The joint driver is the core component of the robot, and its performance directly affects the overall performance of the robot. In order to achieve precise positioning and trajectory tracking, industrial robots often require joint drivers to have great stiffness. However, in the operations of grinding, assembling, screwing, etc., in order to prevent damage to the robot or the operated object due to excessive force with the environment during the operation, it is usually necessary to limit a certain amount of time while implementing position control. force in some directions. In addition, there are more and more complex operations in real production, which often require robots and humans to be in the same workspace and cooperate with each other in operation to complete. If the robot is too rigid, it will often cause serious personal and property safety losses when encountering an accidental collision.
为了防止工业机器人在操作过程中伤及到人,国际标准化组织(ISO)规定,工业机器人必须与操作者和其他工作人员分离。然而,对于机器人与人无法在空间上做到分离的一类机器人,如娱乐机器人,服务机器人,仿人机器人等,现在行业中一般采用轻型和低功率设计,确保与人交互过程中不至于造成伤害。这在一定程度上限制了机器人功能和性能的发挥,严重限制了其在人机互动方面的应用,是不得已而采取的办法。In order to prevent industrial robots from injuring people during operation, the International Organization for Standardization (ISO) stipulates that industrial robots must be separated from operators and other workers. However, for a class of robots that cannot be separated from humans in space, such as entertainment robots, service robots, and humanoid robots, the industry generally adopts light-weight and low-power designs to ensure that there will be no damage during the interaction with humans. harm. This limits the function and performance of the robot to a certain extent, and seriously limits its application in human-computer interaction, which is a last resort.
可变刚度的机器人关节驱动器能够根据任务需要,实时调节关节刚度,提高机器人在非结构环境下的适应性。其主要技术特征是:在传动链上串联或并联刚度可调的弹性环节,能够将关节的动能和弹性势能相互转化。变刚度关节驱动器的主要应用领域分为两类:人机交互和调整系统固有动力学特性。变刚度关节驱动器对于解决新一代机器人的人机安全、提高动态特性和节省能量等关键问题具有重要意义。The robot joint driver with variable stiffness can adjust the joint stiffness in real time according to the needs of the task, and improve the adaptability of the robot in the non-structural environment. Its main technical features are: elastic links with adjustable stiffness are connected in series or in parallel on the transmission chain, which can convert the kinetic energy and elastic potential energy of the joints into each other. The main application areas of variable stiffness joint actuators fall into two categories: human-machine interaction and tuning the inherent dynamics of the system. Variable stiffness joint drives are of great significance for solving key issues such as man-machine safety, improving dynamic characteristics and saving energy of a new generation of robots.
中国专利申请第201310119858.5号“一种可变刚度的机器人关节驱动器”,其技术方案的工作原理是:利用刚度调整电机驱动齿轮在柔性齿条上滚动,改变柔性齿条的受力点,使柔性齿条发生不同程度的挠度变形,从而达到变刚度的目的。柔性齿条机构既是弹性环节也是刚度调节机构。该结构刚度调整行程受限,且很难实现精准同步调整,由于本身结构限制,使其在机器人关节上的应用还需较长时间的探索。Chinese Patent Application No. 201310119858.5 "A Variable Rigidity Robot Joint Drive", the working principle of the technical solution is: use the stiffness to adjust the motor to drive the gear to roll on the flexible rack, change the force point of the flexible rack, and make the flexible The rack undergoes different degrees of deflection deformation, so as to achieve the purpose of variable stiffness. The flexible rack mechanism is both an elastic link and a stiffness adjustment mechanism. The stiffness adjustment stroke of this structure is limited, and it is difficult to achieve precise synchronous adjustment. Due to its own structural limitations, its application on robot joints still needs a long time to explore.
发明内容Contents of the invention
本发明的目的,是针对上述现有技术无法实现精准同步位移调整的不足,提供了一种可精准同步调整支点位移的变刚度关节驱动器,其结构简单、小巧,调整快速、节能且具有很大的刚度调整范围,能有效解决现有机器人的能耗高及环境适应性差等问题。The purpose of the present invention is to provide a variable stiffness joint driver that can accurately and synchronously adjust the displacement of the fulcrum in order to address the shortcomings of the above-mentioned prior art that cannot achieve precise synchronous displacement adjustment. The rigidity adjustment range can effectively solve the problems of high energy consumption and poor environmental adaptability of existing robots.
根据本发明的一个方面,提供了一种可同步调整位移式变刚度关节驱动器,其特征在于包括:基座,摇臂位置控制组件,变刚度调整组件,摇臂,角度偏差测量组件,According to one aspect of the present invention, a synchronously adjustable displacement variable stiffness joint driver is provided, which is characterized in that it includes: a base, a rocker arm position control component, a variable stiffness adjustment component, a rocker arm, and an angle deviation measurement component,
其中in
摇臂位置控制组件用于使摇臂到达指定的平衡位置点,The rocker arm position control component is used to make the rocker arm reach the designated balance position point,
变刚度调整组件用于根据实际任务需要改变驱动器的刚度值,The variable stiffness adjustment component is used to change the stiffness value of the driver according to the needs of actual tasks,
角度偏差测量组件用于测量和采集摇臂变形角度偏差,以进行后续数据的处理以及刚度的实时控制。The angle deviation measurement component is used to measure and collect the deformation angle deviation of the rocker arm for subsequent data processing and real-time control of stiffness.
根据本发明的另一个方面,提供了机器人关节刚度的一种调整方法,其特征在于包括:According to another aspect of the present invention, a method for adjusting the stiffness of a robot joint is provided, which is characterized by comprising:
采用一种可同步调整位移式变刚度关节驱动器,其包括:基座,摇臂位置控制组件,变刚度调整组件,摇臂,角度偏差测量组件,A synchronously adjustable displacement variable stiffness joint driver is adopted, which includes: base, rocker arm position control component, variable stiffness adjustment component, rocker arm, angle deviation measurement component,
用摇臂位置控制组件使摇臂到达指定的平衡位置点,Use the rocker arm position control component to make the rocker arm reach the designated equilibrium position point,
用变刚度调整组件根据实际任务需要改变驱动器的刚度值,Use the variable stiffness adjustment component to change the stiffness value of the driver according to the actual task needs,
用角度偏差测量组件测量和采集摇臂变形角度偏差,以进行后续数据的处理以及刚度的实时控制。The angle deviation measurement component is used to measure and collect the deformation angle deviation of the rocker arm for subsequent data processing and real-time control of stiffness.
附图说明Description of drawings
图1是根据本发明的一个实施例的可变刚度关节驱动器的整体结构图。Fig. 1 is an overall structural diagram of a variable stiffness joint driver according to an embodiment of the present invention.
图2是按功能组件拆分的变刚度关节驱动器爆炸示意图。Figure 2 is a schematic diagram of the explosion of the variable stiffness joint driver split by functional components.
图3是变刚度关节驱动器的摇臂位置控制组件爆炸视图。Figure 3 is an exploded view of the rocker arm position control assembly of the variable stiffness joint driver.
图4是变刚度关节驱动器的变刚度调整组件爆炸视图。Fig. 4 is an exploded view of the variable stiffness adjustment assembly of the variable stiffness joint driver.
图5是变刚度关节驱动器的角度偏差测量组件图。Fig. 5 is a diagram of the angular deviation measurement component of the variable stiffness joint driver.
图6是变刚度调整组件中的支点位移调整部件结构图。Fig. 6 is a structural diagram of the fulcrum displacement adjustment component in the variable stiffness adjustment assembly.
图7是两条关于中心对称布置的阿基米德螺旋线图。Fig. 7 is a diagram of two Archimedes spirals arranged symmetrically about the center.
图8是阿基米德螺旋线盘示意图。Fig. 8 is a schematic diagram of an Archimedes spiral coil.
具体实施方式detailed description
以下结合附图详细描述本发明的一种具体实施例。A specific embodiment of the present invention will be described in detail below in conjunction with the accompanying drawings.
如图1和图2所示,是根据本发明的一个实施例的一种可同步调整位移式变刚度关节驱动器,其包括:基座1,摇臂位置控制组件2,变刚度调整组件3,摇臂4;其中,摇臂位置控制组件2固定在基座1上,变刚度调整组件3串联在摇臂4和摇臂位置控制组件2之间,在摇臂4末端固定有负载5。As shown in Figure 1 and Figure 2, it is a synchronously adjustable displacement variable stiffness joint driver according to an embodiment of the present invention, which includes: base 1, rocker arm position control assembly 2, variable stiffness adjustment assembly 3, The rocker arm 4; wherein the rocker arm position control assembly 2 is fixed on the base 1, the variable stiffness adjustment assembly 3 is connected in series between the rocker arm 4 and the rocker arm position control assembly 2, and a load 5 is fixed at the end of the rocker arm 4.
如图3所示,根据本发明的一个实施例的变刚度关节驱动器的摇臂位置控制组件2包括:偏心轴6,张紧轮7,小动力同步带轮8,主动力同步带9,大动力同步带轮10,圆形固定盘11,谐波减速器12,位置调节伺服电机13。其中,位置控制伺服电机13和谐波减速器12均固定在圆形固定盘11上,伺服电机13通过同步带轮组8-9-10将转动传递给谐波减速器12。选用谐波减速器的目的,在于其在提供较大的传动精度与扭矩的同时,具有体积小,重量轻的特点。在圆形固定盘11上还安装有偏心轴6,通过调整偏心轴6可使张紧轮7压紧动力同步带9,使同步带轮组8-9-10间的传动不会出现脱齿。As shown in Figure 3, the rocker arm position control assembly 2 of the variable stiffness joint driver according to an embodiment of the present invention includes: an eccentric shaft 6, a tension pulley 7, a small power timing pulley 8, a main power timing belt 9, a large Power synchronous pulley 10, circular fixed disc 11, harmonic reducer 12, position adjustment servo motor 13. Wherein, both the position control servo motor 13 and the harmonic reducer 12 are fixed on the circular fixed plate 11, and the servo motor 13 transmits the rotation to the harmonic reducer 12 through the synchronous pulley set 8-9-10. The purpose of choosing a harmonic reducer is that it has the characteristics of small size and light weight while providing greater transmission accuracy and torque. An eccentric shaft 6 is also installed on the circular fixed disk 11. By adjusting the eccentric shaft 6, the tension pulley 7 can be pressed against the power synchronous belt 9, so that the transmission between the synchronous belt pulley groups 8-9-10 will not lose teeth. .
如图4所示,根据本发明的一个实施例的变刚度关节驱动器的变刚度调整组件3包括:谐波减速器连接板14,位移调整步进电机15,带导槽滚筒16,阿基米德螺旋线盘17,支点位移调整部件18,板簧19,角度偏差测量组件20,十字交叉滚子轴承21,输出法兰22。其中,谐波减速器连接板14将谐波减速器12与带导槽滚筒16固连在一起。位移调整步进电机15安装在带导槽滚筒16内侧板上,位移调整步进电机15输出轴与阿基米德螺旋线盘17连接,用于驱动线盘正反向旋转。支点位移调整部件18可在带导槽滚筒16的导槽内往复滑动,其末端置于阿基米德螺旋线盘17的线槽中,板簧19固定在输出法兰22上。在带导槽滚筒16与输出法兰22之间安装有十字交叉滚子轴承21,在十字交叉滚子轴承21外圈右侧连接有角度偏差测量组件20。As shown in Fig. 4, the variable stiffness adjustment assembly 3 of the variable stiffness joint driver according to an embodiment of the present invention includes: a harmonic reducer connecting plate 14, a displacement adjustment stepping motor 15, a roller with guide groove 16, an Akimi German spiral coil 17, fulcrum displacement adjustment part 18, leaf spring 19, angle deviation measurement assembly 20, cross roller bearing 21, output flange 22. Wherein, the harmonic reducer connecting plate 14 firmly connects the harmonic reducer 12 and the roller with guide groove 16 together. The displacement adjustment stepper motor 15 is installed on the inner plate of the band guide groove cylinder 16, and the output shaft of the displacement adjustment stepper motor 15 is connected with the Archimedes spiral coil 17 for driving the forward and reverse rotation of the coil. The fulcrum displacement adjustment part 18 can reciprocally slide in the guide groove of the roller with guide groove 16 , its end is placed in the wire groove of the Archimedes spiral coil 17 , and the leaf spring 19 is fixed on the output flange 22 . A crossed roller bearing 21 is installed between the roller with guide groove 16 and the output flange 22 , and an angular deviation measuring assembly 20 is connected to the right side of the outer ring of the crossed roller bearing 21 .
如图5所示,根据本发明的一个实施例的变刚度关节驱动器的角度偏差测量组件20包括电位器23,电位器支架24,小测量齿轮25,带内啮合齿的轴承外挡板26。其中,电位器23通过电位器支架24固定在带导槽滚筒16内壁上,小测量齿轮25通过顶丝固定在电位器23输入轴上,并与带内啮合齿的轴承外挡板26啮合,带内啮合齿的轴承外挡板26与输出法兰22通过螺钉将十字交叉滚子轴承21外圈夹在中间,当输出法兰22发生一定角度的偏转时,由于小测量齿轮25与带内啮合齿的轴承外挡板26啮合,将会把角度偏差进行一定比例的放大,传递到电位器23轴上,引起电位器23输出电压的变化,通过A/D转化模块,即可读出电位器读数的变化,从而计算出实际的角度变化量。As shown in FIG. 5 , the angular deviation measuring assembly 20 of the variable stiffness joint driver according to an embodiment of the present invention includes a potentiometer 23 , a potentiometer bracket 24 , a small measuring gear 25 , and a bearing outer baffle plate 26 with internal meshing teeth. Among them, the potentiometer 23 is fixed on the inner wall of the roller with guide groove 16 through the potentiometer bracket 24, and the small measuring gear 25 is fixed on the input shaft of the potentiometer 23 through the top wire, and meshes with the bearing outer baffle plate 26 with internal meshing teeth, The bearing outer baffle plate 26 with internal meshing teeth and the output flange 22 sandwich the outer ring of the cross roller bearing 21 through screws. When the output flange 22 deflects at a certain angle, due to the small measuring gear 25 and the inner The meshing of the bearing outer baffle plate 26 of the meshing teeth will amplify the angular deviation by a certain proportion and transmit it to the shaft of the potentiometer 23, causing the output voltage of the potentiometer 23 to change. Through the A/D conversion module, the potential can be read The change in the reading of the instrument can be used to calculate the actual angle change.
如图6所示,根据本发明的一个实施例的变刚度关节驱动器的支点位移调整部件18包括:轴承左架27,轴承右架28,轴承组29,轴承轴30。其中,在板簧19左右两侧各安装有一个支点位移调整部件18,轴承左架27与轴承右架28通过螺钉连接,中间安装有轴承组29,轴承组29将板簧19夹在中间,这样保证板簧19的受力为线接触,更加贴近理论建模。As shown in FIG. 6 , the fulcrum displacement adjustment component 18 of the variable stiffness joint driver according to an embodiment of the present invention includes: a left bearing frame 27 , a right bearing frame 28 , a bearing set 29 , and a bearing shaft 30 . Wherein, a fulcrum displacement adjustment part 18 is respectively installed on the left and right sides of the leaf spring 19, the bearing left frame 27 and the bearing right frame 28 are connected by screws, and a bearing group 29 is installed in the middle, and the bearing group 29 clamps the leaf spring 19 in the middle, This ensures that the force of the leaf spring 19 is in line contact, which is closer to theoretical modeling.
如图7所示为可用于本发明的实施例的两条关于中心对称布置的阿基米德螺旋线图。As shown in FIG. 7 , two Archimedean spirals arranged symmetrically about the center can be used in the embodiment of the present invention.
两条阿基米德螺旋线之一的标准极坐标方程:The standard polar equation for one of the two Archimedean spirals:
r(θ)=a+b(θ)r(θ)=a+b(θ)
式中:In the formula:
b—阿基米德螺旋线系数,mm/°,表示每旋转1度时极径的增加(或减小)量;b—Archimedes helix coefficient, mm/°, indicating the increase (or decrease) of the polar diameter for each rotation of 1 degree;
θ—极角,单位为度,表示阿基米德螺旋线转过的总度数;θ—polar angle, in degrees, indicating the total number of degrees the Archimedes spiral has turned;
a—当θ=0°时的极径,mm;a—polar diameter when θ=0°, mm;
改变参数a将改变螺线形状,b控制螺线间距离,通常其为常量。Varying the parameter a will change the shape of the spirals, b controls the distance between the spirals, usually it is constant.
另一条阿基米德螺旋线是通过将上述阿基米德螺旋线关于原点对称得到。Another Archimedes spiral is obtained by making the above Archimedes spiral symmetrical about the origin.
如图8所示为可用于本发明实施例的阿基米德螺旋线盘示意图,在阿基米德螺旋线盘17上开有两个形状完全相同、关于原点对称的阿基米德螺旋线槽,由于实际情况,无法使两板簧移动到中心位置,故阿基米德螺旋线槽不需在中心位置处的阿基米德螺旋线部分上延伸。As shown in Figure 8, it is a schematic diagram of an Archimedes spiral disk that can be used in the embodiment of the present invention. On the Archimedes spiral disk 17, there are two Archimedes spirals that are identical in shape and symmetrical about the origin. The groove, due to the actual situation, cannot make the two leaf springs move to the central position, so the Archimedes spiral groove does not need to extend on the Archimedes spiral part at the central position.
在根据本发明的一个技术方案中:一种可同步调整位移式变刚度关节驱动器包括:基座1,摇臂位置控制组件2,变刚度调整组件3,摇臂4,负载5,角度偏差测量组件20,其特征在于摇臂位置控制组件2用于使摇臂4到达指定的平衡位置点;变刚度调整组件3用于根据实际任务需要改变驱动器的刚度值;角度偏差测量组件20用于测量和采集摇臂变形角度偏差,以便后续数据的处理以及刚度的实时控制。In a technical solution according to the present invention: a synchronously adjustable displacement variable stiffness joint driver includes: base 1, rocker arm position control assembly 2, variable stiffness adjustment assembly 3, rocker arm 4, load 5, angle deviation measurement Assembly 20, characterized in that the rocker arm position control assembly 2 is used to make the rocker arm 4 reach the designated equilibrium position point; the variable stiffness adjustment assembly 3 is used to change the stiffness value of the driver according to the actual task needs; the angle deviation measurement assembly 20 is used to measure And collect the deformation angle deviation of the rocker arm for subsequent data processing and real-time control of stiffness.
所述的摇臂位置控制组件2包括:偏心轴6,张紧轮7,小动力同步带轮8,主动力同步带9,大动力同步带轮10,圆形固定盘11,谐波减速器12,位置调节伺服电机13。其特征在于:位置调节伺服电机13通过同步带轮组8-9-10经过谐波减速器12降速,再经过变刚度调整组件3,最后驱动摇臂4到指定平衡位置点。The rocker arm position control assembly 2 includes: eccentric shaft 6, tension pulley 7, small power synchronous belt pulley 8, main power synchronous belt 9, large power synchronous belt pulley 10, circular fixed disc 11, harmonic reducer 12. Position adjustment servo motor 13. It is characterized in that: the position adjustment servo motor 13 decelerates through the synchronous pulley group 8-9-10, passes through the harmonic reducer 12, passes through the variable stiffness adjustment assembly 3, and finally drives the rocker arm 4 to a designated balance position point.
所述的变刚度调整组件3包括:谐波减速器连接板14,位移调整步进电机15,带导槽滚筒16,阿基米德螺旋线盘17,支点位移调整部件18,板簧19,角度偏差测量组件,20,十字交叉滚子轴承21,输出法兰22。其特征在于:位移调整步进电机15驱动阿基米德螺旋线盘17旋转一定的角度,在运动过程中,由于带导槽滚筒16中导槽的约束,支点位移调整部件18在阿基米德螺旋线盘17的径向分力作用下沿半径方向移动,从而改变了板簧19的受力支点位置,在扭矩不变的情况下,受力支点位置改变,板簧19将发生不同程度的挠度变形,从而达到关节变刚度的目的。The variable stiffness adjustment assembly 3 includes: a harmonic reducer connecting plate 14, a displacement adjustment stepper motor 15, a roller with guide groove 16, an Archimedes spiral coil 17, a fulcrum displacement adjustment part 18, a leaf spring 19, Angle deviation measurement assembly, 20, cross roller bearing 21, output flange 22. It is characterized in that: the displacement adjustment stepper motor 15 drives the Archimedes spiral coil 17 to rotate at a certain angle, and during the movement, due to the constraint of the guide groove in the roller with guide groove 16, the fulcrum displacement adjustment part 18 is in the Archimedes Under the action of the radial component force of the German helical coil 17, it moves along the radial direction, thereby changing the position of the fulcrum of the leaf spring 19. Under the condition of constant torque, the position of the fulcrum of the force changes, and the position of the fulcrum of the leaf spring 19 will change to different degrees. The deflection deformation, so as to achieve the purpose of joint stiffness.
所述的角度偏差测量组件20包括:电位器23,电位器支架24,小测量齿轮25,带内啮合齿的轴承外挡板26。其特征在于:带内啮合齿的轴承外挡板26与小测量齿轮25啮合,负载5造成的角度偏差通过齿轮啮合传动放大,最后传递到电位器23上,引起电位器23输出电压的变化,电位器23通过电位器支架24固定在带导槽滚筒16内。The angular deviation measuring assembly 20 includes: a potentiometer 23, a potentiometer bracket 24, a small measuring gear 25, and an outer bearing baffle plate 26 with internal meshing teeth. It is characterized in that: the bearing outer baffle plate 26 with internal meshing teeth meshes with the small measuring gear 25, the angular deviation caused by the load 5 is amplified through gear meshing transmission, and finally transmitted to the potentiometer 23, causing the output voltage of the potentiometer 23 to change, The potentiometer 23 is fixed in the roller 16 with guide grooves through the potentiometer bracket 24 .
所述的阿基米德螺旋线盘17,其圆盘内的槽线由两根阿基米德螺旋线组成,两螺旋线关于轴线对称布置且形状完全相同。采用两条阿基米德螺旋线且关于原点对称布置,使得当圆盘旋转时,线槽内的支点位移调整部件18可以同步的向轴线方向移动,达到精确同步位移调整的目的。另外,采用阿基米德螺旋线的原因在于,阿基米德螺线,亦称“等速螺线”,当位移调整步进电机15驱动阿基米德螺旋线盘17匀速旋转时,处于线槽内的两个支点位移调整部件18将以等速率沿半径方向运动。这在以后的同步位移控制以及运动分析中将提供很大的便利。另外,阿基米德螺旋线槽内任一点的径向分力远远大于切向分力,这使得电机只需很小的扭矩就可以驱动两支点位移调整部件18运动,极大的节约了能耗。Said Archimedes spiral disk 17, the groove line in the disk is composed of two Archimedes spirals, and the two spirals are arranged symmetrically about the axis and have the same shape. Two Archimedes spirals are adopted and arranged symmetrically about the origin, so that when the disk rotates, the fulcrum displacement adjustment part 18 in the slot can move synchronously to the axis direction, achieving the purpose of precise synchronous displacement adjustment. In addition, the reason for using the Archimedes spiral is that the Archimedes spiral, also known as "constant velocity spiral", when the displacement adjustment stepper motor 15 drives the Archimedes spiral disk 17 to rotate at a constant speed, it is in the The two fulcrum displacement adjustment parts 18 in the trunking will move along the radial direction at an equal rate. This will provide great convenience in the future synchronous displacement control and motion analysis. In addition, the radial component force at any point in the Archimedes spiral groove is far greater than the tangential component force, which allows the motor to drive the movement of the two fulcrum displacement adjustment parts 18 with only a small torque, which greatly saves energy consumption.
以上通过参考在附图中表示的示例性实施例对本发明做了特别的展示和说明,对本领域的技术人员来说,应该明白,在不背离本发明的思想和范围下做出在形式上和细节上的各种修改和改变,都将是对本发明专利的侵犯。因此本发明要保护的真正思想和范围由所附的权利要求书来限定。The present invention has been particularly shown and described above by referring to the exemplary embodiments shown in the accompanying drawings, and it should be clear to those skilled in the art that, without departing from the spirit and scope of the present invention, changes in form and Various modifications and changes in the details will be an infringement of the patent of the present invention. Therefore the true spirit and scope of the invention to be protected is defined by the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510072095.2ACN104669261B (en) | 2015-02-11 | 2015-02-11 | A kind of can synchronization control displacement-type variation rigidity joint driver and a kind of method of adjustment of joint of robot rigidity |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201510072095.2ACN104669261B (en) | 2015-02-11 | 2015-02-11 | A kind of can synchronization control displacement-type variation rigidity joint driver and a kind of method of adjustment of joint of robot rigidity |
| Publication Number | Publication Date |
|---|---|
| CN104669261A CN104669261A (en) | 2015-06-03 |
| CN104669261Btrue CN104669261B (en) | 2016-08-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201510072095.2AActiveCN104669261B (en) | 2015-02-11 | 2015-02-11 | A kind of can synchronization control displacement-type variation rigidity joint driver and a kind of method of adjustment of joint of robot rigidity |
| Country | Link |
|---|---|
| CN (1) | CN104669261B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105171769B (en)* | 2015-09-28 | 2017-03-22 | 四川大学 | Variable-rigidity robot elastic joint |
| CN105171770B (en)* | 2015-10-30 | 2017-03-22 | 四川大学 | Machine safety variable-rigidity elastic joint |
| CN105171771B (en)* | 2015-10-30 | 2017-05-03 | 四川大学 | Variable-rigidity elastic joint of cam structure |
| CN105865385A (en)* | 2016-05-31 | 2016-08-17 | 佛山市天目工业测量科技有限公司 | Cylindrical cam-compressed spring type joint balancing mechanism |
| CN106182067B (en)* | 2016-07-11 | 2018-06-15 | 中国矿业大学 | A Variable Stiffness Flexible Rotary Joint |
| CN106078729A (en)* | 2016-08-09 | 2016-11-09 | 珠海格力智能装备有限公司 | Joint structure and robot with same |
| CN106426265B (en)* | 2016-11-17 | 2019-04-02 | 中国石油大学(华东) | A kind of submissive driving joint of stiffness variable |
| CN106737819B (en)* | 2016-12-29 | 2019-02-12 | 武汉大学 | Variable stiffness flexible actuator based on variable fulcrum |
| CN106737586B (en)* | 2016-12-29 | 2017-10-24 | 武汉大学 | Symmetrical expression variation rigidity flexible actuator based on fulcrum-variable |
| CN106737821B (en)* | 2017-01-12 | 2019-03-12 | 哈尔滨工业大学 | A Variable Stiffness Mechanism Based on Geometric Characteristics |
| CN106994698B (en)* | 2017-04-28 | 2024-03-29 | 长沙开山斧智能科技有限公司 | Torque balancing device capable of measuring torque |
| CN109808159B (en)* | 2017-11-20 | 2021-03-26 | 中国科学院沈阳计算技术研究所有限公司 | Speed coupling control system and method capable of performing radius and eccentricity compensation |
| CN108393879B (en)* | 2018-05-07 | 2024-02-23 | 中国科学技术大学 | Robot and joint driving device thereof |
| CN108608422A (en)* | 2018-06-01 | 2018-10-02 | 昀智科技(北京)有限责任公司 | A kind of high-precision attitude rotary system |
| CN108714913A (en)* | 2018-06-06 | 2018-10-30 | 清华大学 | Variation rigidity flexible actuator |
| CN109620652B (en)* | 2019-01-23 | 2021-07-16 | 上海理工大学 | A series elastic hip joint walker |
| CN109877874A (en)* | 2019-04-25 | 2019-06-14 | 北京邮电大学 | A Variable Stiffness Joint Based on Symmetrical Crank-slider Mechanism |
| CN110044233B (en)* | 2019-05-16 | 2024-03-08 | 沈阳飞机工业(集团)有限公司 | Non-contact rocker arm part free travel checking measuring instrument and use method thereof |
| JP7321894B2 (en)* | 2019-11-11 | 2023-08-07 | 住友重機械工業株式会社 | drive |
| CN110744584B (en)* | 2019-11-29 | 2024-07-19 | 河北工业大学 | Flexible active-passive rigidity-variable joint |
| CN111956250A (en)* | 2020-09-14 | 2020-11-20 | 飞瑞医疗器械(嘉兴)有限公司 | Transmission device, X-ray beam limiter and X-ray detection equipment |
| CN112157656B (en)* | 2020-09-23 | 2022-03-08 | 哈尔滨工业大学 | Symmetrical variable fulcrum rigidity adjusting module capable of realizing full-range rigidity adjustment |
| CN112207809A (en)* | 2020-10-29 | 2021-01-12 | 湖南海森格诺信息技术有限公司 | Foldable automatic mechanical arm pulled by steel cable |
| CN113232013A (en)* | 2021-04-16 | 2021-08-10 | 佛山纽欣肯智能科技有限公司 | Manipulator system with multi-rope driving unit |
| CN113334360B (en)* | 2021-06-25 | 2022-04-26 | 北京航空航天大学 | A Reconfigurable Compact Variable Stiffness Actuator |
| CN113791480B (en)* | 2021-07-17 | 2024-07-09 | 国华(青岛)智能装备有限公司 | Precise swing angle table for optical experiment and assembly method |
| CN114654496B (en)* | 2022-03-30 | 2023-08-25 | 华中科技大学 | Active rigidity-variable rotary joint based on involute leaf spring |
| CN114905541B (en)* | 2022-04-06 | 2024-03-22 | 重庆奔腾科技发展有限公司 | Variable-rigidity robot joint |
| CN114810968A (en)* | 2022-04-15 | 2022-07-29 | 北京电仪科技有限公司 | Valve positioner motion conversion mechanism and intelligent valve positioner |
| CN116638543B (en)* | 2023-05-18 | 2024-08-20 | 北京工业大学 | A variable stiffness joint driver with integrated motor and reducer |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101973037A (en)* | 2010-11-22 | 2011-02-16 | 北方工业大学 | Passive robot joint with adjustable rigidity elasticity |
| CN103192406A (en)* | 2013-04-08 | 2013-07-10 | 北京航空航天大学 | Robot joint driver with variable rigidity |
| CN103273502A (en)* | 2013-06-19 | 2013-09-04 | 北京航空航天大学 | Flexible mechanical arm vibration reducing device and method based on controllable rigidity and controllable damp |
| CN103753598A (en)* | 2013-11-05 | 2014-04-30 | 上海大学 | Rigidity-flexibility automatic switching variable rigidity flexible driver device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH0691568A (en)* | 1992-09-16 | 1994-04-05 | Toshiba Corp | Robot controller |
| JP5062675B2 (en)* | 2007-08-02 | 2012-10-31 | 国立大学法人東北大学 | Joint mechanism with variable stiffness |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101973037A (en)* | 2010-11-22 | 2011-02-16 | 北方工业大学 | Passive robot joint with adjustable rigidity elasticity |
| CN103192406A (en)* | 2013-04-08 | 2013-07-10 | 北京航空航天大学 | Robot joint driver with variable rigidity |
| CN103273502A (en)* | 2013-06-19 | 2013-09-04 | 北京航空航天大学 | Flexible mechanical arm vibration reducing device and method based on controllable rigidity and controllable damp |
| CN103753598A (en)* | 2013-11-05 | 2014-04-30 | 上海大学 | Rigidity-flexibility automatic switching variable rigidity flexible driver device |
| Publication number | Publication date |
|---|---|
| CN104669261A (en) | 2015-06-03 |
| Publication | Publication Date | Title |
|---|---|---|
| CN104669261B (en) | A kind of can synchronization control displacement-type variation rigidity joint driver and a kind of method of adjustment of joint of robot rigidity | |
| CN108890689B (en) | Variable-rigidity joint of flexible robot | |
| CN109676600B (en) | A reed-based variable stiffness flexible actuator and its motion control method | |
| CN108000554B (en) | A variable stiffness flexible joint based on leaf spring and its control method | |
| CN103192406B (en) | A kind of robot articular driver of stiffness variable | |
| CN104985608B (en) | Stiffness-adjustable flexible joint actuator mechanism | |
| CN102699928B (en) | Robot steering engine with flexible characteristic | |
| Wang et al. | Design of variable stiffness actuator based on modified Gear–Rack mechanism | |
| CN106426265A (en) | Variable-rigidity flexible drive joint | |
| CN107738268B (en) | Variable-rigidity flexible joint based on lever mechanism | |
| CN202964653U (en) | Horizontal multi-joint robot | |
| CN113021404B (en) | Integrated active and passive variable stiffness joint based on cam mechanism | |
| CN106272353A (en) | A kind of planar three freedom meek parallel institution of large stroke and high precision | |
| Tao et al. | A new variable stiffness robot joint | |
| CN108453723A (en) | A kind of leaf spring type variation rigidity flexible actuator based on six-bar mechanism | |
| CN110142736A (en) | A master-slave isomorphic manipulator system | |
| CN113084864B (en) | A Variable Stiffness Robot Joint Structure | |
| CN107081745A (en) | Joint of robot modular structure, robot and its method of work using the joint module structure | |
| CN104259991B (en) | Power control module based on stiffness variable compliant mechanism | |
| CN106482921A (en) | A kind of two degrees of freedom closed chain compliant mechanism vibration measurement control device and method | |
| CN108984845A (en) | One kind considering chaindriven ATC Modeling of Virtual Prototype emulation mode based on Adams | |
| Guo et al. | Mechanical design and analysis of the novel 6-DOF variable stiffness robot arm based on antagonistic driven joints | |
| CN112157656A (en) | Symmetrical variable fulcrum rigidity adjusting module capable of realizing full-range rigidity adjustment | |
| CN204123270U (en) | A kind of power control module based on stiffness variable compliant mechanism | |
| CN113954058B (en) | A flexible actuator, working method and robot |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20250822 Address after:100000 Beijing City Haidian District Dongsheng Science and Technology Park North Street 6 Yard 10 Building 4 Floor 4001 Patentee after:Ellipse space time (Beijing) Technology Co.,Ltd. Country or region after:China Address before:100191 Haidian District, Xueyuan Road, No. 37, Patentee before:BEIHANG University Country or region before:China |