技术领域technical field
本发明涉及一种发光元件及其制作方法以及一种发光元件阵列及其制作方法,特别是涉及一种发光装置及其制作方法。The invention relates to a light-emitting element and a manufacturing method thereof, a light-emitting element array and a manufacturing method thereof, in particular to a light-emitting device and a manufacturing method thereof.
背景技术Background technique
现有发光二极管(LED)封装技术是先在芯片座(sub-mount)上点胶,再将发光二极管芯片固定于芯片座上,进而形成一发光二极管元件,此步骤称为固晶(Die Bonding)。固晶胶材主要为具导电性的银胶或其他非导电性环氧树脂。之后将发光二极管元件组合于电路板上。倒装(flip chip)式的发光二极管使二极管结构中的p型半导体导电层与n型半导体导电层,暴露于同一侧,以能将阴、阳极电极制作于二极管结构的同一侧上,因而可直接将设置有阴、阳极电极的发光二极管结构覆置于一锡料(solder)上。如此,能免除采用传统金属拉线(wire bonding)的需求。然而现有的倒装式发光二极管仍需通过切割、固晶等封装步骤,才能与电路板连结。因此,若倒装式发光二极管的电极具有足够大的接触面积,便能够省略现有的封装步骤。The existing light-emitting diode (LED) packaging technology is to dispense glue on the sub-mount first, and then fix the light-emitting diode chip on the sub-mount to form a light-emitting diode element. This step is called die bonding (Die Bonding). ). The die-bonding adhesive is mainly conductive silver glue or other non-conductive epoxy resin. Afterwards, the light-emitting diode elements are assembled on the circuit board. In the flip chip type light emitting diode, the p-type semiconductor conductive layer and the n-type semiconductor conductive layer in the diode structure are exposed on the same side, so that the cathode and anode electrodes can be made on the same side of the diode structure, so that The light-emitting diode structure provided with cathode and anode electrodes is directly covered on a solder. In this way, the need for conventional metal wire bonding can be eliminated. However, the existing flip-chip light-emitting diodes still need to go through packaging steps such as dicing and die bonding before they can be connected to the circuit board. Therefore, if the electrodes of the flip-chip LED have a sufficiently large contact area, the existing packaging steps can be omitted.
一般传统LED的操作电流约为数十至数百个毫安培(mA),但亮度往往不足以应付一般照明所需。若组合大量的LED以提高亮度,则LED照明元件的体积将增加而导致市场上的竞争性降低。因此,提升单颗LED的管芯亮度,成为必然的趋势。然而,当LED朝向高亮度发展时,单一LED的操作电流及功率增加为传统LED的数倍至数百倍,例如,一个高亮度的LED的操作电流约为数百毫安培至数个安培,使得LED所产生的热问题不容忽视。LED的性能会因为“热”而降低,例如热效应会影响LED的发光波长,半导体特性也因热而产生亮度衰减,更严重时甚至造成元件损坏。因此,高功率LED如何散热成为LED的重要议题。Generally, the operating current of traditional LEDs is about tens to hundreds of milliamps (mA), but the brightness is often not enough to meet the needs of general lighting. If a large number of LEDs are combined to increase the brightness, the volume of the LED lighting element will increase and the competition in the market will decrease. Therefore, it is an inevitable trend to increase the brightness of the die of a single LED. However, when LEDs develop toward high brightness, the operating current and power of a single LED increase several to hundreds of times that of traditional LEDs. For example, the operating current of a high-brightness LED is about hundreds of milliamperes to several amperes. The thermal problems generated by LEDs cannot be ignored. The performance of the LED will be reduced due to "heat". For example, the thermal effect will affect the light-emitting wavelength of the LED, and the semiconductor characteristics will also cause brightness attenuation due to heat, and even cause component damage in severe cases. Therefore, how to dissipate heat from high-power LEDs has become an important issue for LEDs.
美国专利申请号2004/0188696以及2004/023189(为2004/0188696的分割案)中分别揭示了一种使用表面黏着技术(Surface Mount Technology,SMT)的LED封装结构与方法,其中每一封装结构含有一LED芯片。每一LED芯片先以倒装的形式,通过凸块(bonding bump)黏着于在一芯片座(sub-mount)的前侧(front side)上。在芯片座中具有预先凿出的开孔阵列,并填以金属以形成通道阵列(via array)。此芯片的电极可通过此通道阵列连接至芯片座的具有锡料的后侧(back side)。此通道阵列亦可作为LED芯片的散热路径。在每一LED芯片与次基板黏着之后,再将次基板切割,以进行后续的LED封装。U.S. Patent Application Nos. 2004/0188696 and 2004/023189 (the division of 2004/0188696) respectively disclose a LED packaging structure and method using Surface Mount Technology (SMT), wherein each packaging structure contains An LED chip. Each LED chip is firstly adhered to the front side of a chip seat (sub-mount) through a bonding bump in the form of flip-chip. There is an array of pre-drilled holes in the chip holder and filled with metal to form a via array. The electrodes of the chip can be connected to the back side of the chip paddle with solder through the via array. The channel array can also be used as a heat dissipation path for the LED chip. After each LED chip is bonded to the sub-substrate, the sub-substrate is cut for subsequent LED packaging.
然而,在美国专利申请号2004/0188696以及2004/023189中的芯片座,需凿出填以金属的通道阵列(via array),增加制作工艺成本。此外,每一LED芯片黏着于芯片座的步骤,也会增加制作的复杂度。因此,若能具有一种发光二极管,不需芯片座,亦具有良好的散热路径,可在市场上具有优势。However, in the chip holders of US Patent Application Nos. 2004/0188696 and 2004/023189, a via array filled with metal needs to be drilled, which increases the manufacturing process cost. In addition, the step of adhering each LED chip to the chip holder will also increase the complexity of manufacturing. Therefore, if there is a light emitting diode that does not require a chip holder and also has a good heat dissipation path, it will have an advantage in the market.
发明内容Contents of the invention
本发明揭示一种发光装置的制作方法,其包含步骤:提供一第一载板,其具有多个第一金属接触;提供一基材;形成多个发光叠层以及多个沟槽于基材上,其中多个发光叠层通过多个沟槽与彼此分离;连接多个发光叠层与第一载板;形成一封装材料共同地位于多个发光叠层上;以及切割第一载板以及封装材料以形成多个管芯级的发光元件单元。The invention discloses a manufacturing method of a light-emitting device, which includes the steps of: providing a first carrier plate with a plurality of first metal contacts; providing a substrate; forming a plurality of light-emitting stacks and a plurality of grooves in the substrate wherein a plurality of light-emitting stacks are separated from each other by a plurality of grooves; connecting the plurality of light-emitting stacks with the first carrier; forming an encapsulation material that is commonly located on the plurality of light-emitting stacks; and cutting the first carrier and Encapsulating materials to form a plurality of die-level light emitting element units.
于本发明的一实施例中,发光装置的制作方法还包含形成一第一波长转换层于一第一发光叠层上,第一波长转换层将第一发光叠层发出的光转换为一第一光;形成一第二波长转换层于一第二发光叠层上,第二波长转换层将第二发光叠层发出的光转换为一第二光;以及提供一个第三发光叠层,第三发光叠层的上方并未有任何波长转换材料,其中第一发光叠层、第二发光叠层以及第三发光叠层发出的光为蓝光,第一光为绿光且第二光为红光。In an embodiment of the present invention, the manufacturing method of the light-emitting device further includes forming a first wavelength conversion layer on a first light-emitting stack, and the first wavelength conversion layer converts light emitted by the first light-emitting stack into a first A light; forming a second wavelength conversion layer on a second light-emitting stack, the second wavelength conversion layer converts light emitted by the second light-emitting stack into a second light; and providing a third light-emitting stack, the first There is no wavelength conversion material above the three light-emitting stacks, wherein the light emitted by the first light-emitting stack, the second light-emitting stack and the third light-emitting stack is blue light, the first light is green light and the second light is red light Light.
附图说明Description of drawings
图1A至图1D为本发明实施例的发光二极管制作方法的示意图;1A to 1D are schematic diagrams of a method for manufacturing a light emitting diode according to an embodiment of the present invention;
图1E及图1F分别为本发明实施例的发光二极管的应用示意图;FIG. 1E and FIG. 1F are application schematic diagrams of light-emitting diodes according to embodiments of the present invention;
图2A至图2D为本发明实施例的发光二极管阵列制作方法的示意图;2A to 2D are schematic diagrams of a method for fabricating a light emitting diode array according to an embodiment of the present invention;
图2E为本发明实施例的发光二极管阵列与电路板连结的示意图;2E is a schematic diagram of the connection between the LED array and the circuit board according to the embodiment of the present invention;
图2F及图2G为本发明实施例的发光二极管阵列的封装示意图;FIG. 2F and FIG. 2G are schematic diagrams of packaging of a light emitting diode array according to an embodiment of the present invention;
图3A至图3G为本发明实施例的发光装置的制作方法流程各阶段所对应的剖视图;3A to 3G are cross-sectional views corresponding to each stage of the manufacturing method of the light emitting device according to the embodiment of the present invention;
图4A为如图3F所示的发光元件阵列以倒装的形式与电路载板连接的俯视图;4A is a top view of the light-emitting element array shown in FIG. 3F connected to the circuit carrier in the form of flip chip;
图4B为本发明实施例的管芯级的红绿蓝发光元件单元包含如图3G所示的红绿蓝发光元件群组的俯视图;FIG. 4B is a top view of a die-level red, green, and blue light-emitting element unit including the red, green, and blue light-emitting element group shown in FIG. 3G according to an embodiment of the present invention;
图5A为本发明实施例的发光元件阵列以倒装的形式与电路载板连接的俯视图;FIG. 5A is a top view of the light-emitting element array connected to the circuit carrier in the form of flip-chip according to the embodiment of the present invention;
图5B为本发明实施例的单一发光元件的管芯级的发光元件单元的俯视图;5B is a top view of a die-level light-emitting element unit of a single light-emitting element according to an embodiment of the present invention;
图5C为本发明实施例的单一发光元件的管芯级的发光元件单元的剖视图;5C is a cross-sectional view of a die-level light-emitting element unit of a single light-emitting element according to an embodiment of the present invention;
图5D为本发明实施例的单一发光元件的管芯级的发光元件单元的俯视图;5D is a top view of a die-level light-emitting element unit of a single light-emitting element according to an embodiment of the present invention;
图5E为本发明实施例的单一发光元件的管芯级的发光元件单元的剖视图;5E is a cross-sectional view of a die-level light-emitting element unit of a single light-emitting element according to an embodiment of the present invention;
图6A为本发明实施例的管芯级的红绿蓝发光元件单元的剖视图6A is a cross-sectional view of a die-level red, green, and blue light-emitting element unit according to an embodiment of the present invention
图6B为图6A所示的发光元件阵列中的单颗发光元件的示意图;FIG. 6B is a schematic diagram of a single light-emitting element in the light-emitting element array shown in FIG. 6A;
图6C为本发明实施例的发光元件阵列中的单颗发光元件的示意图;6C is a schematic diagram of a single light-emitting element in the light-emitting element array of the embodiment of the present invention;
图7A至图7G为本发明实施例的一种发光装置的制作方法流程各阶段所对应的剖视图;7A to 7G are cross-sectional views corresponding to each stage of a manufacturing method of a light-emitting device according to an embodiment of the present invention;
图7H为本发明实施例的管芯级的红绿蓝发光元件单元包含如图7G所示的红绿蓝发光元件群组的俯视图;FIG. 7H is a top view of a die-level red, green, and blue light-emitting element unit including the red, green, and blue light-emitting element group shown in FIG. 7G according to an embodiment of the present invention;
图7I为本发明实施例的单一发光元件的管芯级的发光元件单元的剖视图;7I is a cross-sectional view of a die-level light-emitting element unit of a single light-emitting element according to an embodiment of the present invention;
图7J为本发明实施例的单一发光元件的管芯级的发光元件单元的俯视图;7J is a top view of a die-level light-emitting element unit of a single light-emitting element according to an embodiment of the present invention;
图8A为本发明实施例的显示模块的示意图;FIG. 8A is a schematic diagram of a display module according to an embodiment of the present invention;
图8B为本发明实施例的显示模块的示意图;以及8B is a schematic diagram of a display module according to an embodiment of the present invention; and
图9为本发明实施例的灯泡元件分解图。Fig. 9 is an exploded view of the bulb components of the embodiment of the present invention.
符号说明Symbol Description
发光结构...100、200a、200b、与200cLight-emitting structures...100, 200a, 200b, and 200c
基材...11、21Substrate...11, 21
第一导电层...102First conductive layer...102
活性层...104active layer...104
第二导电层...106Second conductive layer...106
电极或接合垫...107a、107bElectrodes or bond pads . . . 107a, 107b
保护层...120Protective layer...120
第一介电层...122First Dielectric Layer...122
第二介电层...140、240Second dielectric layer... 140, 240
介电层...222a、222b、222c、240a、240b、240c、280Dielectric layers . . . 222a, 222b, 222c, 240a, 240b, 240c, 280
金属层...160、260a、260b、260c、162、262a、262b、262cMetal layers... 160, 260a, 260b, 260c, 162, 262a, 262b, 262c
发光元件阵列...20、30、32、32’Light emitting element array...20, 30, 32, 32’
基材...21Substrate...21
锡料...22Tin...22
电路载板...13、23Circuit carrier... 13, 23
透明封装材料...24Transparent packaging material...24
发光元件封装...25Light emitting element package...25
发光元件...10、10a、10b、10c、20a、20b、20c、300、300a、300b、300c、300d、300a’、300b’、300c’、300d’Light emitting element...10, 10a, 10b, 10c, 20a, 20b, 20c, 300, 300a, 300b, 300c, 300d, 300a', 300b', 300c', 300d'
表面...102asurface...102a
发光叠层...101Luminous Lamination...101
反射层...221Reflective layer...221
第一金属层...260、260’First metal layer...260, 260'
第二金属层...262、262’Second metal layer...262, 262'
不透光层...290Opaque layer...290
金属接触...22Metal contacts...22
导电通道...22aConductive channel...22a
第一波长转换层...294First wavelength converting layer...294
第二波长转换层...296Second wavelength converting layer...296
红绿蓝发光元件单元...35、36、36’、65、66、37Red, green and blue light-emitting element units...35, 36, 36', 65, 66, 37
第一宽度...S1、S6’First width...S1, S6'
第一长度...S2First length...S2
第二宽度...d1、d1’Second width...d1, d1'
第二长度...d2second length...d2
第一距离...S3、S3’First distance...S3, S3'
第二距离...S4Second distance...S4
第三距离...S5Third distance...S5
波长转换层...298Wavelength conversion layer...298
第一长度...S1First length...S1
第一宽度...S6First width...S6
填充材料...680Filling material...680
显示模块...76Display module...76
第二电路载板...73Second circuit carrier...73
电路...72circuit...72
照明模块...78Lighting Module...78
灯泡...80Bulb...80
光学透镜...82Optical lens...82
散热槽...85Cooling slot...85
连结部...87Link...87
电连接器...88Electrical connector...88
具体实施方式Detailed ways
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附的附图作详细说明如下。在附图中,元件的形状或厚度可扩大或缩小。需特别注意的是,图中未绘示或描述的元件,可以是熟悉此技术的人士所知的形式。本发明所列举的各实施例仅用以说明本发明,并非用以限制本发明的范围。任何人对本发明所作的任何显而易知的修饰或变更皆不脱离本发明的精神与范围。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail in conjunction with the accompanying drawings. In the drawings, the shape or thickness of elements may be enlarged or reduced. It should be noted that components not shown or described in the figure may be in the form known to those skilled in the art. The various embodiments listed in the present invention are only used to illustrate the present invention, and are not intended to limit the scope of the present invention. Any obvious modifications or changes made by anyone to the present invention will not depart from the spirit and scope of the present invention.
参照图1A至图1E,为依照本发明实施例的一种发光元件的制作方法流程各阶段所对应的剖视图。在图1A中,首先形成一发光结构100,其包含一基材11、一第一导电层102以做为一包覆层、一活性层104位于第一导电层102上以作为一发光层、一第二导电层106于此活性层104上以作为另一包覆层。优选地,如图1A所示,一电极或接合垫(bonding pad)107a位于第一导电层102的暴露的部分上,另一电极或接合垫107b位在第二导电层106上。电极或接合垫107a与107b的材料(例如铝)与制作方法应为习此技术者所熟知,在此不加赘述。此外,在一实施例中,发光结构100还包含一保护层(passivation layer)120,以保护此发光结构100。此保护层120的材料(例如二氧化硅)与制作方法亦为习此技术者所熟知,在此加不赘述。Referring to FIG. 1A to FIG. 1E , they are cross-sectional views corresponding to each stage of a manufacturing method of a light-emitting element according to an embodiment of the present invention. In FIG. 1A, a light-emitting structure 100 is first formed, which includes a substrate 11, a first conductive layer 102 as a cladding layer, an active layer 104 located on the first conductive layer 102 as a light-emitting layer, A second conductive layer 106 is on the active layer 104 as another cladding layer. Preferably, one electrode or bonding pad 107a is located on the exposed portion of the first conductive layer 102 and the other electrode or bonding pad 107b is located on the second conductive layer 106 as shown in FIG. 1A . The materials (for example, aluminum) and fabrication methods of the electrodes or bonding pads 107 a and 107 b are well known to those skilled in the art, and will not be repeated here. In addition, in one embodiment, the light emitting structure 100 further includes a passivation layer 120 to protect the light emitting structure 100 . The material (such as silicon dioxide) and the manufacturing method of the protection layer 120 are also well known to those skilled in the art, and will not be repeated here.
在一实施例中,第一导电层102为一n型半导体导电层,而第二导电层106为一p型半导体导电层。n型半导体导电层102、p型半导体导电层106为任何现有或未来中可见者的半导体材料,优选者为Ⅲ-Ⅴ(三/五)族化合物半导体,例如氮化铝镓铟(AlxGayln(1-x-y)N)或磷化铝镓铟(AlxGayIn(1-x-y)P),其中0≦x≦1,0≦y≦1,0≦x+y≦1,并视情况进一步被p/n型掺质所掺杂。而活性层104亦可使用现有的半导体材料与结构,例如材料可为氮化铝镓铟(AlxGayln(1-x-y)N)或磷化铝镓铟(AlxGayln(1-x-y)P)等,而结构可为单量子阱(Single Quantum Well,SQW)、多重量子阱(Multiple Quantum Well,MQW)与双异质(Double Heterosture,DH),其发光原理与机制为现有的技术,在此不再赘述。此外,发光结构100可通过有机金属化学气相沉积(MOCVD)、分子束外延成长(molecular beam epitaxy,MBE)制作工艺、或氢化物气相外延成长(hydride vapor phase epitaxy,HVPE)制作工艺等制作。In one embodiment, the first conductive layer 102 is an n-type semiconductor conductive layer, and the second conductive layer 106 is a p-type semiconductor conductive layer. The n-type semiconductor conductive layer 102 and the p-type semiconductor conductive layer 106 are any existing or future semiconductor materials, preferably III-V (three/five) group compound semiconductors, such as aluminum gallium indium nitride (Alx Gay ln(1-x-y) N) or aluminum gallium indium phosphide (Alx Gay In(1-xy) P), where 0≦x≦1, 0≦y≦1, 0≦x+y ≦1, and further doped by p/n type dopants as the case may be. The active layer 104 can also use existing semiconductor materials and structures, for example, the material can be aluminum gallium indium nitride (Alx Gay ln(1-x-y) N) or aluminum gallium indium phosphide (Alx Gay ln(1-x-y) P), etc., and the structure can be single quantum well (Single Quantum Well, SQW), multiple quantum well (Multiple Quantum Well, MQW) and double heterogeneous (Double Heterosture, DH), its luminescence The principle and mechanism are existing technologies and will not be repeated here. In addition, the light emitting structure 100 can be fabricated by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) manufacturing process, or hydride vapor phase epitaxy (HVPE) manufacturing process, etc.
接着,如图1B所示,形成一第一介电层122于此发光结构100上。优选地,第一介电层122为一透明介电层,且其厚度D≦20μm,由此有效地传导发光结构100所产生的热。第一介电层122的材料可为二氧化硅(SiO2)、氮化硅(Si3N4)、或是其组合,而其可通过MOCVD或是MBE制作。Next, as shown in FIG. 1B , a first dielectric layer 122 is formed on the light emitting structure 100 . Preferably, the first dielectric layer 122 is a transparent dielectric layer with a thickness D≦20 μm, so as to effectively conduct the heat generated by the light emitting structure 100 . The material of the first dielectric layer 122 may be silicon dioxide (SiO2 ), silicon nitride (Si3 N4 ), or a combination thereof, and it may be fabricated by MOCVD or MBE.
之后,参见图1C,形成一第二介电层140于第一介电层122上。第二介电层140的材料可为二氧化硅、氮化硅、聚亚酰胺(polyimide)、BCB(bisbenzocyclobutene)以及光致抗蚀剂(photoresist)中选择其一。优选地,第二介电层140的厚度约25μm,通过一印刷技术而形成。After that, referring to FIG. 1C , a second dielectric layer 140 is formed on the first dielectric layer 122 . The material of the second dielectric layer 140 can be one of silicon dioxide, silicon nitride, polyimide, BCB (bisbenzocyclobutene) and photoresist. Preferably, the second dielectric layer 140 has a thickness of about 25 μm and is formed by a printing technique.
参见图1D,在第二介电层140形成之后,形成金属层160,金属层160位于发光结构100上并电性接触第一导电层102,且部分的金属层160位于第一介电层122上;以及形成金属层162,金属层162位于发光结构100上并电性接触第二导电层106,且部分的金属层162位于第一介电层122上。其中,第一介电层122与第二介电层140隔绝金属层160与金属层162。金属层160或金属层162的材料可选自金(Au)、铝(Al)、银(Ag)、其等的合金,或其他现有的金属。优选地,金属层160与金属层162通过一印刷技术或电镀而共同形成。经由上述步骤,即完成发光元件10。1D, after the second dielectric layer 140 is formed, a metal layer 160 is formed, the metal layer 160 is located on the light emitting structure 100 and electrically contacts the first conductive layer 102, and part of the metal layer 160 is located on the first dielectric layer 122 and forming a metal layer 162 , the metal layer 162 is located on the light emitting structure 100 and electrically contacts the second conductive layer 106 , and part of the metal layer 162 is located on the first dielectric layer 122 . Wherein, the first dielectric layer 122 and the second dielectric layer 140 isolate the metal layer 160 and the metal layer 162 . The material of the metal layer 160 or the metal layer 162 can be selected from gold (Au), aluminum (Al), silver (Ag), alloys thereof, or other existing metals. Preferably, the metal layer 160 and the metal layer 162 are jointly formed by a printing technique or electroplating. Through the above steps, the light emitting element 10 is completed.
在一实施例中,第一介电层122为一透明介电层,而第一介电层122与金属层160及/或金属层162的接触面供反射发光结构100发出的光,因而可有效提升发光元件10的光输出强度。此外,金属层160及/或金属层162亦作为发光结构100的散热路径,当金属层160及金属层162具有较大的接触面积A1、A2,也有助于有效且快速的散热。In one embodiment, the first dielectric layer 122 is a transparent dielectric layer, and the contact surface between the first dielectric layer 122 and the metal layer 160 and/or the metal layer 162 is used to reflect the light emitted by the light emitting structure 100, so it can The light output intensity of the light emitting element 10 is effectively improved. In addition, the metal layer 160 and/or the metal layer 162 also serves as a heat dissipation path for the light emitting structure 100 . When the metal layer 160 and the metal layer 162 have larger contact areas A1 and A2 , it is also helpful for effective and rapid heat dissipation.
参见图1E,形成如同图1D所示的结构之后,发光元件的制作方法还包含一移除基材11的步骤,用于暴露出第一导电层102。基材11可以例如是一蓝宝石基材或是砷化镓基材。当基材11为蓝宝石基材,可通过准分子激光(excimer laser)移除基材11。准分子激光可以为一具有能量为400毫焦耳/平方厘米(mJ/cm2)、波长为248纳米以及脉冲宽度(pulse width)为38奈秒(ns)的氟化氪(KrF)准分子激光。在较高的温度中,例如60℃,当准分子激光照射在蓝宝石基材上时,蓝宝石基材被移除以暴露出第一导电层102。另外,当基材11为砷化镓基材,一比例为1:35的氨水(NH4OH)与过氧化氢(H2O2)的溶液或是一比例为5:3:5的磷酸(H3PO4)、过氧化氢(H2O2)与水的溶液可以用于移除砷化镓基材,用于暴露出第一导电层102。Referring to FIG. 1E , after forming the structure shown in FIG. 1D , the manufacturing method of the light emitting device further includes a step of removing the substrate 11 for exposing the first conductive layer 102 . The substrate 11 can be, for example, a sapphire substrate or a gallium arsenide substrate. When the substrate 11 is a sapphire substrate, the substrate 11 can be removed by an excimer laser. The excimer laser can be a krypton fluoride (KrF) excimer laser with an energy of 400 millijoules/square centimeter (mJ/cm2 ), a wavelength of 248 nm, and a pulse width of 38 nanoseconds (ns). . At a higher temperature, such as 60° C., when the excimer laser is irradiated on the sapphire substrate, the sapphire substrate is removed to expose the first conductive layer 102 . In addition, when the substrate 11 is a gallium arsenide substrate, a solution of ammonia water (NH4 OH) and hydrogen peroxide (H2 O2 ) with a ratio of 1:35 or a solution of phosphoric acid with a ratio of 5:3:5 A solution of (H3 PO4 ), hydrogen peroxide (H2 O2 ) and water can be used to remove the GaAs substrate to expose the first conductive layer 102 .
移除基材11之后,发光元件的制作方法还包含粗化第一导电层102的表面102a。例如,当第一导电层102为一氮化铝镓铟(AlxGayln(1-x-y)N)层,其表面102a可以通过蚀刻液粗化,蚀刻液可例如为氢氧化钾(KOH)溶液。此外,当第一导电层102为一磷化铝镓铟(AlxGayIn(1-x-y)P)层,一盐酸(HCl)以及磷酸的溶液可用于粗化第一导电层102的表面102a,粗化时间可例如为15秒。第一导电层102的粗化表面102a可降低发生全反射的可能性,用于增加发光元件的光取出效率。After removing the base material 11 , the manufacturing method of the light emitting device further includes roughening the surface 102 a of the first conductive layer 102 . For example, when the first conductive layer 102 is an aluminumgallium indium nitride (AlxGayln(1-x-y) N) layer, its surface 102a can be roughened by an etching solution, and the etching solution can be, for example, potassium hydroxide (KOH) solution. In addition, when the first conductive layer 102 is an aluminum gallium indium phosphide (AlxGay In(1-xy) P) layer, a solution of hydrochloric acid (HCl) and phosphoric acid can be used to roughen the surface of the first conductive layer 102 102a, the roughening time may be, for example, 15 seconds. The roughened surface 102a of the first conductive layer 102 can reduce the possibility of total reflection, which is used to increase the light extraction efficiency of the light emitting element.
图1F所示的发光元件10以及图1D所示的发光元件10a、10b、10c提供足够大的接触面积(优选为至少占据发光元件10截面积的一半),发光元件10a、10b、10c利用锡料(solder)12直接与电路载板13连接,而不需要固晶(Die Bonding)与金属拉线(Wire Bonding)等过程。在一实施例中,发光元件10a发出红光(R)、发光元件10b发出绿光(G)、发光元件10c发出蓝光(B),三者分别与电路载板13连接以供影像显示的用途。The light-emitting element 10 shown in Figure 1F and the light-emitting element 10a, 10b, 10c shown in Figure 1D provide a sufficiently large contact area (preferably occupying at least half of the cross-sectional area of the light-emitting element 10), and the light-emitting element 10a, 10b, 10c utilizes tin The solder 12 is directly connected to the circuit carrier 13 without the need for processes such as die bonding and wire bonding. In one embodiment, the light-emitting element 10a emits red light (R), the light-emitting element 10b emits green light (G), and the light-emitting element 10c emits blue light (B), and the three are respectively connected to the circuit board 13 for image display purposes .
参照图2A至图2D,为依照本发明实施例的一种发光元件阵列的制作方法流程各阶段所对应的剖视图。在图2A中,首先提供一基材21,例如一蓝宝石(Sapphire)基材、砷化镓(GaAs)基材、或是其他习此技术者所熟知的基材与其组合。接着,在基材21上形成多个发光结构200a、200b、与200c。发光结构200a、200b、与200c的材料与制作方法可参考图1A至图1D的发光结构100。相似地,发光结构200a、200b、与200c可通过有机金属化学气相沉积(MOCVD)制作工艺、分子束外延成长(molecular beam epitaxy,MBE)制作工艺、或氢化物气相外延成长(hydride vapor phase epitaxy,HVPE)制作工艺等制作。Referring to FIG. 2A to FIG. 2D , they are cross-sectional views corresponding to each stage of a manufacturing method of a light-emitting element array according to an embodiment of the present invention. In FIG. 2A , firstly, a substrate 21 is provided, such as a sapphire (Sapphire) substrate, gallium arsenide (GaAs) substrate, or other substrates and combinations thereof well known to those skilled in the art. Next, a plurality of light emitting structures 200 a , 200 b , and 200 c are formed on the substrate 21 . The materials and fabrication methods of the light emitting structures 200a, 200b, and 200c can refer to the light emitting structure 100 in FIGS. 1A to 1D . Similarly, the light emitting structures 200a, 200b, and 200c can be fabricated by metalorganic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE) fabrication, or hydride vapor phase epitaxy (hydride vapor phase epitaxy, HVPE) production process and other production.
接着,如图2B所示,形成一介电层222a于发光结构200a上、形成一介电层222b于发光结构200b上、形成一介电层222c于发光结构200c上。优选地,如同图1B所示的介电层122,介电层222a、222b、222c为一透明介电层,且其厚度D≦20μm,由此有效地传导发光结构200a、200b、200c所产生的热。介电层222a、222b、222c的材料可为二氧化硅、氮化硅或其等的组合,而其可通过MOCVD或是MBE制作。Next, as shown in FIG. 2B , a dielectric layer 222a is formed on the light emitting structure 200a, a dielectric layer 222b is formed on the light emitting structure 200b, and a dielectric layer 222c is formed on the light emitting structure 200c. Preferably, like the dielectric layer 122 shown in FIG. 1B, the dielectric layer 222a, 222b, 222c is a transparent dielectric layer, and its thickness D≦20 μm, thereby effectively conducting the light-emitting structures 200a, 200b, 200c produced hot. The material of the dielectric layer 222a, 222b, 222c may be silicon dioxide, silicon nitride or a combination thereof, and it may be fabricated by MOCVD or MBE.
之后,参见图2C,形成介电层240a于介电层222a上、形成介电层240b于介电层222b上、形成介电层240c于介电层222c上。介电层240a、240b、240c的材料可为二氧化硅、氮化硅、聚亚酰胺(polyimide)、BCB(bisbenzocyclobutene)以及光致抗蚀剂剂(photoresist)中选择其一。优选地,如同图1C所示的介电层第二140,介电层240a、240b、240c的厚度分别约为25μm,且通过一印刷技术而形成。在一实施例中,在发光结构200a、200b、200c之间,更形成一介电层280,用于电绝缘发光元件20a、20b、与20c(如图2D所示)。在此实施例中,介电层280的材料与介电层240a、240b、240c的材料相同,例如聚亚酰胺,并利用一制作工艺(例如一印刷技术)与介电层240a、240b、240c共同形成。在另一实施例中,介电层280的材料不同于介电层240a、240b、240c的材料,且通过不同制作工艺形成。Afterwards, referring to FIG. 2C , a dielectric layer 240 a is formed on the dielectric layer 222 a , a dielectric layer 240 b is formed on the dielectric layer 222 b , and a dielectric layer 240 c is formed on the dielectric layer 222 c. The material of the dielectric layers 240 a , 240 b , and 240 c can be selected from silicon dioxide, silicon nitride, polyimide, BCB (bisbenzocyclobutene), and photoresist. Preferably, like the second dielectric layer 140 shown in FIG. 1C , the thicknesses of the dielectric layers 240 a , 240 b , and 240 c are about 25 μm, respectively, and are formed by a printing technique. In one embodiment, a dielectric layer 280 is further formed between the light emitting structures 200a, 200b, and 200c for electrically insulating the light emitting elements 20a, 20b, and 20c (as shown in FIG. 2D ). In this embodiment, the material of the dielectric layer 280 is the same as that of the dielectric layers 240a, 240b, and 240c, such as polyimide, and the dielectric layers 240a, 240b, and 240c are formed using a manufacturing process (such as a printing technique). jointly formed. In another embodiment, the material of the dielectric layer 280 is different from that of the dielectric layers 240a, 240b, and 240c, and is formed by different manufacturing processes.
参见图2D,形成金属层260a、260b、260c;以及形成金属层262a、262b、262c。金属层260a、260b、260c、262a、262b、与262c的材料可选自金(Au)、铝(Al)、银(Ag)或其等的合金。优选地,金属层260a、260b、260c、262a、262b、与262c通过一印刷技术或是电镀而共同形成。经由上述步骤,即完成具有发光元件20a、20b、与20c的发光元件阵列20。Referring to FIG. 2D, metal layers 260a, 260b, 260c are formed; and metal layers 262a, 262b, 262c are formed. Materials of the metal layers 260a, 260b, 260c, 262a, 262b, and 262c can be selected from gold (Au), aluminum (Al), silver (Ag) or alloys thereof. Preferably, the metal layers 260a, 260b, 260c, 262a, 262b, and 262c are jointly formed by a printing technique or electroplating. Through the above steps, the light emitting element array 20 having the light emitting elements 20a, 20b, and 20c is completed.
如图2E至图2F所示,在一实施例中,发光元件20a、20b、与20c提供足够大的接触面积,以利用锡料(solder)22直接与电路载板23连接。再使基材21与发光元件阵列20分离,发光元件阵列20便可作为影像显示之用。例如,利用锡料22直接连接发光元件20a、20b、与20c与电路载板23之后,发光元件的制作方法还包含一移除基材21的步骤。基材11可以例如是一蓝宝石基材,且可通过准分子激光(excimer laser)移除。准分子激光可以为一具有能量为400毫焦耳/平方厘米(mJ/cm2)、波长为248纳米以及脉冲宽度(pulsewidth)为38奈秒(ns)的氟化氪(KrF)准分子激光。在较高的温度中,例如60℃,当准分子激光照射在蓝宝石基材上时,蓝宝石基材便被移除以暴露出第一导电层102。另外,当基材11为砷化镓基材,一比例为1:35的氨水(NH4OH)与过氧化氢(H2O2)的溶液或是一比例为5:3:5的磷酸(H3PO4)、过氧化氢(H2O2)与水的溶液可用于移除砷化镓基材,用于暴露出第一导电层102。As shown in FIG. 2E to FIG. 2F , in one embodiment, the light-emitting elements 20 a , 20 b , and 20 c provide a large enough contact area to be directly connected to the circuit carrier 23 using solder 22 . Then, the substrate 21 is separated from the light-emitting element array 20, and the light-emitting element array 20 can be used for image display. For example, after the light-emitting elements 20 a , 20 b , and 20 c are directly connected to the circuit carrier 23 by solder 22 , the manufacturing method of the light-emitting element further includes a step of removing the substrate 21 . The substrate 11 can be, for example, a sapphire substrate, and can be removed by an excimer laser. The excimer laser may be a krypton fluoride (KrF) excimer laser with an energy of 400 mJ/cm2 , a wavelength of 248 nm, and a pulse width of 38 nanoseconds (ns). At a higher temperature, such as 60° C., when the excimer laser is irradiated on the sapphire substrate, the sapphire substrate is removed to expose the first conductive layer 102 . In addition, when the substrate 11 is a gallium arsenide substrate, a solution of ammonia water (NH4 OH) and hydrogen peroxide (H2 O2 ) with a ratio of 1:35 or a solution of phosphoric acid with a ratio of 5:3:5 A solution of (H3 PO4 ), hydrogen peroxide (H2 O2 ) and water can be used to remove the GaAs substrate to expose the first conductive layer 102 .
移除基材21之后,发光装置的制作方法还包含粗化第一导电层102的表面102a。例如,当第一导电层102为一氮化铝镓铟(AlxGayln(1-x-y)N)层,其表面102a可以通过蚀刻液粗化,蚀刻液可例如为氢氧化钾(KOH)溶液。此外,当第一导电层102为一磷化铝镓铟(AlxGayIn1-x-yP)层,一盐酸(HCl)以及磷酸的溶液可用于粗化第一导电层102的表面102a,粗化时间可例如为15秒。第一导电层102的粗化表面102a可降低发生全反射的可能性,用于增加发光元件的光取出效率。一实施例中,如图2G所示,一透明封装材料24用于包覆包含发光元件20a、20b、与20c的发光元件阵列20且连接电路载板23,进而形成发光元件封装25,其中透明封装材料24可例如为环氧树脂或是其他现有技术者所熟知的适合的材料。After removing the base material 21 , the manufacturing method of the light emitting device further includes roughening the surface 102 a of the first conductive layer 102 . For example, when the first conductive layer 102 is an aluminumgallium indium nitride (AlxGayln(1-x-y) N) layer, its surface 102a can be roughened by an etching solution, and the etching solution can be, for example, potassium hydroxide (KOH) solution. In addition, when the first conductive layer 102 is an aluminum gallium indium phosphide (AlxGay In1-xy P) layer, a solution of hydrochloric acid (HCl) and phosphoric acid can be used to roughen the surface 102a of the first conductive layer 102, The roughening time may be, for example, 15 seconds. The roughened surface 102a of the first conductive layer 102 can reduce the possibility of total reflection, which is used to increase the light extraction efficiency of the light emitting element. In one embodiment, as shown in FIG. 2G , a transparent encapsulation material 24 is used to cover the light-emitting element array 20 including the light-emitting elements 20a, 20b, and 20c and connect to the circuit carrier 23, thereby forming a light-emitting element package 25, wherein the transparent The encapsulation material 24 can be, for example, epoxy resin or other suitable materials known to those skilled in the art.
参照图3A至图3G,为依照本发明实施例的一种发光装置的制作方法流程各阶段所对应的剖视图。参见图3A,提供一基材21,其为单晶且包含蓝宝石、砷化镓、氮化镓或硅;外延成长一第一导电层102于基材21上,第一导电层102做为一包覆层;外延成长一包含多重量子阱(Multiple QuantumWell,MQW)结构的活性层104于第一导电层102上,其中活性层104作为一发光层;以及外延成长一第二导电层106于活性层104上,其中第二导电层106做为另一包覆层。接着,蚀刻第一导电层102、活性层104以及第二导电层106以在基材21上形成多个通过沟槽(图未标)而彼此分离的发光叠层101,且每一发光叠层101中,一部分的第一导电层102是暴露的。接着,每一发光叠层101上形成有一保护层120,且保护层120覆盖部分的第一导电层102、部分的第二导电层106以及发光叠层101的一侧壁。接着,于每一第一导电层102的暴露的部位上设置一与第一导电层102电连接的电极或接合垫107a,以及于每一第二导电层106上设置一与第二导电层106电连接的电极或接合垫107b。Referring to FIG. 3A to FIG. 3G , they are cross-sectional views corresponding to each stage of the manufacturing method flow of a light emitting device according to an embodiment of the present invention. 3A, a substrate 21 is provided, which is a single crystal and includes sapphire, gallium arsenide, gallium nitride or silicon; a first conductive layer 102 is epitaxially grown on the substrate 21, and the first conductive layer 102 is used as a cladding layer; epitaxially grow an active layer 104 comprising a Multiple Quantum Well (Multiple QuantumWell, MQW) structure on the first conductive layer 102, wherein the active layer 104 is used as a light-emitting layer; and epitaxially grow a second conductive layer 106 on the active layer 104, wherein the second conductive layer 106 serves as another cladding layer. Next, etch the first conductive layer 102, the active layer 104, and the second conductive layer 106 to form a plurality of light-emitting stacks 101 separated from each other by grooves (not shown) on the substrate 21, and each light-emitting stack In 101, a portion of the first conductive layer 102 is exposed. Next, a protection layer 120 is formed on each light emitting stack 101 , and the protection layer 120 covers part of the first conductive layer 102 , part of the second conductive layer 106 and a sidewall of the light emitting stack 101 . Next, an electrode or bonding pad 107a electrically connected to the first conductive layer 102 is provided on the exposed portion of each first conductive layer 102, and an electrode or bonding pad 107a electrically connected to the second conductive layer 106 is provided on each second conductive layer 106. The electrodes or bond pads 107b are electrically connected.
之后,参见图3B,在每一保护层120上设置一反射层221,以及于每一保护层120上形成一覆盖反射层221的第一介电层122。对于发光叠层101发出的光,反射层221具有一等同于或是大于80%的反射率。反射层221的材料包含金属,例如银、银合金、铝或铝合金。在一实施例中,反射层221的材料包含混有无机粒子的高分子,其中无机粒子由金属氧化物组成或是由具有反射率等于或是大于1.8的材料组成,反射层221的材料例如为混有氧化钛粒子的环氧树脂。各反射层221完全地被各自对应的保护层120以及第一介电层122覆盖,用于电绝缘各反射层221与各自对应的发光叠层101。在另一实施例中,保护层120是被省略的,且反射层221是直接形成于第二导电层106上且电连接第二导电层106。之后,如图3C所示,在基材21上以及沟槽之间以及于每一发光叠层101上形成一第二介电层240,且各第二介电层240暴露各自对应的电极或接合垫107a以及电极或接合垫107b。之后,在每一第二介电层240之间以及于部分的对应的第一介电层122上形成一第一金属层260以及一第二金属层262。第一金属层260以及第二金属层262分别形成于对应的电极或接合垫107a以及电极或接合垫107b上。第一金属层260以及第二金属层262的材料包含金、铝、银或其等的合金。在一实施例中,第一金属层260以及第二金属层262通过一印刷技术或是电镀而共同形成。Afterwards, referring to FIG. 3B , a reflective layer 221 is disposed on each protective layer 120 , and a first dielectric layer 122 covering the reflective layer 221 is formed on each protective layer 120 . For the light emitted by the light emitting stack 101, the reflective layer 221 has a reflectivity equal to or greater than 80%. The reflective layer 221 is made of metal, such as silver, silver alloy, aluminum or aluminum alloy. In one embodiment, the material of the reflective layer 221 includes polymers mixed with inorganic particles, wherein the inorganic particles are composed of metal oxides or materials with a reflectivity equal to or greater than 1.8. The material of the reflective layer 221 is, for example, Epoxy resin mixed with titanium oxide particles. Each reflective layer 221 is completely covered by each corresponding protective layer 120 and the first dielectric layer 122 for electrically insulating each reflective layer 221 from each corresponding light emitting stack 101 . In another embodiment, the protective layer 120 is omitted, and the reflective layer 221 is directly formed on the second conductive layer 106 and electrically connected to the second conductive layer 106 . Afterwards, as shown in FIG. 3C , a second dielectric layer 240 is formed on the substrate 21 and between the trenches and on each light emitting stack 101 , and each second dielectric layer 240 exposes its corresponding electrodes or Bond pad 107a and electrode or bond pad 107b. Afterwards, a first metal layer 260 and a second metal layer 262 are formed between each second dielectric layer 240 and on a portion of the corresponding first dielectric layer 122 . The first metal layer 260 and the second metal layer 262 are respectively formed on the corresponding electrodes or bonding pads 107a and the electrodes or bonding pads 107b. Materials of the first metal layer 260 and the second metal layer 262 include gold, aluminum, silver or alloys thereof. In one embodiment, the first metal layer 260 and the second metal layer 262 are jointly formed by a printing technique or electroplating.
如图3D所示,图案化位于相邻发光叠层101之间的第二介电层240用于于第二介电层240里形成凹槽,凹槽暴露一部分的基材21且将第二介电层240隔开以形成介电层240a,之后形成一不透光层290于凹槽中。在一实施例中,不透光层290作为一反射层或是一光吸收层,用于反射或是吸收对应的发光叠层101发出的光且避免被邻近的发光叠层101发出的光互相影响或产生串扰(crosstalk)。对于对应的发光叠层101发出的光,不透光层290具有一小于50%的穿透率(transmittance)。不透光层290的材料包含金属或是包含混有无机粒子的高分子,其中无机粒子由金属氧化物组成或是由具有反射率等于或是大于1.8的材料组成,反射层221的材料例如为混有氧化钛粒子的环氧树脂。至此,包含多个发光元件300的发光元件阵列30制作完成。如图3E所示,提供一电路载板23,其包含有多个位于电路载板23的上表面以及下表面的金属接触22以及包含有多个贯穿电路载板23的导电通道22a,其中导电通道22a可连接位于电路载板的上表面上的金属接触22以及位于电路载板的下表面上的金属接触22。在一实施例中,电路载板23包含锡料(solder)。电路载板23包含FR-4、BT(Bismaleimide-Triazine)树脂、陶瓷或玻璃。电路载板23的厚度介于50至200微米之间以足够支撑发光元件且依旧具有小体积。发光元件阵列30通过对准各发光元件300的第一金属层260与第二金属层262至对应的金属接触22而直接以倒装的形式与电路载板23连接。值得注意的是,发光元件阵列30与电路载板23之间金属接触22以外的区域可能形成有空隙。另外可选择性地以填充材料填充于空隙里以增进连结强度以及机械支撑。连接发光元件阵列30与电路载板23之后,移除发光元件阵列30的基材21。在一实施例中,基材包含蓝宝石,发光叠层101包含氮化镓,且移除基材21的方法包含于较高的温度中,例如60℃,使用一准分子激光照射在第一导电层102与基材21的介面,接着分离基材21与第一导电层102。准分子激光可以为一具有能量为400毫焦耳/平方厘米(mJ/cm2)、波长为248纳米以及脉冲宽度(pulse width)为38奈秒(ns)的氟化氪(KrF)准分子激光。在另一实施例中,当基材21为砷化镓基材,移除基材21的方法包含使用一比例为1:35的氨水(NH4OH)与过氧化氢(H2O2)的混和物或是一比例为5:3:5的磷酸(H3PO4)、过氧化氢(H2O2)与水的混和物用于蚀刻至可以完全地移除基材21且暴露各发光元件300的第一导电层102、介电层240a以及不透光层290。As shown in FIG. 3D , patterning the second dielectric layer 240 between adjacent light emitting stacks 101 is used to form grooves in the second dielectric layer 240, the grooves expose a part of the substrate 21 and the second The dielectric layer 240 is separated to form a dielectric layer 240a, and then an opaque layer 290 is formed in the groove. In one embodiment, the opaque layer 290 serves as a reflective layer or a light-absorbing layer for reflecting or absorbing the light emitted by the corresponding light-emitting stack 101 and preventing the light emitted by the adjacent light-emitting stack 101 from interacting with each other. Affect or produce crosstalk (crosstalk). For the light emitted by the corresponding light-emitting stack 101, the opaque layer 290 has a transmittance of less than 50%. The material of the opaque layer 290 includes metal or a polymer mixed with inorganic particles, wherein the inorganic particles are composed of metal oxides or materials with a reflectivity equal to or greater than 1.8. The material of the reflective layer 221 is, for example, Epoxy resin mixed with titanium oxide particles. So far, the light emitting element array 30 including a plurality of light emitting elements 300 is completed. As shown in FIG. 3E, a circuit carrier 23 is provided, which includes a plurality of metal contacts 22 located on the upper surface and the lower surface of the circuit carrier 23 and includes a plurality of conductive channels 22a penetrating the circuit carrier 23, wherein the conductive The channel 22a can connect the metal contact 22 on the upper surface of the circuit carrier and the metal contact 22 on the lower surface of the circuit carrier. In one embodiment, the circuit carrier 23 includes solder. The circuit carrier 23 includes FR-4, BT (Bismaleimide-Triazine) resin, ceramic or glass. The thickness of the circuit carrier 23 is between 50 and 200 micrometers to support the light-emitting element sufficiently while still having a small volume. The light-emitting device array 30 is directly connected to the circuit carrier 23 in a flip-chip manner by aligning the first metal layer 260 and the second metal layer 262 of each light-emitting device 300 to the corresponding metal contacts 22 . It should be noted that gaps may be formed in areas other than the metal contact 22 between the light emitting element array 30 and the circuit carrier 23 . In addition, filling materials can be optionally filled in the voids to improve the connection strength and mechanical support. After connecting the light-emitting device array 30 and the circuit carrier 23 , the substrate 21 of the light-emitting device array 30 is removed. In one embodiment, the substrate includes sapphire, the light-emitting stack 101 includes gallium nitride, and the method of removing the substrate 21 includes using an excimer laser to irradiate the first conductive The interface between the layer 102 and the substrate 21 is then separated from the substrate 21 and the first conductive layer 102 . The excimer laser can be a krypton fluoride (KrF) excimer laser with an energy of 400 millijoules/square centimeter (mJ/cm2 ), a wavelength of 248 nm, and a pulse width of 38 nanoseconds (ns). . In another embodiment, when the substrate 21 is a gallium arsenide substrate, the method for removing the substrate 21 includes using ammonia water (NH4 OH) and hydrogen peroxide (H2 O2 ) at a ratio of 1:35. or a mixture of phosphoric acid (H3 PO4 ), hydrogen peroxide (H2 O2 ) and water at a ratio of 5:3:5 for etching until the substrate 21 can be completely removed and exposed The first conductive layer 102 , the dielectric layer 240 a and the opaque layer 290 of each light emitting element 300 .
如图3F所示,移除基材21之后,发光装置的制作方法还包括粗化第一导电层102的暴露的表面。在一实施例中,第一导电层102包含氮化铝镓铟(AlxGayln(1-x-y)N,其中0≦x,y≦0),可使用氢氧化钾(KOH)溶液蚀刻第一导电层102暴露的表面以形成一粗化表面102a。在另一实施例中,第一导电层102包含磷化铝镓铟(AlxGayIn(1-x-y)P),可使用盐酸(HCl)或是磷酸的溶液蚀刻第一导电层102暴露的表面以形成一粗化表面102a,粗化时间可例如为15秒。每一第一导电层102的粗化表面102a可降低各发光元件300内的光发生全反射的可能性,用于增加发光元件的光取出效率。在粗化步骤之后,多个凹陷区域位于粗化表面102a且实质上被介电层240a环绕。在一实施例中,为了形成一用于显示器的管芯级的红绿蓝发光元件单元,本实施例的制作方法可选择性地于发光元件300b上涂布一第一波长转换层294以转换光,如图3F所示。例如,发光元件300b的发光叠层101,其发出的主要波长介于430纳米至470纳米之间的蓝光,被转换为第一转换光,例如为一具有主要波长介于610纳米至690纳米之间的红光。进一步的,一第二波长转换层296可选择性地涂布在发光元件300c上用于将发光元件300c所发出的光转换为一第二转换光,例如为一具有主要波长介于500纳米至570纳米之间的绿光。发光元件300a并未涂布任何波长转换材料,以直接自发光元件300a的粗化表面102a发出蓝光。在一实施例中,第一或第二波长转换层通过聚集纳米级的量子点(quantum dot)或是纳米级的荧光粉以形成一具有厚度实质一致的膜,且通过一黏结层(图未示)连结至发光叠层101。在另一实施例中,第一或第二波长转换层包含具有纳米级的量子点或是纳米级的荧光粉,其平均直径或平均特征长度介于10纳米至500纳米之间。每个纳米级的量子点或纳米级的荧光粉的长度或是特征长度实质上小于1000纳米。纳米级的量子点包含半导体材料,例如一具有组成为ZnxCdyMgl-x-ySe的II-ⅤI(二/六)族化合物半导体,其中x以及y可调变为使II-ⅤI(二/六)族化合物半导体光激发后发出绿或红光。「特征长度」定义为一荧光粉或是一量子点的任两端点之间的最大距离。之后,将例如为环氧树脂或是硅氧树脂(silicone)的透明封装材料24涂布于发光元件阵列32的上表面以将波长转换材料固定于发光叠层101,且作为发光元件阵列32的发光元件300a、300b、300c的光学透镜。在另一实施例中,覆盖发光元件300a、300b、300c的波长转换层的材料是相同的。As shown in FIG. 3F , after removing the base material 21 , the manufacturing method of the light emitting device further includes roughening the exposed surface of the first conductive layer 102 . In one embodiment, the first conductive layer 102 includes aluminum gallium indium nitride (Alx Gay ln(1-x-y) N, where 0≦x, y≦0), potassium hydroxide (KOH) can be used The solution etches the exposed surface of the first conductive layer 102 to form a roughened surface 102a. In another embodiment, the first conductive layer 102 includes aluminum gallium indium phosphide (AlxGay In(1-x-y) P), and the first conductive layer may be etched using hydrochloric acid (HCl) or phosphoric acid solution. 102 the exposed surface to form a roughened surface 102a, and the roughening time may be, for example, 15 seconds. The roughened surface 102a of each first conductive layer 102 can reduce the possibility of total reflection of light in each light emitting element 300, and is used to increase the light extraction efficiency of the light emitting element. After the roughening step, a plurality of recessed regions are located on the roughened surface 102a and are substantially surrounded by the dielectric layer 240a. In one embodiment, in order to form a die-level red, green and blue light-emitting element unit for a display, the manufacturing method of this embodiment may selectively coat a first wavelength conversion layer 294 on the light-emitting element 300b to convert light, as shown in Figure 3F. For example, the light-emitting stack 101 of the light-emitting element 300b, which emits blue light with a main wavelength between 430 nm and 470 nm, is converted into the first converted light, such as a blue light with a main wavelength between 610 nm and 690 nm. red light between. Further, a second wavelength conversion layer 296 can be selectively coated on the light-emitting element 300c for converting the light emitted by the light-emitting element 300c into a second converted light, for example, a light having a main wavelength between 500 nm and Green light between 570 nm. The light-emitting element 300a is not coated with any wavelength conversion material, so as to directly emit blue light from the roughened surface 102a of the light-emitting element 300a. In one embodiment, the first or second wavelength conversion layer gathers nanoscale quantum dots or nanoscale phosphors to form a film with a substantially uniform thickness, and passes through an adhesive layer (not shown in the figure). shown) is connected to the light emitting stack 101. In another embodiment, the first or the second wavelength conversion layer includes nanoscale quantum dots or nanoscale phosphors, and the average diameter or average characteristic length is between 10 nm and 500 nm. The length or characteristic length of each nanoscale quantum dot or nanoscale phosphor is substantially less than 1000 nanometers. Nanoscale quantum dots include semiconductor materials, such as a II-VI (two/six) compound semiconductor with a composition of Znx Cdy Mglxy Se, wherein x and y can be adjusted to make II-VI (two/six) ) Group compound semiconductor emits green or red light after photoexcitation. "Characteristic length" is defined as the maximum distance between any two points of a phosphor or a quantum dot. Afterwards, a transparent encapsulation material 24 such as epoxy resin or silicone (silicone) is coated on the upper surface of the light-emitting element array 32 to fix the wavelength conversion material on the light-emitting stack 101, and as a part of the light-emitting element array 32 Optical lenses for light emitting elements 300a, 300b, 300c. In another embodiment, the materials of the wavelength converting layers covering the light emitting elements 300a, 300b, 300c are the same.
图4A为如图3F所示的发光元件阵列32以倒装的形式与电路载板23连接的俯视图。发光元件阵列32以及电路载板23两者为具有相同或类似尺寸的晶片形式。发光元件阵列32包含于二维空间中交错且连续设置的多个红绿蓝发光元件群组,且如图中虚线圈起的部位所示,每一群组包含一个发光元件300a、一个发光元件300b以及一个发光元件300c。FIG. 4A is a top view of the light-emitting device array 32 connected to the circuit carrier 23 in a flip-chip manner as shown in FIG. 3F . Both the light emitting device array 32 and the circuit carrier 23 are in the form of wafers with the same or similar dimensions. The light-emitting element array 32 includes a plurality of groups of red, green, and blue light-emitting elements arranged alternately and continuously in two-dimensional space, and as shown by the dotted circle in the figure, each group includes a light-emitting element 300a, a light-emitting element 300b and a light emitting element 300c.
最后,执行一切割(dicing)步骤同时切割发光元件阵列32以及电路载板23,形成如图3G所示的多个管芯级的红绿蓝发光元件单元35,各管芯级的红绿蓝发光元件单元35包含一发出蓝光的蓝色发光元件300a、一发出红光的红色发光元件300b以及一发出绿光的绿色发光元件300c。管芯级的红绿蓝发光元件单元35是一种不含封装且为一种表面黏着型的装置,亦即,在切割步骤之后,不需要传统的封装步骤即可直接与一印刷电路载板黏接。透明封装材料24共同地覆盖发光元件300a、300b以及300且不延伸至发光元件300a、300b以及300c的侧壁。在一实施例中,切割(dicing)步骤同时切割发光元件阵列32以及电路载板23以形成多个管芯级的红绿蓝发光元件单元,其中各管芯级的红绿蓝发光元件单元包含多个红绿蓝发光元件群组。多个红绿蓝发光元件群组于一个红绿蓝发光元件单元中以I*J阵列排列,其中I以及J是正整数,且I与J中至少一是大于1。I与J的比例优选地是接近或是等于1/1、3/2、4/3或16/9。Finally, a dicing step is performed to simultaneously cut the light-emitting element array 32 and the circuit carrier 23 to form a plurality of die-level red, green, and blue light-emitting element units 35 as shown in FIG. 3G . The light emitting element unit 35 includes a blue light emitting element 300a emitting blue light, a red light emitting element 300b emitting red light, and a green light emitting element 300c emitting green light. The die-level red, green and blue light-emitting element unit 35 is a package-free and surface-mount device, that is, after the dicing step, it can be directly attached to a printed circuit carrier without a conventional packaging step. bonding. The transparent encapsulation material 24 covers the light emitting elements 300a, 300b and 300 together and does not extend to the sidewalls of the light emitting elements 300a, 300b and 300c. In one embodiment, the dicing step simultaneously cuts the light-emitting element array 32 and the circuit carrier 23 to form a plurality of die-level red, green, and blue light-emitting element units, wherein each die-level red, green, and blue light-emitting element unit includes A plurality of groups of red, green and blue light-emitting elements. A plurality of red, green and blue light emitting device groups are arranged in an I*J array in one red, green and blue light emitting device unit, wherein I and J are positive integers, and at least one of I and J is greater than 1. The ratio of I to J is preferably close to or equal to 1/1, 3/2, 4/3 or 16/9.
参照图4B,为管芯级的红绿蓝发光元件单元35包含如图3G所示的红绿蓝发光元件群组。管芯级的红绿蓝发光元件单元35是为具有一第一长边以及一第一短边的第一矩形,其中第一短边具有一第一宽度S1且第一长边具有一大于第一宽度S1的第一长度S2。每一发光叠层101为具有一第二长边以及一第二短边的第二矩形,其中第二短边具有一第二宽度d1且第二长边具有一大于第二宽度d1的第二长度d2。发光叠层101的第二短边实质上设置于平行于管芯级的红绿蓝发光元件单元35的第一长边或实质上设置于垂直于管芯级的红绿蓝发光元件单元35的第一短边。在一实施例中,红绿蓝发光元件单元35可作为室内显示平板的一个像素。为了使具有对角线为40英寸且像素分辨率为1024*768的电视显示全部使用发光元件像素,每一像素的面积需小于约0.64平方毫米(mm2)。因此,红绿蓝发光元件单元35的面积可例如为小于0.36mm2。第一长度S2以及第一宽度S1皆小于0.6毫米,且红绿蓝发光元件单元35的长宽比,亦即S2/S1,优选地小于2/1。根据本发明所揭露的实施例,第一金属层260以及第二金属层262之间的距离,亦即第一距离S3,受限于发光元件阵列以及电路载板于连接步骤中的对位控制。第一距离S3等于或是大于25微米(micron)且小于150微米,用于确保制作工艺容差且提供足够做为导电用的接触面积。红绿蓝发光元件单元35的其中一边缘与红绿蓝发光元件单元35的其中一发光叠层101之间的距离,亦即第二距离S4,受限于切割步骤的容差。第二距离S4等于或是大于25微米且小于60微米,用于确保切割步骤的容差以及维持小体积的优点。两个相邻发光元件之间的距离,亦即第三距离S5受限于光刻蚀刻步骤,且小于50微米,或优选地小于25微米,用于于发光叠层101之间保留较多的面积。对于红绿蓝发光元件单元35中每一发光叠层101而言,第二宽度d1介于20至150微米之间且第二长度d2介于20至550微米之间。红绿蓝发光元件单元35的面积与发光叠层101的总面积的比例小于2或介于1.1至2之间,且优选地介于1.2至1.8之间。发光叠层101的面积取决于所需的亮度以及像素尺寸。值得注意的是,红绿蓝发光元件单元35的形状亦可为四边皆与第一宽度S1相同的正方形。于一实施例中,一像素包含两个红绿蓝发光元件单元35,其中一个用于正常操作,另一个用于备用以防正常操作的红绿蓝发光元件单元35故障。第一宽度S1优选地小于0.3毫米,用于使两个红绿蓝发光元件单元35设置于一个像素内。本发明的优点在于,可以实现发光元件作为一平面电视的像素元件,且分辨率更可以提升至像素分辨率为1024*768的两倍或是四倍。于另一实施例中,一红绿蓝发光元件单元35包含两个红绿蓝发光元件群组,其中一个用于正常操作,另一个用于备用以防正常操作的红绿蓝发光元件群组故障。Referring to FIG. 4B , the die-level red, green, and blue light-emitting element unit 35 includes the red, green, and blue light-emitting element group as shown in FIG. 3G . The red, green and blue light-emitting element unit 35 at the die level is a first rectangle with a first long side and a first short side, wherein the first short side has a first width S1 and the first long side has a width greater than the first long side. A first length S2 of width S1. Each light emitting stack 101 is a second rectangle having a second long side and a second short side, wherein the second short side has a second width d1 and the second long side has a second width greater than the second width d1 length d2. The second short side of the light emitting stack 101 is substantially arranged on the first long side of the red, green and blue light emitting element unit 35 parallel to the die level or substantially arranged on the first long side of the red, green and blue light emitting element unit 35 perpendicular to the die level. First short side. In one embodiment, the red, green and blue light-emitting element unit 35 can be used as a pixel of an indoor display panel. In order for a TV display with a diagonal of 40 inches and a pixel resolution of 1024*768 to use all light-emitting element pixels, the area of each pixel needs to be less than about 0.64 square millimeters (mm2 ). Therefore, the area of the red, green and blue light emitting element unit 35 may be smaller than 0.36 mm 2 , for example. Both the first length S2 and the first width S1 are less than 0.6 mm, and the aspect ratio of the red, green and blue light emitting element unit 35 , namely S2/S1, is preferably less than 2/1. According to the disclosed embodiment of the present invention, the distance between the first metal layer 260 and the second metal layer 262, that is, the first distance S3, is limited by the alignment control of the light-emitting element array and the circuit carrier in the connection step. . The first distance S3 is equal to or greater than 25 microns and less than 150 microns, which is used to ensure manufacturing process tolerance and provide a sufficient contact area for conduction. The distance between one edge of the RGB light-emitting device unit 35 and one of the light-emitting stacks 101 of the RGB light-emitting device unit 35 , that is, the second distance S4 , is limited by the tolerance of the cutting step. The second distance S4 is equal to or greater than 25 microns and less than 60 microns, which is used to ensure the tolerance of the cutting step and maintain the advantage of small volume. The distance between two adjacent light-emitting elements, that is, the third distance S5 is limited by the photolithography etching step, and is less than 50 micrometers, or preferably less than 25 micrometers, to keep more light between the light-emitting stacks 101. area. For each light emitting stack 101 in the red, green and blue light emitting element unit 35 , the second width d1 is between 20 and 150 micrometers and the second length d2 is between 20 and 550 micrometers. The ratio of the area of the red, green and blue light-emitting element units 35 to the total area of the light-emitting stack 101 is less than 2 or between 1.1 and 2, and preferably between 1.2 and 1.8. The area of the light emitting stack 101 depends on the required brightness and pixel size. It should be noted that the shape of the red, green and blue light emitting element unit 35 can also be a square whose four sides are the same as the first width S1. In one embodiment, a pixel includes two red, green and blue light-emitting device units 35 , one of which is used for normal operation, and the other is used for backup in case the red, green and blue light-emitting device unit 35 in normal operation fails. The first width S1 is preferably less than 0.3 mm, so that two red, green and blue light emitting element units 35 are arranged in one pixel. The advantage of the present invention is that the light-emitting element can be used as a pixel element of a flat-screen TV, and the resolution can be increased to double or quadruple the pixel resolution of 1024*768. In another embodiment, a red, green and blue light-emitting element unit 35 includes two red, green and blue light-emitting element groups, one of which is used for normal operation, and the other is used as a spare red, green and blue light-emitting element group in case of normal operation Fault.
参照图5A至图5C,为依照本发明实施例的一种管芯级的发光元件单元,其制造方法以及结构与图3A至图3G所示的实施例以及相关的揭示内容相似,不同的地方在于,于切割步骤之前,发光元件阵列34包含多个相同的发光元件300d,如图5A所示。每一发光元件300d涂布相同或不同的波长转换层298,波长转换层298用于转换对应的发光元件300d的发光叠层101发出的光,例如,将主要波长介于430纳米至470纳米之间的蓝光转换为黄光、绿光或是从光的转换光。参照图5B以及图5C,为切割步骤后,包含单一发光元件的管芯级的发光元件单元36的俯视图以及剖视图。管芯级的发光元件单元36的尺寸与图4B所示的管芯级的红绿蓝发光元件单元35的尺寸相似或相同。管芯级的发光元件单元36为具有一第一长边以及一第一短边的第一矩形,其中第一长边具有第一长度S1,且第一短边具有小于第一长度S1的第一宽度S6。每一发光叠层101为具有一第二长边以及一第二短边的第二矩形,其中第二短边具有一第二宽度d1且第二长边具有一大于第二宽度d1的第二长度d2。发光叠层101的第二短边实质上设置于平行于管芯级的红绿蓝发光元件单元36的第一短边或实质上设置于垂直于管芯级的红绿蓝发光元件单元36的第一长边。于一实施例中,红绿蓝发光元件单元36是用于一室内显示平板的的像素的其中一部分。红绿蓝发光元件单元36的面积可例如为小于0.12mm2。第一长度S1以及第一宽度S6皆小于0.2毫米,且红绿蓝发光元件单元36的长宽比,亦即S1/S6,优选地小于2/1。根据本发明,第一金属层260以及第二金属层262之间的距离,亦即第一距离S3,受限于发光元件阵列以及电路载板于连接步骤中的对位控制。第一距离S3等于或是大于25微米且小于150微米,以确保制作工艺容差且提供足够做为导电用的接触面积。红绿蓝发光元件单元36的其中一边缘与其发光叠层101之间的距离,亦即第二距离S4,受限于切割步骤的容差。第二距离S4等于或是大于25微米且小于60微米,用于确保切割步骤的容差以及维持小体积的优点。对于管芯级的红绿蓝发光元件单元36中的发光叠层101而言,第二宽度d1介于20至150微米之间且第二长度d2于20至550微米之间。管芯级的红绿蓝发光元件单元36的面积与发光叠层101的总面积比例小于2或介于1.1至2之间,且优选地介于1.2至1.8之间。发光叠层101的面积取决于所需的亮度以及像素尺寸。值得注意的是,红绿蓝发光元件单元36的形状亦可为四边皆与第一宽度S6相同的正方形。相似的,发光叠层101的形状亦可为四边皆与第二宽度d1相同的正方形。于一实施例中,一像素包含至少三个管芯级的红绿蓝发光元件单元36,用于发出蓝、红以及绿光。Referring to FIG. 5A to FIG. 5C , it is a die-level light-emitting element unit according to an embodiment of the present invention. Its manufacturing method and structure are similar to the embodiment shown in FIG. 3A to FIG. 3G and related disclosures, but the difference That is, before the cutting step, the light emitting element array 34 includes a plurality of identical light emitting elements 300d, as shown in FIG. 5A . Each light-emitting element 300d is coated with the same or different wavelength conversion layer 298. The wavelength conversion layer 298 is used to convert the light emitted by the light-emitting stack 101 of the corresponding light-emitting element 300d, for example, the main wavelength is between 430 nm and 470 nm. The blue light in between is converted into yellow light, green light or converted light from light. Referring to FIG. 5B and FIG. 5C , it is a top view and a cross-sectional view of a die-level light-emitting element unit 36 including a single light-emitting element after the cutting step. The size of the die-level light-emitting element unit 36 is similar to or the same as that of the die-level red, green and blue light-emitting element unit 35 shown in FIG. 4B . The light-emitting element unit 36 at the die level is a first rectangle having a first long side and a first short side, wherein the first long side has a first length S1, and the first short side has a first length smaller than the first length S1. A width S6. Each light emitting stack 101 is a second rectangle having a second long side and a second short side, wherein the second short side has a second width d1 and the second long side has a second width greater than the second width d1 length d2. The second short side of the light emitting stack 101 is substantially arranged on the first short side of the red, green and blue light emitting element unit 36 parallel to the die level or substantially arranged on the side perpendicular to the red, green and blue light emitting element unit 36 of the die level. first long side. In one embodiment, the red, green and blue light-emitting element unit 36 is a part of a pixel for an indoor display panel. The area of the red, green and blue light emitting element unit 36 may be, for example, less than 0.12 mm2 . Both the first length S1 and the first width S6 are less than 0.2 mm, and the aspect ratio of the red, green and blue light emitting element unit 36 , namely S1/S6, is preferably less than 2/1. According to the present invention, the distance between the first metal layer 260 and the second metal layer 262 , that is, the first distance S3 , is limited by the alignment control of the light emitting element array and the circuit carrier in the connection step. The first distance S3 is equal to or greater than 25 microns and less than 150 microns, so as to ensure manufacturing process tolerance and provide enough contact area for conduction. The distance between one edge of the red, green and blue light-emitting element unit 36 and the light-emitting stack 101 , that is, the second distance S4 , is limited by the tolerance of the cutting step. The second distance S4 is equal to or greater than 25 microns and less than 60 microns, which is used to ensure the tolerance of the cutting step and maintain the advantage of small volume. For the light emitting stack 101 in the die-level red, green and blue light emitting device unit 36 , the second width d1 is between 20 and 150 micrometers and the second length d2 is between 20 and 550 micrometers. The ratio of the area of the die-level red, green and blue light-emitting element units 36 to the total area of the light-emitting stack 101 is less than 2 or between 1.1 and 2, and preferably between 1.2 and 1.8. The area of the light emitting stack 101 depends on the required brightness and pixel size. It should be noted that the shape of the red, green and blue light-emitting element unit 36 can also be a square whose four sides are the same as the first width S6. Similarly, the shape of the light emitting stack 101 can also be a square whose four sides are the same as the second width d1. In one embodiment, a pixel includes at least three die-level red, green and blue light emitting device units 36 for emitting blue, red and green light.
参照图5D至图5E,为依照本发明实施例的一种管芯级的发光元件单元,其制造方法以及结构与图5A至图5C所示的实施例以及相关的揭示内容相似,不同的地方在于,不透光层290可选择性地省略。红绿蓝发光元件单元36’是直接表面黏着于一包含于一灯具的光板。发光叠层101的面积取决于所需的亮度以及光板或灯具的尺寸。对于例如小于0.3瓦的低功率的应用而言,红绿蓝发光元件单元36’的发光叠层101的面积为100mil2至200mil2,对于例如介于0.3至0.9瓦之间的中功率的应用而言,红绿蓝发光元件单元36’的发光叠层101的面积为201mil2至900mil2,对于例如高于0.9瓦的高功率的应用而言,红绿蓝发光元件单元36’的发光叠层101的面积大于900mil2。环绕发光叠层101的介电层240a可作为将光取出管芯级的发光元件单元36’的耦合透镜(coupling lens)。管芯级的发光元件单元36’的面积与发光叠层101的面积的比例等于或大于9,且优选地等于或大于15,用于具有优选的光取出效率以及光分散性。于本发明中,第一金属层260以及第二金属层262之间的距离,亦即第一距离S3’,受限于发光元件阵列以及电路载板于连接步骤中的对位控制。第一距离S3’等于或是大于25微米且小于150微米,用于确保制作工艺容差且提供足够做为导电用的接触面积。值得注意的是,管芯级的发光元件单元36’的形状亦可为四边皆与第一宽度S6’相同的正方形。同样的,发光叠层101的形状亦可为四边皆与第二宽度d1’相同的正方形。第一宽度S6’与第二宽度d1’相同或是大于第二宽度d1’的三倍,优选地,第一宽度S6’与第二宽度d1’相同或是大于第二宽度d1’的四倍,以使管芯级的发光元件单元36’具有优选的光取出效率。于一实例中,介电层于发光叠层101的侧壁具有不相同的厚度,因此第一宽度S6’与第二宽度d1’的第一比例(S6’/d1’)不同于第一长度S1’与第二长度d2’的第二比例(S1’/d2’),以达到于操作时,俯视管芯级的发光元件单元36’,其具有不对称的光场的特性。此外,第一比例至少为第二比例的两倍,或优选地为第二比例的四倍。Referring to FIG. 5D to FIG. 5E , it is a die-level light-emitting element unit according to an embodiment of the present invention. Its manufacturing method and structure are similar to those shown in FIG. 5A to FIG. 5C and related disclosures, but the difference is That is, the opaque layer 290 can be optionally omitted. The red, green and blue light-emitting element unit 36' is directly surface-mounted to a light panel included in a lamp. The area of the light emitting stack 101 depends on the desired brightness and the size of the light panel or luminaire. For low-power applications such as less than 0.3 watts, the area of the light-emitting stack 101 of the red, green and blue light-emitting element unit 36' is 100 mil2 to 200 mil2 , and for applications with medium power between 0.3 and 0.9 watts, for example Specifically, the area of the light-emitting stack 101 of the red, green, and blue light-emitting element unit 36' is 201 mil2 to 900 mil2 . Layer 101 has an area greater than 900 mil2 . The dielectric layer 240a surrounding the light emitting stack 101 may act as a coupling lens for taking light out of the die-level light emitting device unit 36'. The ratio of the area of the die-level light-emitting element unit 36 ′ to the area of the light-emitting stack 101 is equal to or greater than 9, and preferably equal to or greater than 15, for optimal light extraction efficiency and light dispersion. In the present invention, the distance between the first metal layer 260 and the second metal layer 262 , that is, the first distance S3 ′, is limited by the alignment control of the light emitting device array and the circuit carrier in the connection step. The first distance S3 ′ is equal to or greater than 25 microns and less than 150 microns, which is used to ensure manufacturing process tolerance and provide enough contact area for conduction. It should be noted that the shape of the light emitting device unit 36 ′ at the die level can also be a square whose four sides are the same as the first width S6 ′. Similarly, the shape of the light emitting stack 101 can also be a square whose four sides are the same as the second width d1 ′. The first width S6' is the same as the second width d1' or greater than three times the second width d1', preferably, the first width S6' is the same as the second width d1' or greater than four times the second width d1' , so that the light-emitting element unit 36' at the die level has optimal light extraction efficiency. In one example, the dielectric layer has different thicknesses on the sidewalls of the light emitting stack 101, so the first ratio (S6'/d1') of the first width S6' to the second width d1' is different from the first length The second ratio ( S1 ′/d2 ′) of S1 ′ to the second length d2 ′ is used to achieve an asymmetric light field characteristic when looking down at the die-level light emitting device unit 36 ′ during operation. Furthermore, the first ratio is at least twice, or preferably four times, the second ratio.
参照图6A,为依照本发明实施例的一管芯级的红绿蓝发光元件单元65的剖视图,其制造方法以及结构与图3A至图3G所示的实施例以及相关的揭示内容相似,不同的地方在于,一填充材料680填充于包含发光元件300a’、300b’以及300c’的发光元件阵列32’以及电路载板23之间的空隙,用于提高两者的连接强度以及提供电路载板以及发光元件之间的电流路径。填充材料680包含异方导电胶(anisotropic conductive film,ACF),其具有在发光元件阵列32’与电路载板23之间以垂直路径传导电流以及在发光元件阵列32’与电路载板23之间以平行于发光元件阵列32’或电路载板的横向路径绝缘电流的能力。填充材料680于连接发光元件阵列至电路载板23之前涂布于电路载板23上。于一实施例中,第一金属层260’以及第二金属层262’皆未接触电路载板23的金属接触22。填充材料680位于第一金属层260’、第二金属层262’与金属接触22之间,用于在第一金属层260’、第二金属层262’以及金属接触22之间传导电流。第一金属层260’以及第二金属层262’经图案化,因此在面对金属接触22的表面为一具有多个凹部以及凸部的粗化表面。故,发光元件阵列与电路载板的接触面积增加,发光元件阵列与电路载板的连接强度亦提升。多个凹部以及凸部具有规则形状或是不规则形状,且表面粗糙度(Ra)介于0.5至5微米之间。使用异方导电胶作为填充材料的的优点在于第一金属层260’与第二金属层262’之间的距离,即如图4B所示的第一距离S3,可小于25微米。Referring to FIG. 6A, it is a cross-sectional view of a die-level red, green and blue light-emitting element unit 65 according to an embodiment of the present invention. Its manufacturing method and structure are similar to those of the embodiment shown in FIGS. 3A to 3G and related disclosures, but different The place is that a filling material 680 is filled in the gap between the light-emitting element array 32' including the light-emitting elements 300a', 300b' and 300c' and the circuit carrier 23, which is used to improve the connection strength between the two and provide the circuit carrier and the current path between the light emitting elements. The filling material 680 includes anisotropic conductive film (ACF), which has the function of conducting current in a vertical path between the light-emitting element array 32' and the circuit carrier 23 and between the light-emitting element array 32' and the circuit carrier 23. The ability to isolate current flow in lateral paths parallel to the light emitting element array 32' or the circuit carrier. The filling material 680 is coated on the circuit carrier 23 before connecting the light-emitting device array to the circuit carrier 23 . In one embodiment, both the first metal layer 260' and the second metal layer 262' are not in contact with the metal contacts 22 of the circuit carrier 23. The filling material 680 is located between the first metal layer 260', the second metal layer 262' and the metal contact 22 for conducting current between the first metal layer 260', the second metal layer 262' and the metal contact 22. The first metal layer 260' and the second metal layer 262' are patterned, so the surface facing the metal contact 22 is a roughened surface with a plurality of concaves and convexes. Therefore, the contact area between the light-emitting element array and the circuit carrier is increased, and the connection strength between the light-emitting element array and the circuit carrier is also improved. The plurality of recesses and protrusions have regular or irregular shapes, and the surface roughness (Ra) is between 0.5 and 5 microns. The advantage of using anisotropic conductive adhesive as the filling material is that the distance between the first metal layer 260' and the second metal layer 262', that is, the first distance S3 shown in FIG. 4B, can be less than 25 microns.
图6B为图6A所示的发光元件阵列32’中的单颗发光元件300d’的示意图。填充材料680以及第一金属层260’与第二金属层262’的图案化的表面亦可以应用于如图5A至图5C所示的实施例,用于形成如图6B所示的结构。填充材料680填充于发光元件300d’以及电路载板23之间的空隙,以提高两者的连接强度以及提供电路载板与发光元件之间的电流路径。填充材料680包含各向异性导电胶(anisotropic conductive film,ACF),其具有在发光元件300d’与电路载板23之间以垂直路径传导电流以及在发光元件300d’与电路载板23之间以平行于发光元件300d’或电路载板的横向路径绝缘电流的能力。填充材料680于连接发光元件阵列至电路载板23之前涂布于电路载板23上。于一实施例中,第一金属层260’以及第二金属层262’皆未接触电路载板23的金属接触22。填充材料680位于第一金属层260’、第二金属层262’与金属接触22之间,用于在第一金属层260’、第二金属层262’以及金属接触22之间传导电流。第一金属层260’以及第二金属层262’经图案化,因此在面对金属接触22的表面上有多个凹部以及凸部。故,发光元件与电路载板的接触面积增加,发光元件与电路载板的连接强度亦提升。多个凹部以及凸部具有规则形状或是不规则形状,且表面粗糙度(Ra)介于0.5至5微米之间。同样地,填充材料680以及第一金属层260’与第二金属层262’的图案化的表面亦可以应用于上述如图5E所示的实施例,以形成如图6C所示的结构。Fig. 6B is a schematic diagram of a single light emitting element 300d' in the light emitting element array 32' shown in Fig. 6A. The filling material 680 and the patterned surfaces of the first metal layer 260' and the second metal layer 262' can also be applied to the embodiment shown in FIGS. 5A-5C to form the structure shown in FIG. 6B. The filling material 680 is filled in the space between the light-emitting element 300d' and the circuit carrier 23, so as to improve the connection strength between the two and provide a current path between the circuit carrier and the light-emitting element. The filling material 680 includes anisotropic conductive film (ACF), which has the function of conducting current in a vertical path between the light emitting element 300d' and the circuit carrier 23 and between the light emitting element 300d' and the circuit carrier 23. Ability to insulate electrical current parallel to lateral paths of light emitting element 300d' or circuit carrier. The filling material 680 is coated on the circuit carrier 23 before connecting the light-emitting device array to the circuit carrier 23 . In one embodiment, both the first metal layer 260' and the second metal layer 262' are not in contact with the metal contacts 22 of the circuit carrier 23. The filling material 680 is located between the first metal layer 260', the second metal layer 262' and the metal contact 22 for conducting current between the first metal layer 260', the second metal layer 262' and the metal contact 22. The first metal layer 260' and the second metal layer 262' are patterned, so there are a plurality of concave portions and convex portions on the surface facing the metal contact 22. Therefore, the contact area between the light-emitting element and the circuit carrier is increased, and the connection strength between the light-emitting element and the circuit carrier is also improved. The plurality of recesses and protrusions have regular or irregular shapes, and the surface roughness (Ra) is between 0.5 and 5 microns. Likewise, the filling material 680 and the patterned surfaces of the first metal layer 260' and the second metal layer 262' can also be applied to the above-mentioned embodiment shown in FIG. 5E to form the structure shown in FIG. 6C.
参照图7A至图7G,为依照本发明实施例的一种发光装置的制作方法流程各阶段所对应的剖视图,其中图7A至图7D的步骤以及结构与图2A至图2D所示的实施例以及相关的揭示内容相似,图7F至图7G的步骤以及结构与图3E至图3F所示的实施例以及相关的揭示内容相似,不同的地方在于,如图7C所示,介电层240a、240b、240c、280为一光致抗蚀剂剂,例如为正光致抗蚀剂剂或是负光致抗蚀剂剂;如图7D至图7E所示,于形成金属层260a、260b、260c以及形成金属层262a、262b、262c之后,所述的制作方法更包含移除介电层240a、240b、240c、280,因此形成空隙于两相邻的发光元件之间以及单一发光元件的金属层之间;如图7F至图7G所示,移除基材21之后,两相邻的发光元件通过空隙以彼此分离,且所述的制作方法更包括粗化第一导电层102暴露的表面以形成一粗化表面102a,粗化的方法如前所述,在此便不再赘述。于一实施例中,为了形成一用于显示或照明的管芯级(chip-scale)的红绿蓝发光元件,其制作方法可选择性地于发光元件300b上涂布一第一波长转换层294,如图7G所示,以将发光元件300b所发出的光转换为一第一转换光。进一步的,一第二波长转换层296可选择性地涂布在发光元件300c上用于将发光元件300c所发出的光转换为一第二转换光。发光元件300a并未涂布任何波长转换材料,以直接自发光元件300a的粗化表面102a发出蓝光。各转换层的形成方式以及材料如前所述,在此不再赘述。图7H为依照本发明实施例的管芯级的红绿蓝发光元件单元包含如图7G所示的红绿蓝发光元件群组的俯视图,红绿蓝发光元件单元37的第一宽度S1、第一长度S2、第二长度d2、第一距离S3、第二距离S4、第二宽度d1、第三距离S5如图4B所示的实施例以及相关的揭示内容所述,在此不再赘述,不同的地方在于,发光叠层101并未被介电层240a以及不透光层290环绕。于形成第一波长转换层294以及第二波长转换层296之后,不需涂布前述实施例的透明封装材料24,直接执行切割(dicing)步骤以直接切割电路载板23而不需经由切割发光元件阵列32,形成多个管芯级的红绿蓝发光元件单元。参照图7I以及图7J,为切割步骤后,包含单一发光元件的管芯级的发光元件单元37的剖视图以及俯视图。管芯级的发光元件单元37的第一长度S1、第一宽度S6、第二宽度d1、第二长度d2、第一距离S3以及第二距离S4如图5B所示的实施例以及相关的揭示内容所述,在此不再赘述,不同的地方在于,发光叠层101、第一金属层260以及第二金属层262的侧壁并未有介电层240a以及不透光层290;此外,波长转换层298上并未有透明封装材料24。Referring to FIG. 7A to FIG. 7G , it is a cross-sectional view corresponding to each stage of a manufacturing method of a light-emitting device according to an embodiment of the present invention, wherein the steps and structures in FIG. 7A to FIG. 7D are the same as those in the embodiment shown in FIG. 2A to FIG. 2D Similar to the related disclosure content, the steps and structures of Figure 7F to Figure 7G are similar to the embodiment shown in Figure 3E to Figure 3F and the related disclosure content, the difference is that, as shown in Figure 7C, the dielectric layer 240a, 240b, 240c, and 280 are a photoresist, such as a positive photoresist or a negative photoresist; as shown in FIGS. And after forming the metal layers 262a, 262b, 262c, the manufacturing method further includes removing the dielectric layers 240a, 240b, 240c, 280, thus forming gaps between two adjacent light-emitting elements and the metal layer of a single light-emitting element Between; as shown in FIG. 7F to FIG. 7G, after removing the substrate 21, two adjacent light-emitting elements are separated from each other by a gap, and the manufacturing method further includes roughening the exposed surface of the first conductive layer 102 to A roughened surface 102a is formed, and the method of roughening is as described above, which will not be repeated here. In one embodiment, in order to form a chip-scale red, green and blue light-emitting element for display or illumination, the manufacturing method can selectively coat a first wavelength conversion layer on the light-emitting element 300b 294, as shown in FIG. 7G, to convert the light emitted by the light emitting element 300b into a first converted light. Further, a second wavelength conversion layer 296 can be selectively coated on the light emitting element 300c for converting the light emitted by the light emitting element 300c into a second converted light. The light-emitting element 300a is not coated with any wavelength conversion material, so as to directly emit blue light from the roughened surface 102a of the light-emitting element 300a. The formation methods and materials of each conversion layer are as described above, and will not be repeated here. 7H is a top view of a die-level red, green, and blue light-emitting element unit including the red, green, and blue light-emitting element group shown in FIG. 7G according to an embodiment of the present invention. A length S2, a second length d2, a first distance S3, a second distance S4, a second width d1, and a third distance S5 are described in the embodiment shown in FIG. 4B and related disclosures, and will not be repeated here. The difference lies in that the light emitting stack 101 is not surrounded by the dielectric layer 240 a and the opaque layer 290 . After the formation of the first wavelength conversion layer 294 and the second wavelength conversion layer 296, there is no need to coat the transparent encapsulation material 24 of the foregoing embodiment, and a dicing step is directly performed to directly cut the circuit carrier 23 without emitting light through cutting. The element array 32 forms a plurality of die-level red, green, and blue light-emitting element units. Referring to FIG. 7I and FIG. 7J , it is a cross-sectional view and a top view of a die-level light-emitting element unit 37 including a single light-emitting element after the cutting step. The first length S1, the first width S6, the second width d1, the second length d2, the first distance S3 and the second distance S4 of the light-emitting element unit 37 at the die level are shown in the embodiment shown in FIG. 5B and related disclosures The content is described, and will not be repeated here. The difference is that the sidewalls of the light-emitting stack 101, the first metal layer 260, and the second metal layer 262 do not have the dielectric layer 240a and the opaque layer 290; in addition, There is no transparent encapsulation material 24 on the wavelength conversion layer 298 .
参照图8A,为依照本发明实施例的一种显示模块76,其包含多个位于第二电路载板73上的管芯级的红绿蓝发光元件单元65。例如,任两个相邻的管芯级的红绿蓝发光元件单元65是由一间距彼此分离或是无缝地设置而使两者互相接触。第二电路载板73包含电路72,电路72是与红绿蓝发光元件单元65的各发光元件电连接,用于独立控制每一红绿蓝发光元件单元65中的蓝、红以及绿色发光元件。于一实施例中,显示模块76包含M列以及N行的管芯级的红绿蓝发光元件单元65以用于一具有X*Y像素分辨率的显示器,其中M/N=1/1、3/2、4/3或16/9,X=a*M,Y=b*N,且a以及b皆为等于或大于2的正整数。显示模块76于一平方英英寸的面积中,包含超过500个的红绿蓝发光元件单元65。也就是说,显示模块76于一平方英英寸的面积中,包含超过1500个发光叠层101。于另一实施例中,每一管芯级的红绿蓝发光元件单元包含多个红绿蓝发光元件群组,且每一群组如之前所述,包含一蓝色发光元件、一红色发光元件以及一绿色发光元件。多个红绿蓝发光元件群组于一个管芯级的红绿蓝发光元件单元中以I*J阵列排列,其中I以及J是正整数,且I与J中至少一是大于1。I与J的比例优选地是接近或是等于1/1、3/2、4/3或16/9。于一管芯级的红绿蓝发光元件单元中,分别来自于两相邻的红绿蓝发光元件群组的两相邻的发光叠层之间的距离,实质上等于分别来自于两相邻的管芯级的红绿蓝发光元件单元的两相邻的发光叠层之间的距离。显示模块76包含M列以及N行的管芯级的红绿蓝发光元件单元65以用于一具有X*Y像素分辨率的显示器,其中M/N=1/1、3/2、4/3或16/9,X=a*M*I,Y=b*N*J,且a以及b皆为等于或大于2的正整数。显示模块76于一平方英英寸的面积中,包含超过500个的红绿蓝发光元件群组。也就是说,显示模块76于一平方英英寸的面积中,包含超过1500个发光叠层101。每一红绿蓝发光元件单元以及红绿蓝发光元件单元中的每一发光元件皆可通过电路载板23以及第二电路载板73上形成的电路独立驱动。第二电路载板73的材料班还FR-4、BT(Bismaleimide-Triazine)树脂、陶瓷或是玻璃。图8B为依照本发明实施例的一种照明模块78的示意图。照明模块78包括多个位于第二电路载板73上的管芯级的发光元件单元66。依据施加的驱动电压,管芯级的发光元件单元66可通过第二电路载板73上的电路以串联或是并联方式连接。于一实施例中,照明模块78被设置于一如图9所示的灯泡80内。灯泡80进一步包含一覆盖照明模块78的光学透镜82,一具有一连接表面且照明模块78是位于连接表面的散热槽85,一与散热槽85连接的连结部87,以及一与连结部87连接且与照明模块78电连接的电连接器88。Referring to FIG. 8A , it is a display module 76 according to an embodiment of the present invention, which includes a plurality of die-level red, green and blue light emitting element units 65 located on the second circuit substrate 73 . For example, any two adjacent die-level red, green, and blue light-emitting element units 65 are separated from each other by a distance or arranged seamlessly so that the two are in contact with each other. The second circuit carrier 73 includes a circuit 72, and the circuit 72 is electrically connected to each light-emitting element of the red, green, and blue light-emitting element unit 65, and is used to independently control the blue, red, and green light-emitting elements in each red, green, and blue light-emitting element unit 65 . In one embodiment, the display module 76 includes M columns and N rows of die-level red, green and blue light-emitting device units 65 for a display with X*Y pixel resolution, where M/N=1/1, 3/2, 4/3 or 16/9, X=a*M, Y=b*N, and both a and b are positive integers equal to or greater than 2. The display module 76 includes more than 500 red, green and blue light-emitting element units 65 in an area of one square inch. That is to say, the display module 76 includes more than 1500 light emitting stacks 101 in an area of one square inch. In another embodiment, each die-level red, green, and blue light-emitting element unit includes a plurality of red, green, and blue light-emitting element groups, and each group includes a blue light-emitting element, a red light-emitting element, and components and a green light emitting component. A plurality of red, green and blue light-emitting element groups are arranged in an I*J array in a die-level red, green, and blue light-emitting element unit, wherein I and J are positive integers, and at least one of I and J is greater than 1. The ratio of I to J is preferably close to or equal to 1/1, 3/2, 4/3 or 16/9. In a die-level red, green, and blue light-emitting element unit, the distance between two adjacent light-emitting stacks from two adjacent red, green, and blue light-emitting element groups is substantially equal to the distance between two adjacent light-emitting stacks respectively from two adjacent groups. The distance between two adjacent light-emitting stacks of the red, green and blue light-emitting element units at the die level. The display module 76 includes M columns and N rows of die-level red, green and blue light-emitting element units 65 for a display with X*Y pixel resolution, where M/N=1/1, 3/2, 4/ 3 or 16/9, X=a*M*I, Y=b*N*J, and both a and b are positive integers equal to or greater than 2. The display module 76 includes more than 500 groups of red, green and blue light-emitting elements in an area of one square inch. That is to say, the display module 76 includes more than 1500 light emitting stacks 101 in an area of one square inch. Each of the red, green, and blue light-emitting element units and each light-emitting element in the red, green, and blue light-emitting element units can be independently driven by circuits formed on the circuit carrier 23 and the second circuit carrier 73 . The material of the second circuit carrier 73 is FR-4, BT (Bismaleimide-Triazine) resin, ceramic or glass. FIG. 8B is a schematic diagram of an illumination module 78 according to an embodiment of the present invention. The lighting module 78 includes a plurality of die-level light emitting element units 66 on the second circuit carrier 73 . According to the applied driving voltage, the light-emitting device units 66 at the die level can be connected in series or in parallel through the circuit on the second circuit carrier 73 . In one embodiment, the lighting module 78 is disposed in a light bulb 80 as shown in FIG. 9 . The light bulb 80 further includes an optical lens 82 covering the lighting module 78, a cooling groove 85 with a connecting surface and the lighting module 78 is located on the connecting surface, a connecting portion 87 connected to the cooling groove 85, and a connecting portion 87 connected to the connecting surface. And an electrical connector 88 electrically connected to the lighting module 78 .
以上所述的实施例仅为说明本发明的技术思想及特点,其目的在使熟悉此项技术的人士能够了解本发明的内容并据以实施,不能以的限定本发明的专利范围,即大凡依本发明所揭示的精神所作的均等变化或修饰,仍应涵盖在本发明的专利范围内。The above-described embodiments are only to illustrate the technical ideas and characteristics of the present invention, and its purpose is to enable those familiar with this technology to understand the content of the present invention and implement it accordingly, and cannot limit the patent scope of the present invention, that is, generally Equivalent changes or modifications made according to the spirit disclosed in the present invention should still be covered within the patent scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202010934163.2ACN112164737A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201811153499.4ACN109585620B (en) | 2013-11-18 | 2014-11-18 | Light-emitting device and method of making the same |
| CN201810133192.1ACN108198807A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201810094042.4ACN108321272A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/082,960 | 2013-11-18 | ||
| US14/082,960US9018655B2 (en) | 2005-02-03 | 2013-11-18 | Light emitting apparatus and manufacture method thereof |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201811153499.4ADivisionCN109585620B (en) | 2013-11-18 | 2014-11-18 | Light-emitting device and method of making the same |
| CN201810094042.4ADivisionCN108321272A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201810133192.1ADivisionCN108198807A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN202010934163.2ADivisionCN112164737A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| Publication Number | Publication Date |
|---|---|
| CN104659162Atrue CN104659162A (en) | 2015-05-27 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010934163.2APendingCN112164737A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201410663642.XAPendingCN104659162A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and manufacturing method thereof |
| CN201810133192.1APendingCN108198807A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201810094042.4APendingCN108321272A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201811153499.4AActiveCN109585620B (en) | 2013-11-18 | 2014-11-18 | Light-emitting device and method of making the same |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202010934163.2APendingCN112164737A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201810133192.1APendingCN108198807A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201810094042.4APendingCN108321272A (en) | 2013-11-18 | 2014-11-18 | Light emitting device and method for manufacturing the same |
| CN201811153499.4AActiveCN109585620B (en) | 2013-11-18 | 2014-11-18 | Light-emitting device and method of making the same |
| Country | Link |
|---|---|
| CN (5) | CN112164737A (en) |
| TW (7) | TWI755825B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108022945A (en)* | 2016-11-01 | 2018-05-11 | 群创光电股份有限公司 | Display device and forming method thereof |
| CN108510894A (en)* | 2017-02-23 | 2018-09-07 | 联咏科技股份有限公司 | Micro device panel and method of manufacturing the same |
| CN108695304A (en)* | 2017-03-31 | 2018-10-23 | 亿光电子工业股份有限公司 | Light emitting device and method for manufacturing the same |
| CN110634905A (en)* | 2018-06-22 | 2019-12-31 | 晶元光电股份有限公司 | Display with light-emitting diode array and method of making the same |
| CN111201619A (en)* | 2017-05-09 | 2020-05-26 | 亮锐有限责任公司 | Light emitting device with reflective sidewalls |
| CN112166508A (en)* | 2018-05-30 | 2021-01-01 | 科锐公司 | LED apparatus and method |
| CN112713142A (en)* | 2020-08-24 | 2021-04-27 | 錼创显示科技股份有限公司 | Light emitting display unit and display device |
| US11380661B2 (en) | 2016-11-01 | 2022-07-05 | Innolux Corporation | Display device and method for forming the same |
| CN115500084A (en)* | 2021-04-01 | 2022-12-20 | 京东方科技集团股份有限公司 | Display panel and display device |
| CN115763453A (en)* | 2022-10-21 | 2023-03-07 | 武汉华星光电半导体显示技术有限公司 | Splicing display panels and display terminals |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9923135B2 (en) | 2015-11-23 | 2018-03-20 | Industrial Technology Research Institute | Light-emitting assembly |
| TWI665741B (en)* | 2015-12-03 | 2019-07-11 | 晶元光電股份有限公司 | A semiconductor package and a manufacturing method thereof |
| WO2018129696A1 (en)* | 2017-01-12 | 2018-07-19 | 苏州晶湛半导体有限公司 | Semiconductor component and manufacturing method therefor |
| TWI798004B (en)* | 2017-03-21 | 2023-04-01 | 晶元光電股份有限公司 | Light-emitting device |
| CN109728141B (en) | 2017-10-27 | 2021-02-23 | 隆达电子股份有限公司 | pixel structure |
| TWI775888B (en)* | 2018-02-14 | 2022-09-01 | 晶元光電股份有限公司 | Light-emitting device, manufacturing method thereof and display module using the same |
| TWI683453B (en)* | 2018-06-08 | 2020-01-21 | 友達光電股份有限公司 | Method for manufacturing light-emitting device |
| CN108598105B (en)* | 2018-06-26 | 2020-10-13 | 矽照光电(厦门)有限公司 | Production method of flexible active color display module |
| CN108987382A (en)* | 2018-07-27 | 2018-12-11 | 京东方科技集团股份有限公司 | A kind of electroluminescent device and preparation method thereof |
| CN109300886B (en)* | 2018-09-04 | 2020-07-17 | 深圳市光脉电子有限公司 | Hexagonal chip plane cascade display screen and production process thereof |
| TWI800548B (en) | 2018-11-06 | 2023-05-01 | 晶元光電股份有限公司 | Light-emitting device and manufacturing method thereof |
| TWI828569B (en)* | 2018-11-06 | 2024-01-01 | 晶元光電股份有限公司 | Light-emitting device and manufacturing method thereof |
| CN111916534B (en)* | 2019-05-07 | 2022-06-21 | 錼创显示科技股份有限公司 | Micro-element |
| TWI729389B (en) | 2019-05-07 | 2021-06-01 | 錼創顯示科技股份有限公司 | Micro device |
| TWI762431B (en)* | 2019-05-24 | 2022-04-21 | 晶元光電股份有限公司 | Package and display module |
| CN115176527A (en)* | 2020-01-07 | 2022-10-11 | 亮锐有限责任公司 | Ceramic carrier and laminate carrier for Light Emitting Diode (LED) array |
| TWI748371B (en)* | 2020-03-13 | 2021-12-01 | 陳冠宇 | Light-emitting device |
| JP7491769B2 (en)* | 2020-08-04 | 2024-05-28 | 株式会社ジャパンディスプレイ | Circuit board, LED module, display device, and method for manufacturing LED module and method for manufacturing display device |
| US12295193B2 (en)* | 2021-03-11 | 2025-05-06 | Boe Technology Group Co., Ltd. | Display substrate and display device |
| CN113270531B (en)* | 2021-04-30 | 2022-07-22 | 广东德力光电有限公司 | Preparation method of LED chip with good heat dissipation effect |
| CN113345880B (en)* | 2021-06-04 | 2025-04-15 | 上海天马微电子有限公司 | A light emitting diode display panel and its manufacturing method, and a display device |
| TWI759241B (en)* | 2021-08-12 | 2022-03-21 | 友達光電股份有限公司 | Pixel structure |
| TWI814151B (en)* | 2021-11-25 | 2023-09-01 | 友達光電股份有限公司 | Display apparatus |
| TWI864864B (en)* | 2021-11-25 | 2024-12-01 | 友達光電股份有限公司 | Display apparatus |
| TWI806275B (en)* | 2021-12-08 | 2023-06-21 | 欣興電子股份有限公司 | Light-emitting diode package and manufacturing method thereof |
| TWI847662B (en)* | 2022-05-11 | 2024-07-01 | 大陸商台州觀宇科技有限公司 | Light emitting element and method for manufacturing the same |
| WO2024191640A1 (en)* | 2023-03-15 | 2024-09-19 | Applied Materials, Inc. | Encapsulation of quantum dots with encapsulation films and methods of manufacture |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060169994A1 (en)* | 2005-02-03 | 2006-08-03 | United Epitaxy Company, Ltd. | Light emitting device and manufacture method thereof |
| CN102169934A (en)* | 2010-02-26 | 2011-08-31 | 三星Led株式会社 | Semiconductor light emitting device having multi-cell array and method for manufacturing the same |
| CN102544283A (en)* | 2012-03-14 | 2012-07-04 | 贵州大学 | Light emitting diode array chip structure and preparation method thereof |
| CN103022334A (en)* | 2012-12-21 | 2013-04-03 | 映瑞光电科技(上海)有限公司 | High-voltage inverted LED chip and manufacturing method thereof |
| CN103247651A (en)* | 2012-02-09 | 2013-08-14 | 隆达电子股份有限公司 | Light emitting diode array |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5866922A (en)* | 1996-12-23 | 1999-02-02 | Motorola, Inc. | Color display with integrated semiconductor leds and organic electroluminescent devices |
| JP2006501617A (en)* | 2002-10-01 | 2006-01-12 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Electroluminescent display with improved light external coupling |
| JP2004304161A (en)* | 2003-03-14 | 2004-10-28 | Sony Corp | Light emitting element, light emitting device, image display device, method of manufacturing light emitting device, and method of manufacturing image display device |
| US20070126016A1 (en)* | 2005-05-12 | 2007-06-07 | Epistar Corporation | Light emitting device and manufacture method thereof |
| EP1658642B1 (en)* | 2003-08-28 | 2014-02-26 | Panasonic Corporation | Semiconductor light emitting device, light emitting module, lighting apparatus, display element and manufacturing method of semiconductor light emitting device |
| CN100472819C (en)* | 2003-09-26 | 2009-03-25 | 晶元光电股份有限公司 | Light emitting element with composite conductive layer |
| CN101271949B (en)* | 2004-11-11 | 2010-09-29 | 晶元光电股份有限公司 | Method for manufacturing light emitting diode |
| JP5019755B2 (en)* | 2006-02-08 | 2012-09-05 | 昭和電工株式会社 | Light emitting diode and manufacturing method thereof |
| US8581274B2 (en)* | 2006-05-01 | 2013-11-12 | Mitsubishi Chemical Corporation | Integrated semiconductor light-emitting device and its manufacturing method |
| DE102007011123A1 (en)* | 2007-03-07 | 2008-09-11 | Osram Opto Semiconductors Gmbh | Light-emitting module and method of manufacturing a light-emitting module |
| DE102007030129A1 (en)* | 2007-06-29 | 2009-01-02 | Osram Opto Semiconductors Gmbh | Method for producing a plurality of optoelectronic components and optoelectronic component |
| KR101639793B1 (en)* | 2008-09-25 | 2016-07-15 | 코닌클리케 필립스 엔.브이. | Coated light emitting device and method for coating thereof |
| TW201041185A (en)* | 2009-05-04 | 2010-11-16 | Taiwan Iris Co Ltd | LED chip for increasing front light emitting rate and its fabricating method |
| WO2010149027A1 (en)* | 2009-06-22 | 2010-12-29 | Industrial Technology Research Institute | Light-emitting unit array, method for fabricating the same and projection apparatus |
| US20100321640A1 (en)* | 2009-06-22 | 2010-12-23 | Industrial Technology Research Institute | Projection display chip |
| US20110012147A1 (en)* | 2009-07-15 | 2011-01-20 | Koninklijke Philips Electronics N.V. | Wavelength-converted semiconductor light emitting device including a filter and a scattering structure |
| US9774670B2 (en)* | 2010-08-22 | 2017-09-26 | Qwilt, Inc. | Methods for detection of content servers and caching popular content therein |
| EP2442374B1 (en)* | 2010-10-12 | 2016-09-21 | LG Innotek Co., Ltd. | Light emitting device |
| CN102800778B (en)* | 2011-05-27 | 2015-03-18 | 东莞市福地电子材料有限公司 | Light emitting diode with flip chip and manufacturing method thereof |
| CN102347436A (en)* | 2011-10-26 | 2012-02-08 | 晶科电子(广州)有限公司 | LED (Light-emitting Diode) device and wafer-level LED device as well as packaging structure of LED device and wafer-level LED device |
| CN103185980A (en)* | 2011-12-30 | 2013-07-03 | 上海天马微电子有限公司 | Liquid crystal display panel |
| CN102737555B (en)* | 2012-07-19 | 2015-07-08 | 广东威创视讯科技股份有限公司 | Light emitting diode (LED) display screen and manufacturing method thereof |
| CN104635967B (en)* | 2013-11-12 | 2018-04-10 | 宸鸿光电科技股份有限公司 | organic light emitting diode touch display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060169994A1 (en)* | 2005-02-03 | 2006-08-03 | United Epitaxy Company, Ltd. | Light emitting device and manufacture method thereof |
| CN102169934A (en)* | 2010-02-26 | 2011-08-31 | 三星Led株式会社 | Semiconductor light emitting device having multi-cell array and method for manufacturing the same |
| CN103247651A (en)* | 2012-02-09 | 2013-08-14 | 隆达电子股份有限公司 | Light emitting diode array |
| CN102544283A (en)* | 2012-03-14 | 2012-07-04 | 贵州大学 | Light emitting diode array chip structure and preparation method thereof |
| CN103022334A (en)* | 2012-12-21 | 2013-04-03 | 映瑞光电科技(上海)有限公司 | High-voltage inverted LED chip and manufacturing method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11380661B2 (en) | 2016-11-01 | 2022-07-05 | Innolux Corporation | Display device and method for forming the same |
| CN108022945A (en)* | 2016-11-01 | 2018-05-11 | 群创光电股份有限公司 | Display device and forming method thereof |
| CN108510894A (en)* | 2017-02-23 | 2018-09-07 | 联咏科技股份有限公司 | Micro device panel and method of manufacturing the same |
| CN108510894B (en)* | 2017-02-23 | 2020-08-04 | 联咏科技股份有限公司 | Micro device panel and method of making the same |
| CN108695304A (en)* | 2017-03-31 | 2018-10-23 | 亿光电子工业股份有限公司 | Light emitting device and method for manufacturing the same |
| CN111201619A (en)* | 2017-05-09 | 2020-05-26 | 亮锐有限责任公司 | Light emitting device with reflective sidewalls |
| CN111201619B (en)* | 2017-05-09 | 2023-08-18 | 亮锐有限责任公司 | Light emitting device with reflective sidewalls |
| CN112166508A (en)* | 2018-05-30 | 2021-01-01 | 科锐公司 | LED apparatus and method |
| CN110634905A (en)* | 2018-06-22 | 2019-12-31 | 晶元光电股份有限公司 | Display with light-emitting diode array and method of making the same |
| CN110634905B (en)* | 2018-06-22 | 2024-04-09 | 晶元光电股份有限公司 | Display with LED array and its manufacturing method |
| US11652077B2 (en) | 2020-08-24 | 2023-05-16 | PlayNitride Display Co., Ltd. | Light-emitting display unit and display apparatus |
| CN112713142A (en)* | 2020-08-24 | 2021-04-27 | 錼创显示科技股份有限公司 | Light emitting display unit and display device |
| CN115500084A (en)* | 2021-04-01 | 2022-12-20 | 京东方科技集团股份有限公司 | Display panel and display device |
| CN115763453A (en)* | 2022-10-21 | 2023-03-07 | 武汉华星光电半导体显示技术有限公司 | Splicing display panels and display terminals |
| CN115763453B (en)* | 2022-10-21 | 2025-09-12 | 武汉华星光电半导体显示技术有限公司 | Splicing display panels and display terminals |
| Publication number | Publication date |
|---|---|
| CN109585620B (en) | 2022-07-01 |
| CN112164737A (en) | 2021-01-01 |
| TW202046517A (en) | 2020-12-16 |
| TW201810722A (en) | 2018-03-16 |
| TWI715885B (en) | 2021-01-11 |
| TW201521239A (en) | 2015-06-01 |
| TW201907586A (en) | 2019-02-16 |
| CN108198807A (en) | 2018-06-22 |
| TW201631800A (en) | 2016-09-01 |
| TW202218190A (en) | 2022-05-01 |
| TWI711190B (en) | 2020-11-21 |
| TWI808610B (en) | 2023-07-11 |
| CN108321272A (en) | 2018-07-24 |
| TWI663749B (en) | 2019-06-21 |
| CN109585620A (en) | 2019-04-05 |
| TWI706579B (en) | 2020-10-01 |
| TWI755825B (en) | 2022-02-21 |
| TW201921732A (en) | 2019-06-01 |
| TWI542045B (en) | 2016-07-11 |
| Publication | Publication Date | Title |
|---|---|---|
| CN109585620B (en) | Light-emitting device and method of making the same | |
| US10978615B2 (en) | Plurality of light emitting devices having opaque insulating layer between them | |
| US9018655B2 (en) | Light emitting apparatus and manufacture method thereof | |
| CN213845301U (en) | Light-emitting element for display and unit pixel having the same | |
| US8796115B2 (en) | Light-emitting diode arrangement and method for producing the same | |
| US8816386B2 (en) | Light emitting device and manufacture method thereof | |
| US7875533B2 (en) | Package-integrated thin film LED | |
| JP5036287B2 (en) | Light emitting device package | |
| US8450764B2 (en) | Semiconductor light-emitting apparatus and method of fabricating the same | |
| US20070126016A1 (en) | Light emitting device and manufacture method thereof | |
| JP2013033905A (en) | Light emitting device package and lighting system including the same | |
| CN106159073A (en) | Light emitting element and method for manufacturing the same | |
| CN100442554C (en) | Light emitting diode and manufacturing method thereof |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20150527 |