技术领域technical field
本发明属于热工自动控制领域,尤其涉及一种选择性催化还原(SCR)脱硝系统及方法。The invention belongs to the field of thermal automatic control, in particular to a selective catalytic reduction (SCR) denitrification system and method.
背景技术Background technique
氮氧化物的排放处理对环境污染治理和燃煤电厂的经济运行有着非常重要的意义。在诸多烟气脱硝方案中,SCR法的脱硝效率最高且运行可靠无二次污染,是目前国内外应用最为广泛且最为成熟的烟气脱硝技术之一。The emission treatment of nitrogen oxides is of great significance to environmental pollution control and economic operation of coal-fired power plants. Among many flue gas denitrification schemes, the SCR method has the highest denitrification efficiency and is reliable in operation without secondary pollution. It is currently one of the most widely used and mature flue gas denitrification technologies at home and abroad.
SCR反应器氨气流量控制方式通常有两种:固定摩尔比控制方式(标准控制方式)和出口NOX定值控制方式。其中出口NOX定值控制方法是保持出口NOX恒定,根据环境空气质量标准,控制反应器NOX为定值比控制固定的脱氮效率更容易监视,同时氨气消耗量更少。出口NOX定值控制方式与固定摩尔比的控制方式在主控制回路上基本相同,与固定摩尔比控制主要的不同之处在于摩尔比是个变值,摩尔比与反应器SCR出口NOX值以及锅炉负荷相相应。现有的出口NOx定值控制方式的控制原理是将摩尔比作为变量,变化摩尔比输出控制器原理如下:There are generally two ways to control the flow of ammonia gas in the SCR reactor: fixed molar ratio control mode (standard control mode) and outlet NOX fixed value control mode. Among them, the fixed value control method of outlet NOX is to keep the outlet NOX constant. According to the ambient air quality standard, controlling the reactor NOX to a fixed value is easier to monitor than controlling a fixed denitrification efficiency, and the ammonia consumption is less at the same time. The outlet NOX fixed value control method is basically the same as the fixed molar ratio control method in the main control loop. The main difference from the fixed molar ratio control is that the molar ratio is a variable value, and the molar ratio is related to the reactor SCR outlet NOX value and Corresponding to the boiler load. The control principle of the existing outlet NOx fixed value control method is to use the molar ratio as a variable, and the principle of the variable molar ratio output controller is as follows:
a)根据入口NOX实际测量值以及出口NOX设定值计算出预脱硝效率和预置摩尔比;a) Calculate the pre-denitration efficiency and preset molar ratio according to the actual measured value ofNOx at the inlet and the set value ofNOx at the outlet;
b)预置摩尔比作为摩尔比控制器的基准输出,出口NOX测量值同出口NOX设定值进行比较,通过PID调节器的输出作为修正,最终确定控制系统当前需要的摩尔比值。b) The preset molar ratio is used as the reference output of the molar ratio controller. The measured value of outlet NOX is compared with the set value of outlet NOX , and the output of the PID regulator is used as a correction to finally determine the molar ratio currently required by the control system.
c)摩尔比控制器输出的摩尔比信号作为固定摩尔比控制回路中摩尔比设定值,控制氨的喷射,从而有效的控制脱硝系统,保证出口NOX稳定在设定值上。c) The molar ratio signal output by the molar ratio controller is used as the molar ratio set value in the fixed molar ratio control loop to control the injection of ammonia, thereby effectively controlling the denitrification system and ensuring that the outlet NOX is stable at the set value.
然而,由于受脱硝反应器催化剂的特性决定,即便在锅炉负荷已确定的条件下,出口NOX浓度也将会波动较长时间,因此当采用固定脱硝装置出口NOX控制方式时,应该考虑对这种波动现象进行补偿。因此,SCR脱硝系统同时也是比较难控的系统之一,主要原因有两点:一是SCR脱硝系统存在较大的惯性和迟延,目前多数火电机组SCR脱硝系统仍采用常规PID(比例-积分-微分)串级控制方案,往往难以取得满意的控制效果;此外,为了保证SCR反应器出口NOx浓度在机组负荷频繁变化时不会超标,出口NOx浓度目标值通常设定较低,喷氨量较大,氨逃逸率高,易导致下游设备腐蚀及堵塞,难以保证电厂运行的经济性及安全性。However, due to the characteristics of the denitrification reactor catalyst, the outletNOxconcentration will fluctuate for a long time even under the condition that the boiler load is determined. This fluctuation phenomenon is compensated. Therefore, the SCR denitrification system is also one of the more difficult systems to control. There are two main reasons: one is that the SCR denitrification system has relatively large inertia and delay. differential) cascade control scheme, it is often difficult to achieve satisfactory control effects; in addition, in order to ensure that the NOx concentration at the outlet of the SCR reactor will not exceed the standard when the load of the unit changes frequently, the target value of the outlet NOx concentration is usually set low, and the amount of ammonia injection is relatively low. Large, high ammonia escape rate, easy to cause corrosion and blockage of downstream equipment, it is difficult to ensure the economy and safety of power plant operation.
发明内容Contents of the invention
发明目的:为了克服现有技术中存在的不足,本发明提供一种基于约束预测控制的SCR脱硝系统及方法,进一步提高SCR脱硝系统的响应速度,减小静态偏差,提高出口NOx浓度的调节品质。Purpose of the invention: In order to overcome the deficiencies in the prior art, the present invention provides an SCR denitrification system and method based on constraint predictive control, which further improves the response speed of the SCR denitrification system, reduces static deviation, and improves the adjustment quality of outlet NOx concentration .
技术方案:为实现上述目的,本发明采用如下技术方案:Technical solution: In order to achieve the above object, the present invention adopts the following technical solution:
一种基于约束预测控制的SCR脱硝系统,包括出口NOx浓度目标值设置单元、约束预测控制单元、比例控制单元、喷氨阀门、SCR反应器和实际约束计算单元,所述约束预测控制单元包括控制增量约束计算单元和预测控制单元,实际约束计算单元包括出口NOx浓度约束计算单元、阀门动作速率约束计算单元和阀门开度约束计算单元;An SCR denitrification system based on constraint predictive control, comprising an outlet NOx concentration target value setting unit, a constraint predictive control unit, a proportional control unit, an ammonia injection valve, an SCR reactor and an actual constraint calculation unit, the constraint predictive control unit includes a control Incremental constraint calculation unit and predictive control unit, the actual constraint calculation unit includes outlet NOx concentration constraint calculation unit, valve action rate constraint calculation unit and valve opening constraint calculation unit;
所述出口NOx浓度目标值设置单元、约束预测控制单元中的预测控制单元、比例控制单元、喷氨阀门及SCR反应器依次连接;所述阀门动作速率约束计算单元和阀门开度约束计算单元与喷氨阀门的输入喷氨阀门开度连接;所述实际约束计算单元与约束预测控制单元中的控制增量约束计算单元连接;所述约束预测控制单元中的控制增量约束计算单元与预测控制单元连接;所述喷氨阀门的输出喷氨流量与约束预测控制单元的输出控制量通过求和之后与比例控制单元连接;所述SCR反应器的输出出口NOx浓度与出口NOx浓度目标值设置单元的输出出口NOx浓度目标值经过求和之后与约束预测控制单元中的预测控制单元连接。The outlet NOx concentration target value setting unit, the predictive control unit in the constraint predictive control unit, the proportional control unit, the ammonia injection valve and the SCR reactor are sequentially connected; the valve action rate constraint calculation unit and the valve opening constraint calculation unit are connected with The input ammonia injection valve opening of the ammonia injection valve is connected; the actual constraint calculation unit is connected with the control increment constraint calculation unit in the constraint prediction control unit; the control increment constraint calculation unit in the constraint prediction control unit is connected with the predictive control unit Unit connection; the output ammonia injection flow of the ammonia injection valve and the output control quantity of the constraint prediction control unit are summed and connected to the proportional control unit; the output outlet NOx concentration of the SCR reactor and the outlet NOx concentration target value setting unit The output outlet NOx concentration target value of is connected to the predictive control unit in the constraint predictive control unit after being summed.
进一步的,在本发明中,所述实际约束计算单元计算包括出口NOx浓度约束、阀门动作速率约束和阀门开度约束的范围,并通过控制增量约束计算单元转化为对预测控制单元的控制增量的约束,实现对预测控制单元的约束,得到所需要的喷氨流量,再通过比例控制单元对喷氨阀门进行控制,调节阀门开度以调整喷氨流量。本发明将三种约束并联使用,避免因执行机构饱和从而影响系统性能。Further, in the present invention, the actual constraint calculation unit calculates the range including the outlet NOx concentration constraint, the valve action rate constraint and the valve opening constraint, and converts it into a control increment for the predictive control unit through the control increment constraint calculation unit. Quantity constraints, realize the constraints on the predictive control unit, obtain the required ammonia injection flow, and then control the ammonia injection valve through the proportional control unit, adjust the valve opening to adjust the ammonia injection flow. The present invention uses the three constraints in parallel to avoid affecting the system performance due to the saturation of the actuator.
一种基于约束预测控制的SCR脱硝设备的使用方法,包括以下步骤:A method for using SCR denitrification equipment based on constraint predictive control, comprising the following steps:
1)在稳态工况下,把SCR脱硝系统切换到手动状控制态,以所述喷氨阀门的阀门开度为输入进行出口NOx浓度开环阶跃响应试验,得到喷氨阀门的模型W01(s),以及SCR反应器的模型W02(s);1) Under steady state conditions, switch the SCR denitrification system to the manual control state, and use the valve opening of the ammonia injection valve as input to conduct an open-loop step response test of the outlet NOx concentration to obtain the model W of the ammonia injection valve01 (s), and the model W02 (s) of the SCR reactor;
2)所述比例控制单元中,确定比例调节器的参数KP,计算SCR反应器的出口NOx浓度对阀门开度的总模型W(s),并得到总模型的阶跃响应系数为a1,a2,…,aN,其中,N为阶跃响应的时域长度;2) In the proportional control unit, determine the parameter KP of the proportional regulator, calculate the total model W(s) of the outlet NOx concentration of the SCR reactor to the valve opening, and obtain the step response coefficient of the total model as a1 ,a2 ,…,aN , where N is the time domain length of the step response;
3)设置所述约束预测控制单元中的约束预测控制器的相关参数,包括采样时间Ts,预测步数P,控制步数M,输出误差权矩阵Q,控制权矩阵R;采用公式所述的预测模型对SCR反应器的出口NOx浓度进行预测,其中,表示在k时刻对未来时刻的出口NOx浓度的预测值向量,表示在k时刻对未来时刻的出口NOx浓度的预测初值向量;ΔUM(k)表示在k时刻对未来时刻的控制量增量向量;A为单位阶跃响应系数组成的动态矩阵;;3) Set the relevant parameters of the constraint predictive controller in the constraint predictive control unit, including sampling time Ts , prediction step number P, control step number M, output error weight matrix Q, control weight matrix R; using the formula The prediction model predicts the outlet NOx concentration of the SCR reactor, wherein, Indicates the predicted value vector of outlet NOx concentration at k time to future time, Indicates the predicted initial value vector of outlet NOx concentration at k time to future time; ΔUM (k) represents the control quantity increment vector at k time to future time; A is a dynamic matrix composed of unit step response coefficients;
4)在约束预测控制单元中,将所述约束预测控制器进行状态初始化,即在某个稳态工况下,检测当前时刻的出口NOx浓度测量值y(k),并赋值给出口NOx浓度的预测初值及预测值,即:4) In the constraint predictive control unit, initialize the state of the constraint predictive controller, that is, under a certain steady-state working condition, detect the outlet NOx concentration measurement value y(k) at the current moment, and assign it to the outlet NOx concentration The predicted initial value and predicted value of , namely:
5)所述实际约束计算单元计算如下三类实际约束的范围:出口NOx浓度约束、阀门动作速率约束和阀门开度约束,将结果传至控制增量约束计算单元,得到约束预测控制器的控制增量ΔUM(k)的约束;5) The actual constraint calculation unit calculates the range of the following three types of actual constraints: outlet NOx concentration constraint, valve action rate constraint and valve opening constraint, and transmits the results to the control increment constraint calculation unit to obtain the control of the constraint predictive controller Constraints for increment ΔUM (k);
6)根据选取的性能指标函数J(k),结合所述控制增量ΔUM(k)的约束,约束预测控制单元采用积极集方法求解上述带约束的二次型目标函数最优解求解问题,得到约束预测控制器的控制量增量ΔUM(k);6) According to the selected performance index function J(k), combined with the constraints of the control increment ΔUM (k), the constrained predictive control unit adopts the active set method to solve the optimal solution problem of the above-mentioned quadratic objective function with constraints , to obtain the control variable increment ΔUM (k) of the constrained predictive controller;
7)取约束预测控制单元计算得到的控制增量ΔUM(k)中的即时控制增量Δu(k)构成实际控制,计算得出约束控制后的最优控制量u(k)=u(k-1)+Δu(k),将最优控制量u(k)传递到比例控制单元;计算并更新经约束控制后的出口NOx浓度预测值7) Take the immediate control increment Δu(k) in the control increment ΔUM (k) calculated by the constraint predictive control unit to constitute the actual control, and calculate the optimal control quantity u(k)=u( k-1)+Δu(k), transfer the optimal control quantity u(k) to the proportional control unit; calculate and update the predicted value of outlet NOx concentration after constraint control
8)检测SCR脱硝系统在k+1时刻的实际输出的出口NOx浓度测量值y(k+1),在约束预测控制单元中,将所述出口NOx浓度测量值y(k+1)与所述出口NOx浓度预测值进行比较,计算输出误差e(k+1);用输出误差e(k+1)修正出口NOx浓度预测值向量得到修正后的出口NOx浓度预测值向量8) Detect the outlet NOx concentration measurement value y(k+1) of the actual output of the SCR denitrification system at the moment k+1, and in the constraint prediction control unit, compare the outlet NOx concentration measurement value y(k+1) with the Predicted value of outlet NOx concentration Compare and calculate the output error e(k+1); use the output error e(k+1) to correct the outlet NOx concentration prediction value vector Get the corrected outlet NOx concentration predicted value vector
9)根据k时刻的喷氨阀门的输入阀门开度uV(k)及喷氨阀门的输出喷氨流量yP(k),在控制增量约束计算单元中计算并更新k+1时刻对约束预测控制单元的控制量增量ΔUM(k+1)的约束;9) According to the input valve opening uV (k) of the ammonia injection valve at time k and the output ammonia injection flow rate yP (k) of the ammonia injection valve, calculate and update the value of Constraints on the control increment ΔUM (k+1) of the predictive control unit;
10)将修正过的出口NOx浓度预测值作为k+1时刻的出口NOx浓度预测初值在之后的周期中反复执行步骤5)至步骤10),进行出口NOx浓度的预测及修正。10) Use the corrected outlet NOx concentration prediction value as the outlet NOx concentration prediction initial value at time k+1 Steps 5) to 10) are repeatedly executed in subsequent cycles to predict and correct the NOx concentration at the outlet.
进一步的,在本发明中,所述步骤5)中,所述阀门开度控制约束包括:Further, in the present invention, in step 5), the valve opening control constraints include:
阀门开度约束:Valve opening constraint:
IMUVmin≤TΔUV(k)+IMuV(k-1)≤IMUVmax (1)IM UVmin ≤TΔUV (k)+IM uV (k-1)≤IM UVmax (1)
阀门动作速率约束:Valve action rate constraints:
IMuVmin≤ΔUV(k)≤IMuVmax (2)IM uVmin ≤ΔUV (k)≤IM uVmax (2)
出口NOx浓度约束:Constraints on outlet NOx concentration:
其中,in,
ΔuV(k+i|k),i=0,...,M-1表示在k时刻对未来k+i时刻的喷氨阀门的阀门开度增量;ΔuV (k+i|k), i=0,..., M-1 represents the valve opening increment of the ammonia injection valve at k time to the future k+i time;
y0(k+i|k),i=1,...,P表示在k时刻对未来k+i时刻的出口NOx浓度的预测初值;y0 (k+i|k), i=1,..., P represents the predicted initial value of outlet NOx concentration at time k in the future at time k+i;
Δu(k+i|k),i=0,...,M-1表示在k时刻对未来k+i时刻的控制变量增量;UVmax、UVmin分别表示阀门开度的上、下限值,uVmax、uVmin分别表示阀门动作速率的上、下限值,ymax、ymin为出口NOx浓度的上、下限值。Δu(k+i|k), i=0,...,M-1 represents the control variable increment at k time to the future k+i time; UVmax and UVmin respectively represent the up and down of the valve opening Limits, uVmax and uVmin represent the upper and lower limits of the valve action rate, respectively, and ymax and ymin are the upper and lower limits of the outlet NOx concentration.
进一步的,在本发明中,所述喷氨阀门的阀门开度uV(k)包含以下约束关系:Further, in the present invention, the valve opening uV (k) of the ammonia injection valve includes the following constraints:
uV(k)=(uM(k)-yP(k-1))·KP (4)uV (k) = (uM (k)-yP (k-1)) KP (4)
ΔuV(k)=uV(k)-uV(k-1)ΔuV (k)=uV (k)-uV (k-1)
=(uM(k)-yP(k-1))·Kp-(uM(k-1)-yP(k-2))·KP=(uM (k)-yP (k-1))·Kp -(uM (k-1)-yP (k-2))·KP
=(ΔuM(k)-ΔyP(k-1))·KP (5)=(ΔuM (k)-ΔyP (k-1))·KP (5)
其中,uV(k)为k时刻的阀门开度,yP(k)为k时刻的喷氨流量;将式约束(4)、(5)代入到所述约束式(1)、(2)、(3)中,可以得到阀门开度控制约束如下:Wherein, uV (k) is the valve opening at time k, and yP (k) is the ammonia injection flow rate at time k; Substitute the constraints (4), (5) into the constraints (1), (2 ), (3), the valve opening control constraints can be obtained as follows:
由阀门开度限制得到的阀门开度约束:The valve opening constraint obtained from the valve opening constraint:
由阀门动作速率限制得到的阀门动作速率约束:The valve action rate constraint obtained by the valve action rate limit:
由出口NOx浓度限制得到的出口NOx浓度约束:Outlet NOx concentration constraint derived from outlet NOx concentration limit:
进一步的,在本发明中,所述步骤3)中,所述采样时间Ts的选取规则为T95/Ts=5~15,其中,T95为对象的单位阶跃响应过程上升到95%的调节时间;Further, in the present invention, in the step 3), the selection rule of the sampling time Ts is T95 /Ts =5-15, wherein T95 is the unit step response process of the object rising to 95 % adjustment time;
所述预测步数P的选取规则为PTs=tp,其中tp为出口NOx浓度阶跃响应的上升时间;The selection rule for the number of predicted steps P is PTs =tp , where tp is the rise time of the outlet NOx concentration step response;
所述控制步数M取值为3~5;The value of the number of control steps M is 3 to 5;
所述输出误差权矩阵Q为Q=diag(q1,…,qP);The output error weight matrix Q is Q=diag(q1 ,...,qP );
所述控制权矩阵R为R=diag(r1,…,rM)。The control right matrix R is R=diag(r1 ,...,rM ).
进一步的,在本发明中,在所述步骤6)中,所述性能指标函数J(k)为:Further, in the present invention, in the step 6), the performance index function J(k) is:
其中,wP(k)为未来出口NOx浓度的参考目标值向量。Among them, wP (k) is the reference target value vector of NOx concentration at the outlet in the future.
SCR脱硝系统依据设定出口NOx浓度目标值和实时的出口NOx浓度测量值反馈信号,结合约束预测控制单元来计算未来时刻所需要提供的氨气流量,并传递给比例控制单元,从而得到所需的喷氨阀门的阀门开度并对喷氨阀门进控制,调节喷氨流量,控制并修正出口NOx浓度。SCR控制系统根据计算预测出的氨气流量需求信号去定位控制氨气流量的喷氨阀门,实现对脱硝系统的自动控制,通过在不同负荷下的对氨气流量的调整,找到最佳的喷氨流量。The SCR denitrification system is based on the set outlet NOx concentration target value and the real-time outlet NOx concentration measurement value feedback signal, combined with the constraint prediction control unit to calculate the ammonia flow that needs to be provided in the future, and transmit it to the proportional control unit, so as to obtain the required The valve opening of the ammonia injection valve is controlled and the ammonia injection valve is controlled to adjust the flow of ammonia injection and control and correct the outlet NOx concentration. The SCR control system locates the ammonia injection valve that controls the ammonia flow according to the calculated and predicted ammonia flow demand signal, realizes automatic control of the denitrification system, and finds the best injection valve by adjusting the ammonia flow under different loads. ammonia flow.
有益效果:与现有技术相比,本发明具有以下优点:通过采用预测-比例串级控制策略控制SCR脱硝系统的喷氨流量,通过预测SCR反应器的出口NOx浓度未来的变化趋势并提前调整喷氨量,能较好地克服系统大惯性、大迟延的缺点,提高喷氨量控制对机组负荷变化的响应速度;同时考虑了喷氨阀门开度上、下限制、速率限制、出口NOx浓度限制等实际约束,避免因执行机构饱和从而影响系统性能,能够在保证达标排放的基础上,尽量减少喷氨量,有效降低运行费用和氨逃逸率。Beneficial effects: Compared with the prior art, the present invention has the following advantages: by adopting the predictive-proportional cascade control strategy to control the ammonia injection flow rate of the SCR denitrification system, by predicting the future change trend of the NOx concentration at the outlet of the SCR reactor and adjusting it in advance The amount of ammonia injection can better overcome the shortcomings of large inertia and large delay in the system, and improve the response speed of ammonia injection amount control to unit load changes; at the same time, it takes into account the upper and lower limits of the opening of the ammonia injection valve, rate limit, and outlet NOx concentration Limitation and other practical constraints, to avoid system performance being affected by the saturation of the actuator, to minimize the amount of ammonia injection on the basis of ensuring up-to-standard emissions, and effectively reduce operating costs and ammonia slip rates.
附图说明Description of drawings
图1为本发明的SCR脱硝系统的结构图;Fig. 1 is the structural diagram of SCR denitrification system of the present invention;
图2为本发明的SCR脱硝系统的优化控制效果图;Fig. 2 is the optimal control effect diagram of the SCR denitrification system of the present invention;
图3为本发明与无约束预测控制器的控制效果的对比图。Fig. 3 is a comparison diagram of the control effects of the present invention and the unconstrained predictive controller.
具体实施方式detailed description
下面结合附图对本发明做更进一步的解释。The present invention will be further explained below in conjunction with the accompanying drawings.
如附图1所示,一种基于约束预测控制的SCR脱硝系统,包括出口NOx浓度目标值设置单元1、约束预测控制单元2、比例控制单元3、喷氨阀门4、SCR反应器5和实际约束计算单元6,所述约束预测控制单元2包括控制增量约束计算单元21和预测控制单元22,实际约束计算单元6包括出口NOx浓度约束计算单元61、阀门动作速率约束计算单元62和阀门开度约束计算单元63;As shown in Figure 1, a SCR denitrification system based on constraint predictive control includes outlet NOx concentration target value setting unit 1, constraint predictive control unit 2, proportional control unit 3, ammonia injection valve 4, SCR reactor 5 and actual Constraint calculation unit 6, said constraint prediction control unit 2 includes control increment constraint calculation unit 21 and forecast control unit 22, actual constraint calculation unit 6 includes outlet NOx concentration constraint calculation unit 61, valve action rate constraint calculation unit 62 and valve opening degree constraint calculation unit 63;
所述出口NOx浓度目标值设置单元1、约束预测控制单元2中的预测控制单元22、比例控制单元3、喷氨阀门4及SCR反应器5依次连接;所述阀门动作速率约束计算单元62和阀门开度约束计算单元63与喷氨阀门4的输入喷氨阀门开度连接;所述实际约束计算单元6与约束预测控制单元2中的控制增量约束计算单元21连接;所述约束预测控制单元2中的控制增量约束计算单元21与预测控制单元22连接;所述喷氨阀门4的输出喷氨流量与约束预测控制单元2的输出控制量通过求和之后与比例控制单元3连接;所述SCR反应器5的输出出口NOx浓度与出口NOx浓度目标值设置单元1的输出出口NOx浓度目标值经过求和之后与约束预测控制单元2中的预测控制单元22连接。The outlet NOx concentration target value setting unit 1, the predictive control unit 22 in the constraint predictive control unit 2, the proportional control unit 3, the ammonia injection valve 4 and the SCR reactor 5 are sequentially connected; the valve action rate constraint calculation unit 62 and The valve opening constraint calculation unit 63 is connected with the input ammonia injection valve opening of the ammonia injection valve 4; the actual constraint calculation unit 6 is connected with the control increment constraint calculation unit 21 in the constraint prediction control unit 2; the constraint prediction control The control increment constraint calculation unit 21 in the unit 2 is connected to the predictive control unit 22; the output ammonia injection flow rate of the ammonia injection valve 4 and the output control amount of the constraint predictive control unit 2 are connected to the proportional control unit 3 after being summed; The output outlet NOx concentration of the SCR reactor 5 and the output outlet NOx concentration target value of the outlet NOx concentration target value setting unit 1 are summed and connected to the predictive control unit 22 in the constraint predictive control unit 2 .
所述实际约束计算单元6计算包括出口NOx浓度约束、阀门动作速率约束和阀门开度约束的范围,并通过控制增量约束计算单元21转化为对预测控制单元22的控制增量的约束,从而对预测控制单元22进行约束,得到所需要的喷氨流量,并通过比例控制单元3对喷氨阀门4进行控制,调节阀门开度以调整喷氨流量。The actual constraint calculation unit 6 calculates the range including the outlet NOx concentration constraint, the valve action rate constraint and the valve opening constraint, and converts it into a constraint on the control increment of the predictive control unit 22 through the control increment constraint calculation unit 21, so that The predictive control unit 22 is constrained to obtain the required ammonia injection flow rate, and the ammonia injection valve 4 is controlled by the proportional control unit 3 to adjust the valve opening to adjust the ammonia injection flow rate.
一种基于约束预测控制的SCR脱硝系统的优化控制方法,包括以下步骤:An optimal control method for an SCR denitrification system based on constraint predictive control, comprising the following steps:
1)在稳态工况下,把SCR脱硝系统切换到手动状控制态,在以喷氨阀门4的阀门开度为输入进行出口NOx浓度的开环阶跃响应试验,得到喷氨阀门4的模型W01(s),以及SCR反应器5的模型W02(s);1) Under steady-state conditions, switch the SCR denitrification system to the manual control state, and use the valve opening of the ammonia injection valve 4 as the input to conduct an open-loop step response test of the outlet NOx concentration, and obtain the ammonia injection valve 4 model W01 (s), and model W02 (s) of SCR reactor 5;
2)在所述比例调节控制单元3中,确定比例调节器的参数KP,计算SCR反应器2的出口NOx浓度对阀门开度的总模型W(s),并得到总模型的阶跃响应系数为a1,a2,…aN,其中,N为阶跃响应的时域长度,N的数值应使出口NOx浓度的响应值已接近稳态值;2) In the proportional regulation control unit 3, determine the parameter KP of the proportional regulator, calculate the total model W(s) of the outlet NOx concentration of the SCR reactor 2 to the valve opening, and obtain the step response of the total model The coefficients are a1 , a2 ,...aN , where N is the time domain length of the step response, and the value of N should make the response value of outlet NOx concentration close to the steady state value;
3)设置所述约束预测控制单元2中的约束预测控制器的相关参数,包括采样时间Ts,预测步数P,控制步数M,输出误差权矩阵Q,控制权矩阵R;优选地,所述采样时间Ts的选取规则为T95/Ts=5~15,其中,T95为过渡过程上升到95%的调节时间;所述预测步数P的选取规则为PTs=tp,其中tp为出口NOx浓度阶跃响应的上升时间;所述控制步数M取值为3~5;所述输出误差权矩阵Q为Q=diag(q1,…,qP);所述控制权矩阵R为R=diag(r1,…,rM);3) Set the relevant parameters of the constraint predictive controller in the constraint predictive control unit 2, including sampling time Ts , the number of prediction steps P, the number of control steps M, the output error weight matrix Q, and the control weight matrix R; preferably, The selection rule of the sampling time Ts is T95 /Ts =5~15, wherein, T95 is the adjustment time for the transition process to rise to 95%; the selection rule of the prediction step number P is PTs =tp , where tp is the rise time of the outlet NOx concentration step response; the number of control steps M is 3 to 5; the output error weight matrix Q is Q=diag(q1 ,...,qP ); The control right matrix R is R=diag(r1 ,...,rM );
采用公式:Using the formula:
所述的预测模型对SCR反应器5的出口NOx浓度进行预测,其中,表示在k时刻对未来时刻的出口NOx浓度的预测值向量,表示在k时刻对未来时刻的出口NOx浓度的预测初值向量;ΔUM(k)表示在k时刻对未来时刻的控制量增量向量;其中:The prediction model predicts the outlet NOx concentration of the SCR reactor 5, wherein, Indicates the predicted value vector of outlet NOx concentration at k time to future time, Indicates the predicted initial value vector of outlet NOx concentration at k time to future time; ΔUM (k) represents the control quantity increment vector at k time to future time; where:
其中,表示在k时刻对未来k+i时刻的出口NOx浓度的预测值,表示在k时刻对未来k+i时刻的出口NOx浓度的预测初值;Δu(k+i|k),i=0,…,M-1表示在k时刻对未来k+i时刻的控制变量增量。in, Indicates the predicted value of outlet NOx concentration at time k in the future at time k+i, Indicates the predicted initial value of outlet NOx concentration at time k for future k+i time; Δu(k+i|k), i=0,...,M-1 represents the control variable at k time for future k+i time increment.
4)在约束预测控制单元2中,将所述约束预测控制器进行状态初始化,即在某个稳态工况下,检测当前时刻的出口NOx浓度测量值y(k),并赋值给出口NOx浓度的预测初值及预测值,即:4) In the constraint predictive control unit 2, the state initialization of the constraint predictive controller is carried out, that is, under a certain steady state condition, the outlet NOx concentration measurement value y(k) at the current moment is detected and assigned to the outlet NOx Predicted initial value and predicted value of concentration, namely:
5)所述实际约束计算单元6计算如下三类实际约束的范围:出口NOx浓度约束、阀门动作速率约束和阀门开度约束,确定阀门开度控制约束的范围,将结果传至控制增量约束计算单元21,得到约束预测控制器的控制增量ΔUM(k)的约束;5) The actual constraint calculation unit 6 calculates the scope of the following three types of actual constraints: outlet NOx concentration constraint, valve action rate constraint and valve opening constraint, determines the scope of the valve opening control constraint, and transmits the result to the control increment constraint Calculation unit 21, obtains the constraint of the control increment ΔUM (k) of the constraint predictive controller;
所述阀门开度控制约束包括:The valve opening control constraints include:
阀门开度约束:Valve opening constraints:
IMUVmin≤TΔUV(k)+IMuV(k-1)≤IMUVmax (1)IM UVmin ≤TΔUV (k)+IM uV (k-1)≤IM UVmax (1)
阀门动作速率约束:Valve action rate constraints:
IMuVmin≤ΔUV(k)≤IMuVmax (2)IM uVmin ≤ΔUV (k)≤IM uVmax (2)
出口NOx浓度约束:Constraints on outlet NOx concentration:
其中,in,
ΔuV(k+i|k),i=0,…,M-1表示在k时刻对未来k+i时刻的喷氨阀门4的阀门开度增量;ΔuV (k+i|k), i=0,..., M-1 represents the valve opening increment of the ammonia injection valve 4 at k time to the future k+i time;
y0(k+i|k),i=1,…,P表示在k时刻对未来k+i时刻的出口NOx浓度的预测初值;y0 (k+i|k), i=1,..., P represents the predicted initial value of outlet NOx concentration at time k in the future at time k+i;
Δu(k+i|k),i=0,…,M-1表示在k时刻对未来k+i时刻的控制变量增量;UVmax、UVmin分别表示阀门开度的上、下限值,uVmax、uVmin分别表示阀门动作速率的上、下限值,ymax、ymin为出口NOx浓度的上、下限值。Δu(k+i|k), i=0,...,M-1 represents the control variable increment at k time to the future k+i time; UVmax and UVmin respectively represent the upper and lower limit values of the valve opening , uVmax and uVmin represent the upper and lower limits of the valve action rate respectively, and ymax and ymin are the upper and lower limits of the NOx concentration at the outlet.
优选地,所述喷氨阀门4的阀门开度uV(k)包含以下约束关系:Preferably, the valve opening uV (k) of the ammonia injection valve 4 includes the following constraints:
uV(k)=(uM(k)-yP(k-1))·KP (4)uV (k) = (uM (k)-yP (k-1)) KP (4)
ΔuV(k)=uV(k)-uV(k-1)ΔuV (k)=uV (k)-uV (k-1)
=(uM(k)-yP(k-1))·Kp-(uM(k-1)-yP(k-2))·KP=(uM (k)-yP (k-1))·Kp -(uM (k-1)-yP (k-2))·KP
=(ΔuM(k)-ΔyP(k-1))·KP (5)=(ΔuM (k)-ΔyP (k-1))·KP (5)
其中,uV(k)为k时刻的阀门开度,yP(k)为k时刻的喷氨流量;将式约束(4)、(5)代入到所述约束式(1)、(2)、(3)中,可以得到阀门开度控制约束如下:Wherein, uV (k) is the valve opening at time k, and yP (k) is the ammonia injection flow rate at time k; Substitute the constraints (4), (5) into the constraints (1), (2 ), (3), the valve opening control constraints can be obtained as follows:
由阀门开度限制得到的阀门开度约束:The valve opening constraint obtained from the valve opening constraint:
由阀门动作速率限制得到的阀门动作速率约束:The valve action rate constraint obtained by the valve action rate limit:
由出口NOx浓度限制得到的出口NOx浓度约束:Outlet NOx concentration constraint derived from outlet NOx concentration limit:
将其整理为如下的形式:Organize it into the following form:
RΔUM(k)≤c (9)RΔUM (k)≤c (9)
其中,in,
6)根据选取的性能指标函数J(k),结合所述控制增量ΔUM(k)的约束,约束预测控制单元2采用积极集方法求解上述带约束的二次型目标函数最优解求解问题,得到约束预测控制器的控制量增量ΔUM(k);其中,所述性能指标函数J(k)为:6) According to the selected performance index function J(k), combined with the constraints of the control increment ΔUM (k), the constraint predictive control unit 2 adopts the active set method to solve the optimal solution of the above-mentioned quadratic objective function with constraints problem, get the control variable increment ΔUM (k) of the constrained predictive controller; where, the performance index function J(k) is:
其中,wP(k)为未来出口NOx浓度的参考目标值向量:Among them, wP (k) is the reference target value vector of future outlet NOx concentration:
其中,w(k+i),i=1,…,P为未来出口NOx浓度的参考目标值;Among them, w(k+i), i=1,..., P is the reference target value of NOx concentration at the outlet in the future;
将预测模型式(0)代入式(10)中,并将其整理为二次型的形式,可以得到:Substituting the prediction model formula (0) into formula (10), and organizing it into a quadratic form, we can get:
其中,H=2(ATQA+R),f0表示与ΔUM(k)无关的常数项;Among them, H=2(AT QA+R), f0 represents a constant term independent of ΔUM (k);
将约束式(9)与性能指标函数式(11)结合,约束预测控制单元2采用积极集方法求解上述带约束的二次型目标函数最优解求解问题,得到约束预测控制器的控制量增量ΔUM(k);Combining the constraint formula (9) with the performance index function formula (11), the constrained predictive control unit 2 adopts the active set method to solve the problem of optimal solution of the quadratic objective function with constraints, and obtains the control quantity increase of the constrained predictive controller Quantity ΔUM (k);
7)取约束预测控制单元2计算得到的控制增量ΔUM(k)中的即时控制增量Δu(k)构成实际控制,计算得出约束控制后的最优控制量u(k)=u(k-1)+Δu(k);其中,Δu(k)为ΔUM(k)的首元素,即,7) Take the immediate control increment Δu(k) in the control increment ΔUM (k) calculated by the constraint predictive control unit 2 to constitute the actual control, and calculate the optimal control quantity u(k)=u after the constraint control (k-1)+Δu(k); where, Δu(k) is the first element of ΔUM (k), that is,
Δu(k)=cTΔUM(k) (12)Δu(k)=cT ΔUM (k) (12)
其中,cT=[1 0…0];Among them, cT = [1 0...0];
将最优控制量u(k)传递到比例控制单元;Transfer the optimal control quantity u(k) to the proportional control unit;
计算并更新经约束控制后的出口NOx浓度预测值:Calculate and update the predicted value of outlet NOx concentration after constraint control:
8)检测SCR脱硝系统在k+1时刻的实际输出的出口NOx浓度测量值y(k+1),在约束预测控制单元2中,将所述出口NOx浓度测量值y(k+1)与所述出口NOx浓度预测值进行比较,计算输出误差e(k+1):8) Detect the outlet NOx concentration measurement value y(k+1) of the actual output of the SCR denitrification system at the moment k+1, and in the constraint prediction control unit 2, combine the outlet NOx concentration measurement value y(k+1) with The predicted value of NOx concentration at the outlet For comparison, calculate the output error e(k+1):
用输出误差e(k+1)修正出口NOx浓度预测值向量得到修正后的出口NOx浓度预测值向量Use the output error e(k+1) to correct the outlet NOx concentration prediction value vector Get the corrected outlet NOx concentration predicted value vector
其中,为校正后的出口NOx浓度预测值,h=[h1…hN]T为反馈校正量;in, is the predicted value of outlet NOx concentration after correction, h=[h1 ... hN ]T is the feedback correction amount;
9)根据k时刻的喷氨阀门4的输入阀门开度uV(k)及喷氨阀门4的输出喷氨流量yP(k):9) According to the input valve opening uV (k) of the ammonia injection valve 4 at time k and the output ammonia injection flow rate yP (k) of the ammonia injection valve 4:
uV(k)=(u(k)-yP(k-1))·KPuV (k)=(u(k)-yP (k-1))·KP
yP(k)=W01(s)·uV(k)yP (k) = W01 (s) uV (k)
在控制增量约束计算单元21中更新k+1时刻对约束预测控制器的控制量增量ΔUM(k+1)的约束;Update the constraint of the control amount increment ΔUM (k+1) of the constraint predictive controller at the time of updating k+1 in the control increment constraint calculation unit 21;
RΔUM(k+1)≤cRΔUM (k+1)≤c
其中,in,
10)将修正过的出口NOx浓度预测值作为k+1时刻的出口NOx浓度预测初值:10) Use the corrected outlet NOx concentration prediction value as the outlet NOx concentration prediction initial value at time k+1:
在之后的周期中反复执行步骤5)至步骤10),进行出口NOx浓度的预测及修正。Steps 5) to 10) are repeatedly executed in subsequent cycles to predict and correct the NOx concentration at the outlet.
实施例1Example 1
一种基于约束预测控制的SCR脱硝系统的优化控制方法,具体步骤如下:An optimal control method for an SCR denitrification system based on constraint predictive control, the specific steps are as follows:
1)在稳态工况下,以喷氨阀门4的阀门开度为输入,通过阶跃响应试验获取喷氨阀门4模型W01(s),SCR反应器2模型W02(s),即:1) Under steady-state conditions, the ammonia injection valve 4 model W01 (s) and the SCR reactor 2 model W02 (s) are obtained through the step response test with the valve opening of the ammonia injection valve 4 as input, namely :
2)确定比例调节器的参数KP=1,计算出口NOx浓度对喷氨阀门开度的总模型:2) Determine the parameter KP of the proportional regulator = 1, and calculate the overall model of the outlet NOx concentration on the opening of the ammonia injection valve:
((mg/Nm3)/%),并得到出口NOx浓度对阀门开度的总模型W(s)的阶跃响应系数a1,a2,...a80=[-0.0078 -0.0334...-1.0937];((mg/Nm3 )/%), and get the step response coefficients a1 , a2 ,...a80 of the total model W(s) of outlet NOx concentration to valve opening = [-0.0078 -0.0334. ..-1.0937];
3)设置约束预测控制器相关参数,采样时间Ts=5s,预测步数P=80,控制步数M=4,输出误差权矩阵Q=2I80,控制权矩阵R=0.5I4;3) Set the relevant parameters of the constrained predictive controller, sampling time Ts =5s, prediction step number P=80, control step number M=4, output error weight matrix Q=2I80 , control weight matrix R=0.5I4 ;
4)控制器参数确定后,可以得到:4) After the controller parameters are determined, it can be obtained:
控制器状态初始化,即在某个稳态工况下,检测当前时刻出口NOx浓度测量值y(k),并令在之后的周期内,重复执行以下步骤5)到步骤10);The controller state is initialized, that is, under a certain steady-state condition, the measured value y(k) of NOx concentration at the outlet at the current moment is detected, and the In subsequent cycles, the following steps 5) to 10) are repeatedly executed;
5)根据当前时刻喷氨阀门的开度UP确定实际约束的范围,阀门开度的上、下限分别为UVmax=100-UP、UVmin=0-UP;根据阀门动作速率以及火电厂运行安全的需要,分别确定阀门动作速率的上、下限为uVmax、uVmin,出口NOx浓度的上、下限分别为ymax=y(k)、ymin=100(mg/Nm3);5) Determine the actual constraint range according to the opening UP of the ammonia injection valve at the current moment. The upper and lower limits of the valve opening are respectively UVmax =100-UP and UVmin= 0-UP ; To meet the needs of power plant operation safety, the upper and lower limits of the valve action rate are respectively determined as uVmax and uVmin , and the upper and lower limits of the outlet NOx concentration are respectively ymax =y(k), ymin =100(mg/Nm3 );
6)令未来出口NOx浓度的参考目标值w(k+i)=100(mg/Nm3),i=1,…,80,控制增量的初始值ΔU0=[0 0 0 0],采用积极集的方法求解带约束的二次规划问题,求得Δu(k);6) Let the reference target value w(k+i)=100(mg/Nm3 ) of NOx concentration at the outlet in the future, i=1,...,80, the initial value of the control increment ΔU0 =[0 0 0 0], Use the active set method to solve the quadratic programming problem with constraints, and obtain Δu(k);
7)计算最优控制量u(k)=u(k-1)+Δu(k),计算并更新出口NOx浓度预测值yM(k+i|k)=y0(k+i|k)+aiΔu(k),i=1,…,80;7) Calculate the optimal control quantity u(k)=u(k-1)+Δu(k), calculate and update the outlet NOx concentration prediction value yM (k+i|k)=y0 (k+i|k )+ai Δu(k), i=1,...,80;
8)计算输出误差对预测值进行反馈校正,取反馈校正系数hi=1,i=1,...,80;8) Calculate the output error Feedback corrections are made to the predicted values, Take the feedback correction coefficient hi =1, i=1,...,80;
9)计算k时刻的喷氨阀门开度uV(k)及喷氨流量yP(k),并据此更新k+1时刻对约束预测控制器控制量增量ΔUM(k+1)的约束;9) Calculate the ammonia injection valve opening uV (k) and the ammonia injection flow rate yP (k) at time k, and update the control amount increment ΔUM (k+1) of the constraint predictive controller at time k+1 accordingly constraints;
10)将修正过的出口NOx浓度预测值作为k+1时刻的出口NOx浓度预测初值10) Use the corrected outlet NOx concentration prediction value as the outlet NOx concentration prediction initial value at time k+1
实施例1所得的本发明基于约束预测控制的SCR脱硝系统优化控制效果与PID控制器控制效果的对比如附图2所示,在同一时间段内,出口NOx浓度随喷氨阀门的阀门开度的调节而变化,本发明在更短时间内实现控制调整出口NOx浓度,响应速度快;喷氨阀门的阀门开度更小,在保证出口NOx浓度达标排放的基础上,大大减少了喷氨量,能有效降低运行费用和氨逃逸率。The comparison of the optimal control effect of the SCR denitrification system based on constraint predictive control and the control effect of the PID controller obtained in Example 1 is shown in Figure 2. In the same time period, the outlet NOx concentration increases with the valve opening of the ammonia injection valve. The present invention realizes the control and adjustment of the outlet NOx concentration in a shorter time, and the response speed is fast; the valve opening of the ammonia injection valve is smaller, and on the basis of ensuring that the outlet NOx concentration reaches the standard discharge, the amount of ammonia injection is greatly reduced , can effectively reduce operating costs and ammonia escape rate.
实施例1所得的本发明基于约束预测控制的SCR脱硝系统优化控制效果同无约束预测控制器控制效果的对比如附图3所示,在同一时间段内,出口NOx浓度调控时间虽然较无约束预测控制方法长,响应速度慢,但在可接受范围内;并且喷氨阀门的阀门开度更小,喷氨量减少;阀门开度动作速率更小,更加稳定,防止出现阀门饱和,保护喷氨阀门,减少因阀门开度动作速率不断变更造成的磨损,提高精度并延长使用寿命。The comparison between the optimal control effect of the SCR denitrification system based on the constraint predictive control obtained in Example 1 and the control effect of the unconstrained predictive controller is shown in Figure 3. In the same time period, although the outlet NOx concentration control time is relatively unconstrained The predictive control method is long and the response speed is slow, but within an acceptable range; and the valve opening of the ammonia injection valve is smaller, reducing the amount of ammonia injection; the action rate of the valve opening is smaller and more stable, preventing valve saturation and protecting the injection Ammonia valves reduce wear and tear caused by constant changes in valve opening speed, improve accuracy and prolong service life.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410830507.XACN104607042B (en) | 2014-12-26 | 2014-12-26 | A kind of SCR denitration system and method based on constrained forecast control |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410830507.XACN104607042B (en) | 2014-12-26 | 2014-12-26 | A kind of SCR denitration system and method based on constrained forecast control |
| Publication Number | Publication Date |
|---|---|
| CN104607042A CN104607042A (en) | 2015-05-13 |
| CN104607042Btrue CN104607042B (en) | 2017-11-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410830507.XAExpired - Fee RelatedCN104607042B (en) | 2014-12-26 | 2014-12-26 | A kind of SCR denitration system and method based on constrained forecast control |
| Country | Link |
|---|---|
| CN (1) | CN104607042B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104932265B (en)* | 2015-06-07 | 2017-10-03 | 陈亮 | A kind of control system of the denitrating flue gas based on mathematical modeling |
| CN105032182B (en)* | 2015-08-25 | 2018-01-30 | 大唐国际发电股份有限公司陡河发电厂 | The denitration spray automatic method of ammonia based on artificial intelligence |
| CN105148727B (en)* | 2015-10-10 | 2017-06-09 | 广东电网有限责任公司电力科学研究院 | Thermal generation unit denitration optimal control method and system |
| CN105404145B (en)* | 2015-10-22 | 2018-01-16 | 西安西热控制技术有限公司 | The new cascade control method of denitration based on exponential forecasting and time lag predictive compensation |
| CN105457465B (en)* | 2015-11-25 | 2017-09-15 | 江苏科技大学 | A kind of SNCR SCR combine the design method of flue gas denitrification system technique |
| CN105498530B (en)* | 2015-12-08 | 2018-02-06 | 江苏方天电力技术有限公司 | Method of Introducing Tracer Gas to Instruct Ammonia Injection Adjustment in SCR System Simulation |
| CN105700576B (en)* | 2016-03-11 | 2018-05-04 | 东南大学 | SCR denitration Optimal Control System and method based on the prediction of multivariable Operations of Interva Constraint |
| CN105629736B (en)* | 2016-03-22 | 2018-03-20 | 东南大学 | The fired power generating unit SCR denitration Disturbance Rejection forecast Control Algorithm of data-driven |
| CN105786035B (en)* | 2016-03-29 | 2018-07-20 | 东南大学 | Fired power generating unit SCR denitration Optimal Control System based on heuristic Prediction and Control Technology |
| CN105786034B (en)* | 2016-04-15 | 2020-07-28 | 中国大唐集团科学技术研究院有限公司西北分公司 | System and method for controlling content of nitrogen oxides at denitration outlet of boiler |
| CN108144446B (en)* | 2016-12-09 | 2020-05-19 | 上海明华电力科技有限公司 | Based on SCR entry NOXPredictive denitration control method |
| CN106681381A (en)* | 2017-01-03 | 2017-05-17 | 华北电力大学 | SCR denitration system ammonia spraying quantity optimal control system and method based on intelligent feedforward signals |
| CN106842962A (en)* | 2017-04-13 | 2017-06-13 | 东南大学 | Based on the SCR denitration control method for becoming constraint multiple model predictive control |
| CN107168055B (en)* | 2017-05-15 | 2020-03-31 | 东南大学 | Ammonia desulphurization optimization control method based on multivariable predictive control |
| CN107526292B (en)* | 2017-09-18 | 2019-09-13 | 华中科技大学 | A Method of Controlling Ammonia Injection Quantity Based on Inlet NOx Concentration Prediction |
| CN107544288B (en)* | 2017-09-26 | 2021-06-04 | 天津拓科思科技有限公司 | Denitration optimization control method and system |
| CN107831651A (en)* | 2017-10-12 | 2018-03-23 | 国网河北能源技术服务有限公司 | Coal dust station boiler SCR and SNCR denitration system cooperative control method |
| CN107952353A (en)* | 2017-12-04 | 2018-04-24 | 烟台龙源电力技术股份有限公司 | A kind of flue gas purification system and its control method |
| CN109304086B (en)* | 2018-10-31 | 2020-11-24 | 华中科技大学 | A kind of power plant boiler SCR denitrification fine ammonia injection control method |
| CN109581870B (en)* | 2018-11-27 | 2022-01-25 | 中国工程物理研究院化工材料研究所 | Dynamic matrix control method for temperature in energetic material reaction kettle |
| CN110989466B (en)* | 2019-12-25 | 2021-04-27 | 华能应城热电有限责任公司 | A dynamic feedforward belt internal model control method and system for denitration of thermal power units |
| CN111495182A (en)* | 2020-05-06 | 2020-08-07 | 李煦良 | Flue gas denitration measuring device applied to thermal power plant and regulation control method |
| CN113380338B (en)* | 2021-06-16 | 2022-06-10 | 哈电发电设备国家工程研究中心有限公司 | Method for measuring, correcting and predicting NOx concentration at inlet of cyclone separator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102000482A (en)* | 2010-11-15 | 2011-04-06 | 无锡科立泰科技有限公司 | System and method for controlling oxynitride removal |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7536232B2 (en)* | 2004-08-27 | 2009-05-19 | Alstom Technology Ltd | Model predictive control of air pollution control processes |
| CN1758161A (en)* | 2005-11-11 | 2006-04-12 | 燕山大学 | Optimum control method based on non-linear restraint predic control |
| US7599750B2 (en)* | 2005-12-21 | 2009-10-06 | Pegasus Technologies, Inc. | Model based sequential optimization of a single or multiple power generating units |
| CN103926833B (en)* | 2014-04-22 | 2016-06-08 | 东南大学 | A kind of selective catalytic reduction denitration device suction parameter defining method |
| CN104234802B (en)* | 2014-07-14 | 2017-01-11 | 浙江大学 | SCR (Selective Catalytic Reduction) catalyst aging judgment method based on NOx feedback and ammonia storage prediction |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102000482A (en)* | 2010-11-15 | 2011-04-06 | 无锡科立泰科技有限公司 | System and method for controlling oxynitride removal |
| Publication number | Publication date |
|---|---|
| CN104607042A (en) | 2015-05-13 |
| Publication | Publication Date | Title |
|---|---|---|
| CN104607042B (en) | A kind of SCR denitration system and method based on constrained forecast control | |
| CN107561941B (en) | A method for controlling the emission of the denitrification system of a thermal power unit under all operating conditions | |
| CN105700576B (en) | SCR denitration Optimal Control System and method based on the prediction of multivariable Operations of Interva Constraint | |
| CN104826493B (en) | A kind of control method of selective catalytic reduction flue gas denitrification system | |
| CN109343349B (en) | SCR flue gas denitration optimal control system and method based on ammonia injection amount compensator | |
| CN104826492B (en) | Improvement method for selective catalytic reduction flue gas denitrification and ammonia injection control system | |
| CN105786035B (en) | Fired power generating unit SCR denitration Optimal Control System based on heuristic Prediction and Control Technology | |
| CN105797576B (en) | Denitration ammonia injection control method for coal-fired unit | |
| CN102401371B (en) | Reheated gas temperature optimization control method based on multi-variable predictive control | |
| CN102608911B (en) | Fossil power plant coordination control method based on multi-parameter prediction | |
| CN107168055B (en) | Ammonia desulphurization optimization control method based on multivariable predictive control | |
| CN102654776B (en) | Smoke denitration ammonia injection amount control method and device | |
| CN113433911B (en) | Accurate control system and method for ammonia spraying of denitration device based on accurate concentration prediction | |
| CN106582284A (en) | Automatic control method and system of thermal-power-unit SCR denitration ammonia spraying | |
| CN105045089A (en) | Boiler denitration control method based on outlet NOx content control and system thereof | |
| CN108628177A (en) | A kind of SCR denitration intelligence spray ammonia optimization method and system based on model adaptation PID | |
| CN113578007B (en) | A coal-fired flue gas SCR denitrification control system and method based on zoned ammonia injection | |
| CN108803309A (en) | It is a kind of that ammonia optimization method and system are intelligently sprayed based on the SCR denitration of hard measurement and model adaptation | |
| CN111897373A (en) | Model prediction-based ammonia injection flow adjusting method for SCR denitration device | |
| CN106842962A (en) | Based on the SCR denitration control method for becoming constraint multiple model predictive control | |
| CN114307627B (en) | A denitrification adjustment method based on theoretical ammonia consumption | |
| CN112569785A (en) | SCR ammonia injection control system and method based on ammonia escape monitoring | |
| CN109224815A (en) | A kind of ammonia process of desulfurization optimal control method based on Multivariable Constrained interval prediction control | |
| CN111968708A (en) | SCR denitration ammonia injection amount prediction method based on random forest and LSTM neural network | |
| CN214635434U (en) | An SCR ammonia injection control system based on ammonia slip monitoring |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20171117 | |
| CF01 | Termination of patent right due to non-payment of annual fee |