技术领域technical field
本发明涉及一种用于定位仪器单元的装置和方法。The invention relates to a device and a method for positioning an instrument unit.
背景技术Background technique
为了诊断目的要手动地或者电子控制地使仪器单元、尤其移动式医疗仪器单元行进到检验区域并且在那里对其进行定向。用于诊断的仪器例如是移动式C形臂(C-Bogen)。所述移动式C形臂在单次或者一系列X射线拍摄之后被从使用地点移动到诊疗室内或与诊疗室邻近的地方的驻停位置中。为了接下来的X射线拍摄,移动式C形臂要被移回其使用地点,以便记录诊疗进展或者说操作过程,或者实现用于外科手术的其他诊疗过程。移动式C形臂的重复使用带来了下述问题,必须手动进行其再定位。For diagnostic purposes, an instrument unit, in particular a mobile medical instrument unit, is moved manually or electronically into the examination region and oriented there. A diagnostic device is, for example, a mobile C-arm (C-Bogen). The mobile C-arm is moved from the place of use to a parked position in or adjacent to the examination room after a single or series of x-ray exposures. For the subsequent X-rays, the mobile C-arm is moved back to its place of use in order to record the progress of the diagnosis or operation, or to carry out other procedures for surgery. The repeated use of the mobile C-arm presents the problem that its repositioning has to be done manually.
迄今为止常见的是,由助手或诊疗医生自己将移动式X射线装置定位在患者上并且参照患者手动定向。除了可能会污染要保持无菌的区域以外,这还给该手术区域带来附加的缺点,即由于不能准确知道再次形成的区域的方位和位置,必须重复进行X射线拍摄,并且由此使患者暴露于不必要的辐射之下。It has hitherto been common for the mobile x-ray device to be positioned on the patient by an assistant or the treating physician himself and manually oriented with reference to the patient. In addition to possible contamination of the area to be kept sterile, this also brings additional disadvantages to the surgical field, since the orientation and position of the re-formed area cannot be accurately known, X-rays must be repeated and thus the patient Exposure to unnecessary radiation.
发明内容Contents of the invention
本发明的任务在于,提供一种用于定位仪器单元的装置和方法。The object of the present invention is to provide a device and a method for positioning an instrument unit.
该任务通过权利要求1或8中给出的特征解决。This object is achieved by the features specified in claim 1 or 8 .
该装置和与此相关的方法具有耦合单元,所述耦合单元具有耦合元件以及第一和第二对接元件。在一种变型方案中,在该耦合元件中布置至少一个连接元件以及带有至少一个位置检测元件的铰接元件,其中借助所述位置检测元件结合第一和/或第二仪器单元上的至少一个通过所述第一和/或第二对接元件处于有效连接中的对接点能够获取第一和第二对接元件的相对位置和/或定向。The device and the method associated therewith have a coupling unit with a coupling element and a first and a second abutment element. In a variant, at least one connection element and an articulation element with at least one position detection element are arranged in the coupling element, wherein at least one The relative position and/or orientation of the first and second abutment element can be detected via the abutment point at which the first and/or second abutment element is operatively connected.
本发明随之带来下述优点:一方面能够准确地检测一个仪器单元相对于另一个仪器单元的位置,并且另一方面能够利用所存储的位置数据再次对该仪器单元进行再定位。The invention thus brings the advantage that, on the one hand, the position of an instrument unit relative to another can be accurately detected and, on the other hand, the stored position data can be used to reposition the instrument unit again.
本发明随之带来下述优点:能够在不用附加的导航系统的情况下对仪器单元进行再定位。The invention thus brings the advantage that the instrument unit can be repositioned without an additional navigation system.
本发明随之带来下述优点:由于对C形臂进行有目标的再定位,能够迅速并且准确地完成手术域中接下来的X射线拍摄,并且不会由于误拍摄造成不必要的X射线辐射。The invention brings with it the advantage that due to the targeted repositioning of the C-arm, subsequent x-rays in the surgical field can be taken quickly and precisely without unnecessary x-rays being generated by false shots radiation.
附图说明Description of drawings
下面参照实施例对本发明的主题进行详细说明。The subject matter of the present invention will be described in detail below with reference to examples.
附图中:In the attached picture:
图1示出了将耦合单元用于两个医疗仪器单元之间的情况,并且Figure 1 shows the use of a coupling unit between two medical instrument units, and
图2示出了耦合单元的示意图。Figure 2 shows a schematic diagram of the coupling unit.
附图标记列表List of reference signs
C 第一仪器单元/C形臂/移动式医疗仪器C First instrument unit/C-arm/Mobile medical instrument
OP 第二仪器单元/手术台OP Second instrument unit/operating table
REC 移动式医疗仪器中的第一计算单元First Computing Unit in REC Mobile Medical Instruments
REOP 手术台中的第二计算单元Second computing unit in the REOP operating table
SE 轨道元件SE track element
EAP 第一对接点EAP first docking point
ZAP 第二对接点ZAP second docking point
WAP 另一对接点WAP Another docking point
R 轮子R wheel
KE 耦合单元KE coupling unit
KEE 耦合元件KEE coupling element
EAE 第一对接元件EAE first mating element
ZAE 第二对接元件ZAE Second docking element
EVE 第一连接元件EVE first connection element
ZVE 第二连接元件ZVE Second connecting element
DVE 第三连接元件DVE third connection element
EGE 第一铰接元件EGE first articulation element
ZGE 第二铰接元件ZGE second articulation element
DGE 第三铰接元件DGE third articulation element
VGE 第四铰接元件。VGE Fourth articulation element.
具体实施方式Detailed ways
借助这种构造有角度和/或位置传感器的耦合单元将第一和第二仪器单元连接起来,以便由此获取例如第一仪器单元相对于第二仪器单元的相对位置。The first and second device unit are connected by means of such a coupling unit, which is configured with an angle and/or position sensor, in order to thereby determine, for example, the relative position of the first device unit relative to the second device unit.
图1示意地示出带有第一和第二仪器单元C、OP的诊疗室中的截取部分。在该实施例中,第一仪器单元是移动式C形臂C并且第二仪器单元是手术台OP。手术台OP的床面能够在定向、斜度和/或高度设定方面任意变化。在轮子R上可移动的移动式C形臂C同样能够在诊疗室内并且关于患者自由定位。当移动式C形臂C和手术台OP彼此直接相邻组合时,它们借助耦合单元KE连接。手术台OP具有至少一个所定义的、称作第一对接点EAP的第一接口并且移动式C形臂C同样具有至少两个所定义的、称作第二对接点和另一对接点ZAP、WAP的接口。第一对接点EAP能够沿着在手术台OP的床面侧边延伸的轨道任意锁定或者说定位在所述轨道上。所述轨道能够包围整个床面或其一部分。移动式C形臂C上的对接点还能够通过轨道元件实现,对接点的计算如在获取手术台OP中的对接点时那样实现。FIG. 1 schematically shows an excerpt from a consultation room with a first and a second instrument unit C, OP. In this embodiment, the first instrument unit is a mobile C-arm C and the second instrument unit is an operating table OP. The bed surface of the operating table OP can be varied arbitrarily in terms of orientation, inclination and/or height setting. The mobile C-arm C, which is movable on wheels R, can likewise be freely positioned in the consultation room and with respect to the patient. When the mobile C-arm C and the operating table OP are combined directly next to each other, they are connected by means of a coupling unit KE. The operating table OP has at least one defined first interface, called the first docking point EAP, and the mobile C-arm C likewise has at least two defined, called the second docking point and a further docking point ZAP, WAP interface. The first abutment point EAP can be locked or positioned arbitrarily along a rail running on the side of the bed surface of the operating table OP. The rail can surround the entire bed surface or a part thereof. The docking point on the mobile C-arm C can also be realized by means of rail elements, the calculation of the docking point being carried out as in the acquisition of the docking point in the operating table OP.
具有耦合元件KEE的耦合单元KE的设计方案在图2中示出。耦合单元KE在其第一端部处具有第一对接元件EAE并且在其第二端部处具有第二对接元件ZAE。耦合元件KEE利用第一对接元件EAE与手术台OP上的第一对接点EAP连接并且利用第二对接元件ZAE与移动式C形臂C的第二对接点ZAP连接。在对接元件EAE、ZAE之间构造了具有至少一个第一连接元件EVE的耦合元件KE。所述对接元件EAE、ZAE分别通过铰接元件EGE,VGE与连接元件EVE连接。在该变型方案中,第一连接元件EVE用第二和第三连接元件ZVE、DVE进行扩展。在第一和第二连接元件EVE、ZVE之间集成第二铰接元件ZGE并且在第二和第三连接元件ZVE、DVE之间集成第三铰接元件DGE。所述铰接元件分别具有至少一个自由度。在耦合单元KE中布置有角度和/或位置传感器用来相对确定耦合单元KE的连接元件和/或铰接元件的位置和定向。手术台OP构造有第二计算单元REOP并且移动式C形臂C构造有第一计算单元REC。利用第二计算单元REOP能够获取并且存储定位在手术台上的第一对接点EAP的位置。该位置的获取例如能够借助电阻测量或者通过集成在轨道SE中的型片(Matrix)实现。第二对接点和另一对接点ZAP、WAP的位置保存在配属于移动式C形臂的第一计算单元REC中。移动式X射线单元C中的第一计算单元REC如此构造,使得在通过耦合单元KE将所述两个仪器单元OP、C连接起来之后,通过电缆连接或无线电连接访问手术台OP上的对接点EAP的位置并且将所述位置纳入到C形臂相对于手术台OP的定向计算中。基于第一对接点EAP的位置和定向,访问连接元件和/或铰接元件中的角度传感器和/或位置传感器的传感器数据并且利用由连接元件和铰接元件预先给定的尺寸和几何形状对其进行计算。根据起始点EAP、ZAP,作为结果给出第一和/或第二对接元件EAE、ZAE的位置和定向。在对接点EAP、ZAP与第一或第二对接元件EAE、ZAE连接之后,给出C形臂相对于手术台的床面的相对定位。An embodiment of the coupling unit KE with the coupling element KEE is shown in FIG. 2 . The coupling unit KE has a first abutment element EAE at its first end and a second abutment element ZAE at its second end. The coupling element KEE is connected with a first abutment element EAE to a first abutment point EAP on the operating table OP and with a second abutment element ZAE to a second abutment point ZAP of the mobile C-arm C. A coupling element KE having at least one first connection element EVE is formed between the abutment elements EAE, ZAE. The abutment elements EAE, ZAE are respectively connected to the connection element EVE through the hinge elements EGE, VGE. In this variant, the first connecting element EVE is extended by the second and third connecting elements ZVE, DVE. A second joint element ZGE is integrated between the first and second connecting element EVE, ZVE and a third joint element DGE is integrated between the second and third connecting element ZVE, DVE. The articulation elements each have at least one degree of freedom. Angle and/or position sensors are arranged in the coupling unit KE for relative determination of the position and orientation of the connecting elements and/or articulation elements of the coupling unit KE. The operating table OP is configured with a second computing unit REOP and the mobile C-arm C is configured with a first computing unit REC. The position of the first docking point EAP positioned on the operating table can be acquired and stored with the second computing unit REOP. This position can be detected, for example, by means of a resistance measurement or by means of a matrix integrated in the track SE. The positions of the second docking point and of the further docking points ZAP, WAP are stored in a first computing unit REC assigned to the mobile C-arm. The first computing unit REC in the mobile x-ray unit C is designed in such a way that after connecting the two instrument units OP, C via the coupling unit KE, the docking point on the operating table OP is accessed via a cable connection or a radio connection position of the EAP and incorporate it into the calculation of the orientation of the C-arm relative to the operating table OP. Based on the position and orientation of the first abutment point EAP, the sensor data of the angle sensors and/or position sensors in the connecting element and/or the articulation element are accessed and processed with dimensions and geometries predetermined by the connecting element and the articulation element calculate. As a function of the starting point EAP, ZAP, the position and orientation of the first and/or second abutment element EAE, ZAE is given as a result. After the docking points EAP, ZAP have been connected to the first or second docking elements EAE, ZAE, the relative positioning of the C-arm relative to the bed surface of the operating table is given.
为了X射线拍摄,使移动式C形臂C移动或行进到位于手术台OP上的患者上。为了获取移动式C形臂C相对于床并且由此相对于患者的位置,通过耦合单元KE将所述两个仪器连接起来。为了检测C形臂C的位置,耦合单元KE利用其第一端部在第一对接点EAP处与手术台OP连接并且利用其处于第二端部上的第二对接元件ZAE用对接点与移动式C形臂C连接。第一对接点EAP是手术台OP边缘处轨道形元件上的点。在移动式C形臂C上布置第二对接点ZAP或者说另一对接点WAP。第二对接点和另一对接点ZAP、WAP描述了移动式C形臂C上的所定义的位置。插入到该轨道元件中的第一对接点EAP的准确位置能够借助于电、磁或光学测量在插入第一对接元件EAE之后获取。移动式医疗仪器上的第二对接点或者说另一对接点ZAP、WAP分别对第一及第二计算单元REC、REOP而言是公知的。For x-ray recordings, the mobile C-arm C is moved or moved onto the patient on the operating table OP. In order to detect the position of the mobile C-arm C relative to the bed and thus relative to the patient, the two devices are connected via a coupling unit KE. To detect the position of the C-arm C, the coupling unit KE is connected with its first end at the first abutment point EAP to the operating table OP and with its second abutment element ZAE at the second end with the abutment point and the movement Type C-arm C-connection. The first abutment point EAP is the point on the rail-shaped element at the edge of the operating table OP. Arranged on the mobile C-arm C is a second abutment point ZAP or a further abutment point WAP. The second and further docking points ZAP, WAP describe defined positions on the mobile C-arm C. The exact position of the first abutment point EAP inserted into the rail element can be obtained after insertion of the first abutment element EAE by means of electrical, magnetic or optical measurements. The second docking point or further docking point ZAP, WAP on the mobile medical device is known to the first and second computing unit REC, REOP respectively.
所获取的定位数据通过移动式C形臂C的第一计算单元REC例如被保存成患者数据文件。该数据还能够例如借助布置在手术室中的光学导航系统用基于标记的位置计算算出。为了再定位,将所存储的、关于移动式C形臂C的位置和定向的数据再次输入移动式C形臂C中的第一计算单元REC中。移动式C形臂C的再定位例如借助于布置在移动式C形臂上的显示器以计算机控制的方式实现。通过显示器上的方向指示将操作员引导到所存储的起始点。The acquired positioning data are saved by the first computing unit REC of the mobile C-arm C, for example as a patient data file. This data can also be calculated using marker-based position calculations, for example by means of an optical navigation system arranged in the operating room. For repositioning, the stored data on the position and orientation of the mobile C-arm C are again entered into the first computing unit REC in the mobile C-arm C. The repositioning of the mobile C-arm C takes place computer-controlled, for example, by means of a display arranged on the mobile C-arm. Directions on the display guide the operator to the stored starting point.
如果对移动式C形臂进行定位并且储存或者说中间储存对接元件EAE、ZAE以及至少一个连接元件EVE的位置和定向,则能够确定并且示出移动式C形臂C相对于手术台OP的相对位置和/或在已知有关手术台OP的位置的其他数据的情况下确定和示出移动式C形臂C的绝对位置。为了附带地获取手术台OP和/或移动式C形臂C的绝对位置,对于第一和第二计算机REC、REOP而言例如通过光学的或电磁的跟踪系统已知手术台OP的位置或移动式C形臂C的位置。If the mobile C-arm is positioned and the position and orientation of the abutment elements EAE, ZAE and at least one connection element EVE are stored or intermediately stored, the relative position of the mobile C-arm C to the operating table OP can be determined and shown. position and/or, given other data about the position of the operating table OP, the absolute position of the mobile C-arm C is determined and shown. In order to additionally determine the absolute position of the operating table OP and/or the mobile C-arm C, the position or movement of the operating table OP is known to the first and second computers REC, REOP, for example via an optical or electromagnetic tracking system Type C-arm C position.
在另一设计方案中,替代耦合单元KE设有角度和/或位置传感器的设计方案,使用带有刚性端块的柔性软管,该柔性软管带有至少一个在玻璃纤维中得以引导的激光。在该设计方案中,在该软管中集成至少一个用于获取玻璃纤维的弯曲度的位置检测系统。In a further embodiment, instead of an embodiment of the coupling unit KE with an angle and/or position sensor, a flexible hose with a rigid end piece is used with at least one laser guided in a glass fiber . In this refinement, at least one position detection system for detecting the curvature of the glass fibers is integrated in the hose.
利用耦合单元KE例如还能够获取机器人系统相对于手术台的相对位置。耦合单元KE的通途不限于移动式C形臂C和床铺单元OP。For example, the relative position of the robot system with respect to the operating table can also be detected by means of the coupling unit KE. The use of the coupling unit KE is not limited to the mobile C-arm C and the bed unit OP.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102013219592.3 | 2013-09-27 | ||
| DE102013219592.3ADE102013219592B4 (en) | 2013-09-27 | 2013-09-27 | Coupling unit and method for determining the orientation of the coupling unit |
| Publication Number | Publication Date |
|---|---|
| CN104605871A CN104605871A (en) | 2015-05-13 |
| CN104605871Btrue CN104605871B (en) | 2018-09-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410810916.3AActiveCN104605871B (en) | 2013-09-27 | 2014-09-26 | Coupling unit |
| Country | Link |
|---|---|
| US (1) | US9468415B2 (en) |
| CN (1) | CN104605871B (en) |
| DE (1) | DE102013219592B4 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3461410A1 (en)* | 2017-09-29 | 2019-04-03 | Koninklijke Philips N.V. | Kinematical joints for x-ray systems |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0522610A1 (en)* | 1991-06-26 | 1993-01-13 | Sulzer - Escher Wyss AG | Method and apparatus for surface-contour determination of rotor blades in hydraulic machines |
| US5184601A (en)* | 1991-08-05 | 1993-02-09 | Putman John M | Endoscope stabilizer |
| US5829148A (en)* | 1996-04-23 | 1998-11-03 | Eaton; Homer L. | Spatial measuring device |
| DE102008013611A1 (en)* | 2008-03-11 | 2009-09-17 | Siemens Aktiengesellschaft | Device for medical intervention in region of e.g. liver of animal for e.g. interventional radiology, has arithmetic unit generating control signal for releasing acoustic signals at determined periodically changing point of movement curve |
| CN102949242A (en)* | 2011-08-25 | 2013-03-06 | 帕芬特保健私人有限公司 | Tool positioning system |
| CN103913137A (en)* | 2013-01-08 | 2014-07-09 | 株式会社三丰 | Coordinate measuring device and method for controlling the same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10025285A1 (en)* | 2000-05-22 | 2001-12-06 | Siemens Ag | Fully automatic, robot-assisted camera guidance using position sensors for laparoscopic interventions |
| CA2522097C (en)* | 2003-04-28 | 2012-09-25 | Stephen James Crampton | Cmm arm with exoskeleton |
| US7693325B2 (en)* | 2004-01-14 | 2010-04-06 | Hexagon Metrology, Inc. | Transprojection of geometry data |
| DE102005032288B4 (en)* | 2005-07-11 | 2008-10-16 | Siemens Ag | X-ray system |
| DE102007009543A1 (en) | 2007-02-27 | 2008-08-28 | Leica Microsystems (Schweiz) Ag | Microscope device with position detection |
| US7640674B2 (en)* | 2008-05-05 | 2010-01-05 | Hexagon Metrology, Inc. | Systems and methods for calibrating a portable coordinate measurement machine |
| DE102012217072A1 (en)* | 2012-09-21 | 2014-03-27 | Siemens Aktiengesellschaft | Device and method for positioning a medical device |
| DE102013207463A1 (en)* | 2013-04-24 | 2014-10-30 | Siemens Aktiengesellschaft | Control for positioning an endoprosthesis |
| JP2015227816A (en)* | 2014-05-30 | 2015-12-17 | 株式会社ミツトヨ | Multi-joint arm shape measuring instrument |
| US9759540B2 (en)* | 2014-06-11 | 2017-09-12 | Hexagon Metrology, Inc. | Articulating CMM probe |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0522610A1 (en)* | 1991-06-26 | 1993-01-13 | Sulzer - Escher Wyss AG | Method and apparatus for surface-contour determination of rotor blades in hydraulic machines |
| US5184601A (en)* | 1991-08-05 | 1993-02-09 | Putman John M | Endoscope stabilizer |
| US5829148A (en)* | 1996-04-23 | 1998-11-03 | Eaton; Homer L. | Spatial measuring device |
| DE102008013611A1 (en)* | 2008-03-11 | 2009-09-17 | Siemens Aktiengesellschaft | Device for medical intervention in region of e.g. liver of animal for e.g. interventional radiology, has arithmetic unit generating control signal for releasing acoustic signals at determined periodically changing point of movement curve |
| CN102949242A (en)* | 2011-08-25 | 2013-03-06 | 帕芬特保健私人有限公司 | Tool positioning system |
| CN103913137A (en)* | 2013-01-08 | 2014-07-09 | 株式会社三丰 | Coordinate measuring device and method for controlling the same |
| Publication number | Publication date |
|---|---|
| DE102013219592B4 (en) | 2023-02-09 |
| US20150093180A1 (en) | 2015-04-02 |
| US9468415B2 (en) | 2016-10-18 |
| CN104605871A (en) | 2015-05-13 |
| DE102013219592A1 (en) | 2015-04-23 |
| Publication | Publication Date | Title |
|---|---|---|
| JP7314052B2 (en) | Patient introducer alignment | |
| EP2800534B1 (en) | Position determining apparatus | |
| US10130345B2 (en) | System and methods for tracking robotically controlled medical instruments | |
| KR102296451B1 (en) | CT-Robot Registration System for Interventional Robot | |
| JP6885957B2 (en) | Automatic calibration of robot arm for camera system using laser | |
| CN112137632B (en) | Method for providing collision information and medical imaging device | |
| US20090082784A1 (en) | Interventional medical system | |
| AU2014203596B2 (en) | Radiation-free position calibration of a fluoroscope | |
| CN105828721B (en) | Robotic ultrasound for shape sensing for minimally invasive interventions | |
| JP2010519635A (en) | Pointing device for medical imaging | |
| CN106108951A (en) | A kind of medical real-time three-dimensional location tracking system and method | |
| CN104274194A (en) | Interventional imaging system | |
| CN103957801A (en) | Posture detection support system for X-ray diagnosis and X-ray diagnosis device | |
| CN107106242A (en) | Interventional radiology medical system | |
| JP6907007B2 (en) | Methods and systems for determining electrode position on the patient's body | |
| JP6835959B2 (en) | Positioning device for locating instruments within a tubular structure | |
| CN108472082B (en) | Registration system for medical navigation and method of operation thereof | |
| CN104605871B (en) | Coupling unit | |
| US20230368418A1 (en) | Accuracy check and automatic calibration of tracked instruments | |
| CN115317005A (en) | Method and system for providing corrected data sets | |
| Viard et al. | Needle positioning in interventional MRI procedure: real time optical localisation and accordance with the roadmap | |
| JP5881559B2 (en) | Medical equipment | |
| KR20210131915A (en) | APPARATUS for displaying Endoscope location image and METHOD for controlling the same |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| EXSB | Decision made by sipo to initiate substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20240902 Address after:Erlangen Patentee after:Siemens Healthineers AG Country or region after:Germany Address before:Munich, Germany Patentee before:SIEMENS AG Country or region before:Germany | |
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20241015 Address after:German Phu F Haim Patentee after:Siemens Medical AG Country or region after:Germany Address before:Erlangen Patentee before:Siemens Healthineers AG Country or region before:Germany |