技术领域technical field
本发明属于3D打印领域,具体涉及一种可实现在线合金化的3D打印配料挤出装置。The invention belongs to the field of 3D printing, and in particular relates to a 3D printing ingredient extrusion device capable of realizing online alloying.
背景技术Background technique
3D打印是快速成形(Rapid Prototyping,RP)技术的一种,且最具生命力。该技术源于离散/堆积的分层制造技术原理,由三维CAD模型直接驱动,利用逐渐增加材料的方法来实现任意复杂形状及结构零部件或模具的一次性迅速精密制造成形。从成形思想上颠覆了传统制造理念,突破了去除成形(车、铣、刨、磨、钳等)方法和受迫成形(锻压、铸造粉末冶金等)方法,开辟了制造业的新领域。该技术具有高度集成性,且能够实现多种材料的快速、柔性制造,制造成本低,因此最适合应用于多品种、小批量、结构复杂、原材料价值量高的结构零部件制造。基于以上特点,3D打印技术应用领域不断扩展,目前该技术已在工业造型、文化艺术、机械制造、航空航天、军事、建筑、医学等领域都得到了广泛的应用。3D printing is a kind of rapid prototyping (RP) technology, and it has the most vitality. This technology is derived from the principle of discrete/stacking layered manufacturing technology, directly driven by the 3D CAD model, and uses the method of gradually adding materials to realize one-time rapid and precise manufacturing of arbitrary complex shapes and structural parts or molds. From the perspective of forming, it subverts the traditional manufacturing concept, breaks through the methods of removing forming (turning, milling, planing, grinding, pliers, etc.) and forced forming (forging, casting powder metallurgy, etc.), and opens up a new field of manufacturing. This technology is highly integrated and can realize rapid and flexible manufacturing of various materials with low manufacturing cost. Therefore, it is most suitable for the manufacture of structural parts with multiple varieties, small batches, complex structures, and high raw material value. Based on the above characteristics, the application field of 3D printing technology continues to expand. At present, this technology has been widely used in industrial modeling, culture and art, machinery manufacturing, aerospace, military, construction, medicine and other fields.
目前,基于激光选区烧结(Selective Laser Sintering,SLS)、选区激光熔化(Selective Laser Melting,SLM)、激光近净成形(Laser Engineering Net Shaping,LENS)和电子束选区熔化技术(Electron Beam Selective Melting,EBSM)等现有成熟技术的3D打印设备多用于单一金属材料零部件的快速成形,在实现合金材料、多种材料及具有材料梯度结构金属件成形方面,具有工序复杂、成本高、效率低的问题,同时无法实现连续的在线配料和金属件一体化成形。At present, based on selective laser sintering (Selective Laser Sintering, SLS), selective laser melting (Selective Laser Melting, SLM), laser near net shaping (Laser Engineering Net Shaping, LENS) and electron beam selective melting technology (Electron Beam Selective Melting, EBSM ) and other existing mature technology 3D printing equipment are mostly used for rapid prototyping of single metal material parts. In terms of forming alloy materials, multiple materials and metal parts with material gradient structure, they have the problems of complex process, high cost and low efficiency. , At the same time, continuous online batching and integrated forming of metal parts cannot be realized.
发明内容Contents of the invention
本发明的目的是解决现有技术上存在的上述缺点,提供一种可实现在线合金化和材料梯度结构零部件一体化成形的新型3D打印机喷头装置。The purpose of the present invention is to solve the above-mentioned shortcomings existing in the prior art, and provide a novel 3D printer nozzle device that can realize online alloying and integrated forming of material gradient structural parts.
为实现上述目的,本发明提供了一种可实现在线合金化的3D打印配料挤出装置,该装置包括在线配料机构和熔融金属挤出喷头。其中,在线配料机构包括单个或多个储料仓、经联轴器相连接的电机和送料螺杆装置、同样连接电机的搅拌装置、金属材料混料室、分布于混料室外壁的分段加热装置、安装于分段加热装置外的保温隔热套、经输料管与混料室连接的熔融金属成分在线检测装置、经输气管与气压调节装置和混料室上端想连通的惰性气体存储装置、接收金属成分在线检测装置发出信号并实现所有电机控制的PC机等,该机构可实现3D打印原材料的在线配备及成分检测。熔融金属挤出喷头同样为多个,包括通过联轴器与电机相连并置于喷头内腔的螺杆、包覆于喷嘴外壁的分段加热装置、保温隔热层等,实现熔融金属材料的可控挤出。In order to achieve the above purpose, the present invention provides a 3D printing compounding extrusion device capable of realizing online alloying, which includes an online compounding mechanism and a molten metal extrusion nozzle. Among them, the online batching mechanism includes single or multiple storage bins, motors and feeding screw devices connected by couplings, stirring devices also connected to motors, metal material mixing chambers, and segmental heating distributed on the wall of the mixing chamber. The device, the thermal insulation jacket installed outside the section heating device, the online detection device for the molten metal composition connected to the mixing chamber through the feeding pipe, and the inert gas storage connected to the air pressure regulating device and the upper end of the mixing chamber through the gas pipe The device, the PC that receives the signal from the metal composition online detection device and realizes all motor control, etc., this mechanism can realize the online configuration and composition detection of 3D printing raw materials. There are also multiple nozzles for molten metal extrusion, including a screw connected to the motor through a coupling and placed in the inner cavity of the nozzle, a segmented heating device covered on the outer wall of the nozzle, and a thermal insulation layer, etc., to realize the possible production of molten metal materials. control extrusion.
进一步地,所述数量不少于一个的储料仓中分别储存有相同或不同种类的单一或混合金属粉末/颗粒,每一个储料仓的储料量大小适中,并可以方便的实现填补料。Further, the same or different types of single or mixed metal powder/particles are respectively stored in the storage bins with the number not less than one, and the storage volume of each storage bin is moderate in size, and it is convenient to realize filling .
进一步地,所述混料室通过输料管与上端送料螺杆装置相连通,混料室内部具有搅拌装置,该搅拌装置通过联轴器与上端电机相连接,通过PC机控制电机带动搅拌装置的转动,使混料室内的固态或熔融态金属进行充分混合。混料室外壁的分段加热装置可根据混料室内金属原材料熔点及质量实现分级加热,且分段加热装置外包覆有保温隔热层,起到保护和防止热量散失的作用。Further, the mixing chamber communicates with the upper feeding screw device through the feed pipe, and there is a stirring device inside the mixing chamber, which is connected to the upper motor through a coupling, and the motor is controlled by a PC to drive the stirring device. Rotate to fully mix the solid or molten metal in the mixing chamber. The segmented heating device on the wall of the mixing chamber can achieve graded heating according to the melting point and quality of the metal raw materials in the mixing chamber, and the segmented heating device is covered with a thermal insulation layer to protect and prevent heat loss.
进一步地,所述送料螺杆装置中螺杆通过联轴器与上端电机相连,通过PC机控制电机带动螺杆的转动和转速调节,实现储料仓内金属原材料经输料管进入下端混料室量的精确控制。Further, the screw in the feeding screw device is connected to the upper motor through a coupling, and the PC controls the motor to drive the rotation and speed adjustment of the screw, so that the metal raw materials in the storage bin enter the lower mixing chamber through the feeding pipe. Precise control.
进一步地,所述惰性气体存储装置经过输气管与气压调节装置和混料室侧壁相连通。并通过气压调节装置控制混料室内惰性气体环境,在金属料熔化过程中起到气氛保护作用,防止氧化。同时,所述送料螺杆装置可以防止惰性气体由混料室排入储料仓。Further, the inert gas storage device communicates with the air pressure regulating device and the side wall of the mixing chamber through a gas delivery pipe. And the inert gas environment in the mixing chamber is controlled by the air pressure regulating device, which plays a protective role in the atmosphere during the melting process of the metal material and prevents oxidation. At the same time, the feeding screw device can prevent the inert gas from being discharged into the storage bin from the mixing chamber.
进一步地,所述熔融金属成分在线检测装置可通过输料管实时采集混料室内熔融金属样本,并对其成分进行实时检测、分析,再将分析结果反馈给PC机,由PC机分析熔融金属成分是否满足要求,如不满足,再通过控制相应送料螺杆装置进行补料,直至满足成分要求。Further, the online detection device for molten metal composition can collect the molten metal sample in the mixing chamber in real time through the feeding pipe, and detect and analyze its composition in real time, and then feed back the analysis result to the PC, and the PC analyzes the molten metal Whether the ingredients meet the requirements, if not, then feed the material by controlling the corresponding feeding screw device until the composition requirements are met.
进一步地,所述多个熔融金属挤出喷头均通过输料管与混料室底部相连通,通过电机带动喷头内腔中螺杆旋转,从而将导入喷头内腔的熔融金属由喷头末端挤出。喷嘴外壁的分段加热装置根据使用需求,同样具有分级加热功能。Further, the plurality of molten metal extrusion nozzles are all connected to the bottom of the mixing chamber through the feeding pipe, and the motor drives the screw in the inner cavity of the nozzle to rotate, so that the molten metal introduced into the inner cavity of the nozzle is extruded from the end of the nozzle. The segmented heating device on the outer wall of the nozzle also has a graded heating function according to the needs of use.
附图说明Description of drawings
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:The accompanying drawings constituting a part of the present application are used to provide a further understanding of the present invention, and the schematic embodiments and descriptions of the present invention are used to explain the present invention, and do not constitute an improper limitation of the present invention. In the attached picture:
图1示出了本发明的整体结构示意图;Fig. 1 shows the overall structure schematic diagram of the present invention;
图2示出了本发明中熔融金属挤出喷头部分的示意图。Fig. 2 shows a schematic diagram of the molten metal extrusion nozzle part in the present invention.
图中:1、在线配料机构,2、熔融金属挤出喷头,3、电机,4、储料仓,5、联轴器,6、PC机,7、送料螺杆装置,8、输料管,9、搅拌装置,10、线缆,11、混料室,12、分段加热装置,13、混料室外壁,14、分段加热装置外保温隔热套,15、熔融金属成分在线检测装置,16、气压调节装置,17、输气管,18、惰性气体存储装置,19、电机,20、联轴器,21、螺杆,22、喷嘴外壁,23、分段加热装置,24、保温隔热层,25、喷头内腔,26、喷头末端。In the figure: 1. On-line batching mechanism, 2. Molten metal extrusion nozzle, 3. Motor, 4. Storage bin, 5. Coupling, 6. PC, 7. Feeding screw device, 8. Delivery pipe, 9. Stirring device, 10. Cable, 11. Mixing chamber, 12. Subsection heating device, 13. Wall of mixing chamber, 14. External thermal insulation jacket of subsection heating device, 15. On-line detection device for molten metal composition , 16. Air pressure regulating device, 17. Gas delivery pipe, 18. Inert gas storage device, 19. Motor, 20. Coupling, 21. Screw rod, 22. Outer wall of nozzle, 23. Sectional heating device, 24. Thermal insulation Layer, 25, nozzle inner chamber, 26, nozzle end.
一种可实现在线合金化的3D打印配料挤出装置,其特征在于:该装置包括在线配料机构(1)和熔融金属挤出喷头(2);所述在线配料机构(1)包括数量不少于一个的储料仓(4)、电机(3)、联轴器(5)、送料螺杆装置(7)、搅拌装置(9)、混料室(11)、分段加热装置(12)、混料室外壁(13)、分段加热装置外保温隔热套(14)、熔融金属成分在线检测装置(15)、惰性气体存储装置(18)、气压调节装置(16)、PC机(6)、输料管(8)、输气管(17)、线缆(10)等;所述熔融金属挤出喷头(2)为多个,包括通过联轴器(20)与电机(19)相连并置于喷头内腔(25)的螺杆(21)、包覆于喷嘴外壁(22)的分段加热装置(23)、保温隔热层(24)等。A 3D printing batching extrusion device capable of on-line alloying, characterized in that: the device includes an online batching mechanism (1) and a molten metal extrusion nozzle (2); the online batching mechanism (1) includes a large number In one storage bin (4), motor (3), coupling (5), feeding screw device (7), stirring device (9), mixing chamber (11), section heating device (12), The wall of the mixing chamber (13), the outer thermal insulation cover of the segmental heating device (14), the online detection device for molten metal composition (15), the inert gas storage device (18), the air pressure adjustment device (16), the PC (6 ), material delivery pipe (8), gas delivery pipe (17), cable (10), etc.; the molten metal extrusion nozzle (2) is multiple, including connecting with the motor (19) through a coupling (20) The screw (21) placed in the inner cavity (25) of the nozzle, the segmented heating device (23) covering the outer wall (22) of the nozzle, the thermal insulation layer (24), etc.
具体实施方式Detailed ways
如图1所示的一种可实现在线合金化的新型喷头,包括在线配料机构(1)和熔融金属挤出喷头(2),所述在线配料机构(1)包括数量不少于一个的储料仓(4)、由PC机(6)控制的送料螺杆装置(7)、可实现金属熔融的混料室(11)、分段加热装置(12)、可实现熔融金属成分和反馈至PC机(6)的熔融金属成分在线检测装置(15)、连接混料室(11)和熔融金属挤出喷头(2)的输料管(8);所述熔融金属挤出喷头(2)包括喷头内腔(25)、通过联轴器(20)连接的螺杆(21)和电机(19)、喷嘴外壁(22)安装有分段加热装置(23)、喷嘴加热装置外安装有保温隔热层(24),所述混料室(11)和喷头内腔(25)通过输料管(8)连接。所述在线配料机构(1)中储料仓(4)通过送料螺杆装置(7)与混混料室(11)连接, PC机(6)与送料螺杆装置(7)和熔融金属成分在线检测装置(15)通过线缆(10)连接,熔融金属成分在线检测装置(15)与混料室(11)通过输料管(8)连接。As shown in Figure 1, a new type of spray head capable of on-line alloying includes an online batching mechanism (1) and a molten metal extrusion nozzle (2), and the online batching mechanism (1) includes not less than one storage Material silo (4), feeding screw device (7) controlled by PC (6), mixing chamber (11) capable of metal melting, segmental heating device (12), capable of realizing molten metal composition and feedback to PC The molten metal component online detection device (15) of the machine (6), the feeding pipe (8) connecting the mixing chamber (11) and the molten metal extrusion nozzle (2); the molten metal extrusion nozzle (2) includes The inner cavity of the nozzle (25), the screw (21) and the motor (19) connected by the coupling (20), the outer wall of the nozzle (22) are equipped with a segmented heating device (23), and the outer wall of the nozzle heating device is installed with thermal insulation The layer (24), the mixing chamber (11) and the inner cavity of the spray head (25) are connected by a feeding pipe (8). The storage bin (4) in the online batching mechanism (1) is connected to the mixing chamber (11) through the feeding screw device (7), and the PC (6) is connected to the feeding screw device (7) and the molten metal composition online detection device (15) is connected by a cable (10), and the molten metal composition online detection device (15) is connected with the mixing chamber (11) by a feeding pipe (8).
下面结合具体实施例对本发明进行进一步说明:The present invention will be further described below in conjunction with specific embodiment:
三个储料仓(4)内分别装有A、B、C三种金属粉材,PC机(6)根据需要控制送料螺杆装置(7)将A、B、C三种金属粉材的一种或多种送入混料室(11)内,混料室(11)通过分段加热装置(12)对金属粉材进行加热至熔融状态,电机驱动搅拌装置(9)搅拌熔融金属,实现多种金属粉材的熔融合金化;熔融金属成分在线检测装置(15)实时检测混料室(11)内熔融金属的成分,并将结果反馈给PC机(6),PC机(6)根据反馈结果调整相应送料螺杆装置(7)继续送料,直到混料室(11)内熔融金属成分符合要求,实现合金化在线监测;通过惰性气体调节混料室(11)内惰性气体保护环境。混料室(11)内熔融金属流入下端喷头内腔(25),螺杆(21)通过电机(19)驱动为熔融金属的流动提供动力,将熔融金属从喷头末端(26)喷出,直至实现梯度材料结构件一体化成形;喷嘴外壁(22)设有分段加热装置(23)和保温隔热层(24),可避免喷嘴因熔融金属凝固而出现堵塞现象。The three storage bins (4) are respectively equipped with three kinds of metal powders A, B and C, and the PC (6) controls the feeding screw device (7) to feed one of the three kinds of metal powders A, B and C according to the needs. One or more kinds are fed into the mixing chamber (11), and the mixing chamber (11) heats the metal powder to the molten state through the segmental heating device (12), and the motor drives the stirring device (9) to stir the molten metal to realize Melting and alloying of various metal powders; the molten metal composition online detection device (15) detects the composition of the molten metal in the mixing chamber (11) in real time, and feeds back the result to the PC (6), and the PC (6) according to Feedback results adjust the corresponding feeding screw device (7) to continue feeding until the composition of the molten metal in the mixing chamber (11) meets the requirements, realizing online monitoring of alloying; the inert gas in the mixing chamber (11) is adjusted to protect the environment through inert gas. The molten metal in the mixing chamber (11) flows into the inner cavity (25) of the lower nozzle, and the screw (21) is driven by the motor (19) to provide power for the flow of the molten metal, and the molten metal is ejected from the end of the nozzle (26) until the Gradient material structural parts are integrally formed; the outer wall of the nozzle (22) is equipped with a segmented heating device (23) and a thermal insulation layer (24), which can prevent the nozzle from being blocked due to the solidification of molten metal.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and changes. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410792414.2ACN104552944B (en) | 2014-12-19 | 2014-12-19 | A kind of 3D printing dispensing extrusion device that can achieve online alloying |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410792414.2ACN104552944B (en) | 2014-12-19 | 2014-12-19 | A kind of 3D printing dispensing extrusion device that can achieve online alloying |
| Publication Number | Publication Date |
|---|---|
| CN104552944Atrue CN104552944A (en) | 2015-04-29 |
| CN104552944B CN104552944B (en) | 2017-03-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410792414.2AActiveCN104552944B (en) | 2014-12-19 | 2014-12-19 | A kind of 3D printing dispensing extrusion device that can achieve online alloying |
| Country | Link |
|---|---|
| CN (1) | CN104552944B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104972662A (en)* | 2015-06-30 | 2015-10-14 | 成都思维智造科技有限公司 | Anti-obstruction 3D printer nozzle structure |
| CN105012049A (en)* | 2015-06-03 | 2015-11-04 | 西安交通大学 | Print nozzle system and mixed spraying printing technology of adjustable soft hollow tube support |
| CN105034139A (en)* | 2015-08-06 | 2015-11-11 | 山东科技大学 | Analog simulation experiment system and method based on 3D printing rapid prototyping technology |
| CN105128128A (en)* | 2015-09-16 | 2015-12-09 | 华中科技大学 | Mold-free material forming method and device |
| CN105321635A (en)* | 2015-09-25 | 2016-02-10 | 西安交通大学 | 3D printing-based manufacturing method for conductivity gradient polymer insulator |
| CN105313341A (en)* | 2015-12-15 | 2016-02-10 | 杭州缤果信息科技有限公司 | Three-dimensional printer |
| CN105398058A (en)* | 2015-12-15 | 2016-03-16 | 中国计量学院 | Three-dimensional printing device |
| CN105415682A (en)* | 2015-12-15 | 2016-03-23 | 中国计量学院 | 3D printing device |
| CN105415683A (en)* | 2015-12-15 | 2016-03-23 | 杭州缤果信息科技有限公司 | Three-dimensional printing apparatus |
| CN105437548A (en)* | 2015-12-15 | 2016-03-30 | 杭州缤果信息科技有限公司 | 3D printing equipment |
| CN105483699A (en)* | 2016-01-06 | 2016-04-13 | 福建工程学院 | Spiral powder mixing sprayer |
| CN105478768A (en)* | 2016-01-06 | 2016-04-13 | 福建工程学院 | 3D printing die laser cladding equipment and gradation process |
| CN105537591A (en)* | 2016-01-25 | 2016-05-04 | 中南大学 | Metal 3D (three-dimensional) printing device and metal 3D printing method |
| CN105772725A (en)* | 2016-04-06 | 2016-07-20 | 西安交通大学 | High-efficiency high-temperature print head supporting multiple printing materials |
| CN105954074A (en)* | 2016-04-26 | 2016-09-21 | 北京科技大学 | Device for high-throughput preparation of multi-component gradient metal materials |
| CN105970011A (en)* | 2016-05-05 | 2016-09-28 | 上海大学 | Preparation device and method for multi-masterbatch, polyergic source and high throughput metal materials |
| CN106363175A (en)* | 2016-08-31 | 2017-02-01 | 安徽奥斯博医疗仪器设备有限公司 | Printing consumables memory chip |
| CN106363176A (en)* | 2016-08-31 | 2017-02-01 | 安徽奥斯博医疗仪器设备有限公司 | Printing consumables memory chip |
| CN106376967A (en)* | 2016-08-29 | 2017-02-08 | 安徽奥斯博医疗仪器设备有限公司 | Printing consumables extrusion device |
| CN106393679A (en)* | 2016-11-28 | 2017-02-15 | 贵州航天计量测试技术研究所 | Multi-material 3D printing sprayer and operating method thereof |
| CN106515005A (en)* | 2015-09-10 | 2017-03-22 | 深圳市人彩科技有限公司 | Precise-mixing-type deposition modeling method, precise-mixing-type deposition modeling assembly and color FED (Fused Deposition Modeling)-3D printer |
| WO2017071388A1 (en)* | 2015-10-30 | 2017-05-04 | 青岛理工大学 | 3d printing device having single nozzle head for use with multiple materials in multiple scales and working method therefor |
| CN106827520A (en)* | 2017-01-20 | 2017-06-13 | 深圳市安思科电子科技有限公司 | A kind of intelligent 3D printer using the mixing of multinomial raw material |
| WO2017101194A1 (en)* | 2015-12-15 | 2017-06-22 | 深圳市杰普特光电股份有限公司 | Method for manufacturing optical fiber preform based on 3d printing technology |
| CN106881867A (en)* | 2017-02-22 | 2017-06-23 | 深圳市睿思智造科技有限公司 | A kind of mixing pump for colored 3D printer |
| CN107891601A (en)* | 2016-06-20 | 2018-04-10 | 海宁酷彩数码科技有限公司 | A kind of improved 3D printer |
| CN107931596A (en)* | 2017-12-29 | 2018-04-20 | 青岛贝诺磁电科技有限公司 | A kind of casting alloy automatic recipe maker |
| CN108839341A (en)* | 2018-07-10 | 2018-11-20 | 深圳市雷凌广通技术研发有限公司 | It is a kind of for producing the 3D printer of complex product |
| CN108907195A (en)* | 2018-08-29 | 2018-11-30 | 中国人民解放军空军工程大学 | A kind of online controllable alloy increasing material manufacturing apparatus and method of ingredient tissue |
| CN109604588A (en)* | 2018-12-29 | 2019-04-12 | 重庆科创职业学院 | Middle low-melting-point metal cladding printing and support minimizing technology based on solid granulates guidance |
| CN109732905A (en)* | 2019-03-18 | 2019-05-10 | 青岛五维智造科技有限公司 | The 3D printer and working method that functionally graded material and molding structure are integrated |
| CN111685365A (en)* | 2019-03-13 | 2020-09-22 | 秦皇岛烟草机械有限责任公司 | Cigarette 3d printer |
| CN112762712A (en)* | 2020-12-17 | 2021-05-07 | 王�锋 | Composite alloy preparation system |
| CN112846126A (en)* | 2020-12-31 | 2021-05-28 | 北京科技大学 | Melt flow rate adjusting system and method of multi-component radial functional gradient material equipment |
| CN114082989A (en)* | 2021-11-22 | 2022-02-25 | 温州大学 | Additive manufacturing device and method for multi-heat source adjustable components |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050015175A1 (en)* | 2003-07-15 | 2005-01-20 | Huang Wen C. | Direct write process and apparatus |
| CN1817512A (en)* | 2006-03-09 | 2006-08-16 | 曲斌 | Semi-solid injection moulding method and device for magnesium alloy |
| US20070212437A1 (en)* | 2004-08-09 | 2007-09-13 | Recycle Technologies International Llc | Recycled Polymeric Composite Crossties and Methods of Manufacture |
| WO2010112564A1 (en)* | 2009-04-01 | 2010-10-07 | Centro De Estudios E Investigaciones Técnicas De Gipuzkoa | Template-supported method of forming patterns of nanofibers in the electrospinning process and uses of said nanofibers |
| CN103042218A (en)* | 2012-12-10 | 2013-04-17 | 西安理工大学 | Molding apparatus of functionally graded materials |
| JP2013226672A (en)* | 2012-04-24 | 2013-11-07 | Meiki Co Ltd | Plasticizing equipment and plasticizing method |
| CN103769588A (en)* | 2014-01-24 | 2014-05-07 | 江苏理工学院 | 3D prints metal melt conveyor |
| CN103894614A (en)* | 2014-04-17 | 2014-07-02 | 机械科学研究总院先进制造技术研究中心 | Metal material melt extrusion device based on high-frequency induction heating |
| CN104001917A (en)* | 2014-05-26 | 2014-08-27 | 华南理工大学 | Powder spreading processing based functionally graded material preparation device and method |
| CN203805321U (en)* | 2014-01-25 | 2014-09-03 | 东莞市瑞迪三维电子科技有限公司 | Machine head of 3D (3-dimensional) printer capable of realizing color printing and special printing wire rod for same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050015175A1 (en)* | 2003-07-15 | 2005-01-20 | Huang Wen C. | Direct write process and apparatus |
| US20070212437A1 (en)* | 2004-08-09 | 2007-09-13 | Recycle Technologies International Llc | Recycled Polymeric Composite Crossties and Methods of Manufacture |
| CN1817512A (en)* | 2006-03-09 | 2006-08-16 | 曲斌 | Semi-solid injection moulding method and device for magnesium alloy |
| WO2010112564A1 (en)* | 2009-04-01 | 2010-10-07 | Centro De Estudios E Investigaciones Técnicas De Gipuzkoa | Template-supported method of forming patterns of nanofibers in the electrospinning process and uses of said nanofibers |
| JP2013226672A (en)* | 2012-04-24 | 2013-11-07 | Meiki Co Ltd | Plasticizing equipment and plasticizing method |
| CN103042218A (en)* | 2012-12-10 | 2013-04-17 | 西安理工大学 | Molding apparatus of functionally graded materials |
| CN103769588A (en)* | 2014-01-24 | 2014-05-07 | 江苏理工学院 | 3D prints metal melt conveyor |
| CN203805321U (en)* | 2014-01-25 | 2014-09-03 | 东莞市瑞迪三维电子科技有限公司 | Machine head of 3D (3-dimensional) printer capable of realizing color printing and special printing wire rod for same |
| CN103894614A (en)* | 2014-04-17 | 2014-07-02 | 机械科学研究总院先进制造技术研究中心 | Metal material melt extrusion device based on high-frequency induction heating |
| CN104001917A (en)* | 2014-05-26 | 2014-08-27 | 华南理工大学 | Powder spreading processing based functionally graded material preparation device and method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105012049A (en)* | 2015-06-03 | 2015-11-04 | 西安交通大学 | Print nozzle system and mixed spraying printing technology of adjustable soft hollow tube support |
| CN104972662A (en)* | 2015-06-30 | 2015-10-14 | 成都思维智造科技有限公司 | Anti-obstruction 3D printer nozzle structure |
| CN105034139A (en)* | 2015-08-06 | 2015-11-11 | 山东科技大学 | Analog simulation experiment system and method based on 3D printing rapid prototyping technology |
| CN106515005A (en)* | 2015-09-10 | 2017-03-22 | 深圳市人彩科技有限公司 | Precise-mixing-type deposition modeling method, precise-mixing-type deposition modeling assembly and color FED (Fused Deposition Modeling)-3D printer |
| CN105128128A (en)* | 2015-09-16 | 2015-12-09 | 华中科技大学 | Mold-free material forming method and device |
| CN105321635A (en)* | 2015-09-25 | 2016-02-10 | 西安交通大学 | 3D printing-based manufacturing method for conductivity gradient polymer insulator |
| WO2017071388A1 (en)* | 2015-10-30 | 2017-05-04 | 青岛理工大学 | 3d printing device having single nozzle head for use with multiple materials in multiple scales and working method therefor |
| US10603839B2 (en) | 2015-10-30 | 2020-03-31 | Qingdao Technological University | 3D printing apparatus and method of using the single-printhead achieved multi-material and multi-scale printing |
| CN105398058A (en)* | 2015-12-15 | 2016-03-16 | 中国计量学院 | Three-dimensional printing device |
| CN105415682A (en)* | 2015-12-15 | 2016-03-23 | 中国计量学院 | 3D printing device |
| CN105415683A (en)* | 2015-12-15 | 2016-03-23 | 杭州缤果信息科技有限公司 | Three-dimensional printing apparatus |
| CN105437548A (en)* | 2015-12-15 | 2016-03-30 | 杭州缤果信息科技有限公司 | 3D printing equipment |
| CN105313341A (en)* | 2015-12-15 | 2016-02-10 | 杭州缤果信息科技有限公司 | Three-dimensional printer |
| CN105437548B (en)* | 2015-12-15 | 2017-07-18 | 宁夏迅联科技有限公司 | A kind of 3D printing equipment |
| CN105415682B (en)* | 2015-12-15 | 2017-06-16 | 中国计量大学 | A kind of 3D printing device |
| WO2017101194A1 (en)* | 2015-12-15 | 2017-06-22 | 深圳市杰普特光电股份有限公司 | Method for manufacturing optical fiber preform based on 3d printing technology |
| CN105483699A (en)* | 2016-01-06 | 2016-04-13 | 福建工程学院 | Spiral powder mixing sprayer |
| CN105478768B (en)* | 2016-01-06 | 2018-02-23 | 福建工程学院 | 3D printing mould laser cladding equipment and gradually layer process |
| CN105483699B (en)* | 2016-01-06 | 2018-05-04 | 福建工程学院 | A kind of spiral mixed powder powder blower |
| CN105478768A (en)* | 2016-01-06 | 2016-04-13 | 福建工程学院 | 3D printing die laser cladding equipment and gradation process |
| CN105537591A (en)* | 2016-01-25 | 2016-05-04 | 中南大学 | Metal 3D (three-dimensional) printing device and metal 3D printing method |
| CN105772725B (en)* | 2016-04-06 | 2018-05-11 | 西安交通大学 | A kind of Efficient high-temperature nozzle for supporting more printed materials |
| CN105772725A (en)* | 2016-04-06 | 2016-07-20 | 西安交通大学 | High-efficiency high-temperature print head supporting multiple printing materials |
| CN105954074B (en)* | 2016-04-26 | 2018-08-03 | 北京科技大学 | A kind of high throughput prepares the device of gradient multicomposition composite metal material |
| US10913110B2 (en) | 2016-04-26 | 2021-02-09 | University Of Science And Technology Beijing | Apparatus for high-throughput screw caster of multi-component gradient metal material |
| WO2017186191A1 (en)* | 2016-04-26 | 2017-11-02 | 北京科技大学 | Apparatus for high-throughput fabrication of multi-component gradient metal material |
| CN105954074A (en)* | 2016-04-26 | 2016-09-21 | 北京科技大学 | Device for high-throughput preparation of multi-component gradient metal materials |
| CN105970011A (en)* | 2016-05-05 | 2016-09-28 | 上海大学 | Preparation device and method for multi-masterbatch, polyergic source and high throughput metal materials |
| CN107891601A (en)* | 2016-06-20 | 2018-04-10 | 海宁酷彩数码科技有限公司 | A kind of improved 3D printer |
| CN106376967A (en)* | 2016-08-29 | 2017-02-08 | 安徽奥斯博医疗仪器设备有限公司 | Printing consumables extrusion device |
| CN106363175A (en)* | 2016-08-31 | 2017-02-01 | 安徽奥斯博医疗仪器设备有限公司 | Printing consumables memory chip |
| CN106363176A (en)* | 2016-08-31 | 2017-02-01 | 安徽奥斯博医疗仪器设备有限公司 | Printing consumables memory chip |
| CN106393679A (en)* | 2016-11-28 | 2017-02-15 | 贵州航天计量测试技术研究所 | Multi-material 3D printing sprayer and operating method thereof |
| CN106827520A (en)* | 2017-01-20 | 2017-06-13 | 深圳市安思科电子科技有限公司 | A kind of intelligent 3D printer using the mixing of multinomial raw material |
| CN106881867A (en)* | 2017-02-22 | 2017-06-23 | 深圳市睿思智造科技有限公司 | A kind of mixing pump for colored 3D printer |
| CN107931596B (en)* | 2017-12-29 | 2023-07-04 | 青岛贝诺磁电科技有限公司 | Automatic batching device for casting alloy |
| CN107931596A (en)* | 2017-12-29 | 2018-04-20 | 青岛贝诺磁电科技有限公司 | A kind of casting alloy automatic recipe maker |
| CN108839341A (en)* | 2018-07-10 | 2018-11-20 | 深圳市雷凌广通技术研发有限公司 | It is a kind of for producing the 3D printer of complex product |
| CN108907195A (en)* | 2018-08-29 | 2018-11-30 | 中国人民解放军空军工程大学 | A kind of online controllable alloy increasing material manufacturing apparatus and method of ingredient tissue |
| CN109604588B (en)* | 2018-12-29 | 2021-08-27 | 重庆科创职业学院 | Medium-low melting point metal cladding printing and support removing method based on solid particle guiding |
| CN109604588A (en)* | 2018-12-29 | 2019-04-12 | 重庆科创职业学院 | Middle low-melting-point metal cladding printing and support minimizing technology based on solid granulates guidance |
| CN111685365A (en)* | 2019-03-13 | 2020-09-22 | 秦皇岛烟草机械有限责任公司 | Cigarette 3d printer |
| CN109732905B (en)* | 2019-03-18 | 2024-02-20 | 青岛五维智造科技有限公司 | 3D printer manufactured by integrating functionally graded material and molding structure and working method |
| CN109732905A (en)* | 2019-03-18 | 2019-05-10 | 青岛五维智造科技有限公司 | The 3D printer and working method that functionally graded material and molding structure are integrated |
| CN112762712A (en)* | 2020-12-17 | 2021-05-07 | 王�锋 | Composite alloy preparation system |
| CN112846126A (en)* | 2020-12-31 | 2021-05-28 | 北京科技大学 | Melt flow rate adjusting system and method of multi-component radial functional gradient material equipment |
| CN112846126B (en)* | 2020-12-31 | 2022-05-17 | 北京科技大学 | Melt flow rate adjustment system and method for multi-component radial functionally graded material equipment |
| CN114082989A (en)* | 2021-11-22 | 2022-02-25 | 温州大学 | Additive manufacturing device and method for multi-heat source adjustable components |
| Publication number | Publication date |
|---|---|
| CN104552944B (en) | 2017-03-01 |
| Publication | Publication Date | Title |
|---|---|---|
| CN104552944A (en) | 3D printing dispensing extruding device capable of realizing online alloying | |
| CN104875389B (en) | Three-dimensional printer and printing method and three-dimensional printing head | |
| CN101837642B (en) | A rapid prototyping method and device combined with electrospinning technology | |
| CN202239627U (en) | Device for directly manufacturing multiple parts by using multiple materials | |
| KR101846002B1 (en) | Systems and methods for producing materials suitable for additive manufacturing using a hydrodynamic cavitation apparatus | |
| JP2019518864A (en) | Additive manufacturing using metal molding materials | |
| CN204471885U (en) | Colored 3D printer head | |
| CN109551762B (en) | Fiber reinforced composite material annular cladding printing spray head | |
| CN108817397B (en) | Additive manufacturing device and method | |
| CN109550959A (en) | A kind of metal parts increasing material manufacturing method and device | |
| CN106393679A (en) | Multi-material 3D printing sprayer and operating method thereof | |
| CN108481737A (en) | The extrusion device of 3D printer | |
| CN108817395B (en) | Additive manufacturing device and method | |
| CN108580900A (en) | A kind of 3D printing device and the Multifunctional working platform with the device | |
| CN108788157A (en) | Additive manufacturing device and method | |
| CN207954654U (en) | Melt solid two-phase 3D printer | |
| CN108177335B (en) | Melt-solid dual-phase 3D printer | |
| CN208555979U (en) | Additive manufacturing device | |
| CN207154779U (en) | The double shower nozzle powdered feed 3D printing equipments of one kind mixing extrusion continous way | |
| CN105172147A (en) | Novel three-dimensional printer | |
| CN202245336U (en) | Powder feeder for manufacturing functionally graded parts or materials | |
| CN110171135A (en) | A kind of 3D printing head | |
| CN109894612A (en) | High-temperature metal 3D printer and Method of printing based on intermediate frequency electromagnetic principle of heating | |
| CN105903963A (en) | Bulk alloy preparation system and preparation method thereof | |
| CN105772720A (en) | A kind of gradient 3D laying method of powder material and used laying device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |