技术领域technical field
本发明涉及通信技术领域,尤其涉及一种同步方法和接收端。The invention relates to the technical field of communication, in particular to a synchronization method and a receiving end.
背景技术Background technique
目前,基于正交频分多址复用(Orthogonal Frequency DivisionMultiplexing,OFDM)的多载波传输技术,由于其可以有效解决无线信道频率选择性衰落,简化接收机复杂度,也可以在子载波上灵活选择调制编码方式,显著提高通信系统的频率效率,已被广泛应用于移动通信系统中。At present, the multi-carrier transmission technology based on Orthogonal Frequency Division Multiplexing (OFDM) can effectively solve the frequency selective fading of wireless channels, simplify the complexity of the receiver, and can also flexibly select subcarriers. The modulation and coding method can significantly improve the frequency efficiency of the communication system, and has been widely used in the mobile communication system.
但是,OFDM系统对于接收端的同步要求很高。特别的,如果多载波系统存在频率偏移,则会在接收端解调的时候引起子载波间干扰(Inter-Carrier Interference,ICI),降低接收信噪比,严重恶化系统的解调性能;如果多载波系统存在定时误差,会使得定时估计偏离循环前缀(cyclic prefix,CP)的保护范围,同样会引起子载波之间的干扰。因此,在OFDM系统中,往往需要借助同步算法对多载波系统的时间偏移及频率偏移进行估计。However, the OFDM system has high requirements on the synchronization of the receiving end. In particular, if there is a frequency offset in the multi-carrier system, it will cause inter-carrier interference (Inter-Carrier Interference, ICI) when the receiving end demodulates, reducing the receiving signal-to-noise ratio and seriously deteriorating the demodulation performance of the system; if There are timing errors in the multi-carrier system, which will cause the timing estimation to deviate from the protection range of the cyclic prefix (CP), and also cause interference between subcarriers. Therefore, in the OFDM system, it is often necessary to estimate the time offset and frequency offset of the multi-carrier system by means of a synchronization algorithm.
现有的多载波系统的同步算法通常需要同步序列的辅助。具体而言,通常需要在发送端插入一段具有良好相关性的同步序列,在接收端将接收的信号和本地同步序列进行相关运算,通过寻找相关峰来得到定时和频率估计值。由于现有的同步方法需要在发送端周期性地发送同步序列,因此会占用系统的传输资源,降低系统的传输效率。Existing synchronization algorithms for multi-carrier systems usually require the assistance of synchronization sequences. Specifically, it is usually necessary to insert a synchronous sequence with good correlation at the transmitting end, perform correlation calculations on the received signal and the local synchronous sequence at the receiving end, and obtain timing and frequency estimates by looking for correlation peaks. Since the existing synchronization method needs to periodically send the synchronization sequence at the sending end, it will occupy the transmission resources of the system and reduce the transmission efficiency of the system.
因此,需要寻求一种能够提高系统的传输效率的同步方法。Therefore, it is necessary to find a synchronization method that can improve the transmission efficiency of the system.
发明内容Contents of the invention
本发明的实施例提供一种同步方法和接收端,以至少解决现有的同步方法会降低系统传输效率的问题,能够提高系统的传输效率。Embodiments of the present invention provide a synchronization method and a receiving end, so as to at least solve the problem that the existing synchronization method reduces the transmission efficiency of the system, and can improve the transmission efficiency of the system.
为达到上述目的,本发明的实施例采用如下技术方案:In order to achieve the above object, embodiments of the present invention adopt the following technical solutions:
第一方面,提供一种同步方法,包括:In the first aspect, a synchronization method is provided, including:
接收端获取对端发送的信号的采样信号;The receiving end obtains the sampling signal of the signal sent by the opposite end;
确定所述采样信号的零阶自相关函数和N阶自相关函数,其中,N表示子载波个数;Determine the zero-order autocorrelation function and the N-order autocorrelation function of the sampled signal, where N represents the number of subcarriers;
确定所述采样信号的零阶自相关函数的傅里叶级数的系数,并根据所述零阶自相关函数的傅里叶级数的系数,计算定时偏移统计量;determining coefficients of the Fourier series of the zero-order autocorrelation function of the sampled signal, and calculating a timing offset statistic according to the coefficients of the Fourier series of the zero-order autocorrelation function;
根据所述定时偏移统计量,计算所述采样信号的时间偏移量;calculating a time offset of the sampled signal according to the timing offset statistic;
确定所述采样信号的N阶自相关函数的傅里叶级数的系数,并根据所述N阶自相关函数的傅里叶级数的系数,计算频率偏移统计量;Determine the coefficients of the Fourier series of the N-order autocorrelation function of the sampled signal, and calculate the frequency offset statistics according to the coefficients of the Fourier series of the N-order autocorrelation function;
根据所述频率偏移统计量以及所述时间偏移量,计算所述采样信号的频率偏移量;calculating a frequency offset of the sampling signal according to the frequency offset statistic and the time offset;
根据所述时间偏移量和所述频率偏移量,对所述采样信号进行时间和频率补偿。Perform time and frequency compensation on the sampling signal according to the time offset and the frequency offset.
与现有技术不同,基于本发明实施例提供的同步方法,不需要借助同步序列,因此也无需在发送端周期性地发送同步序列,而是根据对端发送的信号的采样信号的零阶自相关函数和N阶自相关函数即可进行定时估计及频率估计。因此,与现有技术相比,本发明实施例提供的同步方法能够提高系统的传输效率。Different from the prior art, based on the synchronization method provided by the embodiment of the present invention, there is no need to use a synchronization sequence, so there is no need to periodically send a synchronization sequence at the sending end, but according to the zero-order self- The correlation function and the Nth-order autocorrelation function can be used for timing estimation and frequency estimation. Therefore, compared with the prior art, the synchronization method provided by the embodiment of the present invention can improve the transmission efficiency of the system.
第二方面,提供一种接收端,包括:获取单元、确定单元、第一执行单元、第一计算单元、第二执行单元、第二计算单元、以及补偿单元;In a second aspect, a receiving end is provided, including: an acquisition unit, a determination unit, a first execution unit, a first calculation unit, a second execution unit, a second calculation unit, and a compensation unit;
所述获取单元,用于获取对端发送的信号的采样信号;The acquiring unit is configured to acquire a sampling signal of a signal sent by the opposite end;
所述确定单元,用于确定所述采样信号的零阶自相关函数和N阶自相关函数,其中,N表示子载波个数;The determining unit is configured to determine a zero-order autocorrelation function and an N-order autocorrelation function of the sampled signal, where N represents the number of subcarriers;
所述第一执行单元,用于确定所述采样信号的零阶自相关函数的傅里叶级数的系数,并根据所述零阶自相关函数的傅里叶级数的系数,计算定时偏移统计量;The first execution unit is configured to determine the coefficients of the Fourier series of the zero-order autocorrelation function of the sampled signal, and calculate the timing offset according to the coefficients of the Fourier series of the zero-order autocorrelation function. shift statistics;
所述第一计算单元,用于根据所述定时偏移统计量,计算所述采样信号的时间偏移量;The first calculation unit is configured to calculate the time offset of the sampling signal according to the timing offset statistics;
所述第二执行单元,用于确定所述采样信号的N阶自相关函数的傅里叶级数的系数,并根据所述N阶自相关函数的傅里叶级数的系数,计算频率偏移统计量;The second execution unit is configured to determine the coefficients of the Fourier series of the N-order autocorrelation function of the sampled signal, and calculate the frequency offset according to the coefficients of the Fourier series of the N-order autocorrelation function. shift statistics;
所述第二计算单元,用于根据所述频率偏移统计量以及所述时间偏移量,计算所述采样信号的频率偏移量;The second calculation unit is configured to calculate the frequency offset of the sampling signal according to the frequency offset statistic and the time offset;
所述补偿单元,用于根据所述时间偏移量和所述频率偏移量,对所述采样信号进行时间和频率补偿。The compensation unit is configured to perform time and frequency compensation on the sampling signal according to the time offset and the frequency offset.
与现有技术不同,使用本发明实施例提供的接收端进行定时估计及频率估计时,不需要借助同步序列,因此也无需在发送端周期性地发送同步序列,接收端通过对端发送的信号的采样信号的零阶自相关函数和N阶自相关函数即可进行定时估计及频率估计。因此,与现有技术相比,本发明实施例提供的同步方法能够提高系统的传输效率。Different from the prior art, when using the receiving end provided by the embodiment of the present invention to perform timing estimation and frequency estimation, there is no need to use a synchronization sequence, so there is no need to periodically send a synchronization sequence at the sending end, and the receiving end passes the signal sent by the opposite end The zero-order autocorrelation function and the N-order autocorrelation function of the sampling signal can be used for timing estimation and frequency estimation. Therefore, compared with the prior art, the synchronization method provided by the embodiment of the present invention can improve the transmission efficiency of the system.
附图说明Description of drawings
图1为本发明实施例提供的一种同步方法的流程示意图;FIG. 1 is a schematic flowchart of a synchronization method provided by an embodiment of the present invention;
图2为本发明实施例提供的一种接收端的结构示意图。FIG. 2 is a schematic structural diagram of a receiving end provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。In order to clearly describe the technical solutions of the embodiments of the present invention, in the embodiments of the present invention, words such as "first" and "second" are used to distinguish the same or similar items with basically the same functions and functions. Those skilled in the art can understand that words such as "first" and "second" do not limit the quantity and execution order.
实施例一、Embodiment one,
本发明实施例提供一种同步方法,如图1所示,包括:An embodiment of the present invention provides a synchronization method, as shown in Figure 1, including:
S101、接收端获取对端发送的信号的采样信号。S101. The receiving end acquires a sampling signal of a signal sent by an opposite end.
S102、接收端确定采样信号的零阶自相关函数和N阶自相关函数,其中,N表示子载波个数。S102. The receiving end determines a zero-order autocorrelation function and an N-order autocorrelation function of the sampled signal, where N represents the number of subcarriers.
S103、接收端确定采样信号的零阶自相关函数的傅里叶级数的系数,并根据零阶自相关函数的傅里叶级数的系数,计算定时偏移统计量。S103. The receiving end determines coefficients of the Fourier series of the zero-order autocorrelation function of the sampled signal, and calculates a timing offset statistic according to the coefficients of the Fourier series of the zero-order autocorrelation function.
S104、接收端根据定时偏移统计量,计算采样信号的时间偏移量。S104. The receiving end calculates a time offset of the sampling signal according to the timing offset statistics.
S105、接收端确定所述采样信号的N阶自相关函数的傅里叶级数的系数,并根据所述N阶自相关函数的傅里叶级数的系数,计算频率偏移统计量。S105. The receiving end determines the coefficients of the Fourier series of the N-order autocorrelation function of the sampled signal, and calculates a frequency offset statistic according to the coefficients of the Fourier series of the N-order autocorrelation function.
S106、根据频率偏移统计量以及时间偏移量,计算采样信号的频率偏移量。S106. Calculate the frequency offset of the sampling signal according to the frequency offset statistics and the time offset.
S107、根据时间偏移量和频率偏移量,对采样信号进行时间和频率补偿。S107. Perform time and frequency compensation on the sampling signal according to the time offset and the frequency offset.
需要说明的是,本发明实施例提供的同步方法,并不限定定时偏移统计量和频率偏移统计量的计算顺序,即,可以按照图1所示的顺序,先计算定时偏移统计量,再计算频率偏移统计量,也可以先计算频率偏移统计量,再计算定时偏移统计量,本发明实施例对此不作具体限定。It should be noted that the synchronization method provided by the embodiment of the present invention does not limit the calculation order of the timing offset statistics and the frequency offset statistics, that is, the timing offset statistics can be calculated first according to the order shown in FIG. 1 , and then calculate the frequency offset statistics, or calculate the frequency offset statistics first, and then calculate the timing offset statistics, which is not specifically limited in this embodiment of the present invention.
需要说明的是,本领域普通技术人员容易理解,对于多载波系统而言,其子载波个数N>1;而对于单载波系统,其子载波个数N=1。在本发明实施例提供的同步方法中,并不限定N的取值(当然,N应为≥1的正整数),即本发明实施例提供的同步方法不仅适用于多载波系统,也适用于单载波系统,本发明实施例对此不作具体限定。It should be noted that those skilled in the art can easily understand that for a multi-carrier system, the number of sub-carriers is N>1; and for a single-carrier system, the number of sub-carriers is N=1. In the synchronization method provided by the embodiment of the present invention, the value of N is not limited (of course, N should be a positive integer ≥ 1), that is, the synchronization method provided by the embodiment of the present invention is not only applicable to multi-carrier systems, but also applicable to The single carrier system is not specifically limited in this embodiment of the present invention.
另外,还需要说明的是,以下仅以单天线发送以及单天线接收的情况为例对本发明实施例提供的同步方法进行说明。本领域普通技术人员应当理解,对于多天线发送以及多天线接收系统(Multiple-Inputand Multiple-Output,MIMO),其每一对收发天线都可以采用本发明实施例提供的同步方法进行定时估计及频率估计。In addition, it should be noted that the synchronization method provided by the embodiment of the present invention will be described below only by taking the case of single-antenna transmission and single-antenna reception as an example. Those of ordinary skill in the art should understand that for a multi-antenna transmission and multi-antenna reception system (Multiple-Input and Multiple-Output, MIMO), each pair of transmitting and receiving antennas can use the synchronization method provided by the embodiment of the present invention to perform timing estimation and frequency estimate.
具体的,在本发明实施例提供的同步方法中,接收端确定采样信号的零阶自相关函数和N阶自相关函数(步骤S102),具体可以包括:Specifically, in the synchronization method provided by the embodiment of the present invention, the receiving end determines the zero-order autocorrelation function and the N-order autocorrelation function of the sampling signal (step S102), which may specifically include:
接收端根据第一预设公式,计算采样信号的零阶自相关函数,其中,第一预设公式如公式(1)所示:The receiving end calculates the zero-order autocorrelation function of the sampling signal according to the first preset formula, wherein the first preset formula is shown in formula (1):
其中,r(n;0)表示采样信号的零阶自相关函数,y(n)表示采样信号,y*(n)表示y(·)的共轭函数,M表示正整数,P表示一个多载波符号的长度。Among them, r(n; 0) represents the zero-order autocorrelation function of the sampled signal, y(n) represents the sampled signal, y* (n) represents the conjugate function of y( ), M represents a positive integer, and P represents a multiple The length of the carrier symbol.
以及,as well as,
接收端根据第二预设公式,计算采样信号的N阶自相关函数,其中,第二预设公式如公式(2)所示:The receiving end calculates the N-order autocorrelation function of the sampling signal according to the second preset formula, wherein the second preset formula is shown in formula (2):
其中,r(n;N)表示采样信号的N阶自相关函数,y(n)表示采样信号,y*(n)表示y(·)的共轭函数,M表示正整数,P表示一个多载波符号的长度。Among them, r(n; N) represents the N-order autocorrelation function of the sampled signal, y(n) represents the sampled signal, y* (n) represents the conjugate function of y( ), M represents a positive integer, and P represents a multiple The length of the carrier symbol.
需要说明的是,M为根据实际应用的需要选择的足够大的正整数。It should be noted that M is a sufficiently large positive integer selected according to the needs of practical applications.
优选的,在上述本发明实施例提供的同步方法的实施步骤S103中,接收端根据零阶自相关函数的傅里叶级数的系数,计算定时偏移统计量,具体可以包括:Preferably, in the implementation step S103 of the synchronization method provided by the above-mentioned embodiment of the present invention, the receiving end calculates the timing offset statistics according to the coefficients of the Fourier series of the zero-order autocorrelation function, which may specifically include:
接收端根据零阶自相关函数的傅里叶级数的系数、以及第一系统固有偏置,结合第三预设公式,计算定时偏移统计量,其中,第三预设公式包括公式(3)-公式(5):The receiving end calculates the timing offset statistics according to the coefficient of the Fourier series of the zero-order autocorrelation function and the inherent bias of the first system, in combination with a third preset formula, wherein the third preset formula includes the formula (3 )-Formula (5):
M(k0;0)=F1(k0;0)·R(k0;0) 公式(3)M(k0 ; 0) = F1 (k0 ; 0)·R(k0 ; 0) Formula (3)
其中,M(k0;0)表示定时偏移统计量,F1(k0;0)表示第一系统固有偏置,R(k0;0)表示零阶自相关函数的傅里叶级数的系数,f(n)表示成型函数,F(β)表示成型函数f(n)的傅里叶变换,F*(·)表示F(·)的共轭函数,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数。Among them, M(k0 ; 0) represents the timing offset statistics, F1 (k0 ; 0) represents the inherent bias of the first system, and R(k0 ; 0) represents the Fourier stage of the zero-order autocorrelation function The coefficient of the number, f(n) represents the shaping function, F(β) represents the Fourier transform of the shaping function f(n), F* (·) represents the conjugate function of F(·), P represents a multi-carrier symbol The length of k0 represents any positive integer between 1 and P-1.
具体的,零阶自相关函数的傅里叶级数的系数R(k0;0)可通过公式(6)计算:Specifically, the coefficient R(k0 ; 0) of the Fourier series of the zero-order autocorrelation function can be calculated by formula (6):
其中,R(k0;0)表示零阶自相关函数的傅里叶级数的系数,P表示一个多载波符号的长度,r(n;0)表示采样信号的零阶自相关函数,k0表示1到P-1之间的任意正整数。Wherein, R(k0 ; 0) represents the coefficient of the Fourier series of zero-order autocorrelation function, P represents the length of a multi-carrier symbol, r(n; 0) represents the zero-order autocorrelation function of sampling signal, k0 means any positive integer between 1 and P-1.
需要说明的是,在实际应用中,由于并不存在∞,因此在计算F(β)时,可根据实际需要对变量n取足够多项进行累加即可。另外,由于F1(k0;0)和F(β)只与对端的成型函数f(n)有关,因此可预先计算F1(k0;0)和F(β),并将计算结果存储至接收端的存储器中,如此一来,在接收端计算定时偏移统计量时即可直接调用计算结果,进而缩短定时偏移统计量的计算时间,提高同步方法的效率。It should be noted that, in practical applications, since ∞ does not exist, when calculating F(β), it is sufficient to accumulate multiple items of variable n according to actual needs. In addition, since F1 (k0 ; 0) and F(β) are only related to the shaping function f(n) of the opposite end, F1 (k0 ; 0) and F(β) can be calculated in advance, and the calculated results Stored in the memory of the receiving end, in this way, the calculation result can be directly invoked when the receiving end calculates the timing offset statistics, thereby shortening the calculation time of the timing offset statistics and improving the efficiency of the synchronization method.
优选的,本发明实施例提供的同步方法中,接收端根据定时偏移统计量,计算时间偏移量,即步骤S104,具体可以包括:Preferably, in the synchronization method provided by the embodiment of the present invention, the receiving end calculates the time offset according to the timing offset statistics, that is, step S104, which may specifically include:
根据定时偏移统计量,结合第四预设公式,计算时间偏移量,其中,第四预设公式如公式(7)所示:According to the timing offset statistics, combined with the fourth preset formula, the time offset is calculated, where the fourth preset formula is shown in formula (7):
其中,表示时间偏移量,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数,arg{·}表示对复数求相位运算,M(k0;0)表示定时偏移统计量。in, Represents the time offset, P represents the length of a multi-carrier symbol, k0 represents any positive integer between 1 and P-1, arg{ } represents the complex phase calculation, M(k0 ; 0) represents timing Offset statistics.
优选的,在上述本发明实施例提供的同步方法的实施步骤S105中,接收端根据N阶自相关函数的傅里叶级数的系数,计算频率偏移统计量,具体可以包括:Preferably, in the implementation step S105 of the synchronization method provided by the above-mentioned embodiment of the present invention, the receiving end calculates the frequency offset statistics according to the coefficients of the Fourier series of the N-order autocorrelation function, which may specifically include:
根据N阶自相关函数的傅里叶级数的系数、以及第二系统固有偏置,结合第五预设公式,计算频率偏移统计量,其中,第五预设公式包括公式(8)-公式(10):According to the coefficient of the Fourier series of the N-order autocorrelation function and the inherent bias of the second system, combined with the fifth preset formula, the frequency offset statistics are calculated, wherein the fifth preset formula includes formula (8)- Formula (10):
M(k0;N)=F1(k0;N)·R(k0;N) 公式(8)M(k0 ; N) = F1 (k0 ; N)·R(k0 ; N) formula (8)
其中,M(k0;N)表示频率偏移统计量,F1(k0;N)表示第二系统固有偏置,R(k0;N)表示N阶自相关函数的傅里叶级数的系数,f(n)表示成型函数,F(β)表示成型函数f(n)的傅里叶变换,F*(·)表示F(·)的共轭函数,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数。Among them, M(k0 ; N) represents the frequency offset statistics, F1 (k0 ; N) represents the inherent bias of the second system, and R(k0 ; N) represents the Fourier level of the N-order autocorrelation function The coefficient of the number, f(n) represents the shaping function, F(β) represents the Fourier transform of the shaping function f(n), F* (·) represents the conjugate function of F(·), P represents a multi-carrier symbol The length of k0 represents any positive integer between 1 and P-1.
具体的,N阶自相关函数的傅里叶级数的系数R(k0;N)可通过公式(11)计算:Specifically, the coefficient R(k0 ; N) of the Fourier series of the N-order autocorrelation function can be calculated by formula (11):
其中,R(k0;N)表示N阶自相关函数的傅里叶级数的系数,P表示一个多载波符号的长度,r(n;N)表示采样信号的N阶自相关函数,k0表示1到P-1之间的任意正整数。Wherein, R(k0 ; N) represents the coefficient of the Fourier series of N order autocorrelation function, P represents the length of a multi-carrier symbol, r(n; N) represents the N order autocorrelation function of sampled signal, k0 means any positive integer between 1 and P-1.
需要说明的是,与F1(k0;0)的处理方法类似的,可预先计算F1(k0;N),将计算结果存储至接收端。It should be noted that, similar to the processing method of F1 (k0 ; 0), F1 (k0 ; N) can be calculated in advance, and the calculation result can be stored in the receiving end.
优选的,在本发明实施例提供的同步方法中,接收端根据频率偏移统计量以及时间偏移量,计算采样信号的频率偏移量,即步骤S106,具体可以包括:Preferably, in the synchronization method provided by the embodiment of the present invention, the receiving end calculates the frequency offset of the sampling signal according to the frequency offset statistics and the time offset, that is, step S106, which may specifically include:
接收端根据频率偏移统计量以及时间偏移量,结合第六预设公式,计算采样信号的频率偏移量,其中,第六预设公式如公式(12)所示:The receiving end calculates the frequency offset of the sampling signal according to the frequency offset statistics and the time offset, in combination with the sixth preset formula, where the sixth preset formula is shown in formula (12):
其中,彖示频率偏移量,N表示子载波个数,arg{·}表示对复数求相位运算,M(k0;N)表示频率偏移统计量,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数,表示时间偏移量。in, Indicates the frequency offset, N indicates the number of subcarriers, arg{ } indicates the phase operation for complex numbers, M(k0 ; N) indicates the frequency offset statistics, P indicates the length of a multi-carrier symbol, k0 Represents any positive integer between 1 and P-1, Indicates the time offset.
在本发明实施例提供的同步方法中,首先,接收端获取对端发送的信号的采样信号,并根据采样信号确定采样信号的零阶自相关函数和N阶自相关函数;然后,确定采样信号的零阶自相关函数的傅里叶级数的系数,并根据零阶自相关函数的傅里叶级数的系数,计算定时偏移统计量,再根据定时偏移统计量,计算采样信号的时间偏移量;接着,确定所述采样信号的N阶自相关函数的傅里叶级数的系数,并根据所述N阶自相关函数的傅里叶级数的系数,计算频率偏移统计量,再根据频率偏移统计量以及时间偏移量,计算采样信号的频率偏移量;最后,根据时间偏移量和频率偏移量,对采样信号进行时间和频率补偿。与现有技术不同,基于本发明实施例提供的同步方法,不需要借助同步序列,因此也无需在发送端周期性地发送同步序列,而是根据对端发送的信号的采样信号的零阶自相关函数和N阶自相关函数即可进行定时估计及频率估计。因此,与现有技术相比,本发明实施例提供的同步方法能够提高系统的传输效率。In the synchronization method provided by the embodiment of the present invention, first, the receiving end obtains the sampling signal of the signal sent by the opposite end, and determines the zero-order autocorrelation function and the N-order autocorrelation function of the sampling signal according to the sampling signal; then, determines the sampling signal The coefficients of the Fourier series of the zero-order autocorrelation function, and according to the coefficients of the Fourier series of the zero-order autocorrelation function, calculate the timing offset statistics, and then calculate the sampling signal according to the timing offset statistics Time offset; then, determine the coefficient of the Fourier series of the N-order autocorrelation function of the sampled signal, and calculate the frequency offset statistics according to the coefficient of the Fourier series of the N-order autocorrelation function Then calculate the frequency offset of the sampling signal according to the frequency offset statistics and time offset; finally, perform time and frequency compensation on the sampling signal according to the time offset and frequency offset. Different from the prior art, based on the synchronization method provided by the embodiment of the present invention, there is no need to use a synchronization sequence, so there is no need to periodically send a synchronization sequence at the sending end, but according to the zero-order automatic The correlation function and the Nth-order autocorrelation function can be used for timing estimation and frequency estimation. Therefore, compared with the prior art, the synchronization method provided by the embodiment of the present invention can improve the transmission efficiency of the system.
实施例二、Embodiment two,
本发明实施例提供一种接收端20,如图2所示,包括:获取单元201、确定单元202、第一执行单元203、第一计算单元204、第二执行单元205、第二计算单元206、以及补偿单元207。An embodiment of the present invention provides a receiver 20, as shown in FIG. 2 , including: an acquisition unit 201, a determination unit 202, a first execution unit 203, a first calculation unit 204, a second execution unit 205, and a second calculation unit 206 , and a compensation unit 207 .
其中,获取单元201,用于获取对端发送的信号的采样信号。Wherein, the acquiring unit 201 is configured to acquire a sampling signal of a signal sent by an opposite end.
确定单元202,用于确定采样信号的零阶自相关函数和N阶自相关函数,其中,N表示子载波个数。The determination unit 202 is configured to determine a zero-order autocorrelation function and an N-order autocorrelation function of the sampled signal, where N represents the number of subcarriers.
第一执行单元203,用于确定所述采样信号的零阶自相关函数的傅里叶级数的系数,并根据所述零阶自相关函数的傅里叶级数的系数,计算定时偏移统计量。The first execution unit 203 is configured to determine the coefficient of the Fourier series of the zero-order autocorrelation function of the sampled signal, and calculate the timing offset according to the coefficient of the Fourier series of the zero-order autocorrelation function Statistics.
第一计算单元204,用于根据所述定时偏移统计量,计算所述采样信号的时间偏移量。The first calculation unit 204 is configured to calculate a time offset of the sampling signal according to the timing offset statistic.
第二执行单元205,用于确定所述采样信号的N阶自相关函数的傅里叶级数的系数,并根据所述N阶自相关函数的傅里叶级数的系数,计算频率偏移统计量。The second execution unit 205 is configured to determine the coefficients of the Fourier series of the N-order autocorrelation function of the sampled signal, and calculate the frequency offset according to the coefficients of the Fourier series of the N-order autocorrelation function Statistics.
第二计算单元206,用于根据所述频率偏移统计量以及所述时间偏移量,计算所述采样信号的频率偏移量。The second calculation unit 206 is configured to calculate a frequency offset of the sampling signal according to the frequency offset statistic and the time offset.
补偿单元207,用于根据时间偏移量和频率偏移量,对采样信号进行时间和频率补偿。The compensation unit 207 is configured to perform time and frequency compensation on the sampling signal according to the time offset and the frequency offset.
具体的,在本发明实施例提供的接收端20中,确定单元202具体可以用于:Specifically, in the receiving end 20 provided in the embodiment of the present invention, the determining unit 202 can be specifically used for:
根据第一预设公式,计算采样信号的零阶自相关函数,其中,第一预设公式包括:Calculate the zero-order autocorrelation function of the sampled signal according to a first preset formula, wherein the first preset formula includes:
其中,r(n;0)表示采样信号的零阶自相关函数,y(n)表示采样信号,y*(n)表示y(·)的共轭函数,M表示正整数,P表示一个多载波符号的长度。Among them, r(n; 0) represents the zero-order autocorrelation function of the sampled signal, y(n) represents the sampled signal, y* (n) represents the conjugate function of y( ), M represents a positive integer, and P represents a multiple The length of the carrier symbol.
确定单元202具体还可以用于:Specifically, the determining unit 202 can also be used for:
根据第二预设公式,计算采样信号的N阶自相关函数,其中,第二预设公式包括:According to the second preset formula, the N-order autocorrelation function of the sampled signal is calculated, wherein the second preset formula includes:
其中,r(n;N)表示采样信号的N阶自相关函数,y(n)表示采样信号,y*(n)表示y(·)的共轭函数,M表示正整数,P表示一个多载波符号的长度。Among them, r(n; N) represents the N-order autocorrelation function of the sampled signal, y(n) represents the sampled signal, y* (n) represents the conjugate function of y( ), M represents a positive integer, and P represents a multiple The length of the carrier symbol.
需要说明的是,M为根据实际应用的需要选择的足够大的正整数。It should be noted that M is a sufficiently large positive integer selected according to the needs of practical applications.
优选的,在本发明实施例提供的接收端20中,第一执行单元203具体可以用于:Preferably, in the receiving end 20 provided by the embodiment of the present invention, the first execution unit 203 can be specifically used for:
根据零阶自相关函数的傅里叶级数的系数、以及第一系统固有偏置,结合第三预设公式,计算定时偏移统计量,其中,第三预设公式包括:According to the coefficient of the Fourier series of the zero-order autocorrelation function and the inherent bias of the first system, combined with a third preset formula, the timing offset statistics are calculated, wherein the third preset formula includes:
M(k0;0)=F1(k0;0)·R(k0;0)M(k0 ; 0) = F1 (k0 ; 0)·R(k0 ; 0)
其中,M(k0;0)表示定时偏移统计量,F1(k0;0)表示第一系统固有偏置,R(k0;0)表示零阶自相关函数的傅里叶级数的系数,f(n)表示成型函数,F(β)表示成型函数f(n)的傅里叶变换,F*(·)表示F(·)的共轭函数,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数。Among them, M(k0 ; 0) represents the timing offset statistics, F1 (k0 ; 0) represents the inherent bias of the first system, and R(k0 ; 0) represents the Fourier stage of the zero-order autocorrelation function The coefficient of the number, f(n) represents the shaping function, F(β) represents the Fourier transform of the shaping function f(n), F* (·) represents the conjugate function of F(·), P represents a multi-carrier symbol The length of k0 represents any positive integer between 1 and P-1.
优选的,在本发明实施例提供的接收端20中,第一计算单元204具体可以用于:Preferably, in the receiving end 20 provided by the embodiment of the present invention, the first calculation unit 204 can be specifically used for:
根据定时偏移统计量,结合第四预设公式,计算时间偏移量,其中,第四预设公式包括:Calculate the time offset according to the timing offset statistics in combination with a fourth preset formula, where the fourth preset formula includes:
其中,表示时间偏移量,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数,arg{·}表示对复数求相位运算,M(k0;0)表示定时偏移统计量。in, Represents the time offset, P represents the length of a multi-carrier symbol, k0 represents any positive integer between 1 and P-1, arg{ } represents the complex phase calculation, M(k0 ; 0) represents timing Offset statistics.
优选的,在本发明实施例提供的接收端20中,第二执行单元205具体可以用于:Preferably, in the receiving end 20 provided by the embodiment of the present invention, the second execution unit 205 can be specifically used for:
根据N阶自相关函数的傅里叶级数的系数、以及第二系统固有偏置,结合第五预设公式,计算频率偏移统计量,其中,第五预设公式包括:According to the coefficient of the Fourier series of the N-order autocorrelation function and the inherent bias of the second system, combined with a fifth preset formula, the frequency offset statistics are calculated, wherein the fifth preset formula includes:
M(k0;N)=F1(k0;N)·R(k0;N)M(k0 ; N) = F1 (k0 ; N)·R(k0 ; N)
其中,M(k0;N)表示频率偏移统计量,F1(k0;N)表示第二系统固有偏置,R(k0;N)表示N阶自相关函数的傅里叶级数的系数,f(n)表示成型函数,F(β)表示成型函数f(n)的傅里叶变换,F*(·)表示F(·)的共轭函数,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数。Among them, M(k0 ; N) represents the frequency offset statistics, F1 (k0 ; N) represents the inherent bias of the second system, and R(k0 ; N) represents the Fourier level of the N-order autocorrelation function The coefficient of the number, f(n) represents the shaping function, F(β) represents the Fourier transform of the shaping function f(n), F* (·) represents the conjugate function of F(·), P represents a multi-carrier symbol The length of k0 represents any positive integer between 1 and P-1.
优选的,在本发明实施例提供的接收端20中,第二计算单元206具体可以用于:Preferably, in the receiving end 20 provided in the embodiment of the present invention, the second computing unit 206 can be specifically used for:
根据频率偏移统计量以及时间偏移量,结合第六预设公式,计算采样信号的频率偏移量,其中,第六预设公式包括:Calculate the frequency offset of the sampling signal according to the frequency offset statistics and the time offset, in combination with a sixth preset formula, where the sixth preset formula includes:
其中,表示频率偏移量,N表示子载波个数,arg{·}表示对复数求相位运算,M(k0;N)表示频率偏移统计量,P表示一个多载波符号的长度,k0表示1到P-1之间的任意正整数,表示时间偏移量。in, Represents the frequency offset, N represents the number of subcarriers, arg{ } represents the complex phase calculation, M(k0 ; N) represents the frequency offset statistics, P represents the length of a multi-carrier symbol, k0 represents Any positive integer between 1 and P-1, Indicates the time offset.
需要说明的是,使用本发明实施例提供的接收端20进行定时估计及频率估计的具体方法可参考实施例一的描述,本发明实施例在此不再赘述。It should be noted that, for the specific method of timing estimation and frequency estimation by the receiver 20 provided by the embodiment of the present invention, reference may be made to the description of Embodiment 1, and details will not be repeated here in the embodiment of the present invention.
在本发明实施例提供的接收端中,首先,由获取单元获取对端发送的信号的采样信号,并由确定单元确定采样信号的零阶自相关函数和N阶自相关函数;然后,由第一执行单元确定采样信号的零阶自相关函数的傅里叶级数的系数,并根据零阶自相关函数的傅里叶级数的系数,计算定时偏移统计量,再由第一计算单元根据定时偏移统计量,计算采样信号的时间偏移量;接着,由第二执行单元确定采样信号的N阶自相关函数的傅里叶级数的系数,并根据N阶自相关函数的傅里叶级数的系数,计算频率偏移统计量,再由第二计算单元根据频率偏移统计量以及时间偏移量,计算采样信号的频率偏移量;最后,由补偿单元根据时间偏移量和频率偏移量,对采样信号进行时间和频率补偿。与现有技术不同,使用本发明实施例提供的接收端进行定时估计及频率估计时,不需要借助同步序列,因此也无需在发送端周期性地发送同步序列,接收端通过对端发送的信号的采样信号的零阶自相关函数和N阶自相关函数即可进行定时估计及频率估计。因此,与现有技术相比,本发明实施例提供的同步方法能够提高系统的传输效率。In the receiving end provided by the embodiment of the present invention, first, the acquisition unit acquires the sampling signal of the signal sent by the opposite end, and the determination unit determines the zero-order autocorrelation function and the N-order autocorrelation function of the sampling signal; then, the second An execution unit determines the coefficient of the Fourier series of the zero-order autocorrelation function of the sampling signal, and calculates the timing offset statistic according to the coefficient of the Fourier series of the zero-order autocorrelation function, and then the first calculation unit Calculate the time offset of the sampled signal according to the timing offset statistic; then, determine the coefficient of the Fourier series of the N-order autocorrelation function of the sampled signal by the second execution unit, and according to the Fourier series of the N-order autocorrelation function The coefficient of Liye series calculates the frequency offset statistics, and then the second calculation unit calculates the frequency offset of the sampling signal according to the frequency offset statistics and the time offset; finally, the compensation unit calculates the frequency offset according to the time offset Quantity and frequency offset, time and frequency compensation for the sampled signal. Different from the prior art, when using the receiving end provided by the embodiment of the present invention to perform timing estimation and frequency estimation, there is no need to use a synchronization sequence, so there is no need to periodically send a synchronization sequence at the sending end, and the receiving end passes the signal sent by the opposite end The zero-order autocorrelation function and the N-order autocorrelation function of the sampling signal can be used for timing estimation and frequency estimation. Therefore, compared with the prior art, the synchronization method provided by the embodiment of the present invention can improve the transmission efficiency of the system.
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that for the convenience and brevity of description, the device described above is only illustrated by the division of the above-mentioned functional modules. In practical applications, the above-mentioned functions can be allocated by different Completion of functional modules means that the internal structure of the device is divided into different functional modules to complete all or part of the functions described above. For the specific working processes of the above-described systems, devices, and units, reference may be made to the corresponding processes in the foregoing method embodiments, and details are not repeated here.
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided in this application, it should be understood that the disclosed system, device and method can be implemented in other ways. For example, the device embodiments described above are only illustrative. For example, the division of the modules or units is only a logical function division, and there may be other division methods in actual implementation. For example, multiple units or components can be Incorporation may either be integrated into another system, or some features may be omitted, or not implemented. In another point, the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit. The above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括U盘、移动硬盘、只读存储器(ROM,Read-OnlyMemory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the essence of the technical solution of the present invention or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) execute all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes various media that can store program codes such as U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410693476.8ACN104363196B (en) | 2014-11-26 | 2014-11-26 | A synchronization method and receiver |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410693476.8ACN104363196B (en) | 2014-11-26 | 2014-11-26 | A synchronization method and receiver |
| Publication Number | Publication Date |
|---|---|
| CN104363196Atrue CN104363196A (en) | 2015-02-18 |
| CN104363196B CN104363196B (en) | 2017-09-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410693476.8AActiveCN104363196B (en) | 2014-11-26 | 2014-11-26 | A synchronization method and receiver |
| Country | Link |
|---|---|
| CN (1) | CN104363196B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020065047A1 (en)* | 2000-11-30 | 2002-05-30 | Moose Paul H. | Synchronization, channel estimation and pilot tone tracking system |
| US20050271175A1 (en)* | 2000-04-21 | 2005-12-08 | Navid Lashkarian | Minimum variance unbiased and moment estimators of carrier frequency offset in multi-carrier systems |
| CN101079688A (en)* | 2006-05-23 | 2007-11-28 | 中兴通讯股份有限公司 | A synchronization method in orthogonal frequency division multiplexing system |
| CN101119350A (en)* | 2006-08-02 | 2008-02-06 | 华为技术有限公司 | Orthogonal Frequency Division Multiplexing System, Fast Synchronization Method and Transmitter Equipment |
| CN101188592A (en)* | 2007-11-29 | 2008-05-28 | 北京邮电大学 | Synchronization method and system for multi-carrier system |
| CN101345549A (en)* | 2008-08-29 | 2009-01-14 | 北京天碁科技有限公司 | Frequency deviation estimation method and apparatus used for time division-synchronous code division multiple access system |
| CN101753505A (en)* | 2008-12-22 | 2010-06-23 | 北京信威通信技术股份有限公司 | Method for synchronizing downlink time and frequency of OFDM system |
| CN102075486A (en)* | 2011-01-20 | 2011-05-25 | 深圳市阿派斯实业有限公司 | Synchronized method of orthogonal frequency division multiplexing (OFDM) system |
| CN102271110A (en)* | 2011-05-12 | 2011-12-07 | 徐永键 | OFDM (Orthogonal Frequency Division Multiplexing) receiving synchronization device |
| CN102469572A (en)* | 2010-11-15 | 2012-05-23 | 上海贝尔股份有限公司 | Synchronization method and device in collaborative wireless network |
| CN102664859A (en)* | 2012-05-22 | 2012-09-12 | 天津工业大学 | Synchronization and channel estimation scheme for multi-band orthogonal frequency division multiplexing (OFDM) ultra wideband receiver |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050271175A1 (en)* | 2000-04-21 | 2005-12-08 | Navid Lashkarian | Minimum variance unbiased and moment estimators of carrier frequency offset in multi-carrier systems |
| US20020065047A1 (en)* | 2000-11-30 | 2002-05-30 | Moose Paul H. | Synchronization, channel estimation and pilot tone tracking system |
| CN101079688A (en)* | 2006-05-23 | 2007-11-28 | 中兴通讯股份有限公司 | A synchronization method in orthogonal frequency division multiplexing system |
| CN101119350A (en)* | 2006-08-02 | 2008-02-06 | 华为技术有限公司 | Orthogonal Frequency Division Multiplexing System, Fast Synchronization Method and Transmitter Equipment |
| CN101188592A (en)* | 2007-11-29 | 2008-05-28 | 北京邮电大学 | Synchronization method and system for multi-carrier system |
| CN101345549A (en)* | 2008-08-29 | 2009-01-14 | 北京天碁科技有限公司 | Frequency deviation estimation method and apparatus used for time division-synchronous code division multiple access system |
| CN101753505A (en)* | 2008-12-22 | 2010-06-23 | 北京信威通信技术股份有限公司 | Method for synchronizing downlink time and frequency of OFDM system |
| CN102469572A (en)* | 2010-11-15 | 2012-05-23 | 上海贝尔股份有限公司 | Synchronization method and device in collaborative wireless network |
| CN102075486A (en)* | 2011-01-20 | 2011-05-25 | 深圳市阿派斯实业有限公司 | Synchronized method of orthogonal frequency division multiplexing (OFDM) system |
| CN102271110A (en)* | 2011-05-12 | 2011-12-07 | 徐永键 | OFDM (Orthogonal Frequency Division Multiplexing) receiving synchronization device |
| CN102664859A (en)* | 2012-05-22 | 2012-09-12 | 天津工业大学 | Synchronization and channel estimation scheme for multi-band orthogonal frequency division multiplexing (OFDM) ultra wideband receiver |
| Publication number | Publication date |
|---|---|
| CN104363196B (en) | 2017-09-19 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102130883B (en) | Time frequency synchronization method for time division long-term evolution (TD-LTE) system | |
| US9065630B1 (en) | Systems and methods for detecting secondary synchronization signals in a wireless communication system | |
| CN103379082B (en) | Time-frequency synchronization method and device in LTE communication system | |
| CN105516045B (en) | A kind of OFDM training sequence structures and synchronous method | |
| CN101267422A (en) | A Frequency Domain Channel Estimation Method for Orthogonal Frequency Division Multiplexing System | |
| CN109391403B (en) | Method and apparatus for transmission and reception of wireless signals | |
| WO2010075539A1 (en) | Methods and systems for improved timing acquisition for varying channel conditions | |
| CN106685881A (en) | Precursor symbol generating method and receiving method | |
| CN101815042A (en) | Orthogonal frequency division multiplexing (OFDM) system channel estimation method and device | |
| CN102571647B (en) | Frequency offset estimation method and device | |
| CN103873397A (en) | Novel estimation method for orthogonal frequency-division multiplexing receiving channel combining time domain and frequency domain | |
| CN113904904B (en) | OFDM-based integer frequency offset estimation method, system, medium and equipment | |
| CN102647382B (en) | Integer frequency offset estimation method and device | |
| CN100562002C (en) | A guard interval filling method in an OFDM modulation system and its communication system | |
| WO2012155463A1 (en) | A system synchronization method and device | |
| WO2009109942A2 (en) | Integer carrier frequency offset estimation scheme for orthogonal frequency division multiplexing | |
| CN108390837B (en) | LTE downlink channel estimation method | |
| CN104363196B (en) | A synchronization method and receiver | |
| CN108055222A (en) | Data processing method and intelligent terminal based on ofdm system | |
| CN107005515B (en) | Information sending and receiving method, device and system in wireless local area network | |
| CN114666190B (en) | Channel estimation method based on improved time domain interpolation | |
| KR101501334B1 (en) | Method for Estimating Frequency Offset based on OFDM System and Apparatus Thereof | |
| CN109039985B (en) | A Blind Demodulation Method of OFDM Signal Based on Resampling | |
| CN103516655B (en) | Symbol fine timing synchronization method | |
| KR100647079B1 (en) | Discrete Fourier Transform-based Channel Estimation Method for Frequency-Division Wireless Modem |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |