技术领域technical field
本发明涉及无线通信领域,尤其涉及一种Linc功放合路电路。The invention relates to the field of wireless communication, in particular to a Linc power amplifier combining circuit.
背景技术Background technique
Linc功放是把一路幅度与相位随时间变化的信号,分解为两路等幅异相的信号,分别经过功率放大器进行合路的一种功放。所述Linc功放充分利用放大器能够高效率地放大恒包络信号的特点,采用高效的合路方法,来达到整体功放的高效率。The Linc power amplifier is a power amplifier that decomposes a signal whose amplitude and phase change with time into two equal-amplitude and out-of-phase signals, which are combined through a power amplifier. The Linc power amplifier makes full use of the characteristic that the amplifier can efficiently amplify constant envelope signals, and adopts an efficient combining method to achieve high efficiency of the overall power amplifier.
Linc功放包括采用Chireix合路器(异相合路器)的Linc功放技术和采用匹配的hybird电桥(混合电桥)的Linc功放技术。现有技术中,采用Chireix合路器的Linc功放技术将在图1中更加详细的描述,它在异相调制器中将包络调制带通sin分解为两个异相的恒定包络信号s1和s2,它们被施加到功率放大器,功率放大器的输出在混合型装置中进行组合,从而恢复包络调制波形。放大后的输出信号sout的输出幅度是信号s1和s2之间的相移结果,当信号同相时,得到幅度最大值,而在反相时,得到幅度最小值。该混合体构造通过用补偿电抗网络代替阻抗负载,得以将高效率的区域扩展为包括较低输出功率级,由此保持较高的效率。但是该合路方法中,输出组合网络的设计受到较多的限制,微带线的电气长度限制在一定数值,影响了设计的灵活性;并且因为没有单独的电桥隔离端,使得无法对信号中失配的部分进行耦合采样以使用数字增强技术。Linc power amplifier includes Linc power amplifier technology using Chireix combiner (out-of-phase combiner) and Linc power amplifier technology using matched hybrid bridge (hybrid bridge). In the prior art, the Linc power amplifier technology using Chireix combiner will be described in more detail in Figure 1, which decomposes the envelope modulation band-pass sininto two out-of-phase constant envelope signals in the out-of-phase modulator s1 and s2 , which are applied to a power amplifier whose outputs are combined in a hybrid arrangement to recover the envelope modulated waveform. The output amplitude of the amplified output signal sout is the result of the phase shift between the signals s1 and s2 , when the signals are in phase, the maximum value of the amplitude is obtained, and when the signals are out of phase, the minimum value of the amplitude is obtained. This hybrid configuration allows the high efficiency region to be extended to include lower output power levels by replacing the resistive load with a compensating reactive network, thereby maintaining higher efficiency. However, in this combination method, the design of the output combination network is subject to more restrictions, and the electrical length of the microstrip line is limited to a certain value, which affects the flexibility of the design; and because there is no separate bridge isolation terminal, it is impossible to signal Mismatched parts in the sample are coupled to use digital enhancement techniques.
现有技术中,采用匹配的hybird电桥(混合电桥)的Linc功放技术的电路框图如图2所示,该技术与图1所示的采用Chireix合路器的Linc功放技术的区别点在于,图2中两个异相的恒定包络信号s1和s2分别被施加到功率放大器A、B后,分别经过电路A和电路B的调制,然后经过混合电桥合路器输出,A、B同相的信号经过电路C输出,A、B非同相的信号则经过隔离端4消耗在负载上。该方法虽然有单独的电桥隔离端,但由于仅仅是单纯的合路,无法利用负载牵引提高两路功放的效率,有较多功率浪费在隔离端负载上。In the prior art, the circuit block diagram of the Linc power amplifier technology using a matched hybrid bridge (hybrid bridge) is shown in Figure 2. The difference between this technology and the Linc power amplifier technology using the Chireix combiner shown in Figure 1 is that , the two out-of-phase constant envelope signals s1 and s2 in Figure 2 are applied to power amplifiers A and B respectively, modulated by circuit A and circuit B respectively, and then output through the hybrid bridge combiner, A The in-phase signals of A and B are output through circuit C, and the non-in-phase signals of A and B are consumed on the load through the isolation terminal 4. Although this method has a separate bridge isolation terminal, because it is only a simple combination, the efficiency of the two power amplifiers cannot be improved by load pulling, and more power is wasted on the load at the isolation terminal.
发明内容Contents of the invention
本发明实施例提供一种Linc功放合路电路,能够利用负载牵引提高功放的效率,并且设计灵活,存在单独的电桥隔离端,使得可以对信号中失配的部分进行耦合采样以使用数字增强技术。The embodiment of the present invention provides a Linc power amplifier combination circuit, which can use load pull to improve the efficiency of the power amplifier, and has a flexible design, and there is a separate bridge isolation terminal, so that the mismatched part of the signal can be coupled and sampled to use digital enhancement. technology.
为达到上述目的,本发明实施例采用如下技术方案:In order to achieve the above object, the embodiment of the present invention adopts the following technical solutions:
第一方面,提供一种Linc功放合路电路,所述Linc功放合路电路包括异相调制器、第一功率放大器、第二功率放大器、第一调整电路、第二调整电路、混合电桥合路器、输出电路、无源微波电路;In the first aspect, a Linc power amplifier combination circuit is provided, the Linc power amplifier combination circuit includes an out-of-phase modulator, a first power amplifier, a second power amplifier, a first adjustment circuit, a second adjustment circuit, a hybrid bridge combination circuit breaker, output circuit, passive microwave circuit;
其中,所述第一功率放大器和所述第二功率放大器分别连接于所述异相调制器的两个输出端与所述第一调整电路、所述第二调整电路之间,所述第一调整电路和所述第二调整电路还分别与混合电桥合路器的两个输入端相连,所述输出电路和所述无源微波电路分别与所述混合电桥合路器的同相输出端、异相输出端相连;Wherein, the first power amplifier and the second power amplifier are respectively connected between the two output terminals of the out-of-phase modulator and the first adjustment circuit and the second adjustment circuit, and the first The adjustment circuit and the second adjustment circuit are also respectively connected to the two input terminals of the hybrid bridge combiner, and the output circuit and the passive microwave circuit are respectively connected to the non-inverting output terminals of the hybrid bridge combiner , out-of-phase output connected;
所述第一调整电路、所述第二调整电路、所述输出电路与所述无源微波电路配合作用,以使得所述第一功率放大器和所述第二功率放大器的输出信号的幅度小于第一阈值时,存在新的效率极值点。The first adjustment circuit, the second adjustment circuit, the output circuit cooperate with the passive microwave circuit, so that the amplitude of the output signal of the first power amplifier and the second power amplifier is smaller than that of the first power amplifier At a threshold, there is a new extreme point of efficiency.
在第一种可能的实现方式中,结合第一方面,所述无源微波电路具体包括:In a first possible implementation manner, with reference to the first aspect, the passive microwave circuit specifically includes:
微带线(其中,所述微带线的电长度由所述新的效率极值点的位置,以及所述第一调整电路与所述第二调整电路确定;Microstrip line (wherein, the electrical length of the microstrip line is determined by the position of the new efficiency extreme point, and the first adjustment circuit and the second adjustment circuit;
所述无源微波电路与所述混合电桥电路器的异相输出端相连具体包括:The connection between the passive microwave circuit and the out-of-phase output of the hybrid bridge circuit specifically includes:
所述微带线与所述混合电桥电路的异相输出端相连。The microstrip line is connected to the out-of-phase output terminals of the hybrid bridge circuit.
在第二种可能的实现方式中,结合第一种可能的实现方式,所述微带线还接地。In a second possible implementation manner, in combination with the first possible implementation manner, the microstrip line is also grounded.
在第三种可能的实现方式中,结合第一种可能的实现方式,所述Linc功放合路电路还包括第一电阻;In a third possible implementation, in combination with the first possible implementation, the Linc power amplifier combination circuit further includes a first resistor;
所述微带线还与所述第一电阻相连,所述第一电阻还接地,其中,所述第一电阻的阻值大于第二阈值,以使得所述微带线近似开路。The microstrip line is also connected to the first resistor, and the first resistor is also grounded, wherein a resistance value of the first resistor is greater than a second threshold, so that the microstrip line is approximately open.
在第四种可能的实现方式中,结合第一方面或第一种可能的实现方式,所述Linc功放合路电路还包括耦合采样电路、数字域电路;In a fourth possible implementation, in combination with the first aspect or the first possible implementation, the Linc power amplifier combining circuit further includes a coupling sampling circuit and a digital domain circuit;
其中,所述数字域电路包含所述异相调制器,所述耦合采样电路连接于所述混合电桥合路器的异相输出端与所述数字域电路之间,所述数字域电路的输出端分别与所述第一功率放大器、所述第二功率放大器相连;Wherein, the digital domain circuit includes the out-of-phase modulator, the coupling sampling circuit is connected between the out-of-phase output terminal of the hybrid bridge combiner and the digital domain circuit, and the digital domain circuit The output terminals are respectively connected to the first power amplifier and the second power amplifier;
所述耦合采样电路,用于检测所述Linc功放合路电路中的异相合路信号;The coupling sampling circuit is used to detect out-of-phase combining signals in the Linc power amplifier combining circuit;
所述数字域电路,用于根据所述耦合采样电路采集到的所述异相合路信号,对输入所述第一功率放大器和所述第二功率放大器的信号做数字预处理,以使得达到数字增强效果。The digital domain circuit is configured to perform digital preprocessing on the signals input to the first power amplifier and the second power amplifier according to the out-of-phase combined signal collected by the coupling sampling circuit, so as to achieve digital Enhancement.
在第五种可能的实现方式中,结合第四种可能的实现方式,所述耦合采样电路包括第二电阻;In the fifth possible implementation manner, in combination with the fourth possible implementation manner, the coupled sampling circuit includes a second resistor;
其中,所述第二电阻用于调节进入所述耦合采样电路的电压、电流的配比。Wherein, the second resistor is used to adjust the ratio of voltage and current entering the coupling sampling circuit.
在第六种可能的实现方式中,根据第四种可能的实现方式或第五种可能的实现方式,所述数字域电路,用于根据所述耦合采样电路采集到的所述异相合路信号,对输入所述第一功率放大器和所述第二功率放大器的信号做数字预处理,以使得达到数字增强效果具体包括:In the sixth possible implementation manner, according to the fourth possible implementation manner or the fifth possible implementation manner, the digital domain circuit is configured to use the out-of-phase combining signal collected by the coupling sampling circuit , performing digital preprocessing on signals input to the first power amplifier and the second power amplifier, so as to achieve a digital enhancement effect specifically includes:
根据所述耦合采样电路采集到的所述异相合路信号,调整所述Linc功放合路电路的输入信号分解的幅度或夹角,以使得所述第一功率放大器和所述第二功率放大器的输入信号发生改变,以达到数字增强效果。According to the out-of-phase combination signal collected by the coupling sampling circuit, adjust the amplitude or angle of the input signal decomposition of the Linc power amplifier combination circuit, so that the first power amplifier and the second power amplifier The input signal is altered for digital enhancement.
在第七种可能的实现方式中,根据第四种可能的实现方式或第五种可能的实现方式,所述数字域电路,用于根据所述耦合采样电路采集到的所述异相合路信号,对输入所述第一功率放大器和所述第二功率放大器的信号做数字预处理,以使得达到数字增强效果具体包括:In the seventh possible implementation manner, according to the fourth possible implementation manner or the fifth possible implementation manner, the digital domain circuit is configured to use the out-of-phase combining signal collected by the coupling sampling circuit , performing digital preprocessing on signals input to the first power amplifier and the second power amplifier, so as to achieve a digital enhancement effect specifically includes:
根据所述耦合采样电路采集到的所述异相合路信号,调整所述Linc功放合路电路的输入信号,以使得所述第一功率放大器和所述第二功率放大器的输入信号发生改变,以达到数字增强效果。According to the out-of-phase combination signal collected by the coupling sampling circuit, the input signal of the Linc power amplifier combination circuit is adjusted so that the input signals of the first power amplifier and the second power amplifier change, so that Achieve digital enhancement.
本发明实施例提供一种Linc功放合路电路,所述Linc功放合路电路包括异相调制器、第一功率放大器、第二功率放大器、第一调整电路、第二调整电路、混合电桥合路器、输出电路、无源微波电路;其中,所述第一功率放大器和所述第二功率放大器分别连接于所述异相调制器的两个输出端与所述第一调整电路、所述第二调整电路之间,所述第一调整电路和所述第二调整电路还分别与混合电桥合路器的两个输入端相连,所述输出电路和所述无源微波电路分别与所述混合电桥合路器的同相输出端、异相输出端相连。An embodiment of the present invention provides a Linc power amplifier combination circuit, the Linc power amplifier combination circuit includes an out-of-phase modulator, a first power amplifier, a second power amplifier, a first adjustment circuit, a second adjustment circuit, a hybrid bridge combination circuit, an output circuit, and a passive microwave circuit; wherein, the first power amplifier and the second power amplifier are respectively connected to the two output terminals of the out-of-phase modulator and the first adjustment circuit, the Between the second adjustment circuits, the first adjustment circuit and the second adjustment circuit are respectively connected to the two input ends of the hybrid bridge combiner, and the output circuit and the passive microwave circuit are respectively connected to the The in-phase output terminal and the out-of-phase output terminal of the hybrid bridge combiner are connected.
基于上述实施例的描述,本发明首次将混合电桥合路器用于Linc类功放的非隔离合路,通过所述第一调整电路、所述第二调整电路、所述输出电路与所述无源微波电路的配合作用,使得可以利用负载牵引提高两路功放的效率,即可使所述第一功率放大器和所述第二功率放大器工作在高效率状态,同时所述Linc功放合路电路中,所述第一调整电路、所述第二调整电路、所述输出电路与所述无源微波电路设计灵活,并且该Linc功放合路电路中存在单独的电桥隔离端,使得可以对信号中失配的部分进行耦合采样以使用数字增强技术。Based on the description of the above embodiments, the present invention uses the hybrid bridge combiner for the non-isolated combination of the Linc type power amplifier for the first time, through the first adjustment circuit, the second adjustment circuit, the output circuit and the wireless The cooperation of the source microwave circuit makes it possible to use the load pull to improve the efficiency of the two power amplifiers, that is, to make the first power amplifier and the second power amplifier work in a high-efficiency state, and at the same time, in the Linc power amplifier combining circuit , the design of the first adjustment circuit, the second adjustment circuit, the output circuit and the passive microwave circuit is flexible, and there is a separate bridge isolation terminal in the Linc power amplifier combination circuit, so that the signal can be Mismatched sections are sampled coupled to use digital enhancement techniques.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为典型的现有技术中采用异相合路器的Linc功放技术的电路框图;Fig. 1 is the circuit block diagram of the Linc power amplifier technology that adopts out-of-phase combiner in the typical prior art;
图2为典型的现有技术中采用匹配的hybird电桥的Linc功放技术的电路框图;Fig. 2 is the circuit block diagram of the Linc power amplifier technology of the hybrid electric bridge that adopts matching in typical prior art;
图3为本发明实施例提供的一种Linc功放合路电路;Fig. 3 is a kind of Linc power amplifier combining circuit that the embodiment of the present invention provides;
图4为本发明实施例提供的一种Linc功放合路电路的具体设计图;Fig. 4 is the specific design drawing of a kind of Linc power amplifier combination circuit that the embodiment of the present invention provides;
图5为本发明实施例提供的另一种Linc功放合路电路的具体设计图;Fig. 5 is the specific design drawing of another kind of Linc power amplifier combination circuit that the embodiment of the present invention provides;
图6为本发明实施例提供的另一种Linc功放合路电路的具体设计图;Fig. 6 is the specific design drawing of another kind of Linc power amplifier combination circuit that the embodiment of the present invention provides;
图7为本发明实施例提供的一种仿真结果示意图;FIG. 7 is a schematic diagram of a simulation result provided by an embodiment of the present invention;
图8为本发明实施例提供的另一种仿真结果示意图;FIG. 8 is a schematic diagram of another simulation result provided by an embodiment of the present invention;
图9为本发明实施例提供的又一种仿真结果示意图;FIG. 9 is a schematic diagram of another simulation result provided by an embodiment of the present invention;
图10为本发明实施例提供的又一种Linc功放合路电路。Fig. 10 is another Linc power amplifier combining circuit provided by the embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
图1是典型的现有技术中采用异相合路器(即,Chireix合路器)的Linc功放技术的电路框图。信号sin经由输入端105连接到异相调制器110,所述异相调制器110包括两个输出端115和116。sin的信号强度表示为分别位于输出端115和116上的两个输出信号s1和s2之间的相位差。如图1所示,各输出端分别连接到功率放大器120和130。功率放大器120和130代表任何类型的B类不平衡放大器。因此,在异相调制器110中,从包络调制带通波形sin分解出两个异相的恒定包络信号s1和s2。在Chireix型输出组合网络150中将功率放大器的输出进行组合以形成放大的线性信号。这些恒定幅度的异相信号的相位差由异相调制器110确定,以使得来自它们的向量总和的结果产生输出信号sout的期望幅度。FIG. 1 is a typical circuit block diagram of a Linc power amplifier technology using out-of-phase combiners (ie, Chireix combiners) in the prior art. The signalsin is connected via an input 105 to an out-of-phase modulator 110 comprising two outputs 115 and 116 . The signal strength ofsin is expressed as the phase difference between the two output signalss1 ands2 at the output terminals 115 and 116, respectively. As shown in FIG. 1, each output terminal is connected to power amplifiers 120 and 130, respectively. Power amplifiers 120 and 130 represent any type of class B unbalanced amplifier. Thus, in the out-of-phase modulator 110, two out-of-phase constant envelope signals s1 and s2 are decomposed from the envelope modulated bandpass waveform sin . The outputs of the power amplifiers are combined in a Chireix-type output combining network 150 to form an amplified linear signal. Thephase difference of these constant amplitude out-of-phase signals is determined by the out-of-phase modulator 110 such that the result from their vector summation yields the desired amplitude of the output signal sout.
如图1所示,功率放大器120、130连接到输出组合网络150,该网络150包括具有电气长度λ/4和阻抗R的两路传输线路140、145,其中λ表示功率放大器工作时所处的频带的中心频率的波长,R是提供最大功率效率的功率放大器的选定输出阻抗。此外,该网络包括两个补偿电抗。即电容器C125和电感器L135,他们用于将高效率的区域扩展为包括较低输出级。所述传输线路在连接点160中进行连接,输出端165将所述输出信号sout的从连接点160传导到负载RL170。变换后的负载RL170等于所有功率放大器的最佳负载并联,即RL=R/2。As shown in FIG. 1, the power amplifiers 120, 130 are connected to an output combining network 150, which includes two transmission lines 140, 145 having an electrical length λ/4 and an impedance R, where λ represents the operating position of the power amplifier The wavelength of the center frequency of the frequency band, R is the selected output impedance of the power amplifier that provides maximum power efficiency. In addition, the network includes two compensating reactances. Namely, capacitor C125 and inductor L135, which are used to extend the high efficiency region to include the lower output stage. The transmission line is connected in a connection point 160 from which an output 165 conducts the output signal sout to a loadRL 170 . The transformed loadRL 170 is equal to the optimal load parallel connection of all power amplifiers, ieRL = R/2.
图1中的输出组合网络不仅将幅度调制重新插入到信号中,而且它还提供对呈献给每个功率放大器(异相)的阻抗的动态调整。阻抗的这种异相调整使得通过每个有源设备的直流功耗随着组合后的输出幅度的减小而减小,由此在输出信号的幅度在某个较小值的附近时,功放也能保持较高效率。The output combining network in Figure 1 not only reinserts amplitude modulation into the signal, but it also provides dynamic adjustment of the impedance presented to each power amplifier (out of phase). This out-of-phase adjustment of the impedance causes the DC power dissipation through each active device to decrease as the combined output amplitude decreases, whereby the power amplifier Higher efficiency can also be maintained.
实施例一、Embodiment one,
本发明实施例提供一种Linc功放合路电路300,具体如图3所示,所述Linc功放合路电路300包括异相调制器301、第一功率放大器302、第二功率放大器303、第一调整电路304、第二调整电路305、混合电桥合路器306、输出电路307、无源微波电路308。The embodiment of the present invention provides a Linc power amplifier combination circuit 300, specifically as shown in FIG. An adjustment circuit 304 , a second adjustment circuit 305 , a hybrid bridge combiner 306 , an output circuit 307 , and a passive microwave circuit 308 .
其中,所述第一功率放大器302和所述第二功率放大器303分别连接于所述异相调制器301的两个输出端与所述第一调整电路304、所述第二调整电路305之间,所述第一调整电路304和所述第二调整电路305还分别与所述混合电桥合路器306的两个输入端相连,所述输出电路307和所述无源微波电路308分别与所述混合电桥合路器306的同相输出端、异相输出端相连。Wherein, the first power amplifier 302 and the second power amplifier 303 are respectively connected between the two output terminals of the out-of-phase modulator 301 and the first adjustment circuit 304 and the second adjustment circuit 305 , the first adjustment circuit 304 and the second adjustment circuit 305 are also respectively connected to the two input terminals of the hybrid bridge combiner 306, and the output circuit 307 and the passive microwave circuit 308 are respectively connected to The in-phase output terminal and the out-of-phase output terminal of the hybrid bridge combiner 306 are connected.
所述第一调整电路304、所述第二调整电路305、所述输出电路307与所述无源微波电路308配合作用,以使得所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度小于第一阈值时,存在新的效率极值点。The first adjustment circuit 304, the second adjustment circuit 305, the output circuit 307 cooperate with the passive microwave circuit 308, so that the first power amplifier 302 and the second power amplifier 303 When the amplitude of the output signal is smaller than the first threshold, there is a new extreme point of efficiency.
具体的,如图3所示,信号sin经由所述异相调制器301的输入端输入,sin的信号强度表示为分别位于异相调制器301输出端的两个输出信号s1和s2之间的相位差。当信号s1和s2分别经过所述第一功率放大器302、所述第二功率放大器303的放大,再分别经过所述第一调整电路304、所述第二调整电路305的相位调整和阻抗匹配后,再分别经过1端和2端进入所述混合电桥合路器306,经过所述混合电桥合路器306的合路后,所述Linc功放合路电路中的同相信号经过所述输出电路307输出,而由于无源微波电路308的存在,非同相的信号则在非隔离端3处部分或全部被反射回去,使得在所述无源微波电路308与所述第一调整电路304、所述第二调整电路305、所述输出电路307的配合作用下,所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度小于第一阈值时,存在新的效率极值点,即可使所述第一功率放大器和所述第二功率放大器在输出信号的幅度在某个较小值的附近时,功放也能保持较高效率。Specifically, as shown in FIG. 3 , the signal sin is input through the input terminal of the out-of-phase modulator 301, and thesignal strength of sin is expressed as between the two output signalss1 ands2 respectively located at the output terminal of the out-of-phase modulator 301 phase difference between them. When the signalss1 ands2 are respectively amplified by the first power amplifier 302 and the second power amplifier 303, and then respectively passed through the phase adjustment and impedance adjustment of the first adjustment circuit 304 and the second adjustment circuit 305 After matching, enter the hybrid bridge combiner 306 through the 1 terminal and the 2 terminal respectively, after the combination of the hybrid bridge combiner 306, the in-phase signal in the Linc power amplifier combining circuit passes through The output circuit 307 outputs, and due to the existence of the passive microwave circuit 308, the non-in-phase signal is partially or completely reflected back at the non-isolated terminal 3, so that between the passive microwave circuit 308 and the first adjustment Under the cooperation of the circuit 304, the second adjustment circuit 305, and the output circuit 307, when the amplitudes of the output signals of the first power amplifier 302 and the second power amplifier 303 are smaller than the first threshold, there is a new The efficiency extreme point means that when the amplitude of the output signal of the first power amplifier and the second power amplifier is near a certain smaller value, the power amplifiers can also maintain relatively high efficiency.
需要说明的是,在现有的采用匹配的混合电桥的Linc功放技术中,因为仅在功率放大器输出信号的幅度为最大幅度值附近的某个值时存在一个效率极值点,所以所述功率放大器除了在最大幅度点附近的输出幅度点时对应的功放的效率较高之外,输出幅度较小点对应的功放的效率一般较低。而本发明中,通过所述无源微波电路308、所述输出电路307与所述第一调整电路304、所述第二调整电路305的配合作用下,可以使得所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度小于第一阈值时,存在新的效率极值点。进而,因为存在新的效率极值点,所以在所述新的效率极值点与所述最大幅度点附近处的效率极值点之间存在一个较高效率的区域,使得所述第一功率放大器302和所述第二功率放大器303在输出信号的幅度在某个较小值的附近时,功放也能保持较高效率。It should be noted that, in the existing Linc power amplifier technology using a matched hybrid bridge, there is an efficiency extreme point only when the amplitude of the power amplifier output signal is a certain value near the maximum amplitude value, so the In addition to the higher efficiency of the power amplifier corresponding to the output amplitude point near the maximum amplitude point of the power amplifier, the efficiency of the power amplifier corresponding to the smaller output amplitude point is generally lower. However, in the present invention, the first power amplifier 302 and the second adjustment circuit 305 can be made When the amplitude of the output signal of the second power amplifier 303 is smaller than the first threshold, there is a new extreme point of efficiency. Furthermore, because there is a new efficiency extreme point, there is a higher efficiency region between the new efficiency extreme point and the efficiency extreme point near the maximum amplitude point, so that the first power When the amplitude of the output signal of the amplifier 302 and the second power amplifier 303 is near a certain small value, the power amplifier can also maintain relatively high efficiency.
其中,所述“小于第一阈值”是为了保证在输出信号的幅度较小时也能存在新的效率极值点,本发明实施例对所述第一阈值不作具体限定。Wherein, the "less than the first threshold" is to ensure that a new extreme point of efficiency exists even when the amplitude of the output signal is small, and the embodiment of the present invention does not specifically limit the first threshold.
需要说明的是,所述“新的效率极值点”仅是理论的提法,实际电路由于品质因数等原因,可能不存在该极值点,而只存在最大幅度附近处的效率极值点。但一般情况下会存在该“新的效率极值点”所导致的效率曲线的一个“上凸”或“拱起”,使得效率在较大范围内高于普通的没有“新的效率极值点”的设计。It should be noted that the "new extreme point of efficiency" is only a theoretical formulation. Due to the quality factor and other reasons, the actual circuit may not have this extreme point, but only the efficiency extreme point near the maximum amplitude. . But in general, there will be a "convex" or "arch" of the efficiency curve caused by the "new efficiency extreme point", making the efficiency higher than the ordinary one without "new efficiency extreme point" in a large range point" design.
本发明实施例所述的一种Linc功放合路电路300,首次将Hybridcombiner(混合电桥合路器)用于Linc类功放的非隔离合路,通过所述第一调整电路、所述第二调整电路、与所述无源微波电路、所述输出电路的配合作用,使得可以利用负载牵引提高两路功放的效率,即可使所述第一功率放大器和所述第二功率放大器在输出信号的幅度在某个较小值的附近时,功放也能保持较高效率。同时所述Linc功放合路电路中,所述第一调整电路、所述第二调整电路、所述输出电路与所述无源微波电路设计灵活,并且该Linc功放合路电路中存在单独的电桥隔离端,使得可以对信号中失配的部分进行耦合采样以使用数字增强技术。A kind of Linc power amplifier combination circuit 300 described in the embodiment of the present invention uses Hybridcombiner (hybrid bridge combiner) for the non-isolated combination circuit of Linc type power amplifier for the first time, through the first adjustment circuit, the second The adjustment circuit, the cooperation with the passive microwave circuit and the output circuit make it possible to use load pull to improve the efficiency of the two power amplifiers, that is, to make the first power amplifier and the second power amplifier output signal When the magnitude of is around a small value, the power amplifier can also maintain a high efficiency. At the same time, in the Linc power amplifier combination circuit, the design of the first adjustment circuit, the second adjustment circuit, the output circuit and the passive microwave circuit is flexible, and there is a separate circuit in the Linc power amplifier combination circuit. The bridge isolates the terminals, allowing coupled sampling of mismatched portions of the signal to use digital enhancement techniques.
特别的,所述无源微波电路308具体可以包括:微带线,其中所述微带线的电长度由所述新的效率极值点,以及所述第一调整电路与所述第二调整电路确定。In particular, the passive microwave circuit 308 may specifically include: a microstrip line, wherein the electrical length of the microstrip line is determined by the new efficiency extreme point, and the first adjustment circuit and the second adjustment circuit The circuit is OK.
所述无源微波电路与混合电桥合路器的异相输出端相连具体可以包括:The connection between the passive microwave circuit and the out-of-phase output of the hybrid bridge combiner may specifically include:
所述微带线与混合电桥合路器的异相输出端相连。The microstrip line is connected to the out-of-phase output terminals of the hybrid bridge combiner.
其中,所述微带线可以是开路,也可以接地,本发明实施例对此不作具体限定。Wherein, the microstrip line may be an open circuit or grounded, which is not specifically limited in this embodiment of the present invention.
需要说明的是,所述第一调整电路、所述第二调整电路、所述输出电路的设计也尤为重要,但是这些电路的设计方法可参考如图2所示的现有技术中电路A、电路B、电路C的设计方法,本发明实施例对此不再赘述。It should be noted that the design of the first adjustment circuit, the second adjustment circuit, and the output circuit is also particularly important, but the design methods of these circuits can refer to the circuit A in the prior art shown in Figure 2, The design methods of circuit B and circuit C will not be described in detail in this embodiment of the present invention.
具体的,如图4所示,这里示例性的给出一种Linc功放合路电路的具体设计图,其中,所述第一调整电路304由微带线A和电容C构成,所述第二调整电路305由微带线B与电感L构成,所述无源微波电路308由微带线D构成,其中,所述微带线D开路,所述微带线A、所述微带线B、所述微带线D的电长度分别为δ、λ/4+δ、k*λ/2+λ/4)δ,其中,0≤δ≤λ/4,k=0(1(2(3,…。Specifically, as shown in FIG. 4 , a specific design diagram of a Linc power amplifier combination circuit is exemplarily given here, wherein the first adjustment circuit 304 is composed of a microstrip line A and a capacitor C, and the second The adjustment circuit 305 is composed of a microstrip line B and an inductor L, and the passive microwave circuit 308 is composed of a microstrip line D, wherein the microstrip line D is open, and the microstrip line A and the microstrip line B , The electrical lengths of the microstrip line D are respectively δ, λ/4+δ, k*λ/2+λ/4)δ, wherein, 0≤δ≤λ/4, k=0(1(2( 3,...
在如图4所示的Linc功放合路电路中,所述第一调整电路304、所述第二调整电路305、所述输出电路307与所述无源微波电路308配合作用,使得所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度小于第一阈值时,存在新的效率极值点,即可以使得在所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度在某个较小值的附近时,功放也能保持较高效率。In the Linc power amplifier combination circuit shown in Figure 4, the first adjustment circuit 304, the second adjustment circuit 305, the output circuit 307 cooperate with the passive microwave circuit 308, so that the first When the amplitudes of the output signals of the first power amplifier 302 and the second power amplifier 303 are smaller than the first threshold, there is a new extreme point of efficiency, that is, the first power amplifier 302 and the second power amplifier 303 When the amplitude of the output signal is near a small value, the power amplifier can also maintain a high efficiency.
可选的,如图5所示,本发明实施例还给出一种Linc功放合路电路的具体设计方案,其中,所述第一调整电路304由微带线A和电容C构成,所述第二调整电路305由微带线B与电感L构成,所述无源微波电路308由微带线D+第一电阻R1构成,其中,所述第一电阻R1的一端与微带线D相连,另一端接地,所述第一电阻大于第二阈值,以使得所述微带线近似开路。Optionally, as shown in FIG. 5 , the embodiment of the present invention also provides a specific design scheme of a Linc power amplifier combination circuit, wherein the first adjustment circuit 304 is composed of a microstrip line A and a capacitor C, and the The second adjustment circuit 305 is composed of a microstrip line B and an inductor L, and the passive microwave circuit 308 is composed of a microstrip line D+a first resistor R1, wherein one end of the first resistor R1 is connected to the microstrip line D, The other end is grounded, and the first resistance is greater than the second threshold, so that the microstrip line is approximately open.
其中,所述微带线A、所述微带线B、所述微带线D的电长度分别为δ、λ/4+δ、k*λ/2+λ/4)δ,其中,0≤δ≤λ/4,k=0(1(2(3,…。Wherein, the electrical lengths of the microstrip line A, the microstrip line B, and the microstrip line D are respectively δ, λ/4+δ, k*λ/2+λ/4)δ, where 0 ≤δ≤λ/4, k=0(1(2(3, . . .
需要说明的是,所述第二阈值是为了保证所述微带线通过所述第一电阻接地后可以近似开路,对所述第二阈值的大小不作具体限定。It should be noted that the second threshold is to ensure that the microstrip line can be approximately open-circuited after being grounded through the first resistor, and the size of the second threshold is not specifically limited.
图4所示的Linc功放合路电路和图5所示的Linc功放合路电路仅是在微带线开路的实现方式上有所不同,本发明实施例对所述图5所示的Linc功放合路电路就不再赘述,具体可参考图4所示的Linc功放合路电路的描述。The Linc power amplifier combination circuit shown in Figure 4 and the Linc power amplifier combination circuit shown in Figure 5 are only different in the implementation of the microstrip line open circuit. The combining circuit will not be described in detail, and details may refer to the description of the Linc power amplifier combining circuit shown in FIG. 4 .
可选的,如图6所示,本发明实施例还给出一种Linc功放合路电路的具体设计方案,其中,图6所示的Linc功放合路电路中与图4所示的Linc功放合路电路的区别仅在于,在图6所示的Linc功放合路电路中,无源微波电路308具体为微带线接地,相当于微带线短路。而图4所示的Linc功放合路电路中,无源微波电路308具体为微带线开路,当然,因为电路设计的改变,图6所示的Linc功放合路电路中,微带线A、微带线B、微带线D的电长度也发生改变,分别为δ,、λ/4+δ,、k*λ/2+λ/4)δ,,其中,0≤δ,≤λ/4,k=0(1(2(3,…。Optionally, as shown in FIG. 6, the embodiment of the present invention also provides a specific design scheme of a Linc power amplifier combining circuit, wherein, the Linc power amplifier combining circuit shown in FIG. 6 is the same as the Linc power amplifier shown in FIG. The difference of the combiner circuit is only that, in the Linc power amplifier combiner circuit shown in FIG. 6 , the passive microwave circuit 308 is specifically a grounded microstrip line, which is equivalent to a short circuit of the microstrip line. In the Linc power amplifier combining circuit shown in Figure 4, the passive microwave circuit 308 is specifically a microstrip line open circuit, of course, because of the change in circuit design, in the Linc power amplifier combining circuit shown in Figure 6, the microstrip line A, The electrical lengths of microstrip line B and microstrip line D also change, respectively δ, , λ/4+δ, , k*λ/2+λ/4)δ, , where, 0≤δ, ≤λ/ 4, k=0(1(2(3, . . .
其中,所述第一调整电路304、所述第二调整电路305、所述输出电路307与所述无源微波电路308配合作用,使得所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度小于第一阈值时,存在新的效率极值点,即可以使得在所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度在某个较小值的附近时,功放也能保持较高效率。Wherein, the first adjustment circuit 304, the second adjustment circuit 305, the output circuit 307 cooperate with the passive microwave circuit 308, so that the first power amplifier 302 and the second power amplifier 303 When the amplitude of the output signal of the first power amplifier 302 and the second power amplifier 303 is smaller than the first threshold, there is a new extreme point of efficiency, that is, the amplitude of the output signal of the first power amplifier 302 and the second power amplifier 303 can be at a certain smaller value When near, the power amplifier can also maintain high efficiency.
需要说明的是,图4、图5、图6中所涉及的微带线的电长度可以是根据所述新的效率极值点的位置,以及第一调整电路与第二调整电路中微带线的电长度,经过电路仿真以及实际模拟后确定的,本发明实施例对此不作具体限定,仅给出Linc功放合路电路的两种具体设计方案。It should be noted that the electrical lengths of the microstrip lines involved in Fig. 4, Fig. 5, and Fig. 6 can be based on the position of the new efficiency extreme point, and the microstrip line in the first adjustment circuit and the second adjustment circuit The electrical length of the line is determined after circuit simulation and actual simulation. The embodiment of the present invention does not specifically limit this, and only provides two specific design schemes of the Linc power amplifier combining circuit.
需要说明的是,图4、图5、图6给出的电路还有其它的等效形式,比如电容C用某一电长度的微带线替换等,本发明实施例对此不作具体限定,关键在于等效的电长度一致即可。It should be noted that the circuits shown in Figure 4, Figure 5, and Figure 6 have other equivalent forms, such as replacing the capacitor C with a microstrip line of a certain electrical length, etc., which are not specifically limited in the embodiment of the present invention. The key is that the equivalent electrical length is the same.
针对上述实施例的描述,本发明实施例示例性的给出三种仿真结果,分别如图7、图8、图9所示。其中,Regarding the description of the above embodiments, the embodiment of the present invention exemplarily provides three kinds of simulation results, as shown in FIG. 7 , FIG. 8 , and FIG. 9 respectively. in,
图7所示的仿真一为利用图2所示的现有技术中采用匹配的hybird电桥的Linc功放技术的电路框图仿真得出的相位)效率图;The simulation one shown in Fig. 7 is the phase (phase) efficiency figure that utilizes the circuit block diagram simulation of the Linc power amplifier technology of the hybrid electric bridge that adopts matching in the prior art shown in Fig. 2;
图8所示的仿真二为利用图3所示的本发明提供的Linc功放合路电路仿真得出的相位)效率图;Simulation two shown in Fig. 8 is the phase) efficiency figure that utilizes the Linc power amplifier combination circuit simulation that the present invention provides shown in Fig. 3 to draw;
图9所示的仿真三为在仿真二的基础上,不恰当的无源微波电路的设计最终仿真出的相位)效率图。Simulation 3 shown in FIG. 9 is a phase (phase) efficiency diagram finally simulated based on simulation 2 and the design of an inappropriate passive microwave circuit.
下面对这三种仿真分别进行说明:The three simulations are described below:
仿真一:结合图2所示的电路框图,所述第一功率放大器和所述第二功率放大器采用理想的B类功率放大器模型;两路异相信号的相位角相对于合成信号相位角的夹角的补角为theta(其中,theta从0度扫描到90度,如图7所示,当混合电桥合路器的异相输出端实现了良好的隔离匹配时,两路功放的输出阻抗不随theta的变化而变化,说明两路功放的负载是稳定的,不会随着信号的变化而变化,当theta越小时,浪费到隔离端负载上的功率越大。Simulation 1: in combination with the circuit block diagram shown in Figure 2, the first power amplifier and the second power amplifier adopt an ideal class B power amplifier model; the phase angle of the two out-of-phase signals relative to the composite signal phase angle The supplementary angle of the angle is theta (wherein, theta sweeps from 0 degrees to 90 degrees, as shown in Figure 7, when the out-of-phase output terminals of the hybrid bridge combiner achieve good isolation matching, the output impedance of the two power amplifiers It does not change with the change of theta, indicating that the load of the two power amplifiers is stable and will not change with the change of the signal. When the theta is smaller, the power wasted on the isolated load is greater.
需要说明的是,该仿真仅是一个理想状态下的特例,对于实际功率放大器以及其它类型的功率放大器,反射系数曲线和效率曲线可能不完全相同,但不影响隔离匹配原理和效果的普遍性。It should be noted that this simulation is only a special case under ideal conditions. For actual power amplifiers and other types of power amplifiers, the reflection coefficient curve and efficiency curve may not be exactly the same, but this does not affect the universality of the isolation matching principle and effect.
仿真二:结合图3所示的电路框图,所述第一功率放大器和所述第二功率放大器采用理想的B类功率放大器模型;两路异相信号的相位角相对于合成信号相位角的夹角的补角为theta(其中,theta从0度扫描到90度,如图8所示,当混合电桥合路器的异相输出端实现非隔离匹配时,左侧的仿真结果显示,两路功放的输出阻抗随着theta的变化而变化,一部分theta张角对应的阻抗曲线更加接近理想功放的高效率区域(实轴及其附近),说明两路功放的负载是不稳定的,而右侧的仿真结果显示,当theta在20度附近时,出现新的效率极值点,theta为20)90度之间的值时,功放的效率便一直处于70%左右,说明相互之间的负载牵引作用使得功率放大器工作在高效率状态。Simulation two: in combination with the circuit block diagram shown in Figure 3, the first power amplifier and the second power amplifier adopt an ideal class B power amplifier model; the phase angle of the two out-of-phase signals relative to the composite signal phase angle The supplementary angle of the angle is theta (wherein, theta sweeps from 0 to 90 degrees, as shown in Figure 8, when the out-of-phase output terminals of the hybrid bridge combiner realize non-isolated matching, the simulation results on the left show that the two The output impedance of the two-way power amplifier changes with the change of theta, and part of the impedance curve corresponding to the theta angle is closer to the high-efficiency region of the ideal power amplifier (real axis and its vicinity), indicating that the load of the two-way power amplifier is unstable, while the right The simulation results on the side show that when theta is around 20 degrees, a new extreme point of efficiency appears, and when theta is between 20) and 90 degrees, the efficiency of the power amplifier is always around 70%, indicating that the mutual load The pulling effect makes the power amplifier work in a high-efficiency state.
同样,需要说明的是该仿真仅是一个理想状态下的特例,对于实际的功率放大器以及其它类型的功率放大器,反射系数曲线可能不完全相同,但不影响Hybird非隔离匹配以及导致有源负载牵引的原理和效果的普遍性。Also, it should be noted that this simulation is only a special case under ideal conditions. For actual power amplifiers and other types of power amplifiers, the reflection coefficient curves may not be exactly the same, but it will not affect the non-isolated matching of Hybrid and cause active load pull Universality of principles and effects.
通过图7所示的仿真一的仿真结果和图8所示的仿真二的仿真结果的对比,也直观的反映出本发明实施例中的Linc功放合路电路可以利用负载牵引提高功放的效率。The comparison between the simulation results of simulation 1 shown in FIG. 7 and the simulation results of simulation 2 shown in FIG. 8 also intuitively reflects that the Linc power amplifier combining circuit in the embodiment of the present invention can improve the efficiency of the power amplifier by using load pull.
仿真三:在上述仿真二的基础上,将所述无源微波电路的设计进行了一定变化,从图9的仿真结果可以看到,不恰当的无源微波电路的设计,使得非隔离匹配产生的有源负载牵引相对于仿真一的隔离匹配并没有明显的效果。Simulation 3: On the basis of the above simulation 2, the design of the passive microwave circuit has been changed to a certain extent. From the simulation results in Figure 9, it can be seen that the inappropriate design of the passive microwave circuit causes non-isolated matching to occur The active load-pull has no significant effect on the isolation matching of Simulation 1.
通过图8所示的仿真二的仿真结果和图9所示的仿真三的仿真结果的对比,也直观的反映出无源微波电路的设计不必然导致高效率的负载牵引效果,需要根据具体功率放大器的高效率区域的位置,然后设计所述第一调整电路304、所述第二调整电路305、以及无源微波电路308和输出电路307的对应设计,使得无源微波电路308的非隔离匹配导致的有源负载牵引将所述第一功率放大器302和所述第二功率放大器303牵引到高效率的工作状态。Through the comparison of the simulation results of simulation 2 shown in Figure 8 and the simulation results of simulation 3 shown in Figure 9, it is also intuitively reflected that the design of passive microwave circuits does not necessarily lead to high-efficiency load-pull effects. The position of the high-efficiency region of the amplifier, and then design the corresponding design of the first adjustment circuit 304, the second adjustment circuit 305, and the passive microwave circuit 308 and the output circuit 307, so that the non-isolated matching of the passive microwave circuit 308 The resulting active load pull pulls the first power amplifier 302 and the second power amplifier 303 into a high efficiency operating state.
进一步的,所述Linc功放合路电路还包括耦合采样电路,数字域电路。Further, the Linc power amplifier combining circuit also includes a coupling sampling circuit and a digital domain circuit.
其中,所述数字域电路包含所述异相调制器、所述耦合采样电路连接于所述混合电桥合路器的异相输出端与所述数字域电路之间,所述数字域电路的输出端分别与所述第一功率放大器、所述第二功率放大器相连。Wherein, the digital domain circuit includes the out-of-phase modulator, the coupling sampling circuit is connected between the out-of-phase output terminal of the hybrid bridge combiner and the digital domain circuit, and the digital domain circuit The output ends are respectively connected with the first power amplifier and the second power amplifier.
所述耦合采样电路,用于检测所述Linc功放合路电路中的异相合路信号。The coupling sampling circuit is used to detect out-of-phase combining signals in the Linc power amplifier combining circuit.
所述数字域电路,用于根据所述耦合采样电路采集到的所述异相合路信号,对输入所述第一功率放大器和所述第二功率放大器的信号做数字预处理,以使得达到数字增强效果。The digital domain circuit is configured to perform digital preprocessing on the signals input to the first power amplifier and the second power amplifier according to the out-of-phase combined signal collected by the coupling sampling circuit, so as to achieve digital Enhancement.
具体的,如图10所示,本发明实施例还提供一种Linc功放合路电路300,所述Linc功放合路电路300包括异相调制器301、第一功率放大器302、第二功率放大器303、第一调整电路304、第二调整电路305、混合电桥合路器306、输出电路307、无源微波电路308、耦合采样电路309、数字域电路310。Specifically, as shown in FIG. 10 , the embodiment of the present invention also provides a Linc power amplifier combination circuit 300, the Linc power amplifier combination circuit 300 includes an out-of-phase modulator 301, a first power amplifier 302, and a second power amplifier 303 , a first adjustment circuit 304 , a second adjustment circuit 305 , a hybrid bridge combiner 306 , an output circuit 307 , a passive microwave circuit 308 , a coupling sampling circuit 309 , and a digital domain circuit 310 .
其中,所述第一功率放大器302和所述第二功率放大器303分别连接于所述异相调制器301的两个输出端与所述第一调整电路304、所述第二调整电路305之间,所述第一调整电路304和所述第二调整电路305还分别与所述混合电桥合路器306的两个输入端相连,所述输出电路307和所述无源微波电路308分别与所述混合电桥合路器306的同相输出端、异相输出端相连,所述耦合采样电路309连接于所述数字域电路310与所述混合电桥合路器306的异相输出端之间,所述数字域电路310的输出端分别与所述第一功率放大器302、所述第二功率放大器303相连。Wherein, the first power amplifier 302 and the second power amplifier 303 are respectively connected between the two output terminals of the out-of-phase modulator 301 and the first adjustment circuit 304 and the second adjustment circuit 305 , the first adjustment circuit 304 and the second adjustment circuit 305 are also respectively connected to the two input terminals of the hybrid bridge combiner 306, and the output circuit 307 and the passive microwave circuit 308 are respectively connected to The non-phase output terminal and the out-of-phase output terminal of the hybrid bridge combiner 306 are connected, and the coupling sampling circuit 309 is connected between the digital domain circuit 310 and the out-of-phase output terminal of the hybrid bridge combiner 306 , the output terminals of the digital domain circuit 310 are connected to the first power amplifier 302 and the second power amplifier 303 respectively.
具体的,如图10所示,信号sin经由所述异相调制器301的输入端输入,sin的信号强度表示为分别位于所述异相调制器301输出端的两个输出信号s1和s2之间的相位差。当信号s1和s2分别经过所述第一功率放大器302、所述第二功率放大器303的放大,再分别经过所述第一调整电路304、所述第二调整电路305的相位调整和阻抗匹配后,再分别经过1端和2端进入所述混合电桥合路器306,经过所述混合电桥合路器306的合路后,所述Linc功放合路电路中的同相信号经过所述输出电路307输出,而由于所述无源微波电路308的存在,非同相的信号则在非隔离端3处部分或全部被反射回去,使得在所述无源微波电路308与所述第一调整电路304、所述第二调整电路305、所述输出电路307的配合作用下,所述第一功率放大器302和所述第二功率放大器303的输出信号的幅度小于第一阈值时,存在新的效率极值点,即可使所述第一功率放大器和所述第二功率放大器在输出信号的幅度在某个较小值的附近时,功放也能保持较高效率。Specifically, as shown in FIG. 10, the signalsin is input through the input terminal of the out-of-phase modulator 301, and the signal strength ofsin is expressed as two output signalss1 and The phase difference between s2 . When the signalss1 ands2 are respectively amplified by the first power amplifier 302 and the second power amplifier 303, and then respectively passed through the phase adjustment and impedance adjustment of the first adjustment circuit 304 and the second adjustment circuit 305 After matching, enter the hybrid bridge combiner 306 through the 1 terminal and the 2 terminal respectively, after the combination of the hybrid bridge combiner 306, the in-phase signal in the Linc power amplifier combining circuit passes through The output circuit 307 outputs, and due to the existence of the passive microwave circuit 308, the non-in-phase signal is partially or completely reflected back at the non-isolated terminal 3, so that between the passive microwave circuit 308 and the first Under the cooperation of an adjustment circuit 304, the second adjustment circuit 305, and the output circuit 307, when the amplitudes of the output signals of the first power amplifier 302 and the second power amplifier 303 are smaller than the first threshold, there is The new extreme point of efficiency means that when the output signal amplitudes of the first power amplifier and the second power amplifier are near a certain smaller value, the power amplifiers can also maintain relatively high efficiency.
同时,所述耦合采样电路309在非隔离端3处采集该Linc功放合路电路中两路功放的异相合路信号,所述数字域电路310根据所述耦合采样电路309采集到的所述异相合路信号,对输入所述第一功率放大器302和所述第二功率放大器303的信号做数字预处理,以使得达到数字增强效果。At the same time, the coupling sampling circuit 309 collects the out-of-phase combining signals of the two power amplifiers in the Linc power amplifier combining circuit at the non-isolated terminal 3, and the digital domain circuit 310 collects the out-of-phase combining signals according to the coupling sampling circuit 309. Combined signals, performing digital pre-processing on the signals input to the first power amplifier 302 and the second power amplifier 303, so as to achieve a digital enhancement effect.
需要说明的是,所述根据所述耦合采样电路309采集到的所述异相合路信号,对输入所述第一功率放大器302和所述第二功率放大器303的信号做数字预处理具体可以包括:It should be noted that, according to the out-of-phase combining signal collected by the coupling sampling circuit 309, performing digital preprocessing on the signals input to the first power amplifier 302 and the second power amplifier 303 may specifically include :
根据所述耦合采样电路309采集到的所述异相合路信号,调整所述Linc功放合路电路的输入信号分解的幅度或夹角,进而使得所述第一功率放大器302和所述第二功率放大器303的输入信号发生改变,以达到数字增强效果,进一步提高所述功放合路电路的效率。例如:According to the out-of-phase combination signal collected by the coupling sampling circuit 309, the amplitude or included angle of the input signal decomposition of the Linc power amplifier combination circuit is adjusted, so that the first power amplifier 302 and the second power amplifier 302 The input signal of the amplifier 303 is changed to achieve a digital enhancement effect and further improve the efficiency of the power amplifier combining circuit. For example:
若根据所述耦合采样电路309采集到的所述异相合路信号分析所述Linc功放合路电路的输入信号分解的夹角较大,则所述异相调制器301在进行信号分解时,可以降低分解的幅度或减小分解的夹角,本发明实施例对此不作具体限定。If the input signal decomposition angle of the Linc power amplifier combining circuit analyzed according to the out-of-phase combining signal collected by the coupling sampling circuit 309 is relatively large, then the out-of-phase modulator 301 can decompose the signal. Decreasing the range of decomposition or reducing the included angle of decomposition is not specifically limited in this embodiment of the present invention.
或者or
所述根据所述耦合采样电路309采集到的所述异相合路信号,对输入所述第一功率放大器302和所述第二功率放大器303的信号做数字预处理具体还可以包括:The digital preprocessing of the signals input to the first power amplifier 302 and the second power amplifier 303 according to the out-of-phase combining signal collected by the coupling sampling circuit 309 may specifically include:
根据所述耦合采样电路309采集到的所述异相合路信号,调整所述Linc功放合路电路的输入信号,进而使得所述第一功率放大器302和所述第二功率放大器303的输入信号发生改变,以达到数字增强效果,进一步提高所述功放合路电路的效率。例如:According to the out-of-phase combination signal collected by the coupling sampling circuit 309, the input signal of the Linc power amplifier combination circuit is adjusted, so that the input signals of the first power amplifier 302 and the second power amplifier 303 are generated Change, in order to achieve the effect of digital enhancement, and further improve the efficiency of the combined circuit of the power amplifier. For example:
若根据所述耦合采样电路309采集到的所述异相合路信号分析所述Linc功放合路电路的输入信号分解的夹角较大,则可以减小所述Linc功放合路电路的输入信号的相位角。If the included angle of the input signal decomposition of the Linc power amplifier combination circuit analyzed according to the out-of-phase combination signal collected by the coupling sampling circuit 309 is relatively large, then the input signal of the Linc power amplifier combination circuit can be reduced. phase angle.
需要说明的是,上述仅是示例性的给出两种根据所述耦合采样电路309采集到的所述异相合路信号,对输入所述第一功率放大器302和所述第二功率放大器303的信号做数字预处理的方法,此两种方法对应不同的数字域电路310的具体设计,当然,还可能存在其它根据所述耦合采样电路309采集到的所述异相合路信号,对输入所述第一功率放大器302和所述第二功率放大器303的信号做数字预处理的方法,对应相应的数字域电路310的具体设计,本发明实施例对此不再赘述,仅说明所述数字域电路310用于根据所述耦合采样电路采集到的所述异相合路信号,对输入所述第一功率放大器和所述第二功率放大器的信号做数字预处理,以使得达到数字增强效果。It should be noted that, the above is only an example of the two out-of-phase combined signals collected by the coupling sampling circuit 309, the input to the first power amplifier 302 and the second power amplifier 303 Signal digital preprocessing method, these two methods correspond to the specific design of different digital domain circuit 310, of course, there may also be other said out-of-phase combining signals collected according to said coupling sampling circuit 309, for inputting said The method for digitally preprocessing the signals of the first power amplifier 302 and the second power amplifier 303 corresponds to the specific design of the corresponding digital domain circuit 310, which will not be described in detail in this embodiment of the present invention, and only the digital domain circuit will be described. 310 is configured to perform digital preprocessing on signals input to the first power amplifier and the second power amplifier according to the out-of-phase combined signal collected by the coupling sampling circuit, so as to achieve a digital enhancement effect.
具体的,所述耦合采样电路包括第二电阻,其中,所述第二电阻用于调节进入所述耦合采样电路的电压、电流的配比。Specifically, the coupled sampling circuit includes a second resistor, wherein the second resistor is used to adjust the ratio of voltage and current entering the coupled sampling circuit.
当然,也可能通过其它的电路设计调节进入所述耦合采样电路的电压、电流的配比,本发明实施例对此不作具体限定。Of course, it is also possible to adjust the ratio of the voltage and current entering the coupling sampling circuit through other circuit designs, which is not specifically limited in this embodiment of the present invention.
需要说明的是,上述基于理想B类放大器的实施例的描述,同样适用于实际的B类或非B类放大器的设计。It should be noted that the above description based on the ideal class B amplifier is also applicable to the design of actual class B or non-class B amplifiers.
本发明实施例提供一种Linc功放合路电路,所述Linc功放合路电路包括异相调制器、第一功率放大器、第二功率放大器、第一调整电路、第二调整电路、混合电桥合路器、输出电路、无源微波电路;其中,所述第一功率放大器和所述第二功率放大器分别连接于所述异相调制器的两个输出端与所述第一调整电路、所述第二调整电路之间,所述第一调整电路和所述第二调整电路还分别与混合电桥合路器的两个输入端相连,所述输出电路和所述无源微波电路分别与所述混合电桥合路器的同相输出端、异相输出端相连。An embodiment of the present invention provides a Linc power amplifier combination circuit, the Linc power amplifier combination circuit includes an out-of-phase modulator, a first power amplifier, a second power amplifier, a first adjustment circuit, a second adjustment circuit, a hybrid bridge combination circuit, an output circuit, and a passive microwave circuit; wherein, the first power amplifier and the second power amplifier are respectively connected to the two output terminals of the out-of-phase modulator and the first adjustment circuit, the Between the second adjustment circuits, the first adjustment circuit and the second adjustment circuit are respectively connected to the two input ends of the hybrid bridge combiner, and the output circuit and the passive microwave circuit are respectively connected to the The in-phase output terminal and the out-of-phase output terminal of the hybrid bridge combiner are connected.
基于上述实施例的描述,本发明首次将混合电桥合路器用于Linc类功放的非隔离合路,通过所述第一调整电路、所述第二调整电路、所述输出电路与所述无源微波电路的配合作用,使得可以利用负载牵引提高两路功放的效率,即可使所述第一功率放大器和所述第二功率放大器在输出信号的幅度在某个较小值的附近时,功放也能保持较高效率,同时所述Linc功放合路电路中,所述第一调整电路、所述第二调整电路、所述输出电路与所述无源微波电路设计灵活,并且该Linc功放合路电路中存在单独的电桥隔离端,使得可以对信号中失配的部分进行耦合采样以使用数字增强技术。Based on the description of the above embodiments, the present invention uses the hybrid bridge combiner for the non-isolated combination of the Linc type power amplifier for the first time, through the first adjustment circuit, the second adjustment circuit, the output circuit and the wireless The cooperation of the source microwave circuit makes it possible to use load pull to improve the efficiency of the two power amplifiers, that is, when the amplitude of the output signal of the first power amplifier and the second power amplifier is near a certain smaller value, The power amplifier can also maintain relatively high efficiency, and at the same time, in the Linc power amplifier combination circuit, the design of the first adjustment circuit, the second adjustment circuit, the output circuit and the passive microwave circuit is flexible, and the Linc power amplifier The presence of a separate bridge isolation terminal in the combiner circuit allows coupled sampling of mismatched portions of the signal to use digital enhancement techniques.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2013/086437WO2015062081A1 (en) | 2013-11-01 | 2013-11-01 | Linc power amplifier combiner circuit |
| Publication Number | Publication Date |
|---|---|
| CN104272584Atrue CN104272584A (en) | 2015-01-07 |
| CN104272584B CN104272584B (en) | 2017-06-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201380004307.2AActiveCN104272584B (en) | 2013-11-01 | 2013-11-01 | A Linc Power Amplifier Combiner Circuit |
| Country | Link |
|---|---|
| CN (1) | CN104272584B (en) |
| WO (1) | WO2015062081A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109687828A (en)* | 2019-02-28 | 2019-04-26 | 清华大学 | A kind of radio-frequency power amplifier and base station |
| CN110011623A (en)* | 2019-03-28 | 2019-07-12 | 杭州电子科技大学温州研究院有限公司 | A kind of incorgruous power amplifier of dual band radio frequency |
| CN113131963A (en)* | 2019-12-31 | 2021-07-16 | 深圳市大富科技股份有限公司 | Compensation circuit and communication circuit |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6054896A (en)* | 1998-12-17 | 2000-04-25 | Datum Telegraphic Inc. | Controller and associated methods for a linc linear power amplifier |
| US6710650B1 (en)* | 2002-09-30 | 2004-03-23 | Nortel Networks Limited | Amplifier switching |
| CN1833358A (en)* | 2003-03-28 | 2006-09-13 | 安德鲁公司 | Doherty amplifier with output mixing coupler |
| CN101427460A (en)* | 2006-04-21 | 2009-05-06 | 艾利森电话股份有限公司 | Output network combined with LINC technology |
| CN101729079A (en)* | 2008-10-13 | 2010-06-09 | 电子科技大学 | LINC transmitter |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6930547B2 (en)* | 2002-08-09 | 2005-08-16 | Andrew Corporation | Linearizing LINC amplifiers using pre-distortion |
| US7313416B1 (en)* | 2004-09-01 | 2007-12-25 | Rockwell Collins, Inc. | Scalable power amplifier |
| CN101651459B (en)* | 2009-09-15 | 2013-02-13 | 电子科技大学 | High-efficiency linear LINC transmitter |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6054896A (en)* | 1998-12-17 | 2000-04-25 | Datum Telegraphic Inc. | Controller and associated methods for a linc linear power amplifier |
| US6710650B1 (en)* | 2002-09-30 | 2004-03-23 | Nortel Networks Limited | Amplifier switching |
| CN1833358A (en)* | 2003-03-28 | 2006-09-13 | 安德鲁公司 | Doherty amplifier with output mixing coupler |
| CN101427460A (en)* | 2006-04-21 | 2009-05-06 | 艾利森电话股份有限公司 | Output network combined with LINC technology |
| CN101729079A (en)* | 2008-10-13 | 2010-06-09 | 电子科技大学 | LINC transmitter |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109687828A (en)* | 2019-02-28 | 2019-04-26 | 清华大学 | A kind of radio-frequency power amplifier and base station |
| CN109687828B (en)* | 2019-02-28 | 2023-12-19 | 清华大学 | Radio frequency power amplifier and base station |
| CN110011623A (en)* | 2019-03-28 | 2019-07-12 | 杭州电子科技大学温州研究院有限公司 | A kind of incorgruous power amplifier of dual band radio frequency |
| CN113131963A (en)* | 2019-12-31 | 2021-07-16 | 深圳市大富科技股份有限公司 | Compensation circuit and communication circuit |
| Publication number | Publication date |
|---|---|
| CN104272584B (en) | 2017-06-20 |
| WO2015062081A1 (en) | 2015-05-07 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102355198B (en) | Multi-channel Asymmetrical Doherty Power Amplifier | |
| CN109889162B (en) | Self-input controlled load modulation power amplifier and implementation method thereof | |
| Giofre et al. | New output combiner for Doherty amplifiers | |
| US20140062601A1 (en) | Doherty amplifier having compact output matching and combining networks | |
| KR101841670B1 (en) | Outphasing power amplifier signal splitter using next stage input impedance and multiple biasing | |
| US20150070094A1 (en) | Doherty power amplifier with coupling mechanism independent of device ratios | |
| CN104113286B (en) | Doherty power amplifying circuit | |
| CN103391057A (en) | Reverse F-type power amplifier and emitter as well as processing method | |
| CN110829989B (en) | Impedance matching circuit and method | |
| CN110708029A (en) | Dual-band different-direction power amplifier based on unequal-length transmission lines and design method thereof | |
| CN104272584B (en) | A Linc Power Amplifier Combiner Circuit | |
| JP5829885B2 (en) | Balun | |
| US12218635B2 (en) | Power amplifier circuit | |
| WO2018109930A1 (en) | Doherty amplifier | |
| CN103840772A (en) | Circuit for improving Doherty power amplifier linearity by using CRLH-TL compensating line | |
| CN101488790A (en) | Power amplification apparatus and transmitter | |
| JP5921482B2 (en) | Doherty amplifier | |
| TW201541859A (en) | Radio frequency power amplifier and method for increasing power added efficiency and linearity | |
| CN102265506B (en) | Taoherty Doherty circuit, multi-channel Taoherty Doherty circuit and base station equipment | |
| CN103457540A (en) | Microwave power amplifier with Doherty structure | |
| CN116155218A (en) | Active Load Modulation Pull Method for Doherty Power Amplifier | |
| CN202679316U (en) | Capacitive load wideband power amplifier | |
| CN207801874U (en) | Doherty power amplifier devices | |
| CN101834332A (en) | A coupler and power amplifier system | |
| CN102647161A (en) | Wideband power amplifier for capacitive load |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |