Movatterモバイル変換


[0]ホーム

URL:


CN104219706B - The method and mobile terminal of counterparting communications mode parameter are detected in double-communication mode - Google Patents

The method and mobile terminal of counterparting communications mode parameter are detected in double-communication mode
Download PDF

Info

Publication number
CN104219706B
CN104219706BCN201310219942.4ACN201310219942ACN104219706BCN 104219706 BCN104219706 BCN 104219706BCN 201310219942 ACN201310219942 ACN 201310219942ACN 104219706 BCN104219706 BCN 104219706B
Authority
CN
China
Prior art keywords
time slot
transfer point
time slots
mode
lte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310219942.4A
Other languages
Chinese (zh)
Other versions
CN104219706A (en
Inventor
孙炼
蔡希
潘毅
陈其铭
宋磊
吴群英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Mobile Group Guangdong Co Ltd
Original Assignee
China Mobile Group Guangdong Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Mobile Group Guangdong Co LtdfiledCriticalChina Mobile Group Guangdong Co Ltd
Priority to CN201310219942.4ApriorityCriticalpatent/CN104219706B/en
Publication of CN104219706ApublicationCriticalpatent/CN104219706A/en
Application grantedgrantedCritical
Publication of CN104219706BpublicationCriticalpatent/CN104219706B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

Translated fromChinese

本发明实施例提供一种双通信模式中检测对方通信模式参数的方法和移动终端,方法应用于移动终端,包括:移动终端处于第一通信模式,执行第一通信模式与第二通信模式进行时隙对齐的操作;根据第一通信模式的帧结构和时隙配比,以及第二通信模式的帧结构和时隙配比;从第一通信模式的常规时隙转换点推算出在第二通信模式中应当检测的参数所在的检测位置;在第二通信模式的检测位置处开始检测参数。双模式共存的情形下,通过采用时隙对齐降低异系统之间的交叉时隙带来的干扰,在双模式的时隙对齐后,找到恰当的检测位置启动对另一种模式的测量,实现了不需要专门的配置就能够检测到另一种模式下的各种参数。

Embodiments of the present invention provide a method for detecting communication mode parameters of the other party in dual communication modes and a mobile terminal. The method is applied to the mobile terminal, including: the mobile terminal is in the first communication mode, and when the first communication mode and the second communication mode are executed The operation of slot alignment; according to the frame structure and time slot ratio of the first communication mode, and the frame structure and time slot ratio of the second communication mode; deduced from the normal time slot conversion point of the first communication mode in the second communication mode The detection position where the parameter to be detected in the mode is located; the parameter detection starts at the detection position of the second communication mode. In the case of dual-mode coexistence, time slot alignment is used to reduce the interference caused by cross-slots between different systems. After the dual-mode time slots are aligned, an appropriate detection position is found to start the measurement of the other mode to achieve In order to be able to detect various parameters in another mode without special configuration.

Description

Translated fromChinese
双通信模式中检测对方通信模式参数的方法和移动终端Method and mobile terminal for detecting communication mode parameters of the other party in dual communication mode

技术领域technical field

本发明涉及双通信模式的技术,特别是指一种双通信模式中检测对方通信模式参数的方法和移动终端。The invention relates to the technology of dual communication modes, in particular to a method and a mobile terminal for detecting the communication mode parameters of the other party in the dual communication modes.

背景技术Background technique

双模异系统相互测量是指,在当前驻留的模式中捕获另一种模式的网络状态:对来自第二无线接入技术(RAT)基站的下行链路进行测量,对第二无线接入技术基站的网络进行捕获。在时分同步码分多址(TD-SCDMA,Time Division-Synchronous Code DivisionMultiple Access)与分时长期演进(TD-LTE,Time Division Long Term Evolution)双模系统的相互测量技术中,可以在TD-SCDMA模式中对TD-LTE模式进行测量,也可以在TD-LTE模式中对TD-SCDMA模式进行测量。Dual-mode different system mutual measurement refers to capturing the network status of another mode in the current camping mode: measuring the downlink from the second radio access technology (RAT) base station, and measuring the downlink from the second radio access technology (RAT) base station. Network of technology base stations for capture. In the mutual measurement technology of Time Division-Synchronous Code Division Multiple Access (TD-SCDMA, Time Division-Synchronous Code Division Multiple Access) and Time Division Long Term Evolution (TD-LTE, Time Division Long Term Evolution) dual-mode system, it can be used in TD-SCDMA TD-LTE mode can be measured in TD-LTE mode, and TD-SCDMA mode can also be measured in TD-LTE mode.

这些测量技术中都需要假设双模的帧边界是对齐的,TD-SCDMA模式与TD-LTE模式在移动终端(UE)有相同的帧边界,UE按照当前驻留(连接)的通信模式(第一通信模式)的时隙转换点调谐到第二无线接入技术基站的频点,接收第二无线接入技术基站的信号,从而测量异系统(第二通信模式)。These measurement techniques all need to assume that the frame boundaries of the dual-mode are aligned. The TD-SCDMA mode and the TD-LTE mode have the same frame boundaries in the mobile terminal (UE), and the UE follows the current resident (connected) communication mode (section The time slot conversion point of the first communication mode) is tuned to the frequency point of the second radio access technology base station, and the signal of the second radio access technology base station is received, thereby measuring the different system (second communication mode).

现有技术存在如下问题:在TD-SCDMA与TD-LTE双模式中,由于TD-SCDMA与TD-LTE具有不同的帧结构,TD-SCDMA与TD-LTE很容易出现时隙不对齐的情况,很容易造成交叉时隙带来的干扰,若进行时隙对齐,两种模式的帧结构需要专门的配置,才能实现时隙对齐。The existing technology has the following problems: in the dual mode of TD-SCDMA and TD-LTE, since TD-SCDMA and TD-LTE have different frame structures, TD-SCDMA and TD-LTE are prone to misalignment of time slots, It is easy to cause interference caused by cross-slots. If time slots are aligned, the frame structures of the two modes need special configuration to achieve time slot alignment.

发明内容Contents of the invention

本发明要解决的技术问题是提供一种双通信模式中检测对方通信模式参数的方法和移动终端,在时隙对齐的情况下,在第一通信模式中对第二通信模式的参数进行测量。The technical problem to be solved by the present invention is to provide a method for detecting the parameters of the other party's communication mode in the dual communication mode and a mobile terminal to measure the parameters of the second communication mode in the first communication mode when the time slots are aligned.

为解决上述技术问题,本发明的实施例提供一种双通信模式中互相检测对方模式参数的方法,应用于移动终端,方法包括:移动终端处于第一通信模式,执行第一通信模式与第二通信模式进行时隙对齐的操作;根据第一通信模式的帧结构和时隙配比,以及第二通信模式的帧结构和时隙配比;从所述第一通信模式的常规时隙转换点推算出在第二通信模式中应当检测的参数所在的检测位置;在第二通信模式的所述检测位置处开始检测所述参数。In order to solve the above technical problems, the embodiment of the present invention provides a method for detecting each other's mode parameters in dual communication modes, which is applied to a mobile terminal. The method includes: the mobile terminal is in the first communication mode, and executes the first communication mode and the second communication mode The communication mode performs the operation of time slot alignment; according to the frame structure and time slot ratio of the first communication mode, and the frame structure and time slot ratio of the second communication mode; from the normal time slot conversion point of the first communication mode Deduce the detection position where the parameter that should be detected in the second communication mode is located; start to detect the parameter at the detection position in the second communication mode.

所述的方法中,第一通信模式是TD-SCDMA模式,第二通信模式是TD-LTE模式从所述第一通信模式的常规时隙转换点推算出应当检测的参数所在的检测位置,包括:确定TD-SCDMA模式中与TD-LTE模式实现时隙对齐的常规时隙转换点;从所述常规时隙转换点处推算出该常规时隙转换点之前的N个子帧属于同一个TD-LTE半帧,所述TD-LTE半帧中且常规时隙转换点所在的时间之前是所述检测位置。In the method, the first communication mode is the TD-SCDMA mode, and the second communication mode is the TD-LTE mode, where the detection position of the parameter that should be detected is calculated from the conventional time slot conversion point of the first communication mode, including : Determining the conventional time slot transition point in the TD-SCDMA mode and TD-LTE mode to achieve time slot alignment; deduce from the conventional time slot transition point that the N subframes before the conventional time slot transition point belong to the same TD- In the LTE half frame, in the TD-LTE half frame and before the time where the normal time slot transition point is located is the detection position.

所述的方法中,在第二通信模式的所述检测位置处开始检测所述参数,具体包括:设置TD-LTE模式的TDD转换开关为接收状态,接收至少一个参数对应的信号。In the method, starting to detect the parameter at the detection position in the second communication mode specifically includes: setting the TDD switch in the TD-LTE mode to a receiving state, and receiving a signal corresponding to at least one parameter.

所述的方法中,设置TD-LTE模式的TDD转换开关为接收状态,接收至少一个参数对应的信号,具体包括:在所述常规时隙转换点所在的时间之前的N毫秒打开TDD开关,在SF0的时隙1接收物理广播信道信号或者参考信号;在所述常规时隙转换点所在的时间之前N毫秒打开TDD开关,在SF0的时隙1获取辅同步信号,计算辅同步信号的接收功率;在所述常规时隙转换点所在的时间之前N-1毫秒打开TDD开关,获取主同步信号,计算主同步信号的接收功率。In the described method, the TDD conversion switch of the TD-LTE mode is set to the receiving state, and the signal corresponding to at least one parameter is received, which specifically includes: opening the TDD switch N milliseconds before the time where the conventional time slot conversion point is located, and The time slot 1 of SF0 receives the physical broadcast channel signal or reference signal; the TDD switch is turned on N milliseconds before the time where the conventional time slot transition point is located, and the secondary synchronization signal is obtained in time slot 1 of SF0, and the received power of the secondary synchronization signal is calculated ; Turn on the TDD switch N-1 milliseconds before the transition point of the regular time slot, acquire the main synchronization signal, and calculate the received power of the main synchronization signal.

所述的方法中,第一通信模式是TD-LTE模式,第二通信模式是TD-SCDMA模式;从所述第一通信模式的常规时隙转换点推算出应当检测的参数所在的检测位置,包括:获得TD-LTE模式的常规时隙转换点和特殊时隙转换点,当TD-SCDMA模式的上行时隙为M个,下行时隙为6-M个时,根据所述常规时隙转换点,找到所述常规时隙转换点之前相应的时刻作为所述检测位置,其中,TD-SCDMA模式的6个时隙不包含TS0时隙和特殊时隙。In the described method, the first communication mode is a TD-LTE mode, and the second communication mode is a TD-SCDMA mode; the detection position where the parameter to be detected is deduced from the conventional time slot conversion point of the first communication mode, Including: obtaining the conventional time slot conversion point and the special time slot conversion point of the TD-LTE mode, when the uplink time slots of the TD-SCDMA mode are M, and the downlink time slots are 6-M, according to the conventional time slot conversion point, find the corresponding moment before the normal time slot conversion point as the detection position, wherein, the 6 time slots of the TD-SCDMA mode do not include the TS0 time slot and the special time slot.

所述的方法中,找到所述常规时隙转换点之前相应的时刻作为所述检测位置,包括:将所述常规时隙转换点之前((M+1)*864+352)时间片作为所述检测位置,接收TS0时隙的主公共控制物理信道信号;将常规时隙转换点之前的(M*864+352)时间片作为所述检测位置,截取下行同步时隙的下行同步信号。In the method, finding the corresponding moment before the normal time slot conversion point as the detection position includes: taking ((M+1)*864+352) time slices before the normal time slot conversion point as the detection position The detection position is to receive the main common control physical channel signal of the TS0 time slot; the (M*864+352) time slice before the conventional time slot conversion point is used as the detection position to intercept the downlink synchronization signal of the downlink synchronization time slot.

一种移动终端,包括:时隙对齐单元,用于当移动终端处于第一通信模式时,执行第一通信模式与第二通信模式进行时隙对齐的操作;帧结构和时隙配比单元,用于根据第一通信模式的帧结构和时隙配比,以及第二通信模式的帧结构和时隙配比;从所述第一通信模式的常规时隙转换点推算出在第二通信模式中应当检测的参数所在的检测位置;检测单元,用于在第二通信模式的所述检测位置处开始检测所述参数。A mobile terminal, comprising: a time slot alignment unit, configured to perform a time slot alignment operation between the first communication mode and the second communication mode when the mobile terminal is in the first communication mode; a frame structure and time slot matching unit, For the frame structure and time slot ratio according to the first communication mode, and the frame structure and time slot ratio of the second communication mode; deduced from the conventional time slot switching point of the first communication mode The detection position where the parameter to be detected is located; the detection unit is configured to start detecting the parameter at the detection position in the second communication mode.

所述的移动终端中,帧结构和时隙配比单元包括:第一检测模块,用于当第一通信模式是TD-SCDMA模式,第二通信模式是TD-LTE模式时,确定TD-SCDMA模式中与TD-LTE模式实现时隙对齐的常规时隙转换点;从所述常规时隙转换点处推算出该常规时隙转换点之前的N个子帧属于同一个TD-LTE半帧,所述TD-LTE半帧中且常规时隙转换点所在的时间之前是所述检测位置。In the described mobile terminal, the frame structure and time slot matching unit includes: a first detection module, used to determine the TD-SCDMA mode when the first communication mode is a TD-SCDMA mode and the second communication mode is a TD-LTE mode. The conventional time slot conversion point that realizes time slot alignment with the TD-LTE mode in the mode; From the conventional time slot conversion point, it is deduced that the N subframes before the conventional time slot conversion point belong to the same TD-LTE half frame, so In the TD-LTE half frame and before the time where the regular time slot transition point is located is the detection position.

所述的移动终端中,检测单元包括:第一检测执行模块,用于设置TD-LTE模式的TDD转换开关为接收状态,接收至少一个参数对应的信号。In the mobile terminal, the detection unit includes: a first detection execution module, configured to set the TDD switch in the TD-LTE mode to a receiving state, and receive a signal corresponding to at least one parameter.

所述的移动终端中,第一检测执行模块还包括:TDD开关控制模块,用于在所述常规时隙转换点所在的时间之前的N毫秒打开TDD开关,在SF0的时隙1接收物理广播信道信号或者参考信号;在所述常规时隙转换点所在的时间之前N毫秒打开TDD开关,在SF0的时隙1获取辅同步信号,计算辅同步信号的接收功率;在所述常规时隙转换点所在的时间之前N-1毫秒打开TDD开关,获取主同步信号,计算主同步信号的接收功率。In the mobile terminal, the first detection execution module further includes: a TDD switch control module, which is used to turn on the TDD switch N milliseconds before the time where the regular time slot transition point is located, and receive the physical broadcast in time slot 1 of SF0 Channel signal or reference signal; turn on the TDD switch N milliseconds before the time where the conventional time slot transition point is located, obtain the secondary synchronization signal at time slot 1 of SF0, and calculate the received power of the secondary synchronization signal; switch in the conventional time slot Turn on the TDD switch N-1 milliseconds before the time where the point is located, obtain the main synchronization signal, and calculate the received power of the main synchronization signal.

所述的移动终端中,帧结构和时隙配比单元包括:第二检测模块,用于当第一通信模式是TD-LTE模式,第二通信模式是TD-SCDMA模式时,获得TD-LTE模式的常规时隙转换点和特殊时隙转换点,当TD-SCDMA模式的上行时隙为N个,下行时隙为6-N个时,根据所述常规时隙转换点,找到所述常规时隙转换点之前相应的时刻作为所述检测位置,其中,TD-SCDMA模式的6个时隙不包含TS0时隙和特殊时隙。In the described mobile terminal, the frame structure and time slot matching unit includes: a second detection module, used to obtain TD-LTE when the first communication mode is TD-LTE mode and the second communication mode is TD-SCDMA mode. The conventional time slot conversion point and the special time slot conversion point of the mode, when the uplink time slots of the TD-SCDMA mode are N, and the downlink time slots are 6-N, according to the conventional time slot conversion point, the conventional time slot conversion point is found. The corresponding time before the time slot conversion point is used as the detection position, wherein, the 6 time slots of the TD-SCDMA mode do not include the TS0 time slot and the special time slot.

所述的移动终端中,检测单元包括:信号获取模块,用于将所述常规时隙转换点之前((M+1)*864+352)时间片作为所述检测位置,接收TS0时隙的主公共控制物理信道信号;将所述常规时隙转换点之前的(M*864+352)时间片作为所述检测位置,截取下行同步时隙的下行同步信号。In the mobile terminal, the detection unit includes: a signal acquisition module, configured to use ((M+1)*864+352) time slices before the normal time slot conversion point as the detection position, and receive the time slot of the TS0 time slot The main common control physical channel signal: the (M*864+352) time slice before the normal time slot conversion point is used as the detection position, and the downlink synchronization signal of the downlink synchronization time slot is intercepted.

本发明的上述技术方案的有益效果如下:双模式共存的情形下,通过采用时隙对齐降低异系统之间的交叉时隙带来的干扰,在双模式的时隙对齐后,找到恰当的检测位置启动对另一种模式的测量,实现了不需要专门的配置就能够检测到另一种模式下的各种参数。The beneficial effects of the above technical solution of the present invention are as follows: in the case of dual-mode coexistence, the interference caused by cross-slots between different systems is reduced by using time slot alignment, and after the dual-mode time slots are aligned, an appropriate detection method can be found. The position starts the measurement of another mode, so that various parameters in another mode can be detected without special configuration.

附图说明Description of drawings

图1表示一种双通信模式中互相检测对方模式参数的方法流程示意图;Fig. 1 shows a schematic flow chart of a method for detecting each other's mode parameters in a dual communication mode;

图2表示TD-LTE的帧结构示意图;FIG. 2 shows a schematic diagram of a frame structure of TD-LTE;

图3表示TD-SCDMA的帧结构示意图;Fig. 3 shows the frame structure diagram of TD-SCDMA;

图4表示两个通信模式的时隙对齐的示意图一;FIG. 4 shows a schematic diagram 1 of time slot alignment of two communication modes;

图5表示两个通信模式的时隙对齐的示意图二;FIG. 5 shows a second schematic diagram of time slot alignment in two communication modes;

图6表示一种移动终端的结构示意图。Fig. 6 shows a schematic structural diagram of a mobile terminal.

具体实施方式Detailed ways

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.

3GPP定义了长期演进(LTE,Long Term Evolution)模式的FDD和TDD技术的帧结构,帧长度都为10ms。The 3GPP defines the frame structure of the FDD and TDD technologies of the Long Term Evolution (LTE, Long Term Evolution) mode, and the frame length is 10 ms.

如图2所示,TD-LTE模式的帧结构,10ms帧分成两个半帧,共含有10个子帧(Subframe),每个子帧长度1ms。第2子帧和第7子帧为特殊子帧,一个特殊子帧包括3部分:下行同步时隙(DwPTS),保护时隙(GP,Guard Point)和上行时隙(UpPTS)。As shown in FIG. 2 , in the frame structure of the TD-LTE mode, a 10ms frame is divided into two half frames, including 10 subframes in total, and each subframe has a length of 1ms. The second subframe and the seventh subframe are special subframes, and a special subframe includes three parts: downlink synchronization time slot (DwPTS), guard time slot (GP, Guard Point) and uplink time slot (UpPTS).

假设带宽为20MHz,一个正交频分复用技术(OFDM,Orthogonal FrequencyDivision Multiplexing)符号(symbol)对应的时间为0.071354ms。Assuming that the bandwidth is 20 MHz, the time corresponding to one Orthogonal Frequency Division Multiplexing (OFDM, Orthogonal Frequency Division Multiplexing) symbol (symbol) is 0.071354 ms.

TD-LTE模式中,TDD上下行带宽不是固定的,有两个时隙转换点,时隙转换点是一个时间意义上的位置:In TD-LTE mode, TDD uplink and downlink bandwidth is not fixed, there are two time slot switching points, and the time slot switching point is a position in the sense of time:

常规时隙中,常规时隙转换点是指上行时隙与下行时隙的时隙转换点(UDSP,uplink-to-downlink switching point),UDSP位于上行子帧与下行子帧转换的帧边界位置。In the regular time slot, the regular time slot switching point refers to the time slot switching point (UDSP, uplink-to-downlink switching point) between the uplink time slot and the downlink time slot, and the UDSP is located at the frame boundary position between the uplink subframe and the downlink subframe .

特殊时隙中,下行同步时隙(DwPTS)与上行同步时隙(UpPTS)之间能够进行转换,DwPTS与UpPTS之间的保护间隔GP即为特殊时隙转换点(DUSP,downlink-to-uplinkswitching point),对应着小区半径r=(TGP/2)*c,其中,TGP是保护间隔GP对应的时间,c为光速。In the special time slot, the downlink synchronous time slot (DwPTS) and the uplink synchronous time slot (UpPTS) can be switched, and the guard interval GP between DwPTS and UpPTS is the special time slot switching point (DUSP, downlink-to-uplink switching point), corresponding to the cell radius r=(TGP/2)*c, where TGP is the time corresponding to the guard interval GP, and c is the speed of light.

如图3所示,TD-SCDMA模式的帧结构,10ms帧分为两个5ms子帧,每个5ms子帧包括7个常规时隙和1个特殊时隙。每个常规时隙包括两个数据(Data)部分和一个中间码(Midamble)部分,以及16个时间片(chip)的GP作为最后部分,数据部分为352chip(带宽1.28MHz),中间码部分为128chip;特殊时隙是352chip,包括三部分:DwPTS(96chip),GP(96chip)和UpPTS(160chip)。As shown in Figure 3, the frame structure of TD-SCDMA mode, a 10ms frame is divided into two 5ms subframes, each 5ms subframe includes 7 regular time slots and 1 special time slot. Each regular time slot includes two data (Data) parts and a midamble (Midamble) part, and GP of 16 time slices (chip) as the last part, the data part is 352chip (bandwidth 1.28MHz), and the midamble part is 128chip; the special time slot is 352chip, including three parts: DwPTS (96chip), GP (96chip) and UpPTS (160chip).

TD-SCDMA模式中,常规时隙中,常规时隙转换点(上行时隙与下行时隙的时隙转换点,UDSP)是指每一个时隙末尾的GP(16chip),该GP作为时隙对齐的保护时隙。In TD-SCDMA mode, in the regular time slot, the regular time slot switching point (the time slot switching point between the uplink time slot and the downlink time slot, UDSP) refers to the GP (16chip) at the end of each time slot, and the GP is used as the time slot Aligned guard slots.

TD-LTE与TD-SCDMA共存时对时隙进行对齐配置应当遵循:When TD-LTE and TD-SCDMA coexist, the time slot alignment configuration should follow:

首先,如图4所示,保证两个模式的常规时隙转换点UDSP对齐。First, as shown in Fig. 4, it is ensured that the conventional time slot switching points UDSP of the two modes are aligned.

其次,如图5所示,调整TD-LTE模式中特殊子帧的GP长度,给出特殊时隙中DwPTS,GP和UpPTS的配比关系,一般情况下,TD-LTE模式的特殊子帧的GP比TD-SCDMA模式的特殊时隙的GP要大,在设置帧结构配比过程中,保证TD-SCDMA特殊时隙的GP(0.075ms)落在TD-LTE的特殊子帧的GP中,这是因为TD-LTE的特殊子帧的GP长度可变,最小为一个OFDM符号对应的时间,比如:带宽为20MHz时,最小的GP长度为0.071354ms。Secondly, as shown in Figure 5, the GP length of the special subframe in the TD-LTE mode is adjusted, and the ratio relationship between DwPTS, GP and UpPTS in the special time slot is given. In general, the special subframe of the TD-LTE mode The GP is larger than the GP of the special time slot in TD-SCDMA mode. In the process of setting the frame structure ratio, ensure that the GP of the TD-SCDMA special time slot (0.075ms) falls in the GP of the special subframe of TD-LTE. This is because the GP length of the TD-LTE special subframe is variable, and the minimum is the time corresponding to one OFDM symbol. For example, when the bandwidth is 20MHz, the minimum GP length is 0.071354ms.

这一过程中,在保证常规时隙转换点UDSP对齐的前提下,按照TD-SCDMA的不同的时隙配比,可以确定出TD-LTE模式的特殊子帧的位置以及其GP的长度,保证了TD-SCDMA特殊时隙的GP落在TD-LTE特殊时隙对应的GP之内,如此则可以认为特殊时隙实现了对齐。In this process, under the premise of ensuring the UDSP alignment of the conventional time slot conversion point, according to the different time slot ratios of TD-SCDMA, the position of the special subframe of the TD-LTE mode and the length of its GP can be determined to ensure If the GP of the TD-SCDMA special time slot falls within the GP corresponding to the TD-LTE special time slot, it can be considered that the special time slot is aligned.

本发明实施例提供一种双通信模式中互相检测对方模式参数的方法,应用于移动终端,如图1所示,包括:An embodiment of the present invention provides a method for detecting each other's mode parameters in a dual communication mode, which is applied to a mobile terminal, as shown in FIG. 1 , including:

步骤101,移动终端处于第一通信模式,执行第一通信模式与第二通信模式进行时隙对齐的操作;Step 101, the mobile terminal is in the first communication mode, and performs the operation of time slot alignment between the first communication mode and the second communication mode;

步骤102,根据第一通信模式的帧结构和时隙配比,以及第二通信模式的帧结构和时隙配比;从所述第一通信模式的常规时隙转换点推算出在第二通信模式中应当检测的参数所在的检测位置;Step 102, according to the frame structure and time slot ratio of the first communication mode, and the frame structure and time slot ratio of the second communication mode; The detection position of the parameter that should be detected in the pattern;

步骤103,在第二通信模式的所述检测位置处开始检测所述参数。Step 103, starting to detect the parameter at the detection position in the second communication mode.

应用所提供的技术,双模式共存的情形下,通过采用时隙对齐降低异系统之间的交叉时隙带来的干扰,在双模式的时隙对齐后,找到恰当的检测位置启动对另一种模式的测量,实现了不需要专门的配置就能够检测到另一种模式下的各种参数。Apply the provided technology, in the case of dual-mode coexistence, reduce the interference caused by cross-slots between different systems by using time slot alignment, and find the appropriate detection position to start the other system after the dual-mode time slots are aligned The measurement of one mode realizes the detection of various parameters in another mode without special configuration.

在一个优选实施例中,第一通信模式是TD-SCDMA模式,第二通信模式是TD-LTE模式。In a preferred embodiment, the first communication mode is TD-SCDMA mode, and the second communication mode is TD-LTE mode.

或者,第一通信模式是TD-LTE模式,第二通信模式是TD-SCDMA模式。Or, the first communication mode is TD-LTE mode, and the second communication mode is TD-SCDMA mode.

双模式支持实现时隙对齐,如图5所示,其支持各种配比条件下的时隙对齐。以TD-SCDMA时隙配比2:5为例,除了下行TS0时隙外,配置4个下行时隙,2个上行时隙,TD-LTE采用时隙配比1:3。不同模式的基站保持时隙对齐的收发时钟定时机制以保持同步,以及,移动终端知道两种模式的时隙配比,移动终端在不同模式下接收的信号满足时隙对齐。The dual mode supports time slot alignment, as shown in Figure 5, which supports time slot alignment under various configuration conditions. Taking TD-SCDMA with a time slot ratio of 2:5 as an example, in addition to the downlink TS0 time slot, 4 downlink time slots and 2 uplink time slots are configured, and TD-LTE adopts a time slot ratio of 1:3. The base stations in different modes maintain the time slot aligned transceiver clock timing mechanism to maintain synchronization, and the mobile terminal knows the time slot ratio of the two modes, and the signals received by the mobile terminal in different modes meet the time slot alignment.

在一个优选实施例中,从所述第一通信模式的常规时隙转换点推算出应当检测的参数所在的检测位置,包括:In a preferred embodiment, the detection position of the parameter to be detected is deduced from the normal time slot switching point of the first communication mode, including:

确定TD-SCDMA模式中与TD-LTE模式实现时隙对齐的常规时隙转换点;Determining the conventional time slot switching point for TD-SCDMA mode and TD-LTE mode to achieve time slot alignment;

从所述常规时隙转换点处推算出该常规时隙转换点之前的N个子帧属于同一个TD-LTE半帧,所述TD-LTE半帧中且常规时隙转换点所在的时间之前是所述检测位置。It is deduced from the normal time slot conversion point that the N subframes before the normal time slot conversion point belong to the same TD-LTE half frame, and the time before the normal time slot conversion point in the TD-LTE half frame is The detection position.

由于TD-SCDMA模式的常规时隙转换点UDSP与TD-LTE中的常规时隙转换点UDSP是对齐的,因此,可以基于这一常规时隙转换点UDSP推算出5ms半帧所包括的SF0、特殊子帧、SF1、SF2和SF3,假设TD-LTE中时隙配置格式为[DSUDD],表明在UDSP前面有N=3个子帧,后面有5-N=2个子帧属于同一个TD-LTE半帧。Since the conventional time slot switching point UDSP in TD-SCDMA mode is aligned with the conventional time slot switching point UDSP in TD-LTE, the SF0, Special subframes, SF1, SF2 and SF3, assuming that the time slot configuration format in TD-LTE is [DSUDD], it indicates that there are N=3 subframes in front of UDSP, and 5-N=2 subframes in the back belong to the same TD-LTE half frame.

检测位置即是指TD-LTE半帧中且常规时隙转换点UDSP所在的时间之前的某一个时刻,该检测位置表明,是在所述TD-LTE半帧中且UDSP所在的时间之前,开始测量TD-LTE模式的至少一个参数。The detection position refers to a certain moment in the TD-LTE half frame and before the time where the conventional time slot conversion point UDSP is located. The detection position indicates that it is in the TD-LTE half frame and before the time where the UDSP is located. At least one parameter of the TD-LTE mode is measured.

在一个优选实施例中,在第二通信模式的所述检测位置处开始检测所述参数,具体包括:In a preferred embodiment, starting to detect the parameter at the detection position in the second communication mode includes:

设置TD-LTE模式的TDD转换开关为接收状态,接收至少一个参数对应的信号。Set the TDD switch of the TD-LTE mode to the receiving state, and receive a signal corresponding to at least one parameter.

在一个优选实施例中,设置TD-LTE模式的TDD转换开关为接收状态,接收至少一个参数对应的信号,具体包括:In a preferred embodiment, the TDD switch of the TD-LTE mode is set to the receiving state, and the signal corresponding to at least one parameter is received, specifically including:

在所述常规时隙转换点所在的时间之前的N毫秒打开TDD开关,在SF0的时隙1接收物理广播信道信号或者参考信号;Turn on the TDD switch N milliseconds before the time where the conventional time slot transition point is located, and receive the physical broadcast channel signal or reference signal in time slot 1 of SF0;

在所述常规时隙转换点所在的时间之前N毫秒打开TDD开关,在SF0的时隙1的辅同步信号,获取辅同步信号的接收功率;Turn on the TDD switch N milliseconds before the time where the conventional time slot transition point is located, and obtain the received power of the secondary synchronization signal for the secondary synchronization signal in time slot 1 of SF0;

在所述常规时隙转换点所在的时间之前N-1毫秒打开TDD开关,截取主同步信号,获取主同步信号的接收功率。Turn on the TDD switch N-1 milliseconds before the time where the normal time slot transition point is located, intercept the main synchronization signal, and obtain the received power of the main synchronization signal.

在一个应用场景中,假设UE处于TD-SCDMA模式的连接态(Connected),TD-LTE模式此时可以是Idle,DRX或连接态。In an application scenario, assuming that the UE is in the connected state (Connected) of the TD-SCDMA mode, the TD-LTE mode may be in the Idle, DRX or connected state at this time.

第1步,UE获得TD-SCDMA模式的帧结构和时隙配比,从而确认出常规时隙转换点,为区别TD-LTE模式的时隙转换点,此处TD-SCDMA模式的常规时隙转换点称为第一UDSP。In the first step, the UE obtains the frame structure and time slot ratio of the TD-SCDMA mode, thereby confirming the regular time slot transition point, in order to distinguish the time slot transition point of the TD-LTE mode, here the regular time slot of the TD-SCDMA mode The conversion point is called the first UDSP.

第2步,UE获得TD-LTE模式的帧结构以和时隙配比,从第一UDSP推算出TD-LTE模式的5ms半帧的位置,5ms半帧中包括:SF0、特殊子帧、SF1、SF2和SF3。Step 2: The UE obtains the frame structure of the TD-LTE mode to match the time slot, and calculates the position of the 5ms half-frame of the TD-LTE mode from the first UDSP. The 5ms half-frame includes: SF0, special subframe, SF1 , SF2 and SF3.

如图5所示,假设UE的时隙配置格式为[DSUDD],可以知道N=3,即,UDSP是在SF1的末尾的GP(16chip),在UDSP前面有N个子帧,UDSP后面有5-N个子帧。As shown in Figure 5, assuming that the UE's time slot configuration format is [DSUDD], it can be known that N=3, that is, UDSP is a GP (16chip) at the end of SF1, there are N subframes in front of UDSP, and 5 subframes behind UDSP - N subframes.

第3步,UE在UDSP所在的时间之前将TD-LTE模式的TDD转换开关设置为接收状态,测量包括但不限于下述的参数:Step 3, UE sets the TDD switch of TD-LTE mode to the receiving state before the time of UDSP, and the measurement includes but not limited to the following parameters:

子步骤a,在UDSP前Nms(N=3)打开TDD开关,Sub-step a, turn on the TDD switch Nms (N=3) before UDSP,

在SF0的时隙1位置接收物理广播信道(PBCH,physical broadcast channel)信号,从而可以获取接收的信号强度指示(RSSI,Received Signal Strength Indication)测量值,Receive the physical broadcast channel (PBCH, physical broadcast channel) signal at the time slot 1 position of SF0, so that the received signal strength indication (RSSI, Received Signal Strength Indication) measurement value can be obtained,

在SF0的时隙1位置接收参考信号(RS,Reference Signal),获取参考信号接收功率(RSRP,Reference Signal Receiving Power)测量值。A reference signal (RS, Reference Signal) is received at time slot 1 of the SF0, and a reference signal received power (RSRP, Reference Signal Receiving Power) measurement value is obtained.

SF0的时隙1位置实际上是指第1子帧的第2个时隙。The slot 1 position of SF0 actually refers to the second slot of the first subframe.

子步骤b,在子步骤a的TDD转换开关打开时刻,测量SF0的时隙1位置的辅同步信号(SSS,Secondary Synchronization Signal),获取辅同步信号的接收功率。In sub-step b, when the TDD switch is turned on in sub-step a, measure a secondary synchronization signal (SSS, Secondary Synchronization Signal) at time slot 1 of SF0 to obtain the received power of the secondary synchronization signal.

子步骤c,在UDSP之前的(N-1)ms时刻截取主同步信号(PSS,PrimarySynchronization Signal),计算主同步信号的接收功率。In sub-step c, the primary synchronization signal (PSS, Primary Synchronization Signal) is intercepted at (N-1) ms before the UDSP, and the received power of the primary synchronization signal is calculated.

由于在每个时隙上都有配置的小区特定参考信号(CRS,Cell-specificreference signals,R8以前),因而可以对RSSI、接收信号码功率(RSCP,Received SignalCode Power)等测量值进行评估,判断TD-LTE模式的信道质量。Since there are configured cell-specific reference signals (CRS, Cell-specific reference signals, before R8) on each time slot, it is possible to evaluate measured values such as RSSI and received signal code power (RSCP, Received Signal Code Power), and judge Channel quality in TD-LTE mode.

子步骤d,在TS0以及特殊时隙以外的其他时隙测量其他的参数。In sub-step d, other parameters are measured in TS0 and other time slots other than the special time slot.

第4步,预先设定门限值XdB,将测量的参考信号/导频/PBCH信号的功率P与门限值XdB比较,进行后续的切换等操作。Step 4, preset the threshold value XdB, compare the measured power P of the reference signal/pilot/PBCH signal with the threshold value XdB, and perform subsequent operations such as switching.

在一个优选实施例中,第一通信模式是TD-LTE模式,第二通信模式是TD-SCDMA模式。In a preferred embodiment, the first communication mode is TD-LTE mode, and the second communication mode is TD-SCDMA mode.

在一个优选实施例中,从所述第一通信模式的常规时隙转换点推算出应当检测的参数所在的检测位置,包括:In a preferred embodiment, the detection position of the parameter to be detected is deduced from the normal time slot switching point of the first communication mode, including:

获得TD-LTE模式的常规时隙转换点和特殊时隙转换点,Obtain regular time slot switching point and special time slot switching point of TD-LTE mode,

当TD-SCDMA模式的上行时隙为M个,下行时隙为6-M个时,根据所述常规时隙转换点,找到所述常规时隙转换点之前相应的时刻作为所述检测位置,其中,TD-SCDMA模式的6个时隙不包含TS0时隙和特殊时隙。When there are M uplink time slots in the TD-SCDMA mode and 6-M downlink time slots, according to the conventional time slot conversion point, find the corresponding moment before the conventional time slot conversion point as the detection position, Among them, the 6 time slots of TD-SCDMA mode do not include TS0 time slots and special time slots.

在一个优选实施例中,找到所述常规时隙转换点之前相应的时刻作为所述检测位置,包括:In a preferred embodiment, finding the corresponding moment before the regular time slot conversion point as the detection position includes:

将所述常规时隙转换点之前((M+1)*864+352)chip作为所述检测位置,接收TS0时隙的主公共控制物理信道信号(PCCPCH,Primary Common Control Physical Channel);Taking the ((M+1)*864+352) chip before the normal time slot conversion point as the detection position, and receiving the primary common control physical channel signal (PCCPCH, Primary Common Control Physical Channel) of the TS0 time slot;

将所述常规时隙转换点之前的(M*864+352)chip作为所述检测位置,截取下行同步时隙的下行同步信号。Taking the (M*864+352) chip before the transition point of the regular time slot as the detection position, intercepting the downlink synchronization signal of the downlink synchronization time slot.

实施例中,在UDSP所在的时间之前的(M+1)*864+352chip位置接收TS0的主公共控制物理信道信号,计算Sync DL信号功率;在UDSP之前的(M*864+352)chip开始接收信号,截取DwPTS上的下行同步信号,计算Sync DL信号功率。之后,将计算出的Sync DL信号功率以及RSSI、RSCP与相应的预设门限Y进行比较。In the embodiment, the main common control physical channel signal of TS0 is received at the (M+1)*864+352chip position before the UDSP time, and the Sync DL signal power is calculated; the (M*864+352)chip before the UDSP starts Receive the signal, intercept the downlink synchronization signal on the DwPTS, and calculate the Sync DL signal power. Afterwards, the calculated Sync DL signal power, RSSI, and RSCP are compared with the corresponding preset threshold Y.

在一个应用场景中,UE处于TD-LTE模式的连接态,而TD-SCDMA模式处于Idle或DRX状态,此时设置UE在TD-SCDMA模式的相应的频点上打开射频开关处于接收状态,对TD-SCDMA模式进行异频间测量,包括:In an application scenario, the UE is in the connected state of TD-LTE mode, and the TD-SCDMA mode is in the Idle or DRX state. At this time, the UE is set to turn on the radio frequency switch on the corresponding frequency point of the TD-SCDMA mode to be in the receiving state. Inter-frequency measurement in TD-SCDMA mode, including:

步骤1,UE获得TD-LTE模式的时隙配比,包括常规时隙转换点的位置和特殊时隙转换点的位置。Step 1, the UE obtains the time slot ratio of the TD-LTE mode, including the position of the regular time slot switching point and the position of the special time slot switching point.

步骤2,UE获得TD-SCDMA模式的时隙配比,若除去TS0时隙以及特殊时隙之后有M个上行时隙,则有6-M个下行时隙。Step 2, UE obtains the time slot ratio of TD-SCDMA mode, if there are M uplink time slots after excluding the TS0 time slot and special time slots, then there are 6-M downlink time slots.

步骤3,根据TD-LTE模式的常规时隙的UDSP位置,UE在TD-SCDMA模式相应的频点上,打开射频开关处于接收状态,测量包括但不限于下述的参数:Step 3, according to the UDSP position of the regular time slot of the TD-LTE mode, the UE turns on the radio frequency switch in the receiving state at the corresponding frequency point of the TD-SCDMA mode, and the measurement includes but is not limited to the following parameters:

a,在UDSP所在时间之前的((M+1)*864+352)chip位置接收TS0时隙上的PCCPCH信号,计算其RSSI以及RSCP等的测量值。a, Receive the PCCPCH signal on the TS0 time slot at the ((M+1)*864+352) chip position before the UDSP time, and calculate its RSSI and RSCP measurement values.

TD-SCDMA带宽为1.28MHz,从而每个Chip对应的时间为1/1.28e6s。TD-SCDMA bandwidth is 1.28MHz, so the time corresponding to each Chip is 1/1.28e6s.

b,在UDSP所在时间之前的(M*864+352)chip开始接收信号,截取DwPTS的下行同步信号,计算Sync DL信号的功率,判定TD-SCDMA信道状态。b. The (M*864+352) chip starts to receive signals before the time of UDSP, intercepts the downlink synchronization signal of DwPTS, calculates the power of Sync DL signal, and determines the TD-SCDMA channel status.

步骤4,预先设定功率门限,计算出的RSSI、RSCP以及Sync DL信号的功率等与相应的功率门限进行比较,然后执行诸如切换等的操作。Step 4, preset the power threshold, compare the calculated RSSI, RSCP and Sync DL signal power with the corresponding power threshold, and then perform operations such as switching.

本发明提供的实施例保证了当UE处于第一通信模式时,无论第二通信模式处于Idle,DRX或者连接态,都可以在第一通信模式下对第二通信模式的参数进行测量。The embodiments provided by the present invention ensure that when the UE is in the first communication mode, no matter whether the second communication mode is in Idle, DRX or connected state, the parameters of the second communication mode can be measured in the first communication mode.

本发明实施例还提供一种移动终端,如图6所示,包括:The embodiment of the present invention also provides a mobile terminal, as shown in FIG. 6, including:

时隙对齐单元601,用于当移动终端处于第一通信模式时,执行第一通信模式与第二通信模式进行时隙对齐的操作;A time slot alignment unit 601, configured to perform an operation of time slot alignment between the first communication mode and the second communication mode when the mobile terminal is in the first communication mode;

帧结构和时隙配比单元602,用于根据第一通信模式的帧结构和时隙配比,以及第二通信模式的帧结构和时隙配比;从所述第一通信模式的常规时隙转换点推算出在第二通信模式中应当检测的参数所在的检测位置;The frame structure and time slot ratio unit 602 is used for the frame structure and time slot ratio according to the first communication mode, and the frame structure and time slot ratio of the second communication mode; Calculate the detection position where the parameter that should be detected in the second communication mode is located at the gap switching point;

检测单元603,用于在第二通信模式的所述检测位置处开始检测所述参数。The detection unit 603 is configured to start detecting the parameter at the detection position in the second communication mode.

在一个优选实施例中,帧结构和时隙配比单元602包括:In a preferred embodiment, the frame structure and time slot ratio unit 602 includes:

第一检测模块,用于当第一通信模式是TD-SCDMA模式,第二通信模式是TD-LTE模式时,确定TD-SCDMA模式中与TD-LTE模式实现时隙对齐的常规时隙转换点;从所述常规时隙转换点处推算出该常规时隙转换点之前的N个子帧属于同一个TD-LTE半帧,所述TD-LTE半帧中且常规时隙转换点所在的时间之前是所述检测位置。The first detection module is used to determine the conventional time slot conversion point in the TD-SCDMA mode and the TD-LTE mode to achieve time slot alignment when the first communication mode is the TD-SCDMA mode and the second communication mode is the TD-LTE mode ; Deduce from the normal time slot conversion point that the N subframes before the normal time slot conversion point belong to the same TD-LTE half frame, in the TD-LTE half frame and before the time where the normal time slot conversion point is located is the detection position.

在一个优选实施例中,检测单元603包括:In a preferred embodiment, the detection unit 603 includes:

第一检测执行模块,用于设置TD-LTE模式的TDD转换开关为接收状态,接收至少一个参数对应的信号。The first detection execution module is used to set the TDD switch in the TD-LTE mode to a receiving state, and receive a signal corresponding to at least one parameter.

在一个优选实施例中,第一检测执行模块还包括:In a preferred embodiment, the first detection execution module also includes:

TDD开关控制模块,用于在所述常规时隙转换点所在的时间之前的N毫秒打开TDD开关,在SF0的时隙1接收物理广播信道信号或者参考信号;The TDD switch control module is used to open the TDD switch N milliseconds before the time where the conventional time slot transition point is located, and receive a physical broadcast channel signal or a reference signal in time slot 1 of SF0;

在所述常规时隙转换点所在的时间之前N毫秒打开TDD开关,在SF0的时隙1获取辅同步信号,计算辅同步信号的接收功率;Turn on the TDD switch N milliseconds before the time where the conventional time slot transition point is located, acquire the secondary synchronization signal at time slot 1 of SF0, and calculate the received power of the secondary synchronization signal;

在所述常规时隙转换点所在的时间之前N-1毫秒打开TDD开关,获取主同步信号,计算主同步信号的接收功率。Turn on the TDD switch N-1 milliseconds before the time where the regular time slot transition point is located, acquire the primary synchronization signal, and calculate the received power of the primary synchronization signal.

在工作过程中,可以分为两种情形描述移动终端的工作原理。During the working process, the working principle of the mobile terminal can be described in two situations.

在一个应用场景中,UE处于TD-SCDMA模式的连接态,TD-LTE模式此时是Idle,DRX或连接态。In an application scenario, the UE is in the connected state of the TD-SCDMA mode, and the TD-LTE mode is in the Idle, DRX or connected state at this time.

第1步,UE获得TD-SCDMA模式的帧结构和时隙配比,时隙对齐单元601执行时隙对齐操作,从而确认出常规时隙转换点。为区别TD-LTE模式的时隙转换点,此处TD-SCDMA模式的常规时隙转换点称为第一UDSP。In step 1, the UE obtains the frame structure and time slot ratio of the TD-SCDMA mode, and the time slot alignment unit 601 performs a time slot alignment operation, thereby confirming a regular time slot conversion point. In order to distinguish the time slot switching point of the TD-LTE mode, the normal time slot switching point of the TD-SCDMA mode is called the first UDSP here.

第2步,帧结构和时隙配比单元602中的第一检测模块,获得TD-LTE模式的帧结构以和时隙配比,从第一UDSP推算出TD-LTE模式的5ms半帧的位置,5ms半帧中包括:SF0、特殊子帧、SF1、SF2和SF3。In the 2nd step, the frame structure and the first detection module in the time slot matching unit 602 obtain the frame structure of the TD-LTE mode to match the time slot, and deduce the 5ms half-frame of the TD-LTE mode from the first UDSP Position, 5ms half frame includes: SF0, special subframe, SF1, SF2 and SF3.

如图5所示,若TD-LTE模式的时隙配置格式为[DSUDD],可以知道N=3,即,UDSP是在SF1的末尾的GP,在UDSP前面有N个子帧,UDSP后面有5-N个子帧。As shown in Figure 5, if the time slot configuration format of TD-LTE mode is [DSUDD], it can be known that N=3, that is, UDSP is the GP at the end of SF1, there are N subframes in front of UDSP, and 5 subframes behind UDSP - N subframes.

第3步,检测单元603的第一检测执行模块在UDSP所在的时间之前将TD-LTE模式的TDD转换开关设置为接收状态,In the 3rd step, the first detection execution module of the detection unit 603 sets the TDD switch of the TD-LTE mode to the receiving state before the time of UDSP,

第一检测执行模块中的TDD开关控制模块,测量包括但不限于下述的参数:The TDD switch control module in the first detection execution module, the measurement includes but not limited to the following parameters:

在UDSP前Nms(N=3)打开TDD开关,在SF0的时隙1位置接收物理广播信道信号,从而可以获取接收的信号强度指示测量值,在SF0的时隙1位置接收参考信号,获取参考信号接收功率测量值。SF0的时隙1位置实际上是指第1子帧的第2个时隙。Turn on the TDD switch Nms (N=3) before UDSP, receive the physical broadcast channel signal at the time slot 1 of SF0, so as to obtain the received signal strength indicator measurement value, receive the reference signal at the time slot 1 of SF0, and obtain the reference Signal received power measurement. The slot 1 position of SF0 actually refers to the second slot of the first subframe.

在TDD转换开关打开时刻,测量SF0的时隙1位置的辅同步信号,获取辅同步信号的接收功率。When the TDD switch is turned on, measure the secondary synchronization signal at time slot 1 of SF0 to obtain the received power of the secondary synchronization signal.

在UDSP之前的(N-1)ms时刻截取主同步信号,计算主同步信号的接收功率。The primary synchronization signal is intercepted at (N-1) ms before the UDSP, and the received power of the primary synchronization signal is calculated.

由于在每个时隙上都有配置的小区特定参考信号,因而可以对RSSI、接收信号码功率等测量值进行评估,判断TD-LTE模式的信道质量。Since there is a cell-specific reference signal configured on each time slot, it is possible to evaluate measured values such as RSSI and received signal code power, and judge the channel quality of the TD-LTE mode.

在TS0以及特殊时隙以外的其他时隙测量其他的参数。Other parameters are measured in TS0 and other time slots other than special time slots.

第4步,预先设定门限值XdB,移动终端将测量的参考信号/导频/PBCH信号的功率P与门限值XdB比较,进行后续的切换等操作。In step 4, the threshold value XdB is preset, and the mobile terminal compares the measured power P of the reference signal/pilot frequency/PBCH signal with the threshold value XdB, and performs subsequent operations such as switching.

在一个优选实施例中,帧结构和时隙配比单元602包括:In a preferred embodiment, the frame structure and time slot ratio unit 602 includes:

第二检测模块,用于当第一通信模式是TD-LTE模式,第二通信模式是TD-SCDMA模式时,获得TD-LTE模式的常规时隙转换点和特殊时隙转换点,当TD-SCDMA模式的上行时隙为N个,下行时隙为6-N个时,根据所述常规时隙转换点,找到所述常规时隙转换点之前相应的时刻作为所述检测位置,其中,TD-SCDMA模式的6个时隙不包含TS0时隙和特殊时隙。The second detection module is used to obtain the conventional time slot conversion point and the special time slot conversion point of the TD-LTE mode when the first communication mode is the TD-LTE mode and the second communication mode is the TD-SCDMA mode, when the TD- When there are N uplink time slots and 6-N downlink time slots in the SCDMA mode, according to the conventional time slot conversion point, find the corresponding moment before the conventional time slot conversion point as the detection position, wherein TD - The 6 time slots in SCDMA mode do not include TS0 time slots and special time slots.

在一个优选实施例中,检测单元603包括:In a preferred embodiment, the detection unit 603 includes:

信号获取模块,用于将所述常规时隙转换点之前((M+1)*864+352)时间片作为所述检测位置,接收TS0时隙的主公共控制物理信道信号;A signal acquisition module, configured to use the ((M+1)*864+352) time slice before the conventional time slot conversion point as the detection position, and receive the main common control physical channel signal of the TS0 time slot;

将所述常规时隙转换点之前的(M*864+352)时间片作为所述检测位置,截取下行同步时隙的下行同步信号。Taking (M*864+352) time slices before the normal time slot conversion point as the detection position, intercepting the downlink synchronization signal of the downlink synchronization time slot.

在一个应用场景中,UE处于TD-LTE模式的连接态,而TD-SCDMA模式处于Idle或DRX状态,UE对TD-SCDMA模式进行异频间测量包括:In an application scenario, the UE is in the connected state of the TD-LTE mode, and the TD-SCDMA mode is in the Idle or DRX state, and the inter-frequency measurement performed by the UE on the TD-SCDMA mode includes:

步骤1,帧结构和时隙配比单元602中的第二检测模块,获得TD-LTE模式的时隙配比,包括常规时隙转换点的位置和特殊时隙转换点的位置。时隙对齐单元601执行时隙对齐操作,从而确认出常规时隙转换点。Step 1, the second detection module in the frame structure and time slot ratio unit 602 obtains the time slot ratio of the TD-LTE mode, including the position of the normal time slot conversion point and the position of the special time slot conversion point. The slot alignment unit 601 performs a slot alignment operation to identify regular slot transition points.

步骤2,帧结构和时隙配比单元602中的第二检测模块,UE获得TD-SCDMA模式的时隙配比,若除去TS0时隙以及特殊时隙之后有M个上行时隙,则有6-M个下行时隙。Step 2, the second detection module in the frame structure and time slot ratio unit 602, the UE obtains the time slot ratio of the TD-SCDMA mode, if there are M uplink time slots after removing the TS0 time slot and the special time slot, then there are 6-M downlink time slots.

步骤3,根据TD-LTE模式的常规时隙的UDSP位置,检测单元603中的信号获取模块,在TD-SCDMA模式相应的频点上,打开射频开关处于接收状态,测量包括但不限于下述的参数:Step 3, according to the UDSP position of the regular time slot of the TD-LTE mode, the signal acquisition module in the detection unit 603, on the corresponding frequency point of the TD-SCDMA mode, turns on the radio frequency switch and is in the receiving state, and the measurement includes but is not limited to the following parameters:

a,在UDSP所在时间之前的((M+1)*864+352)chip位置接收TS0时隙上的PCCPCH信号,计算其RSSI以及RSCP等的测量值。a, Receive the PCCPCH signal on the TS0 time slot at the ((M+1)*864+352) chip position before the UDSP time, and calculate its RSSI and RSCP measurement values.

TD-SCDMA带宽为1.28MHz,从而每个Chip对应的时间为1/1.28e6s。TD-SCDMA bandwidth is 1.28MHz, so the time corresponding to each Chip is 1/1.28e6s.

b,在UDSP所在时间之前的(M*864+352)chip开始接收信号,截取DwPTS的下行同步信号,计算Sync DL信号的功率,判定TD-SCDMA信道状态。b. The (M*864+352) chip starts to receive signals before the time of UDSP, intercepts the downlink synchronization signal of DwPTS, calculates the power of Sync DL signal, and determines the TD-SCDMA channel status.

步骤4,预先设定功率门限,计算出的RSSI、RSCP以及Sync DL信号的功率等与相应的功率门限进行比较,然后执行诸如切换等的操作。Step 4, preset the power threshold, compare the calculated RSSI, RSCP and Sync DL signal power with the corresponding power threshold, and then perform operations such as switching.

采用本方案之后的优势是:双模共存的情况下,通过采用时隙对齐有效降低异系统之间的交叉时隙带来的干扰,在双模时隙对齐后启动对另一种模式的测量,不需要专门的配置就能够检测到另一种模式下的各种参数,保证了当UE处于第一通信模式时,无论第二通信模式处于Idle,DRX或者连接态,都可以在第一通信模式下对第二通信模式的参数进行测量。The advantage of adopting this scheme is: in the case of dual-mode coexistence, the interference caused by cross-slots between different systems can be effectively reduced by adopting time slot alignment, and the measurement of another mode can be started after dual-mode time slot alignment , various parameters in another mode can be detected without special configuration, which ensures that when the UE is in the first communication mode, no matter whether the second communication mode is in Idle, DRX or connected state, it can be in the first communication mode In the mode, the parameters of the second communication mode are measured.

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.

Claims (10)

CN201310219942.4A2013-06-042013-06-04The method and mobile terminal of counterparting communications mode parameter are detected in double-communication modeActiveCN104219706B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201310219942.4ACN104219706B (en)2013-06-042013-06-04The method and mobile terminal of counterparting communications mode parameter are detected in double-communication mode

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201310219942.4ACN104219706B (en)2013-06-042013-06-04The method and mobile terminal of counterparting communications mode parameter are detected in double-communication mode

Publications (2)

Publication NumberPublication Date
CN104219706A CN104219706A (en)2014-12-17
CN104219706Btrue CN104219706B (en)2018-08-24

Family

ID=52100757

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201310219942.4AActiveCN104219706B (en)2013-06-042013-06-04The method and mobile terminal of counterparting communications mode parameter are detected in double-communication mode

Country Status (1)

CountryLink
CN (1)CN104219706B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020022755A1 (en)2018-07-232020-01-30주식회사 쏠리드Repeater and method for operating same
CN112243300B (en)*2019-07-192022-11-08中国移动通信有限公司研究院 Connection establishment method and device

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101765122A (en)*2008-12-222010-06-30鼎桥通信技术有限公司 a scheduling method
CN101772165A (en)*2008-12-312010-07-07中兴通讯股份有限公司Time slot configuration method and time slot configuration system for dual-mode base station
CN101998483A (en)*2009-08-262011-03-30中国移动通信集团公司Method and device for configuring measurement time for home base station
CN102026216A (en)*2009-09-232011-04-20大唐移动通信设备有限公司Different system measuring method and equipment
CN102572734A (en)*2010-12-232012-07-11高通股份有限公司TDD-LTE measurement gap for performing TD-SCDMA measurement
WO2012112152A1 (en)*2011-02-162012-08-23Qualcomm IncorporatedMethods and apparatus for utilizing td-scdma idle intervals in tdd-lte measurement operations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101765122A (en)*2008-12-222010-06-30鼎桥通信技术有限公司 a scheduling method
CN101772165A (en)*2008-12-312010-07-07中兴通讯股份有限公司Time slot configuration method and time slot configuration system for dual-mode base station
CN101998483A (en)*2009-08-262011-03-30中国移动通信集团公司Method and device for configuring measurement time for home base station
CN102026216A (en)*2009-09-232011-04-20大唐移动通信设备有限公司Different system measuring method and equipment
CN102572734A (en)*2010-12-232012-07-11高通股份有限公司TDD-LTE measurement gap for performing TD-SCDMA measurement
WO2012112152A1 (en)*2011-02-162012-08-23Qualcomm IncorporatedMethods and apparatus for utilizing td-scdma idle intervals in tdd-lte measurement operations

Also Published As

Publication numberPublication date
CN104219706A (en)2014-12-17

Similar Documents

PublicationPublication DateTitle
US20220394640A1 (en)Measurement of candidate synchronization references by device-to-device user equipment
CN105338612B (en)Synchronization and control method and device of wireless repeater and wireless repeater
US8687599B2 (en)Method and device for measuring a received signal power in a mobile communication system
EP3443772A1 (en)Methods for controlling measurements based on lbt parameters
CN101415215B (en)Method and apparatus for measuring adjacent zone of multi-mode terminal
CA2915864C (en)A method for measuring adjacent areas
EP2984864A1 (en)Methods of performing inter-frequency measurements in the idle state
WO2015124208A1 (en)Transmission of timing information concerning the active state of base stations using dtx
CN101043248A (en)Method for repeater to obtain switch point in TD-SCDMA system
CN104219706B (en)The method and mobile terminal of counterparting communications mode parameter are detected in double-communication mode
CN103945426B (en)A kind of control method of LTE mobile terminal
CN105472633B (en)Electronic device and method for inter-cell synchronization detection for time division duplex wireless communications
CN102761858B (en)Dual-mode single-antenna terminal and radio sharing control method thereof
CN102244875B (en)Method for measuring global system for mobile communications (GSM) neighborhood in time division-synchronous code division multiple access (TD-SCDMA) system
CN107124246B (en)A kind of TD-LTE uplink and downlink timeslot proportion detection method
CN106332168B (en)Synchronous data measuring method and mobile terminal
CN101635967B (en) Measurement Method for WCDMA Neighboring Cells in TD-SCDMA Mode
CN103167600A (en)Method and device for synchronizing base stations
CN110022603A (en) Method and device for synchronization between base stations
CN2917137Y (en)TD-SCDMA synchronizer
WO2013055338A1 (en)Improved inter-rat measurements using timing offset
CN104427522A (en)Neighboring area measuring method and measuring device in GSM (Global System for Mobile Communication) packet transfer mode
CN101964989B (en)Cell measurement method and system thereof
CN101389050B (en)Information sending and receiving method using reference symbol configuration change in single frequency network
US20140185584A1 (en)Method for measuring adjacent areas

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp