技术领域technical field
本发明属于电磁场计量检测技术领域,具体涉及一种基于ARM带温湿度自修正的电磁辐射测量装置。The invention belongs to the technical field of electromagnetic field measurement and detection, and in particular relates to an electromagnetic radiation measurement device based on ARM band temperature and humidity self-correction.
背景技术Background technique
随着社会的不断进步以及经济的迅速发展,各种电子设备给人们带来方便的同时,也造成了电磁辐射污染,设计一款高精度的电磁辐射测量装置显得尤为重要。With the continuous progress of society and the rapid development of economy, various electronic devices bring convenience to people, but also cause electromagnetic radiation pollution. It is particularly important to design a high-precision electromagnetic radiation measurement device.
目前的电磁辐射测量仪大多是基于传统的8位单片机,仅仅具有简单的测量功能,存在机性能不高、可维护性差、可靠性不高、人机交互困难等问题。并且现有电磁辐射测量仪器的测量方法没有考虑温湿度对测量结果的影响,造成了同一工况下不同时间测量结果出现了较大差异的情况。环境温湿度对测量结果的影响主要表现在对上电稳定性和元器件介电常数的影响,当电磁辐射探头在较高相对湿度下工作,会造成介电常数降低、介电损耗增加、电容值变大和绝缘电阻值降低,而且在相同的湿度下,温度越高湿度对测量结果的影响也越大,当相对湿度超过80%进行测量时,传感电极之间会产生很大的泄漏电流使内部的测量回路局部短路而损坏仪器。这就要求电磁辐射测量装置带有温湿度测量以及温湿度的补偿功能。由于温度湿度的作用往往是综合在一起的,这就造成了温湿度对测量结果的影响是非线性的,而这些功能的实现对于传统单片机孱弱的处理能力来说是很难完成的。Most of the current electromagnetic radiation measuring instruments are based on traditional 8-bit single-chip microcomputers, which only have simple measurement functions, and have problems such as low machine performance, poor maintainability, low reliability, and difficult human-computer interaction. Moreover, the measurement methods of the existing electromagnetic radiation measuring instruments do not consider the influence of temperature and humidity on the measurement results, resulting in large differences in the measurement results at different times under the same working condition. The impact of ambient temperature and humidity on the measurement results is mainly manifested in the impact on power-on stability and the dielectric constant of components. When the electromagnetic radiation probe works at a high relative humidity, the dielectric constant will decrease, the dielectric loss will increase, and the capacitance will increase. The value becomes larger and the insulation resistance value decreases, and at the same humidity, the higher the temperature, the greater the impact of humidity on the measurement results. When the relative humidity exceeds 80% for measurement, a large leakage current will be generated between the sensing electrodes The internal measuring circuit is partially short-circuited and the instrument is damaged. This requires the electromagnetic radiation measuring device to have temperature and humidity measurement and temperature and humidity compensation functions. Since the effects of temperature and humidity are often integrated, this causes the influence of temperature and humidity on the measurement results to be non-linear, and the realization of these functions is difficult for the weak processing capabilities of traditional single-chip microcomputers.
发明内容Contents of the invention
鉴于已有技术存在的缺陷,本发明的目的是要提供一种基于ARM带温湿度自修正的电磁辐射测量装置,该电磁辐射测量装置可以同时实现电场强度、温度、湿度的测量,并利用人工神经网络算法实现对电磁辐射测量值的相对于温湿度的非线性补偿,该电磁辐射测量装置可以实时测量显示修正后的电磁辐射测量值,并且易于实现良好的人机交互界面,也可以完成将数据传输给上位机进行详细的分析和处理,上位机具有打印功能,满足了电磁辐射测量仪的高精度和智能化的需要。In view of the defects in the prior art, the purpose of the present invention is to provide a self-correcting electromagnetic radiation measuring device based on ARM band temperature and humidity, which can simultaneously realize the measurement of electric field strength, temperature and humidity, and utilize manual The neural network algorithm realizes the nonlinear compensation of the electromagnetic radiation measurement value relative to the temperature and humidity. The electromagnetic radiation measurement device can measure and display the corrected electromagnetic radiation measurement value in real time, and it is easy to implement a good human-computer interaction interface. It can also complete the The data is transmitted to the upper computer for detailed analysis and processing. The upper computer has a printing function, which meets the needs of high precision and intelligence of the electromagnetic radiation measuring instrument.
本发明通过下述方案予以实现:The present invention is realized by following scheme:
基于ARM带温湿度自修正的电磁辐射测量装置,其特征在于:The electromagnetic radiation measuring device based on ARM band temperature and humidity self-correction is characterized in that:
包括电磁辐射采样模块、信号处理模块、温湿度数字传感器、嵌入式微处理器模块、存储器、显示模块;Including electromagnetic radiation sampling module, signal processing module, temperature and humidity digital sensor, embedded microprocessor module, memory, display module;
所述嵌入式微处理器模块分别与信号处理模块、温湿度数字传感器、存储器、显示模块连接;所述信号处理模块还与电磁辐射采样模块连接;The embedded microprocessor module is respectively connected with a signal processing module, a temperature and humidity digital sensor, a memory, and a display module; the signal processing module is also connected with an electromagnetic radiation sampling module;
所述电磁辐射采样模块用于实时测量环境中的电磁辐射电场强度信号;The electromagnetic radiation sampling module is used to measure the electromagnetic radiation electric field strength signal in the environment in real time;
所述信号处理模块对电磁辐射采样模块输出的电磁辐射电场强度信号进行处理变换成嵌入式微处理器模块能够识别的电磁辐射信号;The signal processing module processes and transforms the electromagnetic radiation electric field intensity signal output by the electromagnetic radiation sampling module into an electromagnetic radiation signal that can be recognized by the embedded microprocessor module;
所述温湿度数字传感器实时测量环境的温度湿度信息并直接转换成数字信号送入嵌入式微处理器模块;The temperature and humidity digital sensor measures the temperature and humidity information of the environment in real time and directly converts it into a digital signal and sends it to the embedded microprocessor module;
所述存储器用于存储经过所述信号处理模块处理变换的电磁辐射信号、所述温湿度数字传感器采集到的温度值、湿度值和所述嵌入式微处理器模块修正后的电磁辐射参数检测值;同时还用于存储本装置运行的系统文件以及便于所述嵌入式微处理器模块调用的人工神经网络参数;The memory is used to store the electromagnetic radiation signal processed and transformed by the signal processing module, the temperature value and humidity value collected by the temperature and humidity digital sensor, and the electromagnetic radiation parameter detection value corrected by the embedded microprocessor module; Simultaneously, it is also used to store the system files that the device operates and the artificial neural network parameters that are convenient for the embedded microprocessor module to call;
所述嵌入式微处理器模块用于对所述信号处理模块输出的电磁辐射信号执行模数转换后,输出经过温湿度补偿处理后的对应的电磁辐射参数检测值,其中所述的温湿度补偿处理是指所述嵌入式微处理器模块按照上述经过模数转换的电磁辐射参数值调用并运行所述存储器内部预存储的人工神经网络参数,得到当前温湿度参数对应的温湿度的补偿值后,对上述电磁辐射参数进行修正后输出对应的电磁辐射参数检测值;The embedded microprocessor module is used to perform analog-to-digital conversion on the electromagnetic radiation signal output by the signal processing module, and output the corresponding electromagnetic radiation parameter detection value after temperature and humidity compensation processing, wherein the temperature and humidity compensation processing It means that the embedded microprocessor module calls and runs the artificial neural network parameters pre-stored in the memory according to the above-mentioned electromagnetic radiation parameter value through analog-to-digital conversion, and after obtaining the compensation value of temperature and humidity corresponding to the current temperature and humidity parameters, After the above electromagnetic radiation parameters are corrected, the corresponding detection values of electromagnetic radiation parameters are output;
所述显示模块用于显示修正后的电磁辐射参数检测值以及检测到的当前环境温度湿度信息。The display module is used to display the corrected electromagnetic radiation parameter detection value and the detected current ambient temperature and humidity information.
所述的电磁辐射测量装置还包括通讯模块及PC上位机,所述通讯模块用于实现存储器与PC上位机之间的数据传送;所述PC上位机用于训练得到电磁辐射信号测量数据对应的温湿度补偿处理的人工神经网络参数,并将训练好的人工神经网络参数嵌入到嵌入式微处理器模块中,同时建立电磁辐射信号测量数据历史监测值曲线图表以及数据打印处理。The electromagnetic radiation measurement device also includes a communication module and a PC upper computer, the communication module is used to realize the data transmission between the memory and the PC upper computer; the PC upper computer is used for training to obtain the electromagnetic radiation signal measurement data corresponding The artificial neural network parameters for temperature and humidity compensation processing, and the trained artificial neural network parameters are embedded into the embedded microprocessor module, and at the same time, the electromagnetic radiation signal measurement data historical monitoring value curve chart and data printing process are established.
所述的温湿度数字传感器内部预设超限报警阈值,若当前检测到的温度值或者湿度值达到超限报警阈值则向嵌入式微处理器模块发送报警标识信息,所述嵌入式微处理器模块收到警标识信息后即关闭电磁辐射测量装置运行程序,防止损坏仪器。The temperature and humidity digital sensor presets an over-limit alarm threshold, and if the currently detected temperature value or humidity value reaches the over-limit alarm threshold, it sends alarm identification information to the embedded microprocessor module, and the embedded microprocessor module receives After receiving the warning sign information, close the operation program of the electromagnetic radiation measuring device to prevent damage to the instrument.
所述人工神经网络参数是在PC上位机上进行人工神经网络模型训练获得的,并通过所述通讯模块实现存储器与PC上位机之间的数据传送。The artificial neural network parameters are obtained by training the artificial neural network model on the PC upper computer, and the data transmission between the memory and the PC upper computer is realized through the communication module.
所述的显示模块为触摸屏。The display module is a touch screen.
所述的所述嵌入式微处理器模块为基于ARM嵌入式系统的ARM处理器。The described embedded microprocessor module is an ARM processor based on an ARM embedded system.
本发明还提供了一种基于环境温湿度修正的电磁辐射测量方法:The present invention also provides an electromagnetic radiation measurement method based on ambient temperature and humidity correction:
其包括which includes
1、实时测量环境中的电磁辐射信号以及环境温度湿度信息数字信号;1. Real-time measurement of electromagnetic radiation signals in the environment and digital signals of ambient temperature and humidity information;
2、将上述电磁辐射信号进行数据处理,转换成电磁辐射信号测量值后,按照电磁辐射信号测量值以及环境温度湿度信息数字信号,输出经过温湿度补偿处理后的对应的电磁辐射参数检测值,其中所述的温湿度补偿处理是指按照上述电磁辐射信号测量值调用并运行预存储的人工神经网络参数,得到当前温湿度参数对应的温湿度的补偿值后,对上述电磁辐射参数进行修正后输出对应的电磁辐射参数检测值并进行实时的电磁辐射参数检测值显示。2. Perform data processing on the above electromagnetic radiation signal, convert it into the measured value of the electromagnetic radiation signal, and output the corresponding detected value of the electromagnetic radiation parameter after the temperature and humidity compensation processing according to the measured value of the electromagnetic radiation signal and the digital signal of the ambient temperature and humidity information. Wherein the temperature and humidity compensation processing refers to calling and running the pre-stored artificial neural network parameters according to the measured value of the above electromagnetic radiation signal, and after obtaining the compensation value of the temperature and humidity corresponding to the current temperature and humidity parameters, the above electromagnetic radiation parameters are corrected Output the corresponding electromagnetic radiation parameter detection value and perform real-time electromagnetic radiation parameter detection value display.
所述人工神经网络参数是通过PC上位机训练得到电磁辐射信号测量数据对应的温湿度补偿处理的人工神经网络参数,同时PC上位机还建立电磁辐射信号测量数据历史监测值曲线图表以及数据打印处理。Described artificial neural network parameter is the artificial neural network parameter that obtains the corresponding temperature and humidity compensation processing of electromagnetic radiation signal measurement data through PC upper computer training, and PC upper computer also establishes electromagnetic radiation signal measurement data historical monitoring value curve chart and data print processing simultaneously .
所述电磁辐射测量方法在实时测量环境温度湿度信息数字信号时,通过预设环境温度湿度信息数字信号超限报警阈值进行报警,若当前检测到的温湿度达到超限报警阈值则向发送报警标识信息,关闭当前电磁辐射测量装置运行程序,防止损坏仪器。When the electromagnetic radiation measurement method measures the digital signal of ambient temperature and humidity information in real time, the preset ambient temperature and humidity information digital signal exceeds the limit alarm threshold to give an alarm, and if the currently detected temperature and humidity reach the limit alarm threshold, an alarm sign is sent to information, close the current operating program of the electromagnetic radiation measuring device to prevent damage to the instrument.
与现有技术相比,本发明基于ARM带温湿度自修正的电磁辐射测量装置的有益效果:Compared with the prior art, the present invention has the beneficial effects of the electromagnetic radiation measuring device based on the ARM band temperature and humidity self-correction:
本发明测量环境电磁辐射强度的同时,考虑到环境温度、湿度对测量结果的影响,采用人工神经网络模型对测量结果实时修正,保证了测量结果的真实性和准确性,有效拓宽了环境对仪器使用条件的限制,可在恶劣环境下进行测量,而当温湿度环境超过超限报警阈值时,仪器会自动停止工作以免损坏仪器;本发明采用具有很强处理能力和很好处理效果的32位ARM微处理器,为装置提供了强大的接口模块和扩展资源,在实现友好人机交互的同时,其突出的性能也保证了人工神经网络模型计算的时效性。While measuring the intensity of environmental electromagnetic radiation, the invention takes into account the influence of ambient temperature and humidity on the measurement results, and adopts the artificial neural network model to correct the measurement results in real time, ensuring the authenticity and accuracy of the measurement results, and effectively broadening the environmental impact on the instrument. Restricted by the conditions of use, measurements can be carried out in harsh environments, and when the temperature and humidity environment exceeds the alarm threshold, the instrument will automatically stop working to avoid damage to the instrument; the present invention uses a 32-bit The ARM microprocessor provides powerful interface modules and extended resources for the device. While realizing friendly human-computer interaction, its outstanding performance also ensures the timeliness of artificial neural network model calculations.
附图说明Description of drawings
图1为本发明基于ARM带温湿度自修正的电磁辐射测量装置所述实施方式结构示意图;Fig. 1 is the structural representation of the embodiment of the electromagnetic radiation measuring device based on ARM band temperature and humidity self-correction according to the present invention;
图2为本发明显示与控制触摸屏工作流程图;Fig. 2 is the working flow chart of displaying and controlling the touch screen of the present invention;
图3为本发明的存储器的示意图。FIG. 3 is a schematic diagram of the memory of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对实现方案作进一步的详细描述。In order to make the object, technical solution and advantages of the present invention clearer, the implementation solution will be further described in detail below in conjunction with the accompanying drawings.
本发明主要原理:当环境温湿度较低时对测量结果的影响较小,但是随着温湿度的增加,对测量结果的误差影响也越来越大,这种非线性的温湿度补偿,本发明中采用人工神经网络模型。为了提高嵌入式系统应用人工神经网络的时效性,人工神经网络的建立、大量的学习训练及检测在PC上位机上完成,得到合适的网络各层结点的连接权值和阈值。将PC机上经过长时间训练得到的网络参数文件嵌入到Linux系统中,在Linux系统下进行网络重建复原合理的神经网络,也可以将网络参数文件编译成ARM的可执行代码,下载到嵌入式系统中运行。The main principle of the present invention: when the ambient temperature and humidity are low, the influence on the measurement results is small, but with the increase of temperature and humidity, the influence on the error of the measurement results is also increasing. This kind of nonlinear temperature and humidity compensation, this The artificial neural network model is adopted in the invention. In order to improve the timeliness of artificial neural network application in embedded systems, the establishment of artificial neural network, a large number of learning training and testing are completed on the PC host computer, and the appropriate connection weights and thresholds of nodes in each layer of the network are obtained. Embed the network parameter file obtained after long-term training on the PC into the Linux system, perform network reconstruction and restore a reasonable neural network under the Linux system, and compile the network parameter file into ARM executable code and download it to the embedded system run in.
所述嵌入式微处理器模块对所述信号处理模块输出的信号执行模数转换,并计算人工神经网络参数下对应温湿度的补偿值,同时将计算后的结果送到显示模块进行实时显示,同时将原始数据以.txt格式文件保存到存储器的SD卡中。优选地,实时进行温湿度采集,考虑到环境中温度湿度的变化是一个渐变的过程,系统对温湿度进行定时采集,这样可以减少微处理器的计算使用。The embedded microprocessor module performs analog-to-digital conversion on the signal output by the signal processing module, and calculates the compensation value corresponding to the temperature and humidity under the artificial neural network parameters, and at the same time sends the calculated result to the display module for real-time display, and at the same time Save the original data to the SD card in the memory as a .txt format file. Preferably, the temperature and humidity are collected in real time. Considering that the change of temperature and humidity in the environment is a gradual process, the system regularly collects the temperature and humidity, which can reduce the calculation usage of the microprocessor.
鉴于上述原理,如图1所示,本发明所述的基于ARM带温湿度自修正的电磁辐射测量装置,包括电磁辐射采样模块、信号处理模块、温湿度数字传感器、嵌入式微处理器模块、存储器、显示模块,控制终端或者PC上位机;In view of the above principles, as shown in Figure 1, the electromagnetic radiation measuring device based on ARM band temperature and humidity self-correction according to the present invention includes an electromagnetic radiation sampling module, a signal processing module, a temperature and humidity digital sensor, an embedded microprocessor module, a memory , display module, control terminal or PC upper computer;
所述嵌入式微处理器模块分别与信号处理模块、温湿度数字传感器、存储器、显示模块连接;所述信号处理模块还与电磁辐射采样模块连接。The embedded microprocessor module is respectively connected with a signal processing module, a temperature and humidity digital sensor, a memory, and a display module; the signal processing module is also connected with an electromagnetic radiation sampling module.
所述电磁辐射采样模块用于实时测量环境中的电磁辐射电场强度信号;其中所述电磁辐射采样模块可选用包括天线和检波器的采样模块,检波器的型号为LT5534,用于采集电磁辐射的电场强度信号,该对数检波器工作频率范围为50MHz至3GHz,其动态范围可达到-60dB,能满足电磁辐射测量对灵敏度的要求。The electromagnetic radiation sampling module is used to measure the electromagnetic radiation electric field strength signal in the environment in real time; wherein the electromagnetic radiation sampling module can be selected to include an antenna and a detector. The model of the detector is LT5534, which is used to collect the electromagnetic radiation Electric field strength signal, the logarithmic detector operating frequency range is 50MHz to 3GHz, and its dynamic range can reach -60dB, which can meet the sensitivity requirements of electromagnetic radiation measurement.
所述信号处理模块对电磁辐射采样模块输出的电磁辐射电场强度信号进行处理变换成嵌入式微处理器模块能够识别的电磁辐射信号;其中所述信号处理电路可由运算放大器及相关电阻电容构成,用于对电磁辐射采样模块输出信号进行滤波放大处理,并将处理后的信号送入嵌入式微处理器模块的A/D端口。The signal processing module processes the electromagnetic radiation electric field intensity signal output by the electromagnetic radiation sampling module and transforms it into an electromagnetic radiation signal that can be recognized by the embedded microprocessor module; wherein the signal processing circuit can be composed of an operational amplifier and related resistors and capacitors for The output signal of the electromagnetic radiation sampling module is filtered and amplified, and the processed signal is sent to the A/D port of the embedded microprocessor module.
所述温湿度数字传感器实时测量环境的温度湿度信息并直接转换成数字信号送入嵌入式微处理器模块;其中所述温湿度数字传感器可采用SHT75,该传感器除了温度、湿度敏感元件以外,还包括一个放大器——14位的A/D转换器,OTP内存和数字接口。选用该数字传感器的好处在于它的测量精度高,数字信号易于传输、抗干扰性高、易于布线。The temperature and humidity digital sensor measures the temperature and humidity information of the environment in real time and directly converts it into a digital signal and sends it to the embedded microprocessor module; wherein the temperature and humidity digital sensor can use SHT75, and the sensor also includes temperature and humidity sensitive elements. An amplifier - 14-bit A/D converter, OTP memory and digital interface. The advantage of choosing this digital sensor lies in its high measurement accuracy, easy transmission of digital signals, high anti-interference, and easy wiring.
所述嵌入式微处理器模块用于对所述信号处理模块输出的电磁辐射信号执行模数转换后,输出经过温湿度补偿处理后的对应的电磁辐射参数检测值,其中所述的温湿度补偿处理是指所述嵌入式微处理器模块按照上述经过模数转换的电磁辐射参数值调用并运行所述存储器内部预存储的人工神经网络参数,得到当前温湿度参数对应的温湿度的补偿值后,对上述电磁辐射参数进行修正后输出对应的电磁辐射参数检测值;所述的嵌入式微处理器模块可采用的ARM11处理器S3C6410,其稳定主频为667MHz,最高主频达到800MHz,运行速度非常快,同时ARM11采用的8级流水线,相比较以往的5级流水线具有更好的并行处理的能力,提高了40%的吞吐量,确保了人工神经网络算法的时效性。且ARM1176ZJF采用两级供电方式:内核采用1.2V直流电源供电,保证667MHz的主频同时降低了芯片内部功耗;一般外设输入输出采用经低压差稳压芯片SPX117M-3.3转换的3.3V供电,保持其外设的通用性;本模块采用Linux作为操作系统,采用嵌入式多任务的软件开发方法,克服了传统的单任务前后台设计的弊端。The embedded microprocessor module is used to perform analog-to-digital conversion on the electromagnetic radiation signal output by the signal processing module, and output the corresponding electromagnetic radiation parameter detection value after temperature and humidity compensation processing, wherein the temperature and humidity compensation processing It means that the embedded microprocessor module calls and runs the artificial neural network parameters pre-stored in the memory according to the above-mentioned electromagnetic radiation parameter value through analog-to-digital conversion, and after obtaining the compensation value of temperature and humidity corresponding to the current temperature and humidity parameters, The above-mentioned electromagnetic radiation parameters are corrected and output corresponding electromagnetic radiation parameter detection values; the ARM11 processor S3C6410 that the embedded microprocessor module can adopt has a stable main frequency of 667MHz, and the highest main frequency reaches 800MHz, and its operating speed is very fast. At the same time, the 8-stage pipeline adopted by ARM11 has better parallel processing capability than the previous 5-stage pipeline, and has increased the throughput by 40%, ensuring the timeliness of the artificial neural network algorithm. And ARM1176ZJF adopts two-level power supply mode: the core is powered by 1.2V DC power supply, which ensures the main frequency of 667MHz and reduces the internal power consumption of the chip; the general peripheral input and output adopts 3.3V power supply converted by the low-dropout regulator chip SPX117M-3.3, Maintain the versatility of its peripherals; this module uses Linux as the operating system, and adopts the embedded multi-task software development method, which overcomes the disadvantages of the traditional single-task front and back design.
所述人工神经网络参数是在PC上位机上进行人工神经网络模型训练获得的,鉴于人工神经网络模型的训练是一个较漫长的过程,目前如果在嵌入式微处理器模块上完成,对于一台手持式的仪器来说是不切实际的。而用PC上位机预先对人工神经网络模型进行训练,确定好神经网络的权值和阈值等ANN参数,把网络参数文件嵌入到Linux系统中,在Linux系统下进行网络重建复原合理的神经网络,借助ARM较强大的运算能力,就能保证测量的时效性。The artificial neural network parameters are obtained by training the artificial neural network model on the PC host computer. In view of the fact that the training of the artificial neural network model is a long process, if it is completed on the embedded microprocessor module at present, for a hand-held It is impractical for the instrument. However, the artificial neural network model is trained in advance with the PC host computer, the ANN parameters such as the weight and threshold of the neural network are determined, the network parameter file is embedded into the Linux system, and the network reconstruction is performed under the Linux system to restore a reasonable neural network. With the powerful computing power of ARM, the timeliness of measurement can be guaranteed.
具体的,所述人工神经网络模型由典型的输入层、隐含层和输出层组成,其中输入层包含3个神经元:温度值、湿度值和原始电场强度值;输出层为1个神经元——修正后的电场强度值;隐含层数可根据具体情况而定。Specifically, the artificial neural network model is composed of a typical input layer, hidden layer and output layer, wherein the input layer contains 3 neurons: temperature value, humidity value and original electric field strength value; the output layer is 1 neuron ——Corrected value of electric field strength; the number of hidden layers can be determined according to the specific situation.
考虑到温湿度对测量值影响的非线性关系,隐层传递函数采用S型传递函数,通过训练改变函数的参数量;输出采用线性传递函数,可以输出向量的任何数值;人工神经网络的学习函数选用learngd(),通过神经元的输入以及权值和阈值的学习速率计算权值和阈值的变化率;训练函数选用trainbfg(),可反向传播训练函数进行权值修正。最终选定各层神经元个数分别为3,9,1。该模型中四个参数就构成了一个训练样本,分别为温度值、湿度值、原始电场强度值和修正后的电场强度值,通过采集足够多的训练样本就可以在PC机上得到合适的网络各层结点的连接权值和阈值。Considering the nonlinear relationship of temperature and humidity on the measured value, the hidden layer transfer function adopts the S-type transfer function, and the parameter quantity of the function is changed through training; the output adopts a linear transfer function, and any value of the vector can be output; the learning function of the artificial neural network Choose learnngd() to calculate the rate of change of weights and thresholds through the input of neurons and the learning rate of weights and thresholds; use trainbfg() as a training function to backpropagate the training function for weight correction. Finally, the number of neurons in each layer is selected as 3, 9, and 1 respectively. The four parameters in this model constitute a training sample, which are temperature value, humidity value, original electric field strength value and corrected electric field strength value. By collecting enough training samples, we can get the appropriate network parameters on the PC. Connection weights and thresholds for layer nodes.
同时人工神经网络参数也可预先在其他PC机进行训练,将得到的人工神经网络参数与对应的运行程序一同导入到上述嵌入式微处理器模块也可,因此本装置也可不包括PC上位机。At the same time, the artificial neural network parameters can also be trained on other PCs in advance, and the obtained artificial neural network parameters and corresponding operating programs can be imported into the above-mentioned embedded microprocessor module, so the device does not need to include a PC host computer.
同时所述嵌入式微处理器还可通过RS232接口或是SD卡与PC上位机进行数据传送,所述PC上位机其系统软件用Visual Basic开发,使用VB自带的MSComm控件进行串口应用程序编程。在PC上位机主要实现测量数据的处理即人工神经网络的训练过程,电场强度监测值曲线图表示或者历史监测数据图表等,Access数据库系统和数据打印等功能。Simultaneously described embedded microprocessor also can carry out data transmission with PC upper computer through RS232 interface or SD card, and its system software of described PC upper computer develops with Visual Basic, uses the MSComm control that VB carries to carry out serial port application program programming. The PC host computer mainly implements the processing of measurement data, that is, the training process of artificial neural network, the curve display of electric field strength monitoring value or the chart of historical monitoring data, etc., Access database system and data printing and other functions.
所述存储器用于存储经过所述信号处理模块处理变换的电磁辐射信号、所述温湿度数字传感器采集到的温度值、湿度值和所述嵌入式微处理器模块修正后的电磁辐射参数检测值;同时还用于存储本装置运行的系统文件以及便于所述嵌入式微处理器模块调用的人工神经网络参数;如图3所示,所述存储器包括用于实现数据和程序存储的SD卡、NAND FLASH、EEPROM和DDRSDRAM。The memory is used to store the electromagnetic radiation signal processed and transformed by the signal processing module, the temperature value and humidity value collected by the temperature and humidity digital sensor, and the electromagnetic radiation parameter detection value corrected by the embedded microprocessor module; Simultaneously also be used for storing the system file that this device operates and the artificial neural network parameter that is convenient to described embedded microprocessor module to call; As shown in Figure 3, described memory comprises the SD card that is used to realize data and program storage, NAND FLASH , EEPROM and DDRSDRAM.
SD卡用于存储原始电磁辐射测量值、温度值、湿度值和修正后的温湿度测量值和所述嵌入式微处理器模块修正后的电磁辐射参数检测值等数据,选用SPI模式进行通讯,以.txt的格式记录,可以直接与pc上位机进行数据传输。The SD card is used to store data such as the original electromagnetic radiation measurement value, temperature value, humidity value and the corrected temperature and humidity measurement value and the electromagnetic radiation parameter detection value after the correction of the embedded microprocessor module. The SPI mode is selected for communication. .txt format records, can directly carry out data transmission with PC host computer.
外接的NAND FLASH与所述嵌入式微处理器模块配合使用,NAND FLASH支持SLC和MLC两种架构,从而大大扩大存储空间,所述嵌入式微处理器模块安装的Linux的Uboot、内核以及系统文件都保存在NAND FLASH中,可采用三星公司生产的型号为K9F2G08。The external NAND FLASH is used in conjunction with the embedded microprocessor module. NAND FLASH supports both SLC and MLC architectures, thereby greatly expanding the storage space. The Uboot, kernel and system files of Linux installed in the embedded microprocessor module are all saved In NAND FLASH, the model produced by Samsung can be used as K9F2G08.
EEPROM(24C512)用于保存人工神经网络模型的网络参数和触摸屏校正参数。所述嵌入式微处理器模块启动时,自动从24C512中读取校正参数;24C512是一个512k串行CMOS EEPROM,有一个128字节页写缓冲器,该器件通过IIC总线接口进行操作。EEPROM (24C512) is used to save the network parameters of the artificial neural network model and the touch screen correction parameters. When the embedded microprocessor module starts, it automatically reads the correction parameters from 24C512; 24C512 is a 512k serial CMOS EEPROM with a 128-byte page write buffer, and the device operates through the IIC bus interface.
DDR SDRAM是双倍速率同步动态随机存储器,用于程序运行的DDRSDRAM可以在与SDRAM相同的总线频率下达到更高的数据传输率,也这是S3C6410的优势之一。采用两块16位宽度的SDRAM芯片并联的方式连接。DDR SDRAM is a double-rate synchronous dynamic random access memory. DDR SDRAM used for program operation can achieve a higher data transfer rate at the same bus frequency as SDRAM, which is one of the advantages of S3C6410. Two 16-bit wide SDRAM chips are connected in parallel.
所述显示模块用于显示修正后的电磁辐射参数检测值以及检测到的当前环境温度湿度信息。The display module is used to display the corrected electromagnetic radiation parameter detection value and the detected current ambient temperature and humidity information.
所述的电磁辐射测量装置还包括通讯模块,所述通讯模块用于实现存储器与PC上位机之间的数据传送。The electromagnetic radiation measurement device also includes a communication module, which is used to realize data transmission between the memory and the PC upper computer.
如图2所示,本装置的显示和控制部分可由LCD触摸屏完成,其应用程序釆用Qt编写。当给触摸屏控制信号时,液晶屏驱动Frame Buffer,帧缓冲驱动程序完成缓冲区的创建和设置DMA通道,MMAP系统将帧缓存映射应用层指令,QScreen类声明显示设备的基本描述和操作方式,控制信号处理完成;显示的过程与此相反,Frame Buffer调用驱动程序的读写函数,DMA将缓冲区中的内容不断发送到LCD上,显示过程基于DMA对于LCD的不断刷新。As shown in Figure 2, the display and control part of this device can be completed by LCD touch screen, and its application program is written by Qt. When a control signal is given to the touch screen, the LCD screen drives the Frame Buffer, the frame buffer driver completes the creation of the buffer and sets the DMA channel, the MMAP system maps the frame buffer to the application layer instructions, the QScreen class declares the basic description and operation mode of the display device, and controls The signal processing is completed; the display process is the opposite, the Frame Buffer calls the driver's read and write functions, and the DMA continuously sends the contents of the buffer to the LCD, and the display process is based on the DMA's continuous refresh of the LCD.
本发明还提供了一种基于环境温湿度修正的电磁辐射测量方法:The present invention also provides an electromagnetic radiation measurement method based on ambient temperature and humidity correction:
其包括which includes
1、利用电磁辐射采样模块实时测量环境中的电磁辐射信号,利用温湿度数字传感器实时测量环境的温度湿度信息并直接转换成数字信号;1. Use the electromagnetic radiation sampling module to measure the electromagnetic radiation signal in the environment in real time, and use the temperature and humidity digital sensor to measure the temperature and humidity information of the environment in real time and directly convert it into a digital signal;
2、对所述信号处理模块输出的电磁辐射信号执行模数转换后,输出经过温湿度补偿处理后的对应的电磁辐射参数检测值,其中所述的温湿度补偿处理是指所述嵌入式微处理器模块按照上述经过模数转换的电磁辐射参数值调用并运行所述存储器内部预存储的人工神经网络参数,得到当前温湿度参数对应的温湿度的补偿值后,对上述电磁辐射参数进行修正后输出对应的电磁辐射参数检测值;2. After analog-to-digital conversion is performed on the electromagnetic radiation signal output by the signal processing module, the corresponding electromagnetic radiation parameter detection value after temperature and humidity compensation processing is output, wherein the temperature and humidity compensation processing refers to the embedded micro-processing The controller module invokes and operates the artificial neural network parameters pre-stored in the memory according to the above-mentioned electromagnetic radiation parameter values through analog-to-digital conversion, and after obtaining the compensation value of temperature and humidity corresponding to the current temperature and humidity parameters, the above electromagnetic radiation parameters are corrected Output the corresponding electromagnetic radiation parameter detection value;
所述显示模块用于显示修正后的电磁辐射参数检测值以及检测到的当前环境温度湿度信息。The display module is used to display the corrected electromagnetic radiation parameter detection value and the detected current ambient temperature and humidity information.
所述的电磁辐射测量装置还包括通讯模块及PC上位机,所述通讯模块用于实现存储器与PC上位机之间的数据传送;所述PC上位机用于训练得到电磁辐射信号测量数据对应的温湿度补偿处理的人工神经网络参数,建立电磁辐射信号测量数据历史监测值曲线图表以及数据打印处理。The electromagnetic radiation measurement device also includes a communication module and a PC upper computer, the communication module is used to realize the data transmission between the memory and the PC upper computer; the PC upper computer is used for training to obtain the electromagnetic radiation signal measurement data corresponding Artificial neural network parameters for temperature and humidity compensation processing, establishment of historical monitoring value curve charts of electromagnetic radiation signal measurement data, and data printing processing.
所述的温湿度数字传感器内部预设超限报警阈值,若当前检测到的温湿度达到超限报警阈值则向嵌入式微处理器模块发送报警标识信息,所述嵌入式微处理器模块关闭电磁辐射测量装置运行程序,防止损坏仪器。The temperature and humidity digital sensor presets an over-limit alarm threshold. If the currently detected temperature and humidity reach the over-limit alarm threshold, an alarm identification message is sent to the embedded microprocessor module, and the embedded microprocessor module closes the electromagnetic radiation measurement. The device runs the program to prevent damage to the instrument.
本发明装置在测量环境电磁辐射强度的同时,考虑到环境温度、湿度对测量结果的影响,采用人工神经网络模型对测量结果实时修正,保证了测量结果的真实性和准确性。有效拓宽了环境对仪器使用条件的限制,可在恶劣环境下进行测量,而当温湿度环境超过阈值时,仪器会自动停止工作以免损坏仪器。While measuring the intensity of environmental electromagnetic radiation, the device of the invention takes into account the influence of ambient temperature and humidity on the measurement results, and adopts an artificial neural network model to correct the measurement results in real time, thereby ensuring the authenticity and accuracy of the measurement results. Effectively broaden the environmental restrictions on the conditions of use of the instrument, and can be measured in harsh environments, and when the temperature and humidity environment exceeds the threshold, the instrument will automatically stop working to avoid damage to the instrument.
综上所述,本发明采用具有很强处理能力和很好处理效果的32为ARM微处理器,提供了强大的接口模块和扩展资源,性能稳定、易于维护,在实现友好人机交互的同时,其突出的性能也保证了人工神经网络模型计算时效性的要求,设计方案有广泛的适应性,具有良好的应用前景。In summary, the present invention adopts a 32-bit ARM microprocessor with strong processing capability and good processing effect, provides powerful interface modules and extended resources, stable performance, easy maintenance, and realizes friendly human-computer interaction. , its outstanding performance also ensures the timeliness requirement of artificial neural network model calculation, the design scheme has wide adaptability and has a good application prospect.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, any person familiar with the technical field within the technical scope disclosed in the present invention, according to the technical solution of the present invention Any equivalent replacement or change of the inventive concepts thereof shall fall within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410456608.5ACN104198829B (en) | 2014-09-09 | 2014-09-09 | Electromagnetic radiation measurement device and measurement method based on ARM band temperature and humidity self-correction |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410456608.5ACN104198829B (en) | 2014-09-09 | 2014-09-09 | Electromagnetic radiation measurement device and measurement method based on ARM band temperature and humidity self-correction |
| Publication Number | Publication Date |
|---|---|
| CN104198829Atrue CN104198829A (en) | 2014-12-10 |
| CN104198829B CN104198829B (en) | 2017-10-27 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410456608.5AExpired - Fee RelatedCN104198829B (en) | 2014-09-09 | 2014-09-09 | Electromagnetic radiation measurement device and measurement method based on ARM band temperature and humidity self-correction |
| Country | Link |
|---|---|
| CN (1) | CN104198829B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104702686A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Electromagnetic radiation application service monitoring platform convenient for outer net inquiry service |
| CN104702688A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Electromagnetic radiation application service monitoring platform |
| CN104702689A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Mobile application service monitoring system for electromagnetic radiation |
| CN104702687A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Electromagnetic radiation application service monitoring platform capable of collecting and publishing data at real time |
| CN105259428A (en)* | 2015-11-25 | 2016-01-20 | 重庆市荣冠科技有限公司 | Wireless signal strength detection device |
| CN107167669A (en)* | 2017-04-28 | 2017-09-15 | 湘潭大学 | A kind of electromagnetic radiation measuring modification method under the environment based on white Gaussian noise |
| CN107255754A (en)* | 2017-06-20 | 2017-10-17 | 湘潭大学 | A kind of electromagnetic radiation measuring modification method under the environment based on seanoise |
| CN107449973A (en)* | 2017-08-14 | 2017-12-08 | 青岛海信移动通信技术股份有限公司 | A kind of terminal detection method of electromagnetic radiation, device and terminal |
| TWI614510B (en)* | 2017-06-21 | 2018-02-11 | Humidity sensor calibration method | |
| CN108445306A (en)* | 2018-03-29 | 2018-08-24 | 哈尔滨理工大学 | A kind of electric field measurement system and its application method based on FPGA controls |
| CN108896989A (en)* | 2018-05-10 | 2018-11-27 | 闻鼓通信科技股份有限公司 | Millimetre-wave radar imaging and pattern-recognition |
| CN109275336A (en)* | 2016-04-29 | 2019-01-25 | 唯景公司 | Calibration of electrical parameters in optically switchable apertures |
| DE102019111948A1 (en)* | 2019-05-08 | 2020-11-12 | Bayerische Motoren Werke Aktiengesellschaft | Method and measuring device for checking an electromagnetic emission of a component, in particular for a vehicle |
| CN112540241A (en)* | 2020-11-30 | 2021-03-23 | 重庆电子工程职业学院 | Non-linear compensation system and method for electric field intensity measurement |
| CN113866518A (en)* | 2021-11-05 | 2021-12-31 | 北京航空航天大学 | A distributed electromagnetic interference signal power acquisition device and method |
| CN114218978A (en)* | 2021-11-08 | 2022-03-22 | 合肥湛达智能科技有限公司 | An embedded lightweight millimeter-wave radar target recognition method |
| US11579509B2 (en) | 2013-06-28 | 2023-02-14 | View, Inc. | Controlling transitions in optically switchable devices |
| US11592724B2 (en) | 2012-04-17 | 2023-02-28 | View, Inc. | Driving thin film switchable optical devices |
| US11630367B2 (en) | 2011-03-16 | 2023-04-18 | View, Inc. | Driving thin film switchable optical devices |
| US11640096B2 (en) | 2011-03-16 | 2023-05-02 | View, Inc. | Multipurpose controller for multistate windows |
| US11668991B2 (en) | 2011-03-16 | 2023-06-06 | View, Inc. | Controlling transitions in optically switchable devices |
| US11829045B2 (en) | 2013-06-28 | 2023-11-28 | View, Inc. | Controlling transitions in optically switchable devices |
| CN117368584A (en)* | 2023-09-18 | 2024-01-09 | 西安苏试广博环境可靠性实验室有限公司 | Auxiliary device for measuring electromagnetic radiation characteristics of axial generator and use method |
| US12061404B2 (en) | 2013-06-28 | 2024-08-13 | View, Inc. | Controlling transitions in optically switchable devices |
| WO2024220050A1 (en)* | 2023-04-19 | 2024-10-24 | T.C. Uskudar Universitesi | Electromagnetic pollution measurement method |
| US12353111B2 (en) | 2013-06-28 | 2025-07-08 | View Operating Corporation | Controlling transitions in optically switchable devices |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20020074595A (en)* | 2001-03-20 | 2002-10-04 | 안재목 | Portable digital electromagnetic field measurement device |
| KR101287908B1 (en)* | 2011-12-28 | 2013-07-19 | 한국철도기술연구원 | Electromagnetic wave measuring device for rectifier protection with temperature, humidity sensor |
| CN104008626A (en)* | 2014-06-11 | 2014-08-27 | 湖南大学 | Environment-oriented portable and healthy intelligent wireless synthetic perception device and system |
| CN104024740A (en)* | 2011-12-26 | 2014-09-03 | 夏普株式会社 | Heating cooking device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20020074595A (en)* | 2001-03-20 | 2002-10-04 | 안재목 | Portable digital electromagnetic field measurement device |
| CN104024740A (en)* | 2011-12-26 | 2014-09-03 | 夏普株式会社 | Heating cooking device |
| KR101287908B1 (en)* | 2011-12-28 | 2013-07-19 | 한국철도기술연구원 | Electromagnetic wave measuring device for rectifier protection with temperature, humidity sensor |
| CN104008626A (en)* | 2014-06-11 | 2014-08-27 | 湖南大学 | Environment-oriented portable and healthy intelligent wireless synthetic perception device and system |
| Title |
|---|
| 周晋 等: "利用神经网络估算太阳辐射", 《太阳能学报》* |
| 王炯莲: "基于嵌入式系统的便携电磁辐射计的设计与实现", 《中国优秀硕士学位论文全文数据库 工程科技II辑》* |
| 胡京冬 等: "一种多点实时电磁辐射检测系统设计及应用", 《航天器环境工程》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12153321B2 (en) | 2011-03-16 | 2024-11-26 | View, Inc. | Controlling transitions in optically switchable devices |
| US12117710B2 (en) | 2011-03-16 | 2024-10-15 | View, Inc. | Driving thin film switchable optical devices |
| US12379639B2 (en) | 2011-03-16 | 2025-08-05 | View Operating Corporation | Driving thin film switchable optical devices |
| US11630367B2 (en) | 2011-03-16 | 2023-04-18 | View, Inc. | Driving thin film switchable optical devices |
| US11640096B2 (en) | 2011-03-16 | 2023-05-02 | View, Inc. | Multipurpose controller for multistate windows |
| US11668991B2 (en) | 2011-03-16 | 2023-06-06 | View, Inc. | Controlling transitions in optically switchable devices |
| US12197098B2 (en) | 2012-04-17 | 2025-01-14 | View, Inc. | Driving thin film switchable optical devices |
| US11927867B2 (en) | 2012-04-17 | 2024-03-12 | View, Inc. | Driving thin film switchable optical devices |
| US11592724B2 (en) | 2012-04-17 | 2023-02-28 | View, Inc. | Driving thin film switchable optical devices |
| US12061404B2 (en) | 2013-06-28 | 2024-08-13 | View, Inc. | Controlling transitions in optically switchable devices |
| US11829045B2 (en) | 2013-06-28 | 2023-11-28 | View, Inc. | Controlling transitions in optically switchable devices |
| US11835834B2 (en) | 2013-06-28 | 2023-12-05 | View, Inc. | Controlling transitions in optically switchable devices |
| US12326640B2 (en) | 2013-06-28 | 2025-06-10 | View Operating Corporation | Controlling transitions in optically switchable devices |
| US11579509B2 (en) | 2013-06-28 | 2023-02-14 | View, Inc. | Controlling transitions in optically switchable devices |
| US12353111B2 (en) | 2013-06-28 | 2025-07-08 | View Operating Corporation | Controlling transitions in optically switchable devices |
| CN104702687B (en)* | 2015-03-12 | 2018-04-27 | 高魁 | It is a kind of can real-time data acquisition issue electromagnetic radiation application service monitoring platform |
| CN104702688B (en)* | 2015-03-12 | 2018-04-27 | 高魁 | A kind of electromagnetic radiation application service monitoring platform |
| CN104702686B (en)* | 2015-03-12 | 2018-04-27 | 高魁 | A kind of electromagnetic radiation application service monitoring platform easy to outer net inquiry service |
| CN104702689B (en)* | 2015-03-12 | 2018-04-27 | 高魁 | Electromagnetic radiation mobile application service monitoring system |
| CN104702688A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Electromagnetic radiation application service monitoring platform |
| CN104702689A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Mobile application service monitoring system for electromagnetic radiation |
| CN104702687A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Electromagnetic radiation application service monitoring platform capable of collecting and publishing data at real time |
| CN104702686A (en)* | 2015-03-12 | 2015-06-10 | 高魁 | Electromagnetic radiation application service monitoring platform convenient for outer net inquiry service |
| CN105259428A (en)* | 2015-11-25 | 2016-01-20 | 重庆市荣冠科技有限公司 | Wireless signal strength detection device |
| CN105259428B (en)* | 2015-11-25 | 2018-06-26 | 重庆市荣冠科技有限公司 | A kind of wireless signal strength detection device |
| US12073752B2 (en) | 2016-04-29 | 2024-08-27 | View, Inc. | Calibration of electrical parameters in optically switchable windows |
| US11482147B2 (en) | 2016-04-29 | 2022-10-25 | View, Inc. | Calibration of electrical parameters in optically switchable windows |
| CN109275336A (en)* | 2016-04-29 | 2019-01-25 | 唯景公司 | Calibration of electrical parameters in optically switchable apertures |
| CN107167669B (en)* | 2017-04-28 | 2019-08-06 | 湘潭大学 | A Method of Electromagnetic Radiation Measurement and Correction Based on Gaussian White Noise Environment |
| CN107167669A (en)* | 2017-04-28 | 2017-09-15 | 湘潭大学 | A kind of electromagnetic radiation measuring modification method under the environment based on white Gaussian noise |
| CN107255754B (en)* | 2017-06-20 | 2019-07-30 | 湘潭大学 | A kind of electromagnetic radiation measuring modification method under the environment based on seanoise |
| CN107255754A (en)* | 2017-06-20 | 2017-10-17 | 湘潭大学 | A kind of electromagnetic radiation measuring modification method under the environment based on seanoise |
| TWI614510B (en)* | 2017-06-21 | 2018-02-11 | Humidity sensor calibration method | |
| CN107449973A (en)* | 2017-08-14 | 2017-12-08 | 青岛海信移动通信技术股份有限公司 | A kind of terminal detection method of electromagnetic radiation, device and terminal |
| CN107449973B (en)* | 2017-08-14 | 2020-01-31 | 青岛海信移动通信技术股份有限公司 | terminal electromagnetic radiation detection method and device and terminal |
| CN108445306A (en)* | 2018-03-29 | 2018-08-24 | 哈尔滨理工大学 | A kind of electric field measurement system and its application method based on FPGA controls |
| CN108896989A (en)* | 2018-05-10 | 2018-11-27 | 闻鼓通信科技股份有限公司 | Millimetre-wave radar imaging and pattern-recognition |
| CN108896989B (en)* | 2018-05-10 | 2020-01-24 | 闻鼓通信科技股份有限公司 | Millimeter wave radar imaging and pattern recognition |
| DE102019111948A1 (en)* | 2019-05-08 | 2020-11-12 | Bayerische Motoren Werke Aktiengesellschaft | Method and measuring device for checking an electromagnetic emission of a component, in particular for a vehicle |
| CN112540241A (en)* | 2020-11-30 | 2021-03-23 | 重庆电子工程职业学院 | Non-linear compensation system and method for electric field intensity measurement |
| CN113866518A (en)* | 2021-11-05 | 2021-12-31 | 北京航空航天大学 | A distributed electromagnetic interference signal power acquisition device and method |
| CN114218978A (en)* | 2021-11-08 | 2022-03-22 | 合肥湛达智能科技有限公司 | An embedded lightweight millimeter-wave radar target recognition method |
| WO2024220050A1 (en)* | 2023-04-19 | 2024-10-24 | T.C. Uskudar Universitesi | Electromagnetic pollution measurement method |
| CN117368584A (en)* | 2023-09-18 | 2024-01-09 | 西安苏试广博环境可靠性实验室有限公司 | Auxiliary device for measuring electromagnetic radiation characteristics of axial generator and use method |
| Publication number | Publication date |
|---|---|
| CN104198829B (en) | 2017-10-27 |
| Publication | Publication Date | Title |
|---|---|---|
| CN104198829B (en) | Electromagnetic radiation measurement device and measurement method based on ARM band temperature and humidity self-correction | |
| CN103982413B (en) | Pump class efficiency on-line checkingi appraisal procedure and system | |
| CN202522915U (en) | Data acquisition system based on vibration wire type sensor | |
| CN106522289A (en) | Intelligent foundation pile detection device and detection method | |
| WO2017031957A1 (en) | Otg anti-counterfeiting reader | |
| CN107449544A (en) | A kind of pressure gauge and method for testing pressure | |
| CN204140132U (en) | Colliery downhole equipment spot check instrument | |
| CN105902217A (en) | Intelligent shower system based on STM32 | |
| CN105572002A (en) | PM2.5 dust concentration detection method | |
| CN203673087U (en) | Meteorological data measuring device | |
| CN206223718U (en) | Gas sensor drive circuit with humidity compensation function | |
| CN105577895A (en) | Mobile phone for testing concentration of PM2.5 dust | |
| CN214376495U (en) | A portable rock and lithology rapid classification and identification device | |
| CN207965565U (en) | A kind of data collecting system based on real-time dynamic big data | |
| CN207147645U (en) | Wireless temperature monitoring system | |
| CN203490381U (en) | Farmland environmental parameter detector based on android intelligent mobile phone | |
| CN203385749U (en) | Wind speed and wind direction measuring device of DSP-based miniature meteorological station | |
| CN205247129U (en) | Multiple spot temperature detects wireless monitoring memory system based on STM32 singlechip | |
| CN204924446U (en) | Infrared thermodetector | |
| CN205620050U (en) | Hot resistance temperature secondary meter intelligence calibrating installation | |
| CN211206344U (en) | Air quality detection system and air quality detector | |
| CN204576783U (en) | Based on the radio transmitting device of X-bee | |
| CN203101615U (en) | Pointer type electric detection meter automatic verification device | |
| CN204228127U (en) | Wireless Intelligent Thickness Gauge | |
| CN204314008U (en) | A kind of chill car gaseous tension sensing unit detection system |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20171027 Termination date:20200909 | |
| CF01 | Termination of patent right due to non-payment of annual fee |