技术领域technical field
本发明属于工业自动化技术领域,涉及一种无穷时域优化的批次过程的线性二次容错控制方法。The invention belongs to the technical field of industrial automation, and relates to a linear quadratic fault-tolerant control method of an infinite time-domain optimized batch process.
背景技术Background technique
随着社会的高速发展,人们对高品质批次生产的要求越来越高。这种高要求导致了生产需要在更加复杂的条件下操作,系统发生故障的概率也相应的增加了。在这些故障中,执行器故障是最常见的一种故障。由于存在摩擦、死区、饱和等特性,执行器在执行过程中不可避免地会出现一些故障,这导致它很难达到指定或理想的位置。如果故障没有被及时的检测并校正,生产性能必然会恶化,甚至会导致设备和人员的安全问题。因此,提出一种新的控制方法来解决执行器在执行过程中发生故障从而保证系统控制性能是十分必要的。With the rapid development of society, people's requirements for high-quality batch production are getting higher and higher. This high demand has led to the need for production to operate under more complex conditions, and the probability of system failure has increased accordingly. Among these failures, actuator failure is the most common one. Due to the characteristics of friction, dead zone, saturation, etc., the actuator will inevitably have some failures during the execution process, which makes it difficult for it to reach the specified or ideal position. If the failure is not detected and corrected in time, the production performance will inevitably deteriorate, and even cause safety problems for equipment and personnel. Therefore, it is necessary to propose a new control method to solve the failure of the actuator in the execution process so as to ensure the control performance of the system.
发明内容Contents of the invention
本发明的目的是针对批次生产过程中可能遇到执行器发生故障的问题,提出了一种无穷时域优化的批次过程的线性二次容错控制方法。该方法通过结合状态变量和输出跟踪误差,建立了批次过程的扩展状态空间模型,进而在无限时域中设计控制器。该方法不仅保证了系统在未知扰动和执行器故障情况下有良好的跟踪性能,同时也保证了形式简单并满足实际工业过程的需要。The purpose of the present invention is to propose a linear quadratic fault-tolerant control method for infinite time-domain optimized batch process aiming at the problem that the actuator may fail in the batch production process. The method builds an extended state-space model of the batch process by combining state variables and output tracking errors, and then designs the controller in the infinite time domain. This method not only guarantees good tracking performance of the system in the case of unknown disturbances and actuator failures, but also ensures a simple form and meets the needs of actual industrial processes.
本发明的技术方案是通过数据采集、模型建立、预测机理、优化等手段,确立了一种无穷时域优化的批次过程的线性二次容错控制方法,利用该方法可有效提高系统在未知扰动和执行器故障情况下的控制性能。The technical solution of the present invention is to establish a linear quadratic fault-tolerant control method for batch processes optimized in infinite time domain by means of data collection, model building, prediction mechanism, optimization, etc., which can effectively improve the system's performance in unknown disturbances. and control performance under actuator failure conditions.
本发明方法的步骤包括:The steps of the inventive method comprise:
步骤(1).建立被控对象的扩展状态空间模型,具体方法是:Step (1). Establish the extended state space model of the controlled object, the specific method is:
a.利用实时数据驱动的方法建立局部预测模型,具体方法是:建立批次过程的实时运行数据库,通过数据采集装置采集实时过程运行数据,将采集的实时过程运行数据作为数据驱动的样本集合其中,表示第i组工艺参数的输入值,y(i)表示第i组工艺参数的输出值,N表示采样总数;以该对象的实时过程运行数据集合为基础建立基于最小二乘算法的离散差分方程形式的局部受控自回归滑动平均模型:a. Use the real-time data-driven method to establish a local prediction model. The specific method is: establish a real-time operation database of the batch process, collect real-time process operation data through the data acquisition device, and use the collected real-time process operation data as a data-driven sample set in, Represents the input value of the i-th group of process parameters, y(i) represents the output value of the i-th group of process parameters, and N represents the total number of samples; based on the real-time process operation data set of the object, a discrete difference equation based on the least squares algorithm is established A locally controlled autoregressive moving average model of the form:
其中,yL(k)表示k时刻局部预测模型的工艺参数的输出值,表示通过辨识得到的模型参数的集合,表示局部预测模型的工艺参数的过去时刻的输入和输出数据的集合,u(k-d-1)表示k-d-1时刻工艺参数对应的控制变量,d+1为实际过程的时滞,Τ为矩阵的转置符号。Among them, yL (k) represents the output value of the process parameter of the local prediction model at time k, Represents the set of model parameters obtained through identification, Represents the collection of input and output data of the process parameters of the local prediction model in the past, u(kd-1) represents the control variable corresponding to the process parameters at kd-1 time, d+1 is the time lag of the actual process, and T is the matrix Transpose symbols.
采用的辨识手段为:The identification methods used are:
其中,和P为辨识中的两个矩阵,γ为遗忘因子,为单位矩阵。in, and P are two matrices in identification, γ is the forgetting factor, is the identity matrix.
b.利用a步骤中得到的系数,建立批次过程的差分方程模型,其形式为:b. Using the coefficients obtained in step a, establish a differential equation model for the batch process, which is in the form:
Δy(k)+HΔy(k-1)=FΔu(k-d-1)Δy(k)+HΔy(k-1)=FΔu(k-d-1)
其中,Δ是差分算子,F,H为a步骤中通过辩识得到的参数,d为时滞项。Among them, Δ is the difference operator, F and H are the parameters obtained through identification in step a, and d is the delay term.
c.根据b步骤中的差分方程,建立批次过程的状态空间模型,形式如下:c. According to the difference equation in step b, establish a state-space model of the batch process, the form is as follows:
其中,in,
Cm=(1 0 0 … 0)Cm = (1 0 0 ... 0)
其中,Am为(d+1)×(d+1)阶矩阵,Bm为(d+1)×1阶矩阵,Cm为1×(d+1)阶矩阵。Among them, Am is a (d+1)×(d+1) order matrix, Bm is a (d+1)×1 order matrix, and Cm is a 1×(d+1) order matrix.
d.将c步骤中得到的状态空间模型转换为包含状态变量和输出跟踪误差的扩展状态空间模型,形式如下:d. Convert the state-space model obtained in step c into an extended state-space model including state variables and output tracking errors, in the following form:
z(k+1)=Az(k)+BΔu(k)=Az(k)+Bu(k)-Bu(k-1)z(k+1)=Az(k)+BΔu(k)=Az(k)+Bu(k)-Bu(k-1)
式中,In the formula,
e(k)=r(k)-y(k)e(k)=r(k)-y(k)
其中,r(k)为k时刻的理想输出值,e(k)为k时刻理想输出值与实际输出值之间的差值。Among them, r(k) is the ideal output value at time k, and e(k) is the difference between the ideal output value and the actual output value at time k.
步骤(2).设计被控对象的无穷时域优化的批次过程线性二次容错控制器,具体方法是:Step (2). Design the batch process linear quadratic fault-tolerant controller of the infinite time domain optimization of the controlled object, the specific method is:
a.选取批次处理过程的目标函数,形式如下:a. Select the objective function of the batch processing process, the form is as follows:
其中,Q>0,R>0分别为过程状态的加权矩阵、输入加权矩阵,[k0,kf]为优化时域;qj1,qj2,…qjp+q+1为过程状态的权重系数,qje为输出跟踪误差的权重系数并且取qje=1。Among them, Q>0, R>0 are the weighting matrix of the process state and the input weighting matrix respectively, [k0 , kf ] is the optimization time domain; qj1 , qj2 ,…qjp+q+1 are the process state Weight coefficient, qje is the weight coefficient of the output tracking error and qje =1.
b.利用庞特里亚金最小值原理将a步骤的目标函数写成如下形式:b. Use the Pontryagin minimum principle to write the objective function of step a as follows:
其中,pk+1为拉格朗日乘子。Among them, pk+1 is the Lagrangian multiplier.
c.求并令其等于零,可得c. seek and set it equal to zero, we get
联合进一步可以得到joint further can be obtained
其中,R-1表示输入加权矩阵的逆矩阵。Among them, R-1 represents the inverse matrix of the input weighting matrix.
d.令kf趋于正无穷,可得d. Let kf tend to be positive infinity, we can get
Δu(k)=-R-1BΤ[I+K∞BR-1BΤ]-1K∞Az(k)Δu(k)=-R-1 BΤ [I+K∞ BR-1 BΤ ]-1 K∞ Az(k)
K∞=AΤ[I+K∞BR-1BΤ]-1K∞A+QK∞ =AΤ [I+K∞ BR-1 BΤ ]-1 K∞ A+Q
=AΤK∞A-AΤK∞B(R+BΤK∞B)-1BΤK∞A+Q=AΤ K∞ AAΤ K∞ B(R+BΤ K∞ B)-1 BΤ K∞ A+Q
u(k)=u(k-1)+Δu(k)u(k)=u(k-1)+Δu(k)
其中,K∞为kf趋于正无穷时的值。Among them, K∞ is when kf tends to positive infinity value.
e.将d步骤中得到的控制量u(k)作用于被控对象。e. Apply the control quantity u(k) obtained in step d to the controlled object.
f.在下一时刻,依照a到e的步骤继续求解新的控制量u(k+1),依次循环。f. At the next moment, continue to solve the new control variable u(k+1) according to the steps from a to e, and cycle in turn.
本发明将将优化时域扩展到了无穷时域,提出了一种无穷时域优化的批次过程的线性二次容错控制方法。该方法弥补了传统线性二次控制方法的不足,有效地保证了系统在未知扰动和执行器故障情况下的良好跟踪性能。The invention extends the optimized time domain to the infinite time domain, and proposes a linear quadratic fault-tolerant control method for batch processes optimized in the infinite time domain. This method makes up for the shortcomings of the traditional linear quadratic control method, and effectively guarantees the good tracking performance of the system in the case of unknown disturbances and actuator failures.
具体实施方式detailed description
以注塑过程中注射速度的控制为例Taking the control of injection speed in the injection molding process as an example
注塑过程中注射速度的控制是一个典型的批次处理过程,调节手段为控制比例阀阀门的开度。The control of injection speed in the injection molding process is a typical batch process, and the adjustment method is to control the opening of the proportional valve.
步骤(1).建立注射过程的扩展状态空间模型,具体方法是:Step (1). Establish the extended state-space model of the injection process, the specific method is:
a.建立注射过程的实时运行数据库,通过数据采集装置采集实时过程运行数据将采集的实时过程运行数据作为数据驱动的样本集合其中,表示第i组比例阀阀门的开度,y(i)表示第i组实际输出的注射速度;以注射速度过程的实时过程运行数据集合为基础建立基于最小二乘算法的离散差分方程形式的局部受控自回归滑动平均模型:a. Establish a real-time operation database of the injection process, collect real-time process operation data through the data acquisition device, and use the collected real-time process operation data as a data-driven sample collection in, Indicates the opening degree of the i-th proportional valve, and y(i) indicates the actual output injection speed of the i-th group; based on the real-time process operation data set of the injection speed process, the local Controlled autoregressive moving average model:
其中,yL(k)表示k时刻注射速度的实际输出值,θ表示通过辨识得到的模型参数的集合,表示注射过程局部预测模型的过去时刻的输入和输出数据的集合,u(k-d-1)表示k-d-1时刻注射过程中比例阀阀门的开度,d+1为对应注射过程的时滞,Τ为矩阵的转置符号。Among them, yL (k) represents the actual output value of the injection speed at time k, θ represents the set of model parameters obtained through identification, Indicates the collection of input and output data of the local prediction model of the injection process in the past, u(kd-1) indicates the opening of the proportional valve in the injection process at kd-1 time, d+1 is the time lag of the corresponding injection process, Τ is the transpose symbol of the matrix.
采用的辨识手段为:The identification methods used are:
其中,和P为辨识中的两个矩阵,γ为遗忘因子,为单位矩阵。in, and P are two matrices in identification, γ is the forgetting factor, is the identity matrix.
b.将a步骤中得到的注射过程模型转换为差分方程的形式:b. Convert the injection process model obtained in step a into the form of a differential equation:
Δy(k)+HΔy(k-1)=FΔu(k-d-1)Δy(k)+HΔy(k-1)=FΔu(k-d-1)
其中,Δ是差分算子,F,H为a步骤中通过辩识得到的参数,d为时滞项。Among them, Δ is the difference operator, F and H are the parameters obtained through identification in step a, and d is the delay term.
c.选取状态变量,根据b步骤中的差分方程,建立注射过程的状态空间模型,形式如下:c. Select the state variable, according to the difference equation in step b, establish the state space model of the injection process, the form is as follows:
其中,in,
Cm=(1 0 0 … 0)Cm = (1 0 0 ... 0)
其中,Am为(d+1)×(d+1)阶矩阵,Bm为(d+1)×1阶矩阵,Cm为1×(d+1)阶矩阵。Among them, Am is a (d+1)×(d+1) order matrix, Bm is a (d+1)×1 order matrix, and Cm is a 1×(d+1) order matrix.
d.将c步骤中得到的注射过程的状态空间模型转换为包含状态变量和输出跟踪误差的扩展状态空间模型,形式如下:d. Convert the state-space model of the injection process obtained in step c into an extended state-space model including state variables and output tracking errors, in the following form:
z(k+1)=Az(k)+BΔu(k)=Az(k)+Bu(k)-Bu(k-1)z(k+1)=Az(k)+BΔu(k)=Az(k)+Bu(k)-Bu(k-1)
式中,In the formula,
e(k)=r(k)-y(k)e(k)=r(k)-y(k)
e(k)为k时刻理想注射速度值与实际注射速度值之间的差值。e(k) is the difference between the ideal injection speed value and the actual injection speed value at time k.
步骤(2).设计注射过程的无穷时域优化的批次过程线性二次容错控制器,具体方法是:Step (2). The batch process linear quadratic fault-tolerant controller of the infinite time domain optimization of the design injection process, the specific method is:
a.选取注射过程的目标函数,形式如下:a. Select the objective function of the injection process, the form is as follows:
其中,Q>0,R>0分别注射过程状态的加权矩阵、输入加权矩阵,[k0,kf]为注射过程的优化时域;qj1,qj2,…qjp+q+1为注射速度过程状态的权重系数,qje为输出跟踪误差的权重系数并且取qje=1。Among them, Q>0, R>0 are the weighting matrix of the injection process state and the input weighting matrix respectively, [k0 ,kf ] is the optimal time domain of the injection process; qj1 ,qj2 ,…qjp+q+1 is The weight coefficient of the injection speed process state, qje is the weight coefficient of the output tracking error and qje =1.
b.利用庞特里亚金最小值原理将a步骤的目标函数写成如下形式:b. Use the Pontryagin minimum principle to write the objective function of step a as follows:
其中,pk+1为拉格朗日乘子。Among them, pk+1 is the Lagrangian multiplier.
c.求并令其等于零,可得c. seek and set it equal to zero, we get
联合
其中,R-1表示输入加权矩阵的逆矩阵。Among them, R-1 represents the inverse matrix of the input weighting matrix.
d.令kf趋于正无穷,可得d. Let kf tend to be positive infinity, we can get
Δu(k)=-R-1BT[I+K∞BR-1BT]-1K∞Az(k)Δu(k)=-R-1 BT [I+K∞ BR-1 BT ]-1 K∞ Az(k)
K∞=AT[I+K∞BR-1BT]-1K∞A+QK∞ =AT [I+K∞ BR-1 BT ]-1 K∞ A+Q
=ATK∞A-ATK∞B(R+BTK∞B)-1BTK∞A+Q=AT K∞ AAT K∞ B(R+BT K∞ B)-1 BT K∞ A+Q
u(k)=u(k-1)+Δu(k)u(k)=u(k-1)+Δu(k)
其中,K∞为kf趋于正无穷时的值。Among them, K∞ is when kf tends to positive infinity value.
e.将d步骤中得到的比例阀阀门开度u(k)作用于注塑机。e. Apply the valve opening u(k) of the proportional valve obtained in step d to the injection molding machine.
f.在下一时刻,依照a到e的步骤继续求解新的比例阀阀门的开度u(k+1),并依次循环。f. At the next moment, continue to solve the opening degree u(k+1) of the new proportional valve according to the steps from a to e, and cycle in turn.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410280272.1ACN104102131B (en) | 2014-06-20 | 2014-06-20 | The linear quadratic fault tolerant control method of the batch process that Infinite horizon optimizes |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410280272.1ACN104102131B (en) | 2014-06-20 | 2014-06-20 | The linear quadratic fault tolerant control method of the batch process that Infinite horizon optimizes |
| Publication Number | Publication Date |
|---|---|
| CN104102131A CN104102131A (en) | 2014-10-15 |
| CN104102131Btrue CN104102131B (en) | 2016-08-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410280272.1AActiveCN104102131B (en) | 2014-06-20 | 2014-06-20 | The linear quadratic fault tolerant control method of the batch process that Infinite horizon optimizes |
| Country | Link |
|---|---|
| CN (1) | CN104102131B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104932253A (en)* | 2015-04-12 | 2015-09-23 | 北京理工大学 | Mechanical-electrical composite transmission minimum principle real-time optimization control method |
| CN107976942B (en)* | 2017-11-22 | 2020-11-24 | 海南师范大学 | 2D Constrained Fault Tolerant Control Method for Batch Processes with Infinite Time Domain Optimization |
| CN108073077B (en)* | 2017-12-25 | 2021-01-29 | 海南师范大学 | Linear quadratic hybrid fault-tolerant control method for batch process infinite time domain optimization |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07168607A (en)* | 1993-12-15 | 1995-07-04 | Yamatake Honeywell Co Ltd | Model predictive control method based on state space model |
| CN103235504A (en)* | 2013-03-25 | 2013-08-07 | 上海交通大学 | Flight control method for large civil aircrafts on basis of direct adaptive control reconfiguration |
| CN103529702A (en)* | 2013-09-18 | 2014-01-22 | 杭州电子科技大学 | Forecasting function fault-tolerant control method for batch process |
| CN103699009A (en)* | 2013-09-18 | 2014-04-02 | 杭州电子科技大学 | Linear quadratic type fault-tolerant control method for batch process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8160730B2 (en)* | 2008-03-03 | 2012-04-17 | Xinsheng Lou | Fuzzy logic control and optimization system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07168607A (en)* | 1993-12-15 | 1995-07-04 | Yamatake Honeywell Co Ltd | Model predictive control method based on state space model |
| CN103235504A (en)* | 2013-03-25 | 2013-08-07 | 上海交通大学 | Flight control method for large civil aircrafts on basis of direct adaptive control reconfiguration |
| CN103529702A (en)* | 2013-09-18 | 2014-01-22 | 杭州电子科技大学 | Forecasting function fault-tolerant control method for batch process |
| CN103699009A (en)* | 2013-09-18 | 2014-04-02 | 杭州电子科技大学 | Linear quadratic type fault-tolerant control method for batch process |
| Title |
|---|
| 一类非线性系统的扩展状态空间预测控制;张日东 等;《控制与决策》;20050731;第20卷(第7期);第807-810页* |
| Publication number | Publication date |
|---|---|
| CN104102131A (en) | 2014-10-15 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103699009B (en) | Linear Quadratic Fault Tolerant Control Method for Batch Process | |
| CN101899563B (en) | PCA (Principle Component Analysis) model based furnace temperature and tension monitoring and fault tracing method of continuous annealing unit | |
| CN104270055B (en) | Parameter self-correcting method of position loop IP controller of alternating current servo system | |
| CN104932488B (en) | Model predictive control performance evaluation and diagnosis method | |
| CN103529702A (en) | Forecasting function fault-tolerant control method for batch process | |
| CN102705303A (en) | Fault location method based on residual and double-stage Elman neural network for hydraulic servo system | |
| CN107133376A (en) | A kind of weak fault degree Forecasting Methodology of autonomous type underwater robot propeller based on grey forecasting model | |
| CN104238366A (en) | Predictive control method and device of piezoelectric ceramic actuator on basis of neural network | |
| CN107045289A (en) | A kind of nonlinear neural network optimization PID control method of electric furnace temperature | |
| CN105487376B (en) | A kind of method for optimally controlling based on data-driven list network structure | |
| CN104698976B (en) | Deep diagnosis method for predicting performance degradation of control model | |
| CN104537415A (en) | Non-linear process industrial fault prediction and identification method based on compressed sensing and DROS-ELM | |
| CN101825871A (en) | Intelligent adaptive control method for heave and pitch device for oblique rudder ship | |
| CN114066262A (en) | An abductive reasoning method, system, device and storage medium for evaluating abnormal indicators after power grid dispatch | |
| WO2017088207A1 (en) | Model-free online rolling optimization method for batch process on basis of time period variable decomposition | |
| CN104076831A (en) | Water tank liquid level control method based on generalized prediction control optimization | |
| CN109032117B (en) | Performance Evaluation Method of Single-loop Control System Based on ARMA Model | |
| CN104102131B (en) | The linear quadratic fault tolerant control method of the batch process that Infinite horizon optimizes | |
| CN104536294A (en) | Multi-target hierarchical prediction control method based on continuous stirred tank reactor | |
| CN105334751B (en) | A kind of stability controller design method of batch injection moulding process | |
| CN105159081A (en) | Intelligent control method of steering engine electro-hydraulic loading system | |
| CN105425583A (en) | Control method of penicillin production process based on cooperative training local weighted partial least squares (LWPLS) | |
| CN104182623A (en) | Thermal process data detection method based on equivalent change rate calculation | |
| CN115563463A (en) | Multi-working-condition rotating machine residual life prediction method based on deep meta-learning algorithm | |
| CN103941589A (en) | Non-linear model predictive control method of piezoelectric actuator |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |