Movatterモバイル変換


[0]ホーム

URL:


CN104040109B - Autonomous Fluid Control System with Fluid Diodes - Google Patents

Autonomous Fluid Control System with Fluid Diodes
Download PDF

Info

Publication number
CN104040109B
CN104040109BCN201180074888.8ACN201180074888ACN104040109BCN 104040109 BCN104040109 BCN 104040109BCN 201180074888 ACN201180074888 ACN 201180074888ACN 104040109 BCN104040109 BCN 104040109B
Authority
CN
China
Prior art keywords
fluid
diode
flow
inlet
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180074888.8A
Other languages
Chinese (zh)
Other versions
CN104040109A (en
Inventor
璧典寒
赵亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halliburton Energy Services Inc
Original Assignee
Halliburton Energy Services Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Halliburton Energy Services IncfiledCriticalHalliburton Energy Services Inc
Publication of CN104040109ApublicationCriticalpatent/CN104040109A/en
Application grantedgrantedCritical
Publication of CN104040109BpublicationCriticalpatent/CN104040109B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Apparatus and methods for autonomously controlling fluid flow in a subterranean well are presented, and in particular for providing a fluid diode that offers relatively high resistance to fluid flow in one direction and relatively low resistance to fluid flow in the opposite direction. The diode is located in the fluid channel and has opposing high and low resistance inlets. In one embodiment, the high resistance inlet has a concave annular surface surrounding an orifice and the low resistance inlet has a substantially conical surface. The concave annular surface of the high resistance inlet preferably extends longitudinally beyond the plane of the orifice. In a preferred embodiment, the fluid will flow in a vortex adjacent to the recessed annular surface.

Description

Translated fromChinese
具有流体二极管的自主流体控制系统Autonomous Fluid Control System with Fluid Diodes

相关申请的交叉引用Cross References to Related Applications

none

技术领域technical field

本发明涉及使用流体二极管控制流经系统的流体的装置和方法。更具体地,本发明涉及使用由一孔口限定的具有大阻力侧和小阻力侧的流体二极管。The present invention relates to devices and methods for controlling fluid flow through a system using fluid diodes. More specifically, the present invention relates to the use of a fluid diode having a high resistance side and a low resistance side defined by an orifice.

背景技术Background technique

有些井眼修护工具在井眼修护工具的内部与井眼之间提供多个流体流路。然而,通过这种多个流体流路进行流体传送可能以不期望和/或非同质的方式发生。通过多个流体流路传送的流体中的变化可归因于相关含烃地层中的流体状态的变化,和/或可归因于井眼修护工具的操作状态,例如流体流路受到颗粒物质的意外限制。Some wellbore intervention tools provide multiple fluid flow paths between the interior of the wellbore intervention tool and the wellbore. However, fluid transfer through such multiple fluid flow paths may occur in an undesirable and/or non-homogeneous manner. Variations in fluids conveyed through the plurality of fluid flow paths may be attributable to changes in fluid state in the associated hydrocarbon-bearing formation, and/or may be attributable to operational conditions of wellbore remediation tools, such as fluid flow paths being subjected to particulate matter unexpected limitations.

发明内容Contents of the invention

本发明提供用于自主地控制地下井中的流体流动的装置和方法,并具体地提供一种流体二极管,该流体二极管用以生成对一个方向的流体流动相对大的阻力和对反方向的流体流动相对小的阻力。所述二极管位于流体通道中,并具有相对的大阻力入口和小阻力入口。小阻力入口对通过小阻力入口流入二极管内的流体提供相对低的阻力。大阻力入口对通过大阻力入口流入二极管内的流体提供相对大的阻力。在优选实施例中,大阻力入口具有围绕一孔口的凹陷环形表面,小阻力入口具有基本锥形表面。这些入口可具有公共孔口。在一个实施例中,大阻力入口的凹陷环形表面纵向延伸超出孔口的平面。即,从大阻力侧流经二极管的一部分流体将纵向流过,但是在被凹陷环形表面转向之前不通过孔口。在优选实施例中,流体将在邻近凹陷环形表面的涡流中流动。The present invention provides apparatus and methods for autonomously controlling fluid flow in a subterranean well, and in particular provides a fluid diode for generating relatively high resistance to fluid flow in one direction and to fluid flow in the opposite direction relatively little resistance. The diode is located in the fluid channel and has opposing high and low resistance inlets. The low resistance inlet provides relatively low resistance to fluid flowing into the diode through the low resistance inlet. The high resistance inlet provides relatively high resistance to fluid flowing into the diode through the high resistance inlet. In preferred embodiments, the high resistance inlet has a concave annular surface surrounding an orifice and the low resistance inlet has a substantially conical surface. These inlets may have a common orifice. In one embodiment, the concave annular surface of the high resistance inlet extends longitudinally beyond the plane of the orifice. That is, a portion of the fluid flowing through the diode from the side of greater resistance will flow longitudinally, but not through the orifice before being diverted by the recessed annular surface. In a preferred embodiment, the fluid will flow in a vortex adjacent to the recessed annular surface.

该装置与方法能够与其它自主流动控制系统结合使用,包括与具有流动控制组件和涡旋组件的那些自主流动控制系统结合使用。本发明能够用于地下井眼的生产、注入和其它修护操作。本发明能够被定位为针对朝向或远离表面移动的流体流动提供相对更大的阻力。The apparatus and method can be used in conjunction with other autonomous flow control systems, including those having a flow control assembly and a scroll assembly. The invention can be used for production, injection and other repair operations of subterranean wellbores. The present invention can be positioned to provide relatively greater resistance to fluid flow moving towards or away from a surface.

附图说明Description of drawings

为了更完整地理解本发明的特征和优点,现在参照本发明结合附图的详细描述,其中,不同图中相应的附图标记指的是相应的部件,附图中:For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention taken in conjunction with the accompanying drawings, wherein corresponding reference numerals refer to corresponding parts in the different views, in which:

图1是包括根据本发明的实施例的多个自主流体流动控制系统的井系统的示意图;1 is a schematic diagram of a well system including multiple autonomous fluid flow control systems according to an embodiment of the invention;

图2是本发明的优选实施例的流体二极管的剖视图;Fig. 2 is the sectional view of the fluid diode of the preferred embodiment of the present invention;

图3是通过大阻力入口流入流体二极管的流体的流动示意图;Fig. 3 is a flow schematic diagram of fluid flowing into a fluid diode through a large resistance inlet;

图4是通过小阻力入口流入流体二极管的流体的流动示意图;Fig. 4 is a flow schematic diagram of fluid flowing into a fluid diode through a small resistance inlet;

图5A-图5C是根据本发明的流体二极管的示例性实施例;5A-5C are exemplary embodiments of fluidic diodes according to the present invention;

图6是根据本发明的方案的流体二极管的可选实施例的剖视图;以及Figure 6 is a cross-sectional view of an alternative embodiment of a fluid diode according to aspects of the present invention; and

图7是具有根据本发明的方案的流体二极管的示例性的流体控制系统59的示意图。Fig. 7 is a schematic diagram of an exemplary fluid control system 59 having a fluid diode according to aspects of the present invention.

具体实施方式detailed description

本领域技术人员应理解,本文所使用的方向术语,例如“之上”、“之下”、“上部”、“下部”、“向上”、“向下”等,是关于图中示出的说明性实施例来使用的,向上方向就是朝向相应附图的顶部,向下方向则是朝向相应附图的底部。如果不是这样的情况,而要利用一术语来表示需要取向的话,本说明书将会加以说明或使其清楚。“井上”、“井下”被用来表示关于地表的相对位置或方向,其中“井上”表示沿井眼朝向地表的相对位置或运动,而“井下”表示沿井眼进一步远离地表的相对位置或运动,与井眼的取向无关(除非以其它方式清楚说明)。Those skilled in the art should understand that the directional terms used herein, such as "above", "below", "upper", "lower", "upward", "downward", etc., refer to the directions shown in the drawings. As used in the illustrative embodiments, an upward direction is towards the top of the corresponding figure, and a downward direction is towards the bottom of the corresponding figure. If this is not the case, and a term is used to indicate the desired orientation, this specification will explain or make clear. "Uphole" and "downhole" are used to denote a relative position or direction with respect to the surface, where "uphole" denotes a relative position or movement along the borehole toward the surface, and "downhole" denotes a relative position or direction further along the borehole away from the surface Movement, independent of the orientation of the borehole (unless otherwise clearly stated).

虽然以下详细地讨论了构成和使用本发明的各种实施例,但是本领域技术人员将理解本发明提供了可适用的发明构思,这些发明构思能够在许多特定环境下具体实施。本文讨论的具体实施例是对构成和使用本发明的具体方式的说明,并不限制本发明的范围。While various embodiments of making and using the present invention are discussed in detail below, those skilled in the art will appreciate that the present invention provides applicable inventive concepts that can be embodied in many specific contexts. The specific embodiments discussed herein are illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.

图1是大致以“10”来表示的井系统的示意图,该井系统包括多个体现本发明的原理的自主流动控制系统。井眼12延伸穿过各种地层。井眼12具有基本竖直段14,此段的上部中安装有套管柱16。井眼12还具有基本偏斜段18(图示为水平),其延伸穿过含烃地层20。如图所示,井眼2的基本水平段18是裸眼。虽然这里示出裸眼(井眼的水平段),但本发明将对任何取向、并对裸眼或套管孔均有效。本发明也将同样良好地对于注入系统有效。Figure 1 is a schematic diagram of a well system, indicated generally at 10, that includes a plurality of autonomous flow control systems embodying the principles of the present invention. Wellbore 12 extends through various formations. Wellbore 12 has a substantially vertical section 14 with a string of casing 16 installed in the upper portion of this section. Wellbore 12 also has a substantially deviated section 18 (shown horizontal) that extends through hydrocarbon-bearing formation 20 . As shown, the substantially horizontal section 18 of the wellbore 2 is an open hole. While open hole (horizontal section of the wellbore) is shown here, the invention will work with any orientation, and with open hole or cased hole. The invention will also work equally well with injection systems.

管柱22被设置于井眼12内并从地表延伸。管柱22提供流体从地层20向上游行进到地表的管路。多个自主流体控制系统25和多个生产管段24被设置于邻近地层20的各种生产层段的管柱22内。每个生产管段24的任一端设有封隔器26,封隔器26提供管柱22与井眼12的壁之间的流体密封。每一对相邻的封隔器26中间的空间限定出一生产层段。A tubular string 22 is disposed within the wellbore 12 and extends from the surface. The tubing string 22 provides a conduit for fluid to travel upstream from the formation 20 to the surface. A plurality of autonomous fluid control systems 25 and a plurality of production tubing sections 24 are disposed within tubing string 22 adjacent various production intervals of formation 20 . Either end of each production tubing section 24 is provided with a packer 26 that provides a fluid seal between the tubing string 22 and the wall of the wellbore 12 . The space between each pair of adjacent packers 26 defines a production interval.

在所示实施例中,每个生产管段24具有防砂功能。与生产管段24关联地设计有防砂筛元件或过滤介质,用以允许流体流过但是阻止足够尺寸大的颗粒物质流过。In the illustrated embodiment, each production tubing section 24 has a sand control function. Sand control screen elements or filter media are designed in association with production tubing section 24 to allow fluid flow but block particulate matter of sufficient size to flow therethrough.

流入生产管段24内的流体典型地包括多于一种流体成分。典型的成分是天然气、油、水、蒸汽或二氧化碳。蒸汽和二氧化碳通常用作注入流体,用以朝向生产管驱赶烃,而天然气、油和水则典型地是在地层中被现场开采。The fluid flowing into production tubing 24 typically includes more than one fluid component. Typical components are natural gas, oil, water, steam or carbon dioxide. Steam and carbon dioxide are commonly used as injection fluids to drive hydrocarbons toward production tubing, while natural gas, oil and water are typically produced in situ in the formation.

本发明提供在通道中使用流体二极管的方法和装置,其用以对沿一个方向流经通道的流体提供相对大的阻力,同时对沿反方向流动的流体提供相对小的阻力。可设想对于流体流动的这种相对限制能够用于期望流体沿一个方向流动、而不期望流动沿反方向流动的任何操作。例如,在从井眼产出烃期间,流体典型地从井眼流入管柱内,并由此朝向地表向井上流动。然而,如果流动因为一些理由逆向,一流体二极管或串联的多个二极管将会限制逆向流动。这些二极管能够类似地被用于注入操作,以限制流体向井上流动。本领域技术人员将认识到优选的是那些需限制沿一个方向的流动的其它应用。The present invention provides methods and apparatus for using fluid diodes in channels to provide relatively high resistance to fluid flow through the channel in one direction, while providing relatively little resistance to fluid flow in the opposite direction. It is contemplated that this relative restriction on fluid flow can be used for any operation where fluid flow in one direction is desired, but flow in the opposite direction is not desired. For example, during the production of hydrocarbons from a wellbore, fluids typically flow from the wellbore into the tubing string and from there uphole toward the surface. However, if the flow is reversed for some reason, a fluid diode or multiple diodes in series will restrict the reverse flow. These diodes can similarly be used in injection operations to restrict fluid flow uphole. Those skilled in the art will recognize that other applications require restriction of flow in one direction to be preferred.

图2是本发明的优选实施例的流体二极管的剖视图。流体二极管100位于由通道壁101限定的流体通道102中。通道102可与附加的流体二极管串联或单独地被设置于井下工具、管柱中,作为更大的自主流体控制系统的一部分。Fig. 2 is a cross-sectional view of a fluid diode of a preferred embodiment of the present invention. A fluid diode 100 is located in a fluid channel 102 defined by channel walls 101 . Channel 102 may be provided in series with additional fluid diodes or separately in the downhole tool, tubing string, as part of a larger autonomous fluid control system.

流体二极管100具有大阻力入口104和小阻力入口106。在示出的优选实施例中,小阻力入口104具有基本锥形表面180;该基本锥形表面从大直径端110向小直径端112变窄,并终止于孔口114处。基本锥形表面优选地被制造,使得该基本锥形表面事实上呈圆锥形;然而,该表面也可以不是真正的圆锥形,而代之以例如由多个平面来形成,这些平面被设置成呈圆锥状变窄。大阻力入口106从大直径端116向小直径端118变窄,并终止于孔口114处。在示出的优选实施例中,孔口114对于大、小阻力端而言是一致的。在其它实施例中,可设有分开的多个孔口。孔口114、大阻力入口106和小阻力入口104优选在通道102的纵轴线103上居中。孔口114处在平面115中。优选地,平面115正交于纵轴线103。Fluid diode 100 has a high resistance inlet 104 and a low resistance inlet 106 . In the preferred embodiment shown, the low resistance inlet 104 has a substantially conical surface 180; The substantially conical surface is preferably manufactured such that it is in fact conical; however, the surface may also not be truly conical, but instead be formed, for example, from flat surfaces arranged such that Conical narrowing. The high resistance inlet 106 narrows from a large diameter end 116 to a small diameter end 118 and terminates at an orifice 114 . In the preferred embodiment shown, the orifices 114 are identical for the large and small resistance ends. In other embodiments, separate orifices may be provided. The orifice 114 , the high resistance inlet 106 and the low resistance inlet 104 are preferably centered on the longitudinal axis 103 of the channel 102 . Orifice 114 is in plane 115 . Preferably, plane 115 is normal to longitudinal axis 103 .

大阻力入口106优选地包括凹陷表面120。凹陷表面120呈环形,且围绕孔口114延伸。在优选实施例中,如图2看到的,凹陷表面120沿大于90°的弧形弯曲。这里,“弧形”并不要求该表面为一段圆弧;例如,图2看到的表面不是圆形。该凹陷表面可以是一段圆弧、椭圆等,或者是不规则的。凹陷表面从孔口114的平面115的一侧纵向延伸到另一侧。为了讨论的目的,凹陷表面120从位于孔口的平面的上游的一点(当流体流入大阻力入口106内时),纵向延伸到从孔口的位置处于下游的最远范围。也就是说,该凹陷表面纵向延伸超出孔口的平面。凹陷表面120的处于下游的最远范围以虚线“121”来表示。在所示实施例中,锥形表面108的纵向范围与凹陷表面120的纵向范围重叠。The high resistance entry 106 preferably includes a recessed surface 120 . The recessed surface 120 is annular and extends around the aperture 114 . In a preferred embodiment, as seen in Figure 2, the recessed surface 120 is curved along an arc greater than 90°. Here, "arc" does not require the surface to be a circular arc; for example, the surface seen in Figure 2 is not circular. The concave surface can be a segment of arc, ellipse, etc., or irregular. The recessed surface extends longitudinally from one side of the plane 115 of the aperture 114 to the other. For purposes of discussion, the recessed surface 120 extends longitudinally from a point upstream of the plane of the orifice (when fluid flows into the high resistance inlet 106 ) to the furthest extent downstream from the location of the orifice. That is, the recessed surface extends longitudinally beyond the plane of the orifice. The furthest downstream extent of the recessed surface 120 is indicated by dashed line "121". In the illustrated embodiment, the longitudinal extent of the tapered surface 108 overlaps the longitudinal extent of the recessed surface 120 .

在使用中,流体F能够以任一方向流经二极管100。当流体通过小阻力入口104流入二极管内时(如图2中的实线箭头所示),二极管对于流体流动的阻力小于流体通过大阻力入口106流入二极管内时(如图2中的虚线箭头所示)。在典型的使用中,优选的是流体沿小阻力方向流动,例如用于产出井流体。如果流动逆向,使得流体从大阻力入口流过二极管,则流动受限。In use, the fluid F can flow through the diode 100 in either direction. When the fluid flows into the diode through the small resistance inlet 104 (as shown by the solid arrow in FIG. 2 ), the resistance of the diode to fluid flow is smaller than when the fluid flows into the diode through the large resistance inlet 106 (as shown by the dotted arrow in FIG. 2 ). Show). In typical use, it is preferred that the fluid flow is in a direction of low resistance, such as for production of well fluids. If the flow is reversed so that fluid flows through the diode from the high resistance inlet, flow is restricted.

图3是通过大阻力入口106流入流体二极管100内的流体F的流动示意图。图4是通过小阻力入口104流入流体二极管100内的流体F的流动示意图。示出的流动线是速度流动线。流体从大阻力侧进入(如在图3所示),一部分流体的流动基本上朝向轴线103被径向地引导。流经孔口114的流体基本上受限或变慢,穿过二极管的总的流体流动同样地受限。相应地,穿过二极管的压降相对较高。在优选实施例中,邻近大阻力入口的凹陷表面生成涡流122。在流体从小阻力侧进入二极管的情况下(如图4所示),则流经二极管的流体受到相对小的阻力,穿过二极管的压降也就对应较低。FIG. 3 is a schematic diagram of the flow of fluid F flowing into the fluid diode 100 through the large resistance inlet 106 . FIG. 4 is a flow schematic diagram of the fluid F flowing into the fluid diode 100 through the small resistance inlet 104 . The flow lines shown are velocity flow lines. Fluid enters from the side of greater resistance (as shown in FIG. 3 ), a portion of the fluid flow being directed substantially radially towards axis 103 . Fluid flow through orifice 114 is substantially restricted or slowed, as is overall fluid flow through the diode. Accordingly, the voltage drop across the diode is relatively high. In a preferred embodiment, a vortex 122 is generated adjacent to the concave surface of the high resistance inlet. When the fluid enters the diode from the small resistance side (as shown in FIG. 4 ), the fluid flowing through the diode is subjected to relatively small resistance, and the voltage drop across the diode is correspondingly low.

以下是示例性实际上的和通过以类似于图2-图4的二极管进行计算机建模来产生的数据。穿过二极管的压降和对流体流动的阻力取决于流经二极管的流体的方向。当从大阻力侧流入二极管内时,流量每秒0.2kg的水穿过二极管受到的压降大约是4200Pa。从小阻力侧反方向流动的水只受到大约2005Pa的压降。类似地,密度为每立方米1.3kg并且流量相同的空气沿受限方向流动时受到400psi的压降,而在无限制方向只有218psi压降。最后,在每立方米150kg并且流量相同的条件下建模的气体在受限方向受到5psi的压降,而在无限制方向的压降为2psi。这些数据点只是示例性的。The following are exemplary actual and data generated by computer modeling with diodes similar to Figs. 2-4. The voltage drop across the diode and the resistance to fluid flow depends on the direction of fluid flow through the diode. When flowing into the diode from the large resistance side, the pressure drop experienced by water with a flow rate of 0.2kg per second passing through the diode is about 4200Pa. The water flowing in the opposite direction from the small resistance side is only subjected to a pressure drop of about 2005Pa. Similarly, air with a density of 1.3 kg per cubic meter and the same flow rate experiences a pressure drop of 400 psi in the restricted direction, but only 218 psi in the unrestricted direction. Finally, a gas modeled at 150 kg per cubic meter and the same flow rate experiences a pressure drop of 5 psi in the restricted direction and 2 psi in the unrestricted direction. These data points are exemplary only.

图5A-图5C是根据本发明的流体二极管的示例性实施例。图5A-图5C示出用于流体二极管100的凹陷环形表面120的可选轮廓。图5A中,轮廓类似图2中的轮廓,其中,凹陷表面120弯曲大于90°,具有相当深的“袋状部”,并越过孔口114的平面115延伸到点121。图5B类似,不过凹陷表面120更浅。在图5C中,凹陷表面120弯曲90°,但不越过孔口的平面115纵向延伸。图5A的设计目前是优选的,并在沿受限方向流动时提供最大压降。使用建模技术,穿过图5A-图5C中的二极管的压降分别是4200Pa、3980Pa和3208Pa。另外,大阻力入口可采取其它形状,例如不同于所示出的凹陷表面的其他曲率的曲面、不同于所示出的确切曲率的凹陷表面、多个平面(这些平面在以集合方式采用时形成基本上相似的凹陷表面)、或甚至具有矩形的截面。而且,所述通道可具有圆形的、矩形的或其它的横截面形状。5A-5C are exemplary embodiments of fluidic diodes according to the present invention. 5A-5C show alternative profiles for the recessed annular surface 120 of the fluid diode 100 . In FIG. 5A , the profile is similar to that in FIG. 2 , in that the concave surface 120 is curved by more than 90°, has a rather deep "pocket" and extends beyond the plane 115 of the orifice 114 to point 121 . Figure 5B is similar, but the recessed surface 120 is shallower. In Fig. 5C, the recessed surface 120 is bent at 90°, but does not extend longitudinally beyond the plane 115 of the aperture. The design of Figure 5A is presently preferred and provides maximum pressure drop when flowing in a restricted direction. Using modeling techniques, the voltage drops across the diodes in Figures 5A-5C are 4200Pa, 3980Pa and 3208Pa, respectively. Additionally, the high resistance inlet may take other shapes, such as curved surfaces of other curvatures than the concave surface shown, concave surfaces of different curvature than the exact one shown, multiple planes (which when taken collectively form substantially similar concave surfaces), or even have a rectangular cross-section. Also, the channels may have circular, rectangular or other cross-sectional shapes.

图6是根据本发明的方案的流体二极管的可选实施例的剖视图。图6示出可选实施例,其中,大阻力入口106的孔口114a与小阻力入口104的孔口114b不一致。相对窄的管路124连接这些孔口。Figure 6 is a cross-sectional view of an alternative embodiment of a fluid diode according to aspects of the present invention. FIG. 6 shows an alternative embodiment in which the orifice 114a of the high resistance inlet 106 does not coincide with the orifice 114b of the low resistance inlet 104 . Relatively narrow conduits 124 connect these orifices.

图7是具有根据本发明的方案的流体二极管的示例性流体控制系统59的示意图。流体控制系统59参考通过援引并入本文的文献来具体解释,并且此处将不再具体描述。流体控制系统被设计用于沿着以双箭头F来表示的方向流动的流体。流体例如为产出流体,其进入流体控制系统59,流经流动控制组件60的通道62和64,且通过出口68和70离开。流体随后通过任选的方向元件90,经由入口84或86流入涡旋组件80内,通过涡旋室82,并离开涡旋出口88。流体随后向下游(在本实施例中为井上侧)流动,例如流到地表。虽然沿该方向的流动是优选的并且是典型的,但本发明的流体二极管也可与流动控制系统结合、或作为流动控制系统的一部分来使用,以限制或防止逆向流体流经系统。如图所示,沿系统在系统的上游或下游位置可使用一个或多个流体二极管100。Figure 7 is a schematic diagram of an exemplary fluid control system 59 having a fluid diode according to aspects of the present invention. The fluid control system 59 is explained in detail with reference to documents incorporated herein by reference and will not be described in detail here. The fluid control system is designed for fluid flowing in the direction indicated by the double arrow F. Fluid, such as production fluid, enters fluid control system 59 , flows through channels 62 and 64 of flow control assembly 60 , and exits through outlets 68 and 70 . Fluid then passes through optional directional element 90 , flows into vortex assembly 80 via inlet 84 or 86 , passes through vortex chamber 82 , and exits vortex outlet 88 . The fluid then travels downstream (uphole in this example), for example to the surface. While flow in this direction is preferred and typical, the fluid diodes of the present invention may also be used in conjunction with or as part of a flow control system to limit or prevent reverse fluid flow through the system. As shown, one or more fluid diodes 100 may be used at locations along the system upstream or downstream of the system.

在优选实施例中,多个流体二极管100被设置成串联,使得流体经过多个二极管流动。例如,在图7中可观察到,涡旋组件80的下游是两个二极管100。如上所述,当流体流经二极管的大阻力侧时,与反方向流动时相比,穿过二极管可实现更大的压降。然而,穿过多个二极管的压降还会更大。优选的是,多个串联的二极管被用来产生更大得多的穿过多个二极管的总压降。通过这种方式,可使通过系统的逆流基本上受限。In a preferred embodiment, a plurality of fluid diodes 100 are arranged in series such that fluid flows through the plurality of diodes. For example, it can be seen in FIG. 7 that downstream of the scroll assembly 80 are two diodes 100 . As mentioned above, when the fluid flows through the high resistance side of the diode, a greater voltage drop is achieved across the diode than when flowing in the opposite direction. However, the voltage drop across multiple diodes will be even greater. Preferably, multiple diodes in series are used to create a much larger total voltage drop across the multiple diodes. In this way, reverse flow through the system can be substantially limited.

本领域技术人员将会理解,本文所述二极管能够与并入本文的参考文献中描述的各种流动控制系统、组件和装置结合使用。Those skilled in the art will appreciate that the diodes described herein can be used in conjunction with the various flow control systems, assemblies, and devices described in the references incorporated herein.

对于使用自主流动控制设备装置的流体流动控制的说明及其申请可在下列美国专利和专利申请中找到,因此下列美国专利和专利申请中的每个就各方面而言被全文并入本文:Schultz在2009年12月10日提交的题为“流体流动控制装置(Fluid FlowControlDevice)”的美国专利申请序列第12/635612号;Dykstra在2010年4月29日提交的题为“使用可移动流动分流器组件控制流体流动的方法和设备(Method and Apparatus forControlling Fluid Flow Using Movable Flow Diverter Assembly)”的美国专利申请序列第12/770568号;Dykstra在2010年2月4日提交的题为“具有轨迹从属阻力系统的自主井下流体选择方法和设备(Method and Apparatus for Autonomous Downhole FluidSelection With Pathway Dependent Resistance System)”的美国专利申请序列第12/700685号;Dykstra在2010年6月2日提交的题为“基于流体特性的流路控制由此可变地抵抗地下井中的流动(Flow Path Control Based on Fluid Characteristics to TherebyVariably Resist Flow in a Subterranean Well)”的美国专利申请序列第12/791993号;Fripp在2010年6月2日提交的题为“交替增大、减小地下井中传播的压力压力脉冲的流阻(Alternating Flow Resistance Increases and Decreases for Propagating PressurePulses in a Subterranean Well)”的美国专利申请序列第12/792095号;Fripp在2010年6月2日提交的题为“用于地下井的可变流阻系统(Variable Flow Resistance System forUse in a Subterranean Well)”的美国专利申请序列第12/792117号;Dykstra在2010年6月2日提交的题为“其中具有流通引导结构的可变流阻系统以可变地抵抗地下井中的流动(Variable Flow Resistance System With Circulation Inducing Structure Thereinto Variably Resist Flow in a Subterranean Well)”的美国专利申请序列第12/792146号;Dykstra在2010年9月10日提交的题为“用于地下井的串联构造的可变限流器(SeriesConfigured Variable Flow Restrictors For Use In A Subterranean Well)”的美国专利申请序列第12/879846号;Holderman在2010年8月27日提交的题为“用于地下井的可变限流器(Variable Flow Restrictor For Use in A Subterranean Well)”的美国专利申请第12/869836号;Dykstra在2010年12月2日提交的题为“使用压力开关的用于指引流体流动的装置(A Device For Directing The Flow Of A Fluid Using A Pressure Switch)”的美国专利申请序列第12/958625号;Dykstra在2010年12月21日提交的题为“具有引导并妨碍流体的旋转流动的流体指引器的离开组件(An Exit Assembly With a Fluid Directorfor Inducing and Impeding Rotational Flow of a Fluid)”的美国专利申请序列第12/974212号;Schultz在2010年12月31日提交的题为“与地下井使用的横流流体振荡器(Cross-Flow Fluidic Oscillators for use with a Subterranean Well)”的美国专利申请序列第12983144号;Jean-Marc Lopez在2010年12月13日提交的题为“具有方向从属流动阻力的井下流体流动控制系统和方法(Downhole Fluid Flow Control System andMethod Having Direction Dependent Flow12/966772Resistance)”的美国专利申请序列第12/966772号;Schultz在2010年12月31日提交的题为“与地下井(包括涡流)使用的流体振荡器(Fluidic Oscillators for use with a Subterranean Well(includesvortex))”的美国专利申请第12/983153号;Fripp在2011年4月11日提交的题为“自主阀的主动控制(Active Control for the Autonomous Valve)”的美国专利申请序列第13/084025号;Fripp在2011年4月8日提交的题为“自主阀的运动流体选择器(Moving FluidSelectors for the Autonomous Valve)”的美国专利申请序列第61/473,700号;Fripp在2011年4月8日提交的题为“自主阀的粘性开关(Sticky Switch for the AutonomousValve)”的美国专利申请序列第61/473,699号;以及Fripp在2011年5月3日提交的题为“离心的流体隔板(Centrifugal Fluid Separator)”的美国专利申请序列第13/100006号。A description of fluid flow control using an autonomous flow control device arrangement and applications therefor can be found in the following U.S. patents and patent applications, each of which is hereby incorporated in its entirety herein in all respects: Schultz U.S. Patent Application Serial No. 12/635612, filed December 10, 2009, entitled "Fluid Flow Control Device"; U.S. Patent Application Serial No. 12/770568 for Method and Apparatus for Controlling Fluid Flow Using Movable Flow Diverter Assembly (Method and Apparatus for Controlling Fluid Flow Using Movable Flow Diverter Assembly); U.S. Patent Application Serial No. 12/700685 of the Method and Apparatus for Autonomous Downhole Fluid Selection With Pathway Dependent Resistance System (Method and Apparatus for Autonomous Downhole Fluid Selection With Pathway Dependent Resistance System); Dykstra filed on June 2, 2010 entitled "Based on Flow Path Control Based on Fluid Characteristics to Thereby Variablely Resist Flow in a Subterranean Well" U.S. Patent Application Serial No. 12/791993; Fripp, June 2010 U.S. Patent Application Serial No. 12/792095, entitled "Alternating Flow Resistance Increases and Decreases for Propagating Pressure Pulses in a Subterranean Well," filed on March 2 ; U.S. Patent Application Serial No. 12/792117 entitled "Variable Flow Resistance System for Use in a Subterranean Well" filed by Fripp on June 2, 2010; Dykstra in 2010 Submitted on June 2, 2009, entitled "Variable flow resistance system with flow-guiding structure therein to variably resist flow in subterranean wells (Variable Flow Resistance System With Circulation Inducing Structure Thereinto Variablely Resist Flow in a Subterranean Well)", U.S. Patent Application Serial No. 12/792,146; Dykstra, filed September 10, 2010, entitled "Serial Structure for a Subterranean Well US Patent Application Serial No. 12/879846 (Series Configured Variable Flow Restrictors For Use In A Subterranean Well)”; Holderman filed on August 27, 2010 entitled “Variable Flow Restrictors For Use In A Subterranean Well” U.S. Patent Application No. 12/869,836 (Variable Flow Restrictor For Use in A Subterranean Well)”; Dykstra filed on December 2, 2010 entitled “Apparatus for Directing Fluid Flow Using a Pressure Switch ( A Device For Directing The Flow Of A Fluid Using A Pressure Switch)" U.S. Patent Application Serial No. 12/958625; Dykstra filed on December 21, 2010 entitled "Fluid Directing Flow Of A Fluid Using A U.S. Patent Application Serial No. 12/974,212 for An Exit Assembly With a Fluid Director for Inducing and Impeding Rotational Flow of a Fluid (An Exit Assembly With a Fluid Director for Inducing and Impeding Rotational Flow of a Fluid); US Patent Application Serial No. 12983144 for "Cross-Flow Fluidic Oscillators for use with a Subterranean Well"; Jean-Marc Lopez filed on December 13, 2010 entitled "Cross-Flow Fluidic Oscillators for use with a Subterranean Well" US Patent Application Serial No. 12/966772 for Downhole Fluid Flow Control System and Method Having Direction Dependent Flow 12/966772 Resistance; Schultz U.S. Patent Application No. 12/983,153, entitled "Fluidic Oscillators for use with a Subterranean Well (includes vortex)," filed December 31, 2010; Fripp at U.S. Patent Application Serial No. 13/084025, filed April 11, 2011, entitled "Active Control for the Autonomous Valve"; Fripp, filed April 8, 2011, entitled "Autonomous Valve Valve's Motion Fluid Selector (Moving Fluid Selectors for the Autonomous Valve)" U.S. Patent Application Serial No. 61/473,700; Fripp filed on April 8, 2011, entitled "Sticky Switch for the Autonomous Valve )”; and U.S. Patent Application Serial No. 13/100006, filed May 3, 2011 by Fripp, entitled “Centrifugal Fluid Separator”.

虽然本发明是参照说明性的实施例来描述的,但不应在限制意义上解读这种描述。参照本说明书,说明性的实施例以及本发明的其它实施例的各种更改和组合将对本领域技术人员明显。因此,应认为随附权利要求书包含任何这样的更改或实施例。While this invention has been described with reference to illustrative embodiments, this description should not be read in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. Accordingly, the appended claims should be construed to cover any such modifications or embodiments.

Claims (19)

Translated fromChinese
1.一种用于自主地控制地下井中的流体流动的设备,所述设备包括:CLAIMS 1. An apparatus for autonomously controlling fluid flow in a subterranean well, said apparatus comprising:流体通道,所述流体通道中设有流体二极管;a fluid channel in which a fluid diode is disposed;所述流体二极管具有相对的大阻力入口与小阻力入口;The fluid diode has relatively large and small resistance inlets;所述小阻力入口对通过所述小阻力入口流入所述二极管内的流体提供相对小的阻力;以及the low-resistance inlet provides relatively little resistance to fluid flowing into the diode through the low-resistance inlet; and所述大阻力入口对通过所述大阻力入口流入所述二极管内的流体提供相对大的阻力,并且其中,所述大阻力入口具有围绕一孔口的凹陷环形表面。The high resistance inlet provides relatively high resistance to fluid flow into the diode through the high resistance inlet, and wherein the high resistance inlet has a concave annular surface surrounding an orifice.2.如权利要求1所述的设备,其中,所述小阻力入口具有基本锥形表面。2. The apparatus of claim 1, wherein the low resistance inlet has a substantially conical surface.3.如权利要求2所述的设备,其中,所述基本锥形表面变窄并终止于所述孔口处。3. The apparatus of claim 2, wherein the substantially conical surface narrows and terminates at the orifice.4.如权利要求1所述的设备,其中,所述凹陷环形表面纵向延伸超出所述孔口的平面。4. The apparatus of claim 1, wherein the recessed annular surface extends longitudinally beyond the plane of the orifice.5.如权利要求1所述的设备,还包括井下工具,所述流体通道和二极管位于所述井下工具中。5. The apparatus of claim 1, further comprising a downhole tool in which the fluid channel and diode are located.6.如权利要求5所述的设备,其中,所述地下井从地表延伸,并且其中,所述二极管被设置成使得朝向地表流动的流体进入所述二极管的小阻力入口。6. The apparatus of claim 5, wherein the subterranean well extends from the earth's surface, and wherein the diode is arranged such that fluid flowing towards the earth's surface enters a low resistance inlet of the diode.7.如权利要求5所述的设备,还包括自主流体控制系统,所述自主流体控制系统具有涡旋组件和流动控制组件。7. The apparatus of claim 5, further comprising an autonomous fluid control system having a scroll assembly and a flow control assembly.8.如权利要求7所述的设备,其中,所述二极管位于所述涡旋组件的上游。8. The apparatus of claim 7, wherein the diode is located upstream of the scroll assembly.9.如权利要求7所述的设备,其中,所述二极管位于所述流动控制组件的下游。9. The apparatus of claim 7, wherein the diode is located downstream of the flow control assembly.10.如权利要求4所述的设备,所述凹陷环形表面用于在通过所述大阻力入口流入所述二极管内的流体中生成涡流。10. The apparatus of claim 4, said concave annular surface for generating eddy currents in fluid flowing into said diode through said high resistance inlet.11.一种修护延伸穿过含烃地层的井眼的方法,所述方法包括以下步骤:11. A method of repairing a wellbore extending through a hydrocarbon containing formation, the method comprising the steps of:设置与所述井眼流体连通的流体二极管;providing a fluid diode in fluid communication with the wellbore;使流体流经所述二极管的小阻力入口;以及a low resistance inlet for fluid flow through the diode; and使流体流经所述二极管的大阻力入口,由此限制流经所述二极管的流体,allowing fluid to flow through the high resistance inlet of the diode, thereby restricting fluid flow through the diode,其中,所述大阻力入口具有围绕一孔口的凹陷环形表面。Wherein, the high resistance inlet has a concave annular surface surrounding an orifice.12.如权利要求11所述的方法,其中,所述小阻力入口具有锥形表面。12. The method of claim 11, wherein the low resistance inlet has a tapered surface.13.如权利要求11所述的方法,还包括:使流体流经自主流体控制系统,所述自主流体控制系统具有流动控制组件和涡旋组件。13. The method of claim 11, further comprising flowing fluid through an autonomous fluid control system having a flow control assembly and a scroll assembly.14.如权利要求13所述的方法,还包括:使从所述井眼产出的流体流入所述自主流体控制系统内。14. The method of claim 13, further comprising flowing fluid produced from the wellbore into the autonomous fluid control system.15.如权利要求11所述的方法,还包括:使流体流入所述井眼内。15. The method of claim 11, further comprising flowing fluid into the wellbore.16.如权利要求13所述的方法,其中,使流体流经自主流体控制系统的步骤出现在使流体流经所述二极管的小阻力入口的步骤之前。16. The method of claim 13, wherein the step of flowing fluid through an autonomous fluid control system occurs prior to the step of flowing fluid through a low resistance inlet of the diode.17.如权利要求11所述的方法,还包括:在使流体流经所述二极管的大阻力入口的步骤期间,在流体流动中生成涡流的步骤。17. The method of claim 11, further comprising the step of generating a vortex in the fluid flow during the step of flowing the fluid through the high resistance inlet of the diode.18.如权利要求17所述的方法,其中,涡流是邻近所述大阻力入口的所述凹陷环形表面生成的。18. The method of claim 17, wherein a vortex is generated adjacent the concave annular surface of the high resistance inlet.19.如权利要求11所述的方法,其中,所述凹陷环形表面纵向延伸超出由所述孔口限定的平面。19. The method of claim 11, wherein the recessed annular surface extends longitudinally beyond a plane defined by the orifice.
CN201180074888.8A2011-11-182011-11-18 Autonomous Fluid Control System with Fluid DiodesActiveCN104040109B (en)

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
PCT/US2011/061331WO2013074113A1 (en)2011-11-182011-11-18Autonomous fluid control system having a fluid diode

Publications (2)

Publication NumberPublication Date
CN104040109A CN104040109A (en)2014-09-10
CN104040109Btrue CN104040109B (en)2017-01-18

Family

ID=48430013

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201180074888.8AActiveCN104040109B (en)2011-11-182011-11-18 Autonomous Fluid Control System with Fluid Diodes

Country Status (7)

CountryLink
EP (1)EP2780540B1 (en)
CN (1)CN104040109B (en)
AU (1)AU2011381058B2 (en)
BR (1)BR112014011842B1 (en)
CA (1)CA2844928C (en)
SG (1)SG2014008791A (en)
WO (1)WO2013074113A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE3613857C2 (en)*1986-04-241988-07-28Aktiengesellschaft Kuehnle, Kopp & Kausch, 6710 Frankenthal, De
JPH09105360A (en)*1995-10-111997-04-22Osamu YamazakiIntake air passage for four-cycle gasoline engine
JPH11101429A (en)*1997-09-291999-04-13Babcock Hitachi KkSoot blower
CN101267877A (en)*2005-08-242008-09-17弗兰克·雅各布斯Vortex chamber
US7494319B1 (en)*2006-08-252009-02-24Florida Turbine Technologies, Inc.Turbine blade tip configuration
GB2469320A (en)*2009-04-082010-10-13Krystallon LtdA marine vessel having a fluid discharge pipe and means for promoting mixing of discharge
CN201959728U (en)*2010-12-172011-09-07厦门市天泉鑫膜科技股份有限公司Structure of inorganic membrane element runner
CN102216723A (en)*2008-11-182011-10-12地中海咖啡公司Blanc jean-pierre [fr]; goering alain

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US4108721A (en)*1977-06-141978-08-22The United States Of America As Represented By The Secretary Of The ArmyAxisymmetric fluidic throttling flow controller
US4276943A (en)*1979-09-251981-07-07The United States Of America As Represented By The Secretary Of The ArmyFluidic pulser
US4817863A (en)*1987-09-101989-04-04Honeywell Limited-Honeywell LimiteeVortex valve flow controller in VAV systems
US7367393B2 (en)*2004-06-012008-05-06Baker Hughes IncorporatedPressure monitoring of control lines for tool position feedback
US20080041580A1 (en)*2006-08-212008-02-21Rune FreyerAutonomous inflow restrictors for use in a subterranean well
US8235128B2 (en)*2009-08-182012-08-07Halliburton Energy Services, Inc.Flow path control based on fluid characteristics to thereby variably resist flow in a subterranean well
US9109423B2 (en)*2009-08-182015-08-18Halliburton Energy Services, Inc.Apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8291976B2 (en)*2009-12-102012-10-23Halliburton Energy Services, Inc.Fluid flow control device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE3613857C2 (en)*1986-04-241988-07-28Aktiengesellschaft Kuehnle, Kopp & Kausch, 6710 Frankenthal, De
JPH09105360A (en)*1995-10-111997-04-22Osamu YamazakiIntake air passage for four-cycle gasoline engine
JPH11101429A (en)*1997-09-291999-04-13Babcock Hitachi KkSoot blower
CN101267877A (en)*2005-08-242008-09-17弗兰克·雅各布斯Vortex chamber
US7494319B1 (en)*2006-08-252009-02-24Florida Turbine Technologies, Inc.Turbine blade tip configuration
CN102216723A (en)*2008-11-182011-10-12地中海咖啡公司Blanc jean-pierre [fr]; goering alain
GB2469320A (en)*2009-04-082010-10-13Krystallon LtdA marine vessel having a fluid discharge pipe and means for promoting mixing of discharge
CN201959728U (en)*2010-12-172011-09-07厦门市天泉鑫膜科技股份有限公司Structure of inorganic membrane element runner

Also Published As

Publication numberPublication date
SG2014008791A (en)2014-04-28
BR112014011842B1 (en)2020-06-23
CN104040109A (en)2014-09-10
CA2844928A1 (en)2013-05-23
AU2011381058B2 (en)2016-05-19
AU2011381058A1 (en)2014-05-22
WO2013074113A1 (en)2013-05-23
CA2844928C (en)2016-08-23
BR112014011842A2 (en)2017-05-02
EP2780540A1 (en)2014-09-24
EP2780540A4 (en)2016-03-02
EP2780540B1 (en)2017-09-06

Similar Documents

PublicationPublication DateTitle
US9404349B2 (en)Autonomous fluid control system having a fluid diode
US9291032B2 (en)Autonomous fluid control device having a reciprocating valve for downhole fluid selection
CA2871354C (en)Method and apparatus for controlling the flow of fluids into wellbore tubulars
US8991506B2 (en)Autonomous fluid control device having a movable valve plate for downhole fluid selection
US9068426B2 (en)Fluid bypass for inflow control device tube
CN104040109B (en) Autonomous Fluid Control System with Fluid Diodes
US20090250222A1 (en)Reverse flow in-flow control device
US10174587B2 (en)Fluid flow sensor

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp