技术领域technical field
本发明属于集成电路技术领域,具体涉及一种全碳同轴线及其制备方法。The invention belongs to the technical field of integrated circuits, and in particular relates to an all-carbon coaxial cable and a preparation method thereof.
背景技术Background technique
集成电路中用于晶体管间相互连接的线称为互连,在直流或低频情形下,不需要考虑互连线的分布效应和场效应。随着数字电路时钟速度、射频及微波电路工作频率的不断提升,这时不仅需要考虑互连线的分布效应,而且信号的能量除了包括导线内部电子运动的动能外,还包括导线周围空间中的电磁场能量,导线上的电流和周围空间或介质内的电磁场相互制约,使电磁能量在导线附近的电磁场中沿一定方向传播。如果仍然使用传统的互连线来传输高频信号则会导致信号的损耗、畸变过大。选择更合适的互连结构——传输线,则能获得仍有效工作于射频、微波频段的互连线。相较于传统的点对点互连线,传输线具有信号畸变更小、电磁辐射更少和串扰更少的优点,因而更适于高频下的信号传输。除了用于连接集成电路中的器件之外,传输线还广泛用于构成微波电路元件,如阻抗变换器、功分器、滤波器、谐振器、变压器、定向耦合器等。传输线的种类有很多,例如:平行双导线、同轴线、带状线、微带线、共面波导等。不同的工作频段,可以选择不同类型的传输线,选择的基本要求是:损耗小、效率高;尺寸合理、功率容量大;工作频带宽;尺寸小且均匀、结构简单易加工。The lines used for interconnection between transistors in integrated circuits are called interconnections. In the case of DC or low frequency, there is no need to consider the distribution effect and field effect of interconnection lines. With the continuous improvement of the clock speed of digital circuits and the operating frequency of radio frequency and microwave circuits, not only the distribution effect of interconnection wires needs to be considered, but also the energy of the signal includes not only the kinetic energy of electronic motion inside the wire, but also the energy in the space around the wire. The electromagnetic field energy, the current on the wire and the electromagnetic field in the surrounding space or medium restrict each other, so that the electromagnetic energy propagates in a certain direction in the electromagnetic field near the wire. If traditional interconnection wires are still used to transmit high-frequency signals, it will result in signal loss and excessive distortion. By choosing a more suitable interconnection structure——transmission line, an interconnection line that still works effectively in the radio frequency and microwave frequency bands can be obtained. Compared with traditional point-to-point interconnection lines, transmission lines have the advantages of less signal distortion, less electromagnetic radiation, and less crosstalk, so they are more suitable for signal transmission at high frequencies. In addition to connecting devices in integrated circuits, transmission lines are also widely used to form microwave circuit components, such as impedance converters, power dividers, filters, resonators, transformers, directional couplers, etc. There are many types of transmission lines, such as: parallel twin wires, coaxial lines, striplines, microstrip lines, coplanar waveguides, etc. Different types of transmission lines can be selected for different working frequency bands. The basic requirements for selection are: small loss, high efficiency; reasonable size, large power capacity; wide operating frequency band; small and uniform size, simple structure and easy processing.
目前用金属(铜、铝、钨、金等)来制备传输线存在着一些影响电路性能和可靠性的问题:(1)有的金属导体(如铜)需要额外淀积一层扩散阻挡层,而阻挡层材料的电阻率通常很高,这会引起传输线的总电阻增加(导致电路RC延迟、导体热损耗的增加),另外这层阻挡层还占用了传输线导体近20%的宽度,在导体平整化的过程中还会引起导体表面的凹陷,这会进一步增加导体的总电阻;(2)随着互连尺寸的减小,传输线中金属导体的截面与电子的平均自由程(~40nm)会处于同一数量级,这将大大增加导体表面和晶界对电子的散射,引起导体电阻的增加;(3)在金属线上较长时间地通过电流会引起金属离子的移动(电迁移效应),这最终会导致导线的断裂或与另一条导线的短路,造成电路的失效(电迁移的发生率取决于温度、晶体结构和平均电流密度);(4)随着信号频率的升高,金属导体的趋肤效应也会导致导体电阻的增加、信号的衰减。At present, there are some problems affecting the performance and reliability of the circuit when using metals (copper, aluminum, tungsten, gold, etc.) to prepare transmission lines: (1) Some metal conductors (such as copper) need to deposit an additional diffusion barrier layer, while The resistivity of the barrier layer material is usually very high, which will increase the total resistance of the transmission line (resulting in the increase of circuit RC delay and conductor heat loss). In addition, this layer of barrier layer also occupies nearly 20% of the width of the transmission line conductor. The surface of the conductor will also be dented during the process of metallization, which will further increase the total resistance of the conductor; (2) As the interconnection size decreases, the cross-section of the metal conductor in the transmission line and the mean free path of electrons (~40nm) will change. In the same order of magnitude, this will greatly increase the scattering of electrons on the surface of the conductor and the grain boundary, causing an increase in the resistance of the conductor; (3) passing a current on the metal wire for a long time will cause the movement of metal ions (electromigration effect), which It will eventually lead to the breakage of the wire or the short circuit with another wire, resulting in the failure of the circuit (the occurrence rate of electromigration depends on the temperature, crystal structure and average current density); (4) As the signal frequency increases, the metal conductor The skin effect can also lead to an increase in conductor resistance and attenuation of the signal.
发明内容Contents of the invention
本发明的目的在于提出一种尺寸非常小的全碳同轴线及其制备方法。The purpose of the present invention is to propose a very small all-carbon coaxial cable and a preparation method thereof.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
本发明利用石墨烯单原子层厚这一结构特点,将石墨烯卷作圆柱体,构成半径很小(可以小到nm级别)的同轴线的内导体,用石墨烯卷来做同轴线的内导体传导电流,同时,用单层或多层石墨烯来做同轴线的外导体构成电磁波在空间中的边界,利用氧化石墨来做内导体和外导体之间的介质材料,约束、引导电磁波能量的定向传输。The present invention utilizes the structural feature of graphene monoatomic layer thickness, rolls graphene into a cylinder to form the inner conductor of a coaxial line with a small radius (can be as small as nm level), and uses the graphene roll as a coaxial line The inner conductor conducts current. At the same time, single-layer or multi-layer graphene is used as the outer conductor of the coaxial line to form the boundary of electromagnetic waves in space. Graphite oxide is used as the dielectric material between the inner conductor and the outer conductor to constrain, Directed transmission of electromagnetic wave energy.
本发明全碳同轴线能够适用于射频、微波集成电路。The all-carbon coaxial cable of the invention can be applied to radio frequency and microwave integrated circuits.
本发明全碳同轴线的制备方法,包括以下步骤:The preparation method of the all-carbon coaxial cable of the present invention comprises the following steps:
(1)制备单层或多层石墨烯;(1) prepare monolayer or multilayer graphene;
(2)把单层或多层石墨烯卷曲成圆柱形构成同轴线的内导体;(2) Curling single-layer or multi-layer graphene into a cylindrical shape to form the inner conductor of the coaxial line;
(3)在同轴线内导体的表面淀积或包裹一层氧化石墨作为同轴线的内导体和外导体之间的介质材料;(3) Deposit or wrap a layer of graphite oxide on the surface of the inner conductor of the coaxial line as a dielectric material between the inner conductor and the outer conductor of the coaxial line;
(4)在上述氧化石墨的表面再包裹一层或多层石墨烯构成同轴线的外导体。(4) Wrap one or more layers of graphene on the surface of the above-mentioned graphite oxide to form the outer conductor of the coaxial line.
本发明的技术效果如下:Technical effect of the present invention is as follows:
(1)由于单层石墨烯的厚度只有0.34nm,即使是采用双层、多层石墨烯或者石墨片来制备同轴线,同轴线的尺寸仍旧可以很小(在同样尺寸情形下金属同轴线则有更高的电阻、更差的可靠性和更加困难的工艺过程),可以适用于射频、微波集成电路;(2)石墨烯结构稳定,用石墨烯制备同轴线不需要扩散阻挡层,制作工艺更加简单;(3)石墨烯的高电导率使得基于石墨烯的同轴线在高频下有更高的信号传输效率;(4)基于石墨烯的同轴线可以承受的最大电流密度高达108A/cm2,具有十分优良的抗电迁移能力;(5)石墨烯具有优良的热传导性,可以缓解同轴线信号传输过程中局部温度过高而发生导线熔断或者介质热击穿的现象;(6)高频下,石墨烯不存在明显的趋肤效应,基于石墨烯的同轴线电阻在很宽的频带内都能保持不变,电路的性能也更加稳定。总之,基于石墨烯的同轴线有更好的传输性能和可靠性。(1) Since the thickness of single-layer graphene is only 0.34nm, even if a double-layer, multi-layer graphene or graphite sheet is used to prepare a coaxial line, the size of the coaxial line can still be very small (in the case of the same size, the metal coaxial line The axis has higher resistance, poorer reliability and more difficult process), which can be applied to radio frequency and microwave integrated circuits; (2) The structure of graphene is stable, and the preparation of coaxial lines with graphene does not require diffusion barriers (3) The high electrical conductivity of graphene makes the graphene-based coaxial line have higher signal transmission efficiency at high frequencies; (4) The graphene-based coaxial line can bear the maximum The current density is as high as 108 A/cm2 , and it has very good resistance to electromigration; (5) Graphene has excellent thermal conductivity, which can alleviate the occurrence of wire fusing or medium heat caused by excessive local temperature during coaxial signal transmission. (6) At high frequencies, graphene does not have an obvious skin effect, and the graphene-based coaxial line resistance can remain unchanged in a wide frequency band, and the performance of the circuit is more stable. In conclusion, graphene-based coaxial cables have better transmission performance and reliability.
附图说明Description of drawings
图1为本发明全碳同轴线结构示意图;Fig. 1 is the schematic diagram of the structure of the all-carbon coaxial line of the present invention;
图中:In the picture:
1——内导体 2——外导体1——inner conductor 2——outer conductor
3——内导体和外导体之间的介质材料3——The dielectric material between the inner conductor and the outer conductor
具体实施方式detailed description
下面通过实例对本发明做进一步说明。需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。The present invention will be further described below by example. It should be noted that the purpose of the disclosed embodiments is to help further understand the present invention, but those skilled in the art can understand that various replacements and modifications are possible without departing from the spirit and scope of the present invention and the appended claims of. Therefore, the present invention should not be limited to the content disclosed in the embodiments, and the protection scope of the present invention is subject to the scope defined in the claims.
可以采用单层、双层、多层石墨烯。基于石墨烯的全碳同轴线的具体制备过程如下:Single-layer, double-layer, and multi-layer graphene can be used. The specific preparation process of the graphene-based all-carbon coaxial line is as follows:
(1)碳基材料制备:获取所需的石墨烯(单层、双层、多层或者石墨片)可采用多种方法实现,例如:可以通过机械剥离、化学气相沉积、碳化硅表面外延生长、溶剂热合成等方法生成。(1) Preparation of carbon-based materials: Obtaining the required graphene (single layer, double layer, multilayer or graphite sheet) can be achieved by various methods, for example: mechanical exfoliation, chemical vapor deposition, epitaxial growth on the surface of silicon carbide , Solvothermal synthesis and other methods.
(2)同轴线内导体的制备:把石墨烯(单层、双层或多层)卷曲成圆柱形,范围为0.2nm~500nm,可以采用机械卷曲的方法,也可以把石墨烯放入去离子水、乙醇、丙酮、异丙醇等溶液中让其自卷形成石墨烯卷;(2) Preparation of the inner conductor of the coaxial line: curl the graphene (single layer, double layer or multilayer) into a cylindrical shape, the range is 0.2nm ~ 500nm, the method of mechanical curling can be used, or the graphene can be put into In deionized water, ethanol, acetone, isopropanol and other solutions, let it self-roll to form a graphene roll;
(3)氧化石墨的制备:氧化石墨可以通过使用氯酸钾和硝酸氧化石墨的方法得到,也可以通过使用高锰酸钾和硫酸氧化石墨的方法得到。(3) Preparation of graphite oxide: graphite oxide can be obtained by using potassium chlorate and graphite oxide nitric acid, or by using potassium permanganate and sulfuric acid graphite oxide.
(4)在同轴线内导体的表面淀积或包裹一层氧化石墨作为同轴线的内、外导体之间的介质,厚度范围为1nm~2000nm;(4) Deposit or wrap a layer of graphite oxide on the surface of the inner conductor of the coaxial line as the medium between the inner and outer conductors of the coaxial line, with a thickness ranging from 1nm to 2000nm;
(5)在上述氧化石墨的表面再包裹一层或多层石墨烯构成同轴线的外导体,厚度为0.34nm~100nm。(5) Wrapping one or more layers of graphene on the surface of the graphite oxide to form an outer conductor of the coaxial line, with a thickness of 0.34 nm to 100 nm.
虽然本发明已以较佳实施例披露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。Although the present invention has been disclosed above with preferred embodiments, it is not intended to limit the present invention. Any person familiar with the art, without departing from the scope of the technical solution of the present invention, can use the methods and technical content disclosed above to make many possible changes and modifications to the technical solution of the present invention, or modify it into an equivalent implementation of equivalent changes example. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention, which do not deviate from the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410116434.8ACN103943925B (en) | 2014-03-26 | 2014-03-26 | A kind of full carbon coaxial line and preparation method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201410116434.8ACN103943925B (en) | 2014-03-26 | 2014-03-26 | A kind of full carbon coaxial line and preparation method thereof |
| Publication Number | Publication Date |
|---|---|
| CN103943925A CN103943925A (en) | 2014-07-23 |
| CN103943925Btrue CN103943925B (en) | 2016-10-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201410116434.8AExpired - Fee RelatedCN103943925B (en) | 2014-03-26 | 2014-03-26 | A kind of full carbon coaxial line and preparation method thereof |
| Country | Link |
|---|---|
| CN (1) | CN103943925B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9113347B2 (en) | 2012-12-05 | 2015-08-18 | At&T Intellectual Property I, Lp | Backhaul link for distributed antenna system |
| US10009065B2 (en) | 2012-12-05 | 2018-06-26 | At&T Intellectual Property I, L.P. | Backhaul link for distributed antenna system |
| US9525524B2 (en) | 2013-05-31 | 2016-12-20 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
| US9999038B2 (en) | 2013-05-31 | 2018-06-12 | At&T Intellectual Property I, L.P. | Remote distributed antenna system |
| US8897697B1 (en) | 2013-11-06 | 2014-11-25 | At&T Intellectual Property I, Lp | Millimeter-wave surface-wave communications |
| US9209902B2 (en) | 2013-12-10 | 2015-12-08 | At&T Intellectual Property I, L.P. | Quasi-optical coupler |
| US9692101B2 (en) | 2014-08-26 | 2017-06-27 | At&T Intellectual Property I, L.P. | Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire |
| RU2577918C1 (en)* | 2014-09-09 | 2016-03-20 | федеральное государственное бюджетное научное учреждение "Научно-исследовательский радиофизический институт" | Antenna-feeder microwave device made of carbon composite material and its manufacturing method |
| US9768833B2 (en) | 2014-09-15 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves |
| US10063280B2 (en) | 2014-09-17 | 2018-08-28 | At&T Intellectual Property I, L.P. | Monitoring and mitigating conditions in a communication network |
| US9628854B2 (en) | 2014-09-29 | 2017-04-18 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing content in a communication network |
| US9615269B2 (en) | 2014-10-02 | 2017-04-04 | At&T Intellectual Property I, L.P. | Method and apparatus that provides fault tolerance in a communication network |
| US9685992B2 (en) | 2014-10-03 | 2017-06-20 | At&T Intellectual Property I, L.P. | Circuit panel network and methods thereof |
| US9503189B2 (en) | 2014-10-10 | 2016-11-22 | At&T Intellectual Property I, L.P. | Method and apparatus for arranging communication sessions in a communication system |
| US9762289B2 (en) | 2014-10-14 | 2017-09-12 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting or receiving signals in a transportation system |
| US9973299B2 (en) | 2014-10-14 | 2018-05-15 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a mode of communication in a communication network |
| US9653770B2 (en) | 2014-10-21 | 2017-05-16 | At&T Intellectual Property I, L.P. | Guided wave coupler, coupling module and methods for use therewith |
| US9577306B2 (en) | 2014-10-21 | 2017-02-21 | At&T Intellectual Property I, L.P. | Guided-wave transmission device and methods for use therewith |
| US9627768B2 (en) | 2014-10-21 | 2017-04-18 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
| US9312919B1 (en) | 2014-10-21 | 2016-04-12 | At&T Intellectual Property I, Lp | Transmission device with impairment compensation and methods for use therewith |
| US9780834B2 (en) | 2014-10-21 | 2017-10-03 | At&T Intellectual Property I, L.P. | Method and apparatus for transmitting electromagnetic waves |
| US9520945B2 (en) | 2014-10-21 | 2016-12-13 | At&T Intellectual Property I, L.P. | Apparatus for providing communication services and methods thereof |
| US9564947B2 (en) | 2014-10-21 | 2017-02-07 | At&T Intellectual Property I, L.P. | Guided-wave transmission device with diversity and methods for use therewith |
| US9769020B2 (en) | 2014-10-21 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for responding to events affecting communications in a communication network |
| US10009067B2 (en) | 2014-12-04 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for configuring a communication interface |
| US9680670B2 (en) | 2014-11-20 | 2017-06-13 | At&T Intellectual Property I, L.P. | Transmission device with channel equalization and control and methods for use therewith |
| US9544006B2 (en) | 2014-11-20 | 2017-01-10 | At&T Intellectual Property I, L.P. | Transmission device with mode division multiplexing and methods for use therewith |
| US9954287B2 (en) | 2014-11-20 | 2018-04-24 | At&T Intellectual Property I, L.P. | Apparatus for converting wireless signals and electromagnetic waves and methods thereof |
| US9461706B1 (en) | 2015-07-31 | 2016-10-04 | At&T Intellectual Property I, Lp | Method and apparatus for exchanging communication signals |
| US9997819B2 (en) | 2015-06-09 | 2018-06-12 | At&T Intellectual Property I, L.P. | Transmission medium and method for facilitating propagation of electromagnetic waves via a core |
| US10340573B2 (en) | 2016-10-26 | 2019-07-02 | At&T Intellectual Property I, L.P. | Launcher with cylindrical coupling device and methods for use therewith |
| US9800327B2 (en) | 2014-11-20 | 2017-10-24 | At&T Intellectual Property I, L.P. | Apparatus for controlling operations of a communication device and methods thereof |
| US10243784B2 (en) | 2014-11-20 | 2019-03-26 | At&T Intellectual Property I, L.P. | System for generating topology information and methods thereof |
| US9742462B2 (en) | 2014-12-04 | 2017-08-22 | At&T Intellectual Property I, L.P. | Transmission medium and communication interfaces and methods for use therewith |
| US9654173B2 (en) | 2014-11-20 | 2017-05-16 | At&T Intellectual Property I, L.P. | Apparatus for powering a communication device and methods thereof |
| US10144036B2 (en) | 2015-01-30 | 2018-12-04 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium |
| US9876570B2 (en) | 2015-02-20 | 2018-01-23 | At&T Intellectual Property I, Lp | Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith |
| US9749013B2 (en) | 2015-03-17 | 2017-08-29 | At&T Intellectual Property I, L.P. | Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium |
| US10224981B2 (en) | 2015-04-24 | 2019-03-05 | At&T Intellectual Property I, Lp | Passive electrical coupling device and methods for use therewith |
| US9705561B2 (en) | 2015-04-24 | 2017-07-11 | At&T Intellectual Property I, L.P. | Directional coupling device and methods for use therewith |
| US9793954B2 (en) | 2015-04-28 | 2017-10-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device and methods for use therewith |
| US9948354B2 (en) | 2015-04-28 | 2018-04-17 | At&T Intellectual Property I, L.P. | Magnetic coupling device with reflective plate and methods for use therewith |
| US9490869B1 (en) | 2015-05-14 | 2016-11-08 | At&T Intellectual Property I, L.P. | Transmission medium having multiple cores and methods for use therewith |
| US9871282B2 (en) | 2015-05-14 | 2018-01-16 | At&T Intellectual Property I, L.P. | At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric |
| US9748626B2 (en) | 2015-05-14 | 2017-08-29 | At&T Intellectual Property I, L.P. | Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium |
| US10679767B2 (en) | 2015-05-15 | 2020-06-09 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
| US10650940B2 (en) | 2015-05-15 | 2020-05-12 | At&T Intellectual Property I, L.P. | Transmission medium having a conductive material and methods for use therewith |
| US9917341B2 (en) | 2015-05-27 | 2018-03-13 | At&T Intellectual Property I, L.P. | Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves |
| US10756805B2 (en) | 2015-06-03 | 2020-08-25 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
| US10812174B2 (en) | 2015-06-03 | 2020-10-20 | At&T Intellectual Property I, L.P. | Client node device and methods for use therewith |
| US9866309B2 (en) | 2015-06-03 | 2018-01-09 | At&T Intellectual Property I, Lp | Host node device and methods for use therewith |
| US10103801B2 (en) | 2015-06-03 | 2018-10-16 | At&T Intellectual Property I, L.P. | Host node device and methods for use therewith |
| US9912381B2 (en) | 2015-06-03 | 2018-03-06 | At&T Intellectual Property I, Lp | Network termination and methods for use therewith |
| US10154493B2 (en) | 2015-06-03 | 2018-12-11 | At&T Intellectual Property I, L.P. | Network termination and methods for use therewith |
| US10348391B2 (en) | 2015-06-03 | 2019-07-09 | At&T Intellectual Property I, L.P. | Client node device with frequency conversion and methods for use therewith |
| US9913139B2 (en) | 2015-06-09 | 2018-03-06 | At&T Intellectual Property I, L.P. | Signal fingerprinting for authentication of communicating devices |
| US9608692B2 (en) | 2015-06-11 | 2017-03-28 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
| US10142086B2 (en) | 2015-06-11 | 2018-11-27 | At&T Intellectual Property I, L.P. | Repeater and methods for use therewith |
| US9820146B2 (en) | 2015-06-12 | 2017-11-14 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
| US9667317B2 (en) | 2015-06-15 | 2017-05-30 | At&T Intellectual Property I, L.P. | Method and apparatus for providing security using network traffic adjustments |
| US9640850B2 (en) | 2015-06-25 | 2017-05-02 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium |
| US9865911B2 (en) | 2015-06-25 | 2018-01-09 | At&T Intellectual Property I, L.P. | Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium |
| US9509415B1 (en) | 2015-06-25 | 2016-11-29 | At&T Intellectual Property I, L.P. | Methods and apparatus for inducing a fundamental wave mode on a transmission medium |
| US9847566B2 (en) | 2015-07-14 | 2017-12-19 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting a field of a signal to mitigate interference |
| US10148016B2 (en) | 2015-07-14 | 2018-12-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array |
| US10205655B2 (en) | 2015-07-14 | 2019-02-12 | At&T Intellectual Property I, L.P. | Apparatus and methods for communicating utilizing an antenna array and multiple communication paths |
| US9836957B2 (en) | 2015-07-14 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating with premises equipment |
| US10044409B2 (en) | 2015-07-14 | 2018-08-07 | At&T Intellectual Property I, L.P. | Transmission medium and methods for use therewith |
| US10170840B2 (en) | 2015-07-14 | 2019-01-01 | At&T Intellectual Property I, L.P. | Apparatus and methods for sending or receiving electromagnetic signals |
| US10033107B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
| US9722318B2 (en) | 2015-07-14 | 2017-08-01 | At&T Intellectual Property I, L.P. | Method and apparatus for coupling an antenna to a device |
| US9882257B2 (en) | 2015-07-14 | 2018-01-30 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
| US9628116B2 (en) | 2015-07-14 | 2017-04-18 | At&T Intellectual Property I, L.P. | Apparatus and methods for transmitting wireless signals |
| US10341142B2 (en) | 2015-07-14 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor |
| US10320586B2 (en) | 2015-07-14 | 2019-06-11 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium |
| US9853342B2 (en) | 2015-07-14 | 2017-12-26 | At&T Intellectual Property I, L.P. | Dielectric transmission medium connector and methods for use therewith |
| US10033108B2 (en) | 2015-07-14 | 2018-07-24 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference |
| US9793951B2 (en) | 2015-07-15 | 2017-10-17 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
| US9608740B2 (en) | 2015-07-15 | 2017-03-28 | At&T Intellectual Property I, L.P. | Method and apparatus for launching a wave mode that mitigates interference |
| US10090606B2 (en) | 2015-07-15 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system with dielectric array and methods for use therewith |
| US10784670B2 (en) | 2015-07-23 | 2020-09-22 | At&T Intellectual Property I, L.P. | Antenna support for aligning an antenna |
| US9749053B2 (en) | 2015-07-23 | 2017-08-29 | At&T Intellectual Property I, L.P. | Node device, repeater and methods for use therewith |
| US9912027B2 (en) | 2015-07-23 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for exchanging communication signals |
| US9871283B2 (en) | 2015-07-23 | 2018-01-16 | At&T Intellectual Property I, Lp | Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration |
| US9948333B2 (en) | 2015-07-23 | 2018-04-17 | At&T Intellectual Property I, L.P. | Method and apparatus for wireless communications to mitigate interference |
| US10020587B2 (en) | 2015-07-31 | 2018-07-10 | At&T Intellectual Property I, L.P. | Radial antenna and methods for use therewith |
| US9735833B2 (en) | 2015-07-31 | 2017-08-15 | At&T Intellectual Property I, L.P. | Method and apparatus for communications management in a neighborhood network |
| US9967173B2 (en) | 2015-07-31 | 2018-05-08 | At&T Intellectual Property I, L.P. | Method and apparatus for authentication and identity management of communicating devices |
| US9904535B2 (en) | 2015-09-14 | 2018-02-27 | At&T Intellectual Property I, L.P. | Method and apparatus for distributing software |
| US10009901B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations |
| US10136434B2 (en) | 2015-09-16 | 2018-11-20 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel |
| US10009063B2 (en) | 2015-09-16 | 2018-06-26 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal |
| US10051629B2 (en) | 2015-09-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having an in-band reference signal |
| US10079661B2 (en) | 2015-09-16 | 2018-09-18 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a clock reference |
| US9769128B2 (en) | 2015-09-28 | 2017-09-19 | At&T Intellectual Property I, L.P. | Method and apparatus for encryption of communications over a network |
| US9729197B2 (en) | 2015-10-01 | 2017-08-08 | At&T Intellectual Property I, L.P. | Method and apparatus for communicating network management traffic over a network |
| US9876264B2 (en) | 2015-10-02 | 2018-01-23 | At&T Intellectual Property I, Lp | Communication system, guided wave switch and methods for use therewith |
| US10074890B2 (en) | 2015-10-02 | 2018-09-11 | At&T Intellectual Property I, L.P. | Communication device and antenna with integrated light assembly |
| US9882277B2 (en) | 2015-10-02 | 2018-01-30 | At&T Intellectual Property I, Lp | Communication device and antenna assembly with actuated gimbal mount |
| US10355367B2 (en) | 2015-10-16 | 2019-07-16 | At&T Intellectual Property I, L.P. | Antenna structure for exchanging wireless signals |
| US10051483B2 (en) | 2015-10-16 | 2018-08-14 | At&T Intellectual Property I, L.P. | Method and apparatus for directing wireless signals |
| US10665942B2 (en) | 2015-10-16 | 2020-05-26 | At&T Intellectual Property I, L.P. | Method and apparatus for adjusting wireless communications |
| US9912419B1 (en) | 2016-08-24 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for managing a fault in a distributed antenna system |
| US9860075B1 (en) | 2016-08-26 | 2018-01-02 | At&T Intellectual Property I, L.P. | Method and communication node for broadband distribution |
| US10291311B2 (en) | 2016-09-09 | 2019-05-14 | At&T Intellectual Property I, L.P. | Method and apparatus for mitigating a fault in a distributed antenna system |
| US11032819B2 (en) | 2016-09-15 | 2021-06-08 | At&T Intellectual Property I, L.P. | Method and apparatus for use with a radio distributed antenna system having a control channel reference signal |
| US10135147B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via an antenna |
| US10135146B2 (en) | 2016-10-18 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via circuits |
| US10340600B2 (en) | 2016-10-18 | 2019-07-02 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching guided waves via plural waveguide systems |
| US10374316B2 (en) | 2016-10-21 | 2019-08-06 | At&T Intellectual Property I, L.P. | System and dielectric antenna with non-uniform dielectric |
| US10811767B2 (en) | 2016-10-21 | 2020-10-20 | At&T Intellectual Property I, L.P. | System and dielectric antenna with convex dielectric radome |
| US9876605B1 (en) | 2016-10-21 | 2018-01-23 | At&T Intellectual Property I, L.P. | Launcher and coupling system to support desired guided wave mode |
| US9991580B2 (en) | 2016-10-21 | 2018-06-05 | At&T Intellectual Property I, L.P. | Launcher and coupling system for guided wave mode cancellation |
| US10312567B2 (en) | 2016-10-26 | 2019-06-04 | At&T Intellectual Property I, L.P. | Launcher with planar strip antenna and methods for use therewith |
| US10224634B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Methods and apparatus for adjusting an operational characteristic of an antenna |
| US10225025B2 (en) | 2016-11-03 | 2019-03-05 | At&T Intellectual Property I, L.P. | Method and apparatus for detecting a fault in a communication system |
| US10291334B2 (en) | 2016-11-03 | 2019-05-14 | At&T Intellectual Property I, L.P. | System for detecting a fault in a communication system |
| US10498044B2 (en) | 2016-11-03 | 2019-12-03 | At&T Intellectual Property I, L.P. | Apparatus for configuring a surface of an antenna |
| US10178445B2 (en) | 2016-11-23 | 2019-01-08 | At&T Intellectual Property I, L.P. | Methods, devices, and systems for load balancing between a plurality of waveguides |
| US10090594B2 (en) | 2016-11-23 | 2018-10-02 | At&T Intellectual Property I, L.P. | Antenna system having structural configurations for assembly |
| US10535928B2 (en) | 2016-11-23 | 2020-01-14 | At&T Intellectual Property I, L.P. | Antenna system and methods for use therewith |
| US10340601B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Multi-antenna system and methods for use therewith |
| US10340603B2 (en) | 2016-11-23 | 2019-07-02 | At&T Intellectual Property I, L.P. | Antenna system having shielded structural configurations for assembly |
| US10361489B2 (en) | 2016-12-01 | 2019-07-23 | At&T Intellectual Property I, L.P. | Dielectric dish antenna system and methods for use therewith |
| US10305190B2 (en) | 2016-12-01 | 2019-05-28 | At&T Intellectual Property I, L.P. | Reflecting dielectric antenna system and methods for use therewith |
| US9927517B1 (en) | 2016-12-06 | 2018-03-27 | At&T Intellectual Property I, L.P. | Apparatus and methods for sensing rainfall |
| US10382976B2 (en) | 2016-12-06 | 2019-08-13 | At&T Intellectual Property I, L.P. | Method and apparatus for managing wireless communications based on communication paths and network device positions |
| US10727599B2 (en) | 2016-12-06 | 2020-07-28 | At&T Intellectual Property I, L.P. | Launcher with slot antenna and methods for use therewith |
| US10755542B2 (en) | 2016-12-06 | 2020-08-25 | At&T Intellectual Property I, L.P. | Method and apparatus for surveillance via guided wave communication |
| US10135145B2 (en) | 2016-12-06 | 2018-11-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for generating an electromagnetic wave along a transmission medium |
| US10439675B2 (en) | 2016-12-06 | 2019-10-08 | At&T Intellectual Property I, L.P. | Method and apparatus for repeating guided wave communication signals |
| US10819035B2 (en) | 2016-12-06 | 2020-10-27 | At&T Intellectual Property I, L.P. | Launcher with helical antenna and methods for use therewith |
| US10637149B2 (en) | 2016-12-06 | 2020-04-28 | At&T Intellectual Property I, L.P. | Injection molded dielectric antenna and methods for use therewith |
| US10020844B2 (en) | 2016-12-06 | 2018-07-10 | T&T Intellectual Property I, L.P. | Method and apparatus for broadcast communication via guided waves |
| US10694379B2 (en) | 2016-12-06 | 2020-06-23 | At&T Intellectual Property I, L.P. | Waveguide system with device-based authentication and methods for use therewith |
| US10326494B2 (en) | 2016-12-06 | 2019-06-18 | At&T Intellectual Property I, L.P. | Apparatus for measurement de-embedding and methods for use therewith |
| US10139820B2 (en) | 2016-12-07 | 2018-11-27 | At&T Intellectual Property I, L.P. | Method and apparatus for deploying equipment of a communication system |
| US9893795B1 (en) | 2016-12-07 | 2018-02-13 | At&T Intellectual Property I, Lp | Method and repeater for broadband distribution |
| US10243270B2 (en) | 2016-12-07 | 2019-03-26 | At&T Intellectual Property I, L.P. | Beam adaptive multi-feed dielectric antenna system and methods for use therewith |
| US10359749B2 (en) | 2016-12-07 | 2019-07-23 | At&T Intellectual Property I, L.P. | Method and apparatus for utilities management via guided wave communication |
| US10168695B2 (en) | 2016-12-07 | 2019-01-01 | At&T Intellectual Property I, L.P. | Method and apparatus for controlling an unmanned aircraft |
| US10027397B2 (en) | 2016-12-07 | 2018-07-17 | At&T Intellectual Property I, L.P. | Distributed antenna system and methods for use therewith |
| US10389029B2 (en) | 2016-12-07 | 2019-08-20 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system with core selection and methods for use therewith |
| US10547348B2 (en) | 2016-12-07 | 2020-01-28 | At&T Intellectual Property I, L.P. | Method and apparatus for switching transmission mediums in a communication system |
| US10446936B2 (en) | 2016-12-07 | 2019-10-15 | At&T Intellectual Property I, L.P. | Multi-feed dielectric antenna system and methods for use therewith |
| US9911020B1 (en) | 2016-12-08 | 2018-03-06 | At&T Intellectual Property I, L.P. | Method and apparatus for tracking via a radio frequency identification device |
| US10530505B2 (en) | 2016-12-08 | 2020-01-07 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves along a transmission medium |
| US10411356B2 (en) | 2016-12-08 | 2019-09-10 | At&T Intellectual Property I, L.P. | Apparatus and methods for selectively targeting communication devices with an antenna array |
| US10326689B2 (en) | 2016-12-08 | 2019-06-18 | At&T Intellectual Property I, L.P. | Method and system for providing alternative communication paths |
| US10103422B2 (en) | 2016-12-08 | 2018-10-16 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
| US10389037B2 (en) | 2016-12-08 | 2019-08-20 | At&T Intellectual Property I, L.P. | Apparatus and methods for selecting sections of an antenna array and use therewith |
| US9998870B1 (en) | 2016-12-08 | 2018-06-12 | At&T Intellectual Property I, L.P. | Method and apparatus for proximity sensing |
| US10916969B2 (en) | 2016-12-08 | 2021-02-09 | At&T Intellectual Property I, L.P. | Method and apparatus for providing power using an inductive coupling |
| US10938108B2 (en) | 2016-12-08 | 2021-03-02 | At&T Intellectual Property I, L.P. | Frequency selective multi-feed dielectric antenna system and methods for use therewith |
| US10777873B2 (en) | 2016-12-08 | 2020-09-15 | At&T Intellectual Property I, L.P. | Method and apparatus for mounting network devices |
| US10069535B2 (en) | 2016-12-08 | 2018-09-04 | At&T Intellectual Property I, L.P. | Apparatus and methods for launching electromagnetic waves having a certain electric field structure |
| US10601494B2 (en) | 2016-12-08 | 2020-03-24 | At&T Intellectual Property I, L.P. | Dual-band communication device and method for use therewith |
| US10340983B2 (en) | 2016-12-09 | 2019-07-02 | At&T Intellectual Property I, L.P. | Method and apparatus for surveying remote sites via guided wave communications |
| US10264586B2 (en) | 2016-12-09 | 2019-04-16 | At&T Mobility Ii Llc | Cloud-based packet controller and methods for use therewith |
| US9838896B1 (en) | 2016-12-09 | 2017-12-05 | At&T Intellectual Property I, L.P. | Method and apparatus for assessing network coverage |
| CN106707410A (en)* | 2017-01-20 | 2017-05-24 | 电子科技大学 | Cylindrical double-layer graphene-based surface plasma waveguide |
| US9973940B1 (en) | 2017-02-27 | 2018-05-15 | At&T Intellectual Property I, L.P. | Apparatus and methods for dynamic impedance matching of a guided wave launcher |
| US10298293B2 (en) | 2017-03-13 | 2019-05-21 | At&T Intellectual Property I, L.P. | Apparatus of communication utilizing wireless network devices |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007181553A (en)* | 2006-01-06 | 2007-07-19 | Yonex Co Ltd | String for racket |
| CN202307250U (en)* | 2011-11-04 | 2012-07-04 | 江苏中超电缆股份有限公司 | Grapheme-containing rubber insulation cable |
| CN102592720A (en)* | 2012-03-14 | 2012-07-18 | 于庆文 | Non-metallic cable, manufacturing method and application thereof |
| ES1077594U (en)* | 2012-07-03 | 2012-08-17 | Mikel LARRAÑAGA OTAÑO | Electrical conductor cable (Machine-translation by Google Translate, not legally binding) |
| CN103021502A (en)* | 2012-12-25 | 2013-04-03 | 山东鑫汇铜材有限公司 | Copper-clad aluminum conductor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2007181553A (en)* | 2006-01-06 | 2007-07-19 | Yonex Co Ltd | String for racket |
| CN202307250U (en)* | 2011-11-04 | 2012-07-04 | 江苏中超电缆股份有限公司 | Grapheme-containing rubber insulation cable |
| CN102592720A (en)* | 2012-03-14 | 2012-07-18 | 于庆文 | Non-metallic cable, manufacturing method and application thereof |
| ES1077594U (en)* | 2012-07-03 | 2012-08-17 | Mikel LARRAÑAGA OTAÑO | Electrical conductor cable (Machine-translation by Google Translate, not legally binding) |
| CN103021502A (en)* | 2012-12-25 | 2013-04-03 | 山东鑫汇铜材有限公司 | Copper-clad aluminum conductor |
| Publication number | Publication date |
|---|---|
| CN103943925A (en) | 2014-07-23 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103943925B (en) | A kind of full carbon coaxial line and preparation method thereof | |
| Song et al. | Improved dielectric properties and highly efficient and broadened bandwidth electromagnetic attenuation of thickness-decreased carbon nanosheet/wax composites | |
| CN202584914U (en) | Differential signal cable | |
| CN1317716C (en) | Data transmission cable | |
| JP7175313B2 (en) | Methods and systems for forming multilayer composite structures | |
| CN104051072B (en) | The twisted-pair cable of shielding | |
| JP5583237B1 (en) | Graphene wiring and manufacturing method thereof | |
| JP2014183210A (en) | Graphene wiring | |
| CN107170525A (en) | Differential transmission is with cable and multipair differential transmission cable | |
| KR101468975B1 (en) | Low dimensional material high conductivity conductive film | |
| TWM630104U (en) | Cable | |
| Serrano et al. | Slow-wave microstrip line on nanowire-based alumina membrane | |
| US11302576B2 (en) | Method of making a semiconductor device including a graphene barrier layer between conductive layers | |
| CN112768146A (en) | Double-shaft cable | |
| JP6416343B2 (en) | Radio frequency (RF) conductive media | |
| CN201868552U (en) | Physical foaming FEP (fluorinated ethylene propylene) insulating radio-frequency cable | |
| CN201556690U (en) | A low-loss semi-rigid millimeter-wave radio frequency coaxial cable | |
| WO2018201659A1 (en) | High temperature-resistant cable for mobile base station | |
| Gatte et al. | Modeling and performance evaluation of antennas coated using monolayer graphene in the millimeter and sub‐millimeter wave bands | |
| CN117995454A (en) | Application of graphene super copper in field of high-current devices | |
| KR101794318B1 (en) | electronic device transmission lines comprising 2D material and metal thin film, and microelectronic devices using the same | |
| CN201274197Y (en) | High frequency coaxial cable | |
| CN203166056U (en) | Novel radio frequency coaxial cable using copper coated aluminum wire as outer conductor | |
| CN105870101B (en) | Inductor on a graphene composite film | |
| CN211555575U (en) | High-frequency signal transmission Ethernet cable for automobile |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| CB03 | Change of inventor or designer information | Inventor after:Zhang Liang Inventor after:Wei Zijun Inventor after:Jia Yuehui Inventor after:Ye Qing Inventor after:Ren Liming Inventor after:Fu Yunyi Inventor after:Huang Ru Inventor after:Zhang Xing Inventor before:Zhang Liang Inventor before:Wei Zijun Inventor before:Jia Yuehui Inventor before:Ye Qing Inventor before:Ren Liming Inventor before:Fu Yunyi Inventor before:Huang Ru Inventor before:Zhang Xing | |
| COR | Change of bibliographic data | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20161005 |