技术领域technical field
本发明属于医疗电子技术领域,具体涉及心脏除颤的放电输出策略和模式,尤其涉及一种用于自动体外除颤器(AED)中的利用患者生理数据自动生成和控制放电模式的心脏除颤方法及装置。 The invention belongs to the technical field of medical electronics, and specifically relates to the discharge output strategy and mode of cardiac defibrillation, in particular to a cardiac defibrillator for automatic external defibrillator (AED) that utilizes patient physiological data to automatically generate and control discharge patterns Methods and devices. the
背景技术Background technique
心律失常是一种心脏电活动异常的临床表现,包括症状较为严重的心房纤颤(简称房颤)和心室纤颤(简称室颤),以及较多见的心房扑动(简称房扑)、室性心动过速(简称室速)等。房颤发作,一般来说不会直接威胁生命,但病人感觉异常痛苦难受,所以也需要立即采取措施及时终止房颤,否则病人就会出现昏厥等现象,另外房颤现象还会引起脑卒中、心功能衰竭等恶性并发症和诱发诸如室颤等其他更严重的心律失常现象。普通人群的房颤发病率约为0.5~1.0%,且随年龄的增加发病率升高,65岁以上的老年人的发病率可达5.9%。室颤发作时可使心脏的泵血功能丧失,且往往合并心、脑、肾功能的衰竭而造成心源性猝死(SCD),一旦发作,必须立即救护,否则几分钟之内生命就可能结束。据美国健康统计中心的流行病学研究结果显示,所有心血管病死亡中超过50%者为SCD,每年我国的SCD总数在54.4万例以上;同时在过去的几十年中,随着人口老龄化进程SCD的发生有上升趋势。 Arrhythmia is a clinical manifestation of abnormal electrical activity of the heart, including atrial fibrillation (abbreviated as atrial fibrillation) and ventricular fibrillation (abbreviated as ventricular fibrillation) with more severe symptoms, as well as more common atrial flutter (abbreviated as atrial flutter), Ventricular tachycardia (referred to as ventricular tachycardia) and so on. The onset of atrial fibrillation generally does not directly threaten life, but the patient feels extremely painful and uncomfortable, so it is necessary to take immediate measures to terminate the atrial fibrillation in time, otherwise the patient will appear fainting, etc. In addition, atrial fibrillation can also cause stroke, Malignant complications such as heart failure and the induction of other more serious arrhythmias such as ventricular fibrillation. The incidence of atrial fibrillation in the general population is about 0.5-1.0%, and the incidence increases with age, and the incidence of the elderly over 65 years old can reach 5.9%. When ventricular fibrillation occurs, the pumping function of the heart can be lost, and it is often combined with heart, brain, and kidney failure to cause sudden cardiac death (SCD). Once an attack occurs, immediate rescue is required, otherwise life may end within a few minutes . According to the epidemiological research results of the Center for Health Statistics in the United States, more than 50% of all cardiovascular disease deaths are SCD, and the total number of SCD in my country is more than 544,000 cases every year; The occurrence of SCD in the chemical process has an upward trend. the
电击除颤(简称除颤)是目前临床上唯一一种可有效终止心肌纤颤的方法,即对心脏进行高压强电击,使心肌细胞重新极化,心脏回到正常的窦性节律跳动。自1947年美国医生Beck完成第一例电除颤抢救后,心脏电除颤方法及放电策略不断改进,各种电除颤器相继面世,今天电复律/除颤器已成为临床医院的必不可少仪器。近年,自动体外除颤器(AED)的出现使得医院外实施早期除颤急救成为可能,其主要包括心电图检测、心脏节律分析和放电决策咨询等子系统,具有“自动识别、自动分析、自动除颤”的智能特性。AED可实现全自动自动除颤放电,或者建议何时执行电击除颤,而由操作者执行按下“电击”按钮实施电除颤,让电击除颤操作变得简单易行,非专业民众亦可就地取用及时地对SCD患者实施除颤抢救,缩短抢救时间,提高SCD的抢救生存率。 Electric shock defibrillation (abbreviated as defibrillation) is currently the only clinical method that can effectively terminate myocardial fibrillation, that is, high-voltage and strong electric shocks are applied to the heart to repolarize the myocardial cells and return the heart to normal sinus rhythm. Since American doctor Beck completed the first electrical defibrillation rescue in 1947, cardiac electrical defibrillation methods and discharge strategies have been continuously improved, and various electrical defibrillators have come out one after another. Today, electrical cardioverter/defibrillator has become a must in clinical hospitals. Instruments are essential. In recent years, the emergence of the automatic external defibrillator (AED) has made it possible to implement early defibrillation first aid outside the hospital. It mainly includes subsystems such as electrocardiogram detection, cardiac rhythm analysis, and discharge decision-making consultation. quivering" intelligent features. AED can realize fully automatic defibrillation discharge, or suggest when to perform electric shock defibrillation, and the operator can press the "shock" button to carry out electric defibrillation, making the operation of electric shock defibrillation easy, and non-professional people can It can be used locally and timely to implement defibrillation rescue for SCD patients, shorten the rescue time, and improve the survival rate of SCD rescue. the
实际应用中,除颤方法和放电模式多样,因人而异,因症而异。心室纤颤(简称室颤)时,心室的电活动同步性丧失,病人神志亦多已丧失,因此可在任何时间放电除颤,而无需 同步装置和选择放电时机。除颤有赖于选择恰当的能量以产生一足够的经心肌的电流,能量及电流太低,电击不能终止心律失常;能量及电流太高,又可引起心肌损伤和诱发新的心律失常。因此,室颤的除颤放电关键是考虑患者之间存在较大的个体差异性,选取合适的放电能量。然而,用高压电击方法终止心房纤颤(简称房颤)、心房扑动(简称房扑)和室性心动过速(简称室速)时,为了避免除颤器在心室的易损期放电,诱发出更严重的心律失常,就需要除颤器准确识别R波并争取在R波波峰或R波降支实施电击,即与R波同步的心脏电复律,此阶段是心动周期的绝对不应期,相对于心室易损期即体表心电图的T波升支,此时电击诱发室颤的概率大大降低。因此,对于这类心律失常,电击复律的关键不但在于选择适当的电击能量,还要选择适当的电击时间,处理不当不仅无法复律,反而有可能诱发更严重的心室颤动。 In practical application, there are various defibrillation methods and discharge modes, which vary from person to person and from disease to disease. In ventricular fibrillation (referred to as ventricular fibrillation), the synchronization of the electrical activity of the ventricles is lost, and the patient's consciousness has also been lost. Therefore, the defibrillation can be discharged at any time without the need for a synchronization device and a choice of discharge timing. Defibrillation depends on choosing the appropriate energy to generate a sufficient transmyocardial current. If the energy and current are too low, the electric shock cannot terminate the arrhythmia; if the energy and current are too high, it can cause myocardial damage and induce new arrhythmias. Therefore, the key to the defibrillation discharge of ventricular fibrillation is to consider the large individual differences among patients and select the appropriate discharge energy. However, when atrial fibrillation (abbreviated as atrial fibrillation), atrial flutter (abbreviated as atrial flutter) and ventricular tachycardia (referred to as ventricular tachycardia) are terminated by high-voltage electric shock, in order to avoid the discharge of the defibrillator during the vulnerable period of the ventricle, induce If a more serious arrhythmia occurs, it is necessary for the defibrillator to accurately identify the R wave and strive to deliver an electric shock at the peak of the R wave or the descending branch of the R wave, that is, cardioversion synchronized with the R wave. This stage is absolutely not allowed in the cardiac cycle. Compared with the ventricular vulnerable period, that is, the T wave ascending branch of the body surface ECG, the probability of electric shock-induced ventricular fibrillation at this time is greatly reduced. Therefore, for this type of arrhythmia, the key to electric shock cardioversion is not only to choose the appropriate electric shock energy, but also to choose the appropriate electric shock time. Improper treatment will not only fail the cardioversion, but may induce more serious ventricular fibrillation. the
除颤器输出的电流是通过一定宽度和电压幅度的放电波形加载到患者身上,最终所释放的电能应是能够终止心肌纤颤的最低能量。为了减少心肌损伤和除颤过量的副作用,国内外学者对除颤放电模式及装置开展了大量的研究,曾经和正在使用的一些放电波形包括:单相阻尼正弦波、单相指数截尾波、双相指数截尾波、窄脉冲阵列双相指数截尾波等等。理论和实验研究证实,一次成功除颤除颤器所释放的电能与储能电容起始电压、患者胸阻抗和放电时间等密切相关。一般人体的胸阻抗在20~200欧姆左右,相互之间存在较大的个体差异,相同的电容起始电压和放电时间,成功除颤的阈值电流和所释放的电能必然不等。一般成人的除颤阈值电流为10~25安培,能量为50~300焦耳,能量最低时波宽4~5毫秒,婴儿及儿童所需阈值电流和放电能量则要比成人小。为了保证预期的除颤能量释放到人体,应根据患者的实际测量到的胸阻抗大小,改变双相除颤波的放电起始电压幅度或者放电波形宽度,使得释放到人体的能量与设定能量一致,达到放电能量的自适应调节和控制。另一方面,不同的心律失常症状,其内在电生理机制不同,实施电除颤还是电复律策略,以及各自所需的电能、放电时机和放电顺序等策略也不尽相同。美国心脏协会(AHA)指南推荐放电剂量为:房颤为100-200J;房扑和阵发性室上速较低为50-100J;单形性室速为100J,多形性室速与室颤同等对待为200J;室扑和室颤200J。而针对室颤,首次除颤推荐的放电能量是200J,第二次200~300J,第三次360J。如连续3次除颤失败,应继续配合CPR和注射肾上腺素药物后再行电除颤。因此,为了保证AED除颤器更加智能的适用于多种心律失常症状,我们应根据采集到的患者心电信号进行相应的分类判别,并自动地生成和实施相应的电复律/除颤放电策略,包括恰当的放电能量和科学的放电顺序,对于非室颤一类心律失常还需选择合适的放电时机,实施R波同步的电击复律。 The current output by the defibrillator is loaded on the patient through a discharge waveform of a certain width and voltage amplitude, and the finally released electric energy should be the lowest energy capable of terminating myocardial fibrillation. In order to reduce the side effects of myocardial injury and defibrillation overdose, scholars at home and abroad have carried out a lot of research on defibrillation discharge modes and devices. Some discharge waveforms that have been and are being used include: monophasic damped sine wave, Biphasic exponential truncated wave, narrow pulse array biphasic exponential truncated wave, etc. Theoretical and experimental studies have confirmed that the electrical energy released by a defibrillator for a successful defibrillation is closely related to the initial voltage of the energy storage capacitor, the patient's chest impedance, and the discharge time. Generally, the thoracic impedance of the human body is about 20-200 ohms, and there are large individual differences among them. For the same initial voltage and discharge time of the capacitor, the threshold current for successful defibrillation and the released electric energy must be different. Generally, the defibrillation threshold current for adults is 10-25 amperes, the energy is 50-300 joules, and the wave width is 4-5 milliseconds when the energy is the lowest. The threshold current and discharge energy required by infants and children are smaller than those of adults. In order to ensure that the expected defibrillation energy is released to the human body, the discharge initial voltage amplitude or the discharge waveform width of the biphasic defibrillation wave should be changed according to the actual measured chest impedance of the patient, so that the energy released to the human body is consistent with the set energy Consistent, to achieve self-adaptive regulation and control of discharge energy. On the other hand, different arrhythmia symptoms have different internal electrophysiological mechanisms, and the strategy of whether to implement electrical defibrillation or electrical cardioversion, as well as the strategies required for each, such as electrical energy, discharge timing, and discharge sequence, are also different. The American Heart Association (AHA) guidelines recommend discharge doses: 100-200J for atrial fibrillation; 50-100J for atrial flutter and paroxysmal supraventricular tachycardia; Fibrillation is treated equally as 200J; ventricular flutter and ventricular fibrillation are 200J. For ventricular fibrillation, the recommended discharge energy is 200J for the first defibrillation, 200-300J for the second defibrillation, and 360J for the third defibrillation. If defibrillation fails for 3 times in a row, continue to cooperate with CPR and inject epinephrine before performing electrical defibrillation. Therefore, in order to ensure that the AED defibrillator is more intelligently applicable to a variety of arrhythmia symptoms, we should classify and discriminate according to the collected ECG signals of patients, and automatically generate and implement corresponding cardioversion/defibrillation discharges. Strategies include appropriate discharge energy and scientific discharge sequence. For arrhythmias other than ventricular fibrillation, it is also necessary to select the appropriate discharge timing and implement R-wave synchronous shock cardioversion. the
中国专利200580047116.A“具有在形成治疗双相波形中使用的离散感测脉冲的自动体外除颤器(AED)”,该感测脉冲用于在释放除颤波形之前确定患者的胸阻抗等特定参数,并基于此参数调整放电波形。中国专利200510120801.2A“除颤双相波的波形产生方法”所述的除颤放电方法,其波形参数包括固定的脉冲周期和可调的放电起始电压。中国专利200710046179.4A“用窄脉冲实现低能量除颤的方法及装置”是当除颤的放电波形为双相指数截尾指数波时,每次点击的脉宽在0.5ms~4ms之间可调。中国专利200910061191.1“智能中频双向方波除颤方法”用5KHz的中频恒定电流检测胸阻抗,并相应调节放电波形参数,对患者发出5KHz中频的双相除颤丛状脉冲方波。美国专利US6,671,547公开了根据患者心率或者心律参数相应调整除颤放电策略。以上专利虽然都采用了双相除颤波,并公开了根据胸阻抗、心率或者心律等某一生理参数相应的调整和改变除颤放电的能量或者波形。其主要不足在于:(1)患者个体差异大,而采用的生理参数单一,对于实际应用中不同的患者和心律失常症状,易出现除颤误放电或不作为漏放电;(2)除颤放电模式固化,并未考虑除颤过程中生理参数的变化及做出相应的调整,会造成多次除颤多次失败;(3)未考虑R波同步放电,对于实际应用中存在房颤、房扑和室速等需人工判断和实施同步电复律,增加了除颤器的操作使用难度和风险。 Chinese Patent 200580047116.A "Automated External Defibrillator (AED) with Discrete Sensing Pulses Used in Forming Therapeutic Biphasic Waveforms to Determine Patient's Chest Impedance, etc." parameter, and adjust the discharge waveform based on this parameter. The defibrillation discharge method described in Chinese patent 200510120801.2A "Defibrillation Biphasic Wave Waveform Generation Method", its waveform parameters include a fixed pulse period and an adjustable discharge initiation voltage. Chinese patent 200710046179.4A "method and device for realizing low-energy defibrillation with narrow pulse" is that when the discharge waveform of defibrillation is a biphasic exponential truncated exponential wave, the pulse width of each click can be adjusted between 0.5ms and 4ms . Chinese patent 200910061191.1 "Intelligent intermediate frequency two-way square wave defibrillation method" uses a 5KHz intermediate frequency constant current to detect chest impedance, and adjusts the parameters of the discharge waveform accordingly, and sends a 5KHz intermediate frequency biphasic defibrillation cluster pulse square wave to the patient. US Pat. No. 6,671,547 discloses that the defibrillation discharge strategy is adjusted accordingly according to the patient's heart rate or heart rhythm parameters. Although the above patents all use biphasic defibrillation waves, and disclose the corresponding adjustment and change of the energy or waveform of the defibrillation discharge according to certain physiological parameters such as chest impedance, heart rate or heart rhythm. Its main disadvantages are: (1) There are large individual differences in patients, and the physiological parameters used are single. For different patients and arrhythmia symptoms in practical applications, it is easy to cause defibrillation misdischarge or not as leakage discharge; (2) Defibrillation discharge The mode is solidified, without considering the changes of physiological parameters during the defibrillation process and making corresponding adjustments, which will cause repeated defibrillation failures; (3) without considering the R wave synchronous discharge, for the actual application of atrial fibrillation, atrial fibrillation, Flutter and ventricular tachycardia require manual judgment and implementation of synchronous electrical cardioversion, which increases the difficulty and risk of defibrillator operation and use. the
发明内容Contents of the invention
本发明的目的在于针对上述现有技术的不足而提出一种利用患者胸阻抗、心电和心律等一项或多项生理数据,自动生成和控制放电输出模式的心脏除颤方法及装置,用于AED设备。 The purpose of the present invention is to propose a method and device for cardiac defibrillation that automatically generates and controls the discharge output pattern by utilizing one or more physiological data such as patient's chest impedance, electrocardiogram, and heart rhythm in view of the above-mentioned deficiencies in the prior art. in AED equipment. the
根据本发明的一种优选形式,AED包含从除颤器直接施加到患者的一组电极;除颤器通过电极向患者加载一无损伤中频电信号,感测患者的经胸阻抗;除颤器还使用电极感测患者自身的心电信号;胸阻抗及心电等生理数据被送入微处理器,以便确定患者的心脏状况和自动生成相应的放电模式和电击参数;如果出现可电击心律,除颤器将根据设定的放电模式,自动地控制放电波形和电压水平,在电极上释放高压放电脉冲,使除颤电流流经患者的胸腔并到达心脏,达到除颤的目的。 According to a preferred form of the invention, the AED comprises a set of electrodes applied directly to the patient from a defibrillator; the defibrillator applies an atraumatic intermediate frequency electrical signal to the patient through the electrodes to sense the patient's transthoracic impedance; the defibrillator Electrodes are also used to sense the patient's own ECG signal; physiological data such as chest impedance and ECG are sent to the microprocessor to determine the patient's heart condition and automatically generate corresponding discharge patterns and shock parameters; if a shockable heart rhythm occurs, except The fibrillator will automatically control the discharge waveform and voltage level according to the set discharge mode, and release high-voltage discharge pulses on the electrodes, so that the defibrillation current flows through the patient's chest cavity and reaches the heart to achieve the purpose of defibrillation. the
根据本发明的一种优选形式,AED电极连接处设置有电极类型判别开关,根据连接电极类型的不同,能判别成人或儿童电极,并自动和生成成人或儿童除颤放电模式。 According to a preferred form of the present invention, the AED electrode connection is provided with an electrode type discrimination switch, which can distinguish adult or child electrodes according to the different types of connected electrodes, and automatically and generate adult or child defibrillation discharge patterns. the
根据本发明的一种优选形式,AED根据患者的胸阻抗数据,自动设定相应的除颤电能大小,阻抗越大需要释放的电能越高,儿童除颤能量相应的比成人小。 According to a preferred form of the present invention, the AED automatically sets the corresponding defibrillation electric energy level according to the patient's chest impedance data. The greater the impedance, the higher the electric energy to be released, and the defibrillation energy for children is correspondingly smaller than that for adults. the
根据本发明的一种优选形式,AED所包含的微处理器根据不同放电模式,自动设置和控 制除颤放电脉冲形状及电压水平,使释放到人体的电能接近或超过放电模式生成的设定值; According to a preferred form of the present invention, the microprocessor included in the AED automatically sets and controls the defibrillation discharge pulse shape and voltage level according to different discharge modes, so that the electric energy released to the human body is close to or exceeds the setting generated by the discharge mode value;
根据本发明的一种优选形式,AED根据患者心电信息,能自动分析和识别不同症状心律,并生成异步除颤放电或R波同步电复律模式;对室颤和多形性室速直接实施除颤放电,而对房颤、房扑及单形性室速等则实施R波同步的电复律放电。 According to a preferred form of the present invention, the AED can automatically analyze and identify different symptomatic rhythms according to the patient's electrocardiographic information, and generate asynchronous defibrillation discharge or R wave synchronous electrical cardioversion mode; Defibrillation discharge is implemented, and R wave synchronous cardioversion discharge is implemented for atrial fibrillation, atrial flutter and monomorphic ventricular tachycardia. the
根据本发明的一种优选形式,AED保存患者的生理参数和分析结果,第一次除颤放电前自动生成一种放电模式,并在后续除颤放电过程中根据生理参数的变化自动调整放电模式,包括能量大小、放电顺序、R波同步等。 According to a preferred form of the present invention, the AED saves the patient's physiological parameters and analysis results, automatically generates a discharge pattern before the first defibrillation discharge, and automatically adjusts the discharge pattern according to changes in physiological parameters during subsequent defibrillation discharges , including energy size, discharge sequence, R-wave synchronization, etc. the
根据本发明的一种优选形式,AED包括一个多路开关同时将一对电极片与阻抗测量、心电采集和高压放电等三个电路相连,由微处理器自动控制和选择,并识别成人或儿童电极片。 According to a preferred form of the present invention, the AED includes a multi-way switch that simultaneously connects a pair of electrode pads with three circuits such as impedance measurement, ECG collection, and high-voltage discharge, which are automatically controlled and selected by a microprocessor, and identify adults or Pads for children. the
根据本发明的一种优选形式,AED包括微处理器、心电检测电路、胸阻抗测量电路、除颤放电桥路、高压充电电路、内部自放电电路、储能电容器、电池组、实时时钟、存储器等部件;储能电容器与高压充电电路相连,为除颤器输出级提供高压电源;除颤器放电桥路、自放电电路、胸阻抗及心电采集电路分别与微处理器连接,受微处理器控制;除颤器放电桥路由控制开关互联构成H型桥路输出开关,在微处理器的控制下,按一定时序将电容器的电能放电释放到人体上。 According to a preferred form of the present invention, the AED includes a microprocessor, an electrocardiogram detection circuit, a chest impedance measurement circuit, a defibrillation discharge bridge, a high-voltage charging circuit, an internal self-discharge circuit, an energy storage capacitor, a battery pack, a real-time clock, Memory and other components; the energy storage capacitor is connected with the high-voltage charging circuit to provide high-voltage power supply for the defibrillator output stage; the defibrillator discharge bridge circuit, self-discharge circuit, chest impedance and ECG acquisition circuit are respectively connected Processor control; the defibrillator discharge bridge route control switch is interconnected to form an H-bridge output switch. Under the control of the microprocessor, the electric energy of the capacitor is discharged to the human body according to a certain sequence. the
根据本发明的一种优选形式,AED采用可输出双向锯齿方波的H桥放电电路,微处理器根据所需释放的电能大小设定放电脉冲电压水平,并可精确计算出所需的正、反放电脉冲的锯齿数。 According to a preferred form of the present invention, the AED uses an H-bridge discharge circuit capable of outputting bidirectional sawtooth square waves, and the microprocessor sets the discharge pulse voltage level according to the amount of electric energy to be released, and can accurately calculate the required positive and negative voltages. The number of sawtooth for the anti-discharge pulse. the
根据本发明的一种优选形式,AED采用的除颤放电输出桥路至少由一只储能电容器、一只电感器、一只半导体二极管、一只电流传感器和四只控制开关构成。 According to a preferred form of the present invention, the defibrillation discharge output bridge adopted by the AED is composed of at least one energy storage capacitor, one inductor, one semiconductor diode, one current sensor and four control switches. the
根据本发明的一种优选形式,AED还包括声音提示、按键开关和LED显示等人机接口,以便帮助与用户交互,以及指导用户进行一系列抢救活动;声音提示和LED显示起指导提示作用,按键用于除颤放电控制。 According to a preferred form of the present invention, the AED also includes human-machine interfaces such as sound prompts, key switches and LED displays, so as to help interact with the user, and guide the user to carry out a series of rescue activities; the sound prompts and LED display play a guiding role, Buttons are used for defibrillation discharge control. the
本发明的工作原理是:除颤前,将除颤电极一端接入除颤器,另一端粘贴在患者体表适当位置;除颤器根据所连接的电极类型,自动预置成人或儿童除颤模式;由微处理器生成一个5~30KHz,1mA的无损伤中频信号,并由电极施加到人体上,感测获得患者的经胸阻抗;再者,电极还用来采集患者自身的心电信号,由微处理器自动分析和确定心脏状况;综合上述患者生理数据,微处理器自动生成相应的个体化放电模式:由电极确定成人或儿童、由心脏状况确实除颤或电复律、由胸阻抗确定放电能量等,并根据前一次成功与否设定后续单次 或连续放电;进一步经过微处理器计算,确定电容充电电压和双向锯齿波的正、方向波宽、锯齿波数;充电完成后出现适宜可电击心律时,微处理器自动控制除颤放电桥路的开关组合,对患者实施除颤放电,使放电波形和释放的电能接近或达到除颤前设定的放电模式。对于非室颤一类心脏状态的电击复律,微处理器将通过R波同步进行放电控制。 The working principle of the present invention is: before defibrillation, one end of the defibrillation electrode is connected to the defibrillator, and the other end is pasted at an appropriate position on the patient's body surface; mode; the microprocessor generates a 5-30KHz, 1mA non-invasive intermediate frequency signal, and the electrode is applied to the human body to sense the patient's transthoracic impedance; moreover, the electrode is also used to collect the patient's own ECG signal , the heart condition is automatically analyzed and determined by the microprocessor; based on the above physiological data of the patient, the microprocessor automatically generates the corresponding individualized discharge pattern: adults or children are determined by the electrodes, defibrillation or cardioversion is determined by the heart condition, and the chest is determined by the chest. The impedance determines the discharge energy, etc., and sets the subsequent single or continuous discharge according to the success of the previous one; further calculations by the microprocessor determine the capacitor charging voltage and the positive and directional wave widths of the bidirectional sawtooth wave, and the number of sawtooth waves; after charging is completed When a suitable shockable heart rhythm occurs, the microprocessor automatically controls the switch combination of the defibrillation discharge bridge, and performs defibrillation discharge on the patient, so that the discharge waveform and the released electric energy are close to or reach the discharge mode set before defibrillation. For electrical shock cardioversion in non-ventricular fibrillation and other cardiac states, the microprocessor will perform discharge control through R-wave synchronization. the
本方面的有益效果是:该方法可针对不同的患者和多种心律失常症状,通过检测和分析患者胸阻抗、心电和心律等一项或多项生理参数,自动生成除颤放电模式,提供更加个体化、准确控制的除颤电能;通过保存生理参数的分析结果,并对比每次放电前后的生理参数,自适应调整除颤放电模式,例如逐级提高能量、连续放电等等;通过分析和识别不同症状心律,自动控制放电脉冲的形状和电压水平,提高除颤器的电复律/除颤放电的精确控制能力,降低除颤器的操作使用难度;实现不同患者、多种病症的全自动、个体化心脏电复律和除颤,有效减少误放电和漏放电。 The beneficial effect of this aspect is: the method can automatically generate defibrillation discharge patterns for different patients and various arrhythmia symptoms by detecting and analyzing one or more physiological parameters such as chest impedance, ECG and heart rhythm of the patient, providing More individualized and accurately controlled defibrillation electric energy; by saving the analysis results of physiological parameters and comparing the physiological parameters before and after each discharge, adaptively adjust the defibrillation discharge mode, such as increasing energy step by step, continuous discharge, etc.; through analysis And identify heart rhythms with different symptoms, automatically control the shape and voltage level of the discharge pulse, improve the precise control ability of the defibrillator's electrical cardioversion/defibrillation discharge, and reduce the difficulty of using the defibrillator; realize the treatment of different patients and various diseases Fully automatic and individualized cardioversion and defibrillation, effectively reducing misdischarge and leakage discharge. the
附图说明Description of drawings
图1是本发明实施例的一种自动体外除颤器装置(AED)框图。 Fig. 1 is a block diagram of an automatic external defibrillator device (AED) according to an embodiment of the present invention. the
图2是图1的H型桥除颤放电路输出级示意图。 FIG. 2 is a schematic diagram of the output stage of the H-bridge defibrillation circuit shown in FIG. 1 . the
图3是本发明实施例的除颤放电模式自动生成和控制流程图。 Fig. 3 is a flowchart of the automatic generation and control of defibrillation discharge patterns according to the embodiment of the present invention. the
图4是图3实施例生成的5个不同胸阻抗对应的放电脉冲曲线图。 Fig. 4 is a graph of discharge pulse curves corresponding to five different thoracic impedances generated in the embodiment of Fig. 3 . the
具体实施方式Detailed ways
以下结合附图所示的最佳实施例对本发明自动生成和控制放电模式的心脏除颤方法及装置进一步阐述本发明: Below in conjunction with the preferred embodiment shown in the accompanying drawings, the present invention is further described the present invention to the defibrillation method and the device that the present invention automatically generates and controls discharge mode:
参照附图1,一种具有自动生成和控制放电模式的心脏除颤方法及装置,基于微处理器(8)的主控制模块为核心,通过相应接口分别连接到胸阻抗测量电路(6)、心电检测电路(7)、R波同步电路(9)、高压充电电路(17)、除颤放电桥路(16),以及用于人机交互的LED显示(10)、声音提示(11)和按键开关(12)等;上述功能模块和电路统一由锂电池(19)供电,并全部置于一密闭的轻薄高强度便携式盒体(2)内,通过两除颤电极片(3)连接至患者体表(1)。其中,一个多路切换开关(5)同时将电极片与阻抗测量、心电采集和高压放电等三个电路相连,由微处理器自动控制和选择,并识别成人或儿童电极片;心电检测电路(7)包括除颤高压保护电路、前置放大器、50Hz陷波器、高通和低通电路,以及主放大器和A/D转换器;胸阻抗测量电路(6)包括5~30KHz中频信号发生器、压控电流源、差分放大器、包络检波器,以及低通滤波器和A/D转换器;高压充电电路(17)受微处理器(8)控制, 向储能电容器(18)输送来自电池组(19)的电能实施充电,而除颤放电桥路(16)和内部自放电电路(15)则是在微处理器(8)的控制下分别向具有适宜心脏状况的人体实施除颤放电,或者由内部电阻器自放电。另外,本实施例存储器(13)是指机内ROM、RAM和SD卡,按键开关(12)包括电源开关、除颤按键和功能信息按键,LED显示(10)和声音提示(11)分别用LED灯和声音方式向用户提示除颤器的工作状态,并进行现场急救指导和提示。 Referring to accompanying drawing 1, a method and device for cardiac defibrillation with automatic generation and control of discharge patterns, the main control module based on the microprocessor (8) as the core is connected to the chest impedance measurement circuit (6), respectively through corresponding interfaces. ECG detection circuit (7), R-wave synchronization circuit (9), high-voltage charging circuit (17), defibrillation discharge bridge circuit (16), LED display (10) and sound prompt (11) for human-computer interaction and key switch (12), etc.; the above-mentioned functional modules and circuits are powered by a lithium battery (19), and all are placed in an airtight, light, high-strength portable box (2), connected by two defibrillation electrodes (3) to the patient's body surface (1). Among them, a multi-way switch (5) simultaneously connects the electrode sheet with three circuits of impedance measurement, ECG collection and high-voltage discharge, which are automatically controlled and selected by the microprocessor, and identify the adult or child electrode sheet; ECG detection Circuit (7) includes defibrillation high voltage protection circuit, preamplifier, 50Hz notch filter, high-pass and low-pass circuits, main amplifier and A/D converter; chest impedance measurement circuit (6) includes 5-30KHz intermediate frequency signal generation device, a voltage-controlled current source, a differential amplifier, an envelope detector, and a low-pass filter and an A/D converter; the high-voltage charging circuit (17) is controlled by the microprocessor (8), and is delivered to the energy storage capacitor (18) The electric energy from the battery pack (19) is used for charging, while the defibrillation discharge bridge (16) and the internal self-discharge circuit (15) are under the control of the microprocessor (8) to perform defibrillation to the human body with a suitable heart condition. Dither discharge, or self-discharge by internal resistors. In addition, the memory (13) of this embodiment refers to the ROM, RAM and SD card in the machine, the key switch (12) includes a power switch, a defibrillation key and a function information key, and the LED display (10) and the voice prompt (11) are used respectively The LED light and sound mode remind the user of the working status of the defibrillator, and provide on-site first aid guidance and prompts. the
参照附图2,进一步阐述图1所示的本发明实施例的除颤放电桥路(16)输出级,即通过包含一个H桥路的除颤器输出级(16),以预先设定的一系列桥路开关(S1~S4)组合及控制策略,将储能电容器(18)中的电能经由除颤电极(3)以双相锯齿波的脉冲形式(20)在患者身上(1),以下简称等效于(Rp)进行一次快速地高压电击放电,以此达到终止体内心室纤维颤动,实现对患者及时抢救的目的。本发明实施例采用的可输出双相锯齿矩形波形的高压放电方法,对处于纤维颤动的心室肌提供了一个形态呈现锯齿细波叠加在双相矩形波上的除颤放电电流,为患者提供个体化精确控制的除颤电能,有利于提高心室各处心肌细胞同步除颤的成功率,同时有效降低高压除颤过程中对心肌形成的损伤,具体构成及特征如下: Referring to accompanying drawing 2, the output stage of the defibrillation discharge bridge circuit (16) of the embodiment of the present invention shown in Fig. Combination of a series of bridge switches (S1-S4) and control strategies, the electric energy in the energy storage capacitor (18) is delivered to the patient (1) via the defibrillation electrode (3) in the form of biphasic sawtooth pulses (20), Hereinafter referred to as (Rp) is equivalent to a rapid high-voltage electric shock discharge, so as to terminate the ventricular fibrillation in the body and realize the purpose of timely rescue of the patient. The high-voltage discharge method that can output a biphasic sawtooth rectangular waveform adopted in the embodiment of the present invention provides a defibrillation discharge current in the shape of a sawtooth fine wave superimposed on a biphasic rectangular wave to the ventricular muscle in fibrillation, providing patients with individual Precisely controlled defibrillation electric energy is beneficial to improve the success rate of synchronous defibrillation of myocardial cells around the ventricle, and at the same time effectively reduce the damage to the myocardium during high-voltage defibrillation. The specific composition and characteristics are as follows:
所述的除颤器放电桥路输出级(16),由至少一只储能电容器(C)和四只控制开关(S1~S4)构成;其中,四只控制开关(S1~S4)形成H桥式放电电路(至少包括正相放电桥路S1-L-Rp-S3和反相放电桥路S2-Rp-L-S4),经由除颤电极(3)向患者(1)输出双相脉冲的除颤电流; The defibrillator discharge bridge output stage (16) is composed of at least one energy storage capacitor (C) and four control switches (S1-S4); wherein, the four control switches (S1-S4) form a H A bridge discharge circuit (including at least the positive phase discharge bridge S1-L-Rp-S3 and the reverse phase discharge bridge S2-Rp-L-S4), which outputs biphasic pulses to the patient (1) via the defibrillation electrodes (3) defibrillation current;
所述的除颤器放电桥路输出级(16),至少包括一只电感线圈(L),该电感线圈与患者(Rp)串联构成H桥路横臂; The defibrillator discharge bridge output stage (16) includes at least one inductance coil (L), and the inductance coil is connected in series with the patient (Rp) to form an H-bridge cross arm;
所述的除颤器放电桥路输出级(16),至少包括一只半导体二极管(D1~D4),该二极管与桥路开关并联,在开关断开的情况下具有续流作用; The defibrillator discharge bridge output stage (16) includes at least one semiconductor diode (D1-D4), which is connected in parallel with the bridge switch and has a freewheeling effect when the switch is turned off;
所述的除颤器放电桥路输出级(16),至少包括由上述电感线圈(L)与上述续流二极管(L)构成的一个正相(或反相)续流放电桥路(L-Rp-S3-D4,或L-Rp-S4-D3); The defibrillator discharge bridge output stage (16) at least includes a positive phase (or reverse phase) freewheeling discharge bridge (L- Rp-S3-D4, or L-Rp-S4-D3);
所述的除颤器放电桥路输出级(16),至少包括一只电流传感器(RS+,RS-),该电流传感器置于某一桥路支路,在放电过程中实时感测该支路的电流幅度(IP); The defibrillator discharge bridge output stage (16) includes at least one current sensor (RS+, RS-), the current sensor is placed in a certain bridge branch, and senses the branch in real time during the discharge process current amplitude (IP);
参照附图3和附图4,上述AED装置在除颤放电前,微处理器通过电极采集并分析患者自身的胸阻抗、心电和心律等生理数据中的一项或多项,自动生成和确定符合患者心脏状况的除颤放电模式,包括成人或儿童、电除颤或R波同步的电复律、单次或连续放电,以及放电能量等多种模式的一种或多种;进而在出现适宜心律时,由微处理器按照预设的放电模式自动控制高压充电和放电过程,在患者身上获得相应的放电脉冲和电击能量,达到除颤或电 击复律的目的。本实施例采用的本发明自动生成和控制放电模式的心脏除颤方法,具体实施步骤和技术特征包括: Referring to accompanying drawing 3 and accompanying drawing 4, before the above-mentioned AED device is defibrillated and discharged, the microprocessor collects and analyzes one or more items in the physiological data such as patient's own thoracic impedance, electrocardiogram and heart rhythm through the electrode, automatically generates and Determine the defibrillation discharge mode that meets the patient's heart condition, including one or more of multiple modes such as adult or child, electrical defibrillation or R-wave synchronized electrical cardioversion, single or continuous discharge, and discharge energy; When an appropriate heart rhythm occurs, the microprocessor automatically controls the high-voltage charging and discharging process according to the preset discharge mode, and obtains the corresponding discharge pulse and electric shock energy on the patient to achieve the purpose of defibrillation or electric shock cardioversion. The defibrillation method of the present invention that automatically generates and controls the discharge pattern adopted in this embodiment, the specific implementation steps and technical features include:
1)除颤器电源接通; 1) The defibrillator is powered on;
2)除颤器与患者直接通过一组电极相连,并判别电极贴靠是否良好; 2) The defibrillator is directly connected to the patient through a set of electrodes, and it is judged whether the electrodes are well attached;
3)除颤器通过电极向患者加载一无损伤5~30KHz,1mA的中频电信号,感测患者的经胸阻抗,除颤器还使用电极感测患者自身的心电信号; 3) The defibrillator loads a non-damaging 5-30KHz, 1mA intermediate frequency electrical signal to the patient through the electrodes to sense the patient's transthoracic impedance, and the defibrillator also uses the electrodes to sense the patient's own ECG signal;
4)胸阻抗、心电或心率等生理数据被送入微处理器进行自动分析;以便确定患者的心脏状况和自动生成相应的放电模式和电击参数,并保持分析结果; 4) Physiological data such as chest impedance, ECG or heart rate are sent to the microprocessor for automatic analysis; in order to determine the patient's heart condition and automatically generate corresponding discharge patterns and shock parameters, and maintain the analysis results;
5)判别是否存储有分析结果,如肯定,则根据目前的生理数据自动调整放电模式,否则开始自动生成新的除颤放电模式和策略,包括根据识别出的电极类型确定成人或儿童模式、根据心脏状况和心律确定进行异步电除颤或R波同步的电复律、根据前次除颤结果确定后续实施单次或连续放电模式,以及根据胸阻抗大小计算所需的放电能量; 5) Determine whether the analysis result is stored, if yes, automatically adjust the discharge mode according to the current physiological data, otherwise start to automatically generate a new defibrillation discharge mode and strategy, including determining the adult or child mode according to the identified electrode type, according to Determine the heart condition and heart rhythm for asynchronous electrical defibrillation or R-wave synchronous electrical cardioversion, determine the follow-up single or continuous discharge mode according to the previous defibrillation results, and calculate the required discharge energy according to the size of the thoracic impedance;
6)根据上述生成的放电模式,微处理器根据放电能量需求,计算双相锯齿方波的放电脉冲正向锯齿波数(M)和反向锯齿波数(N)及正、反向电压水平(Up),并自动控制充电电路对电容器进行充电; 6) According to the discharge pattern generated above, the microprocessor calculates the forward sawtooth wave number (M) and reverse sawtooth wave number (N) and forward and reverse voltage levels (Up ), and automatically control the charging circuit to charge the capacitor;
7)充电完成后,当出现适宜的可电击心律时,微处理器发出建议除颤放电指令并等待除颤按键按下,在等待时间内检测到按键按下后,将自动控制输出放电桥路开关按一定的放电时序和波形向人体释放电能,实施除颤放电; 7) After charging is completed, when a suitable shockable heart rhythm occurs, the microprocessor will issue a defibrillation discharge command and wait for the defibrillation button to be pressed. After the button is pressed within the waiting time, the output discharge bridge will be automatically controlled. The switch releases electric energy to the human body according to a certain discharge sequence and waveform, and implements defibrillation discharge;
8)如果等待超时,微处理器将启用内部自放电电路,对电容器实施自放电。 8) If the wait times out, the microprocessor will enable the internal self-discharge circuit to self-discharge the capacitor. the
所述的步骤2),AED电极连接处设置有电极类型判别开关,根据连接电极类型的不同,能判别成人或儿童电极,并自动和生成成人或儿童除颤放电模式。 In step 2), the AED electrode connection is provided with an electrode type discrimination switch, which can identify adult or child electrodes according to the type of connected electrodes, and automatically generate adult or child defibrillation discharge patterns. the
所述的步骤3),AED根据患者的胸阻抗数据,自动设定相应的除颤电能大小,阻抗越大需要释放的电能越高,儿童除颤能量相应的比成人小。 In step 3), the AED automatically sets the corresponding defibrillation power level based on the patient’s chest impedance data. The greater the impedance, the higher the power needed to be released, and the defibrillation power for children is correspondingly smaller than that for adults. the
所述的步骤4),AED所包含的微处理器根据不同放电模式,自动设置和控制除颤放电脉冲形状及电压水平,使释放到人体的电能接近或超过放电模式生成的设定值。 In step 4), the microprocessor included in the AED automatically sets and controls the defibrillation discharge pulse shape and voltage level according to different discharge modes, so that the electric energy released to the human body approaches or exceeds the set value generated by the discharge mode. the
所述的步骤5),AED根据患者心电信息,能自动分析和识别不同症状心律,并生成异步除颤放电或R波同步电复律模式;对室颤和多形性室速直接实施除颤放电,而对房颤、房扑及单形性室速等则实施R波同步的电复律放电; In step 5), the AED can automatically analyze and identify heart rhythms with different symptoms according to the patient’s ECG information, and generate asynchronous defibrillation discharge or R-wave synchronous cardioversion mode; direct defibrillation for ventricular fibrillation and polymorphic ventricular tachycardia Fibrillation discharge, while for atrial fibrillation, atrial flutter and monomorphic ventricular tachycardia, R-wave synchronous cardioversion discharge is implemented;
所述的步骤5),AED保存患者的生理参数和分析结果,第一次除颤放电前自动生成一种放电模式,并在后续除颤放电过程中根据生理参数的变化自动调整放电模式,包括能量大小、放电顺序、R波同步等。 In step 5), the AED saves the patient’s physiological parameters and analysis results, automatically generates a discharge pattern before the first defibrillation discharge, and automatically adjusts the discharge pattern according to changes in physiological parameters during subsequent defibrillation discharges, including Energy size, discharge sequence, R wave synchronization, etc. the
所述的步骤6),临床上常用的放电剂量为:房颤为100-200J;房扑和阵发性室上速较低为50-100J;单形性室速为100J,多形性室速与室颤同等对待为200J;室扑和室颤200J。而针对室颤,首次除颤推荐的放电能量是200J,第二次200~300J,第三次360J。除颤能量J=I2RS,放电电压J=I2RS,其中,R为胸阻抗,I为除颤电压,S为放电时间。室颤的首次推荐除颤能量为200焦耳,如果胸阻抗为200欧姆,选择的放电电压为:正反向放电脉宽为10毫秒;如果胸阻抗较大,则需要选择更大的除颤能量,相应提高放电电压和加长正、反放电脉宽的锯齿波数M和N;如果感测到非室颤心律,则需要根据不同类型,设定更小的能量等级。 Step 6), the commonly used clinical discharge dose is: 100-200J for atrial fibrillation; 50-100J for atrial flutter and paroxysmal supraventricular tachycardia; Tachycardia and ventricular fibrillation are treated equally as 200J; ventricular flutter and ventricular fibrillation are 200J. For ventricular fibrillation, the recommended discharge energy is 200J for the first defibrillation, 200-300J for the second defibrillation, and 360J for the third defibrillation. Defibrillation energy J=I2 RS, discharge voltage J=I2 RS, where R is chest impedance, I is defibrillation voltage, and S is discharge time. The first recommended defibrillation energy for ventricular fibrillation is 200 joules. If the chest impedance is 200 ohms, the selected discharge voltage is: The forward and reverse discharge pulse width is 10 milliseconds; if the chest impedance is large, you need to choose a larger defibrillation energy, correspondingly increase the discharge voltage and lengthen the sawtooth wave numbers M and N of the forward and reverse discharge pulse width; For ventricular fibrillation, it is necessary to set a smaller energy level according to different types.
所述的步骤7),AED即根据预先设定除颤放电波形参数(正、反相电压Up、正相锯齿波总数M和反相锯齿波总数N),向患者输出双相锯齿矩形波高压电击电流(IP)。其特征在于H桥路中的电流传感器(RS+,RS-)实时检测出电击除颤过程中放电电流的幅度,并与预设的电流幅度参考区间值进行比较,进而通过导通储能电容器的正相放电桥路(S1-L-Rp-S3,或反相放电桥路S2-Rp-L-S4)升高电流幅度(当幅度低于区间下限时),或者导通电感线圈与续流二极管构成的正相续流放电桥路(L-Rp-S3-D4,或L-Rp-S4-D3反相续流放电桥路)降低电流幅度(当幅度高于区间下限时),由此在患者身上获得一呈现双相锯齿方波形的除颤放电电流。 In step 7), the AED outputs biphasic sawtooth rectangular wave high voltage to the patient according to the preset defibrillation discharge waveform parameters (forward and reverse phase voltages Up, total number of positive phase sawtooth waves M and total number of reverse phase sawtooth waves N). Shock current (IP ). It is characterized in that the current sensor (RS +, RS -) in the H-bridge circuit detects the magnitude of the discharge current during the shock defibrillation process in real time, and compares it with the preset current magnitude reference interval value, and then turns on the storage The positive-phase discharge bridge (S1-L-Rp-S3, or reverse-phase discharge bridge S2-Rp-L-S4) of the capacitor can increase the current amplitude (when the amplitude is lower than the lower limit of the interval), or turn on the inductance coil The positive-phase freewheeling discharge bridge (L-Rp-S3-D4, or L-Rp-S4-D3 reverse-phase freewheeling discharge bridge) formed with the freewheeling diode reduces the current amplitude (when the amplitude is higher than the lower limit of the interval) , thereby obtaining a defibrillation discharge current exhibiting a biphasic sawtooth square waveform on the patient.
上述AED装置可工作在省电模式的日常循环自检状态和急救模式的电击除颤工作状态。工作电击除颤工作状态时,其主控程序或者嵌入式操作系统统一控制和协调各模块工作,包括:根据所测定患者胸阻抗信息,按照本发明给出的放电模式设定方法自动生成个性化的除颤放电模式及精确的放电波形参数,一旦待救患者的心电信息通过连续地自动分析,其结果呈现可电击心律时,主控程序将立即发出充电指令和按照上述实施例给出的双相锯齿方波高压放电方法,进行高压电击除颤抢救;另外在整个抢救过程中,上述AED装置将辅于声音和灯光提示,分步指导施救者完成“贴放电击、人工呼吸、CPR胸外按压、除颤放电”等一系列抢救操作,上述装置亦会将整个除颤抢救事件的心电信息、控制指令以及设备参数等信息全部存放,用于事后由存储器输出进行事件回放和分析。 The above-mentioned AED device can work in the daily cycle self-checking state of the power saving mode and the electric shock defibrillation working state of the emergency mode. In the working state of electric shock defibrillation, its main control program or embedded operating system uniformly controls and coordinates the work of each module, including: according to the measured chest impedance information of the patient, according to the discharge mode setting method given in the present invention, the personalized discharge mode is automatically generated. The defibrillation discharge mode and precise discharge waveform parameters, once the ECG information of the patient to be rescued is continuously and automatically analyzed, and when the result shows a shockable heart rhythm, the main control program will immediately issue a charging command and according to the above-mentioned embodiment. Biphasic sawtooth square wave high-voltage discharge method, high-voltage electric shock defibrillation rescue; in addition, during the entire rescue process, the above-mentioned AED device will be supplemented by sound and light prompts, and guide the rescuer step by step to complete "discharge shock, artificial respiration, CPR, etc. Chest compression, defibrillation and discharge” and other rescue operations, the above-mentioned device will also store all the ECG information, control instructions, equipment parameters and other information of the entire defibrillation rescue event, which will be used for event playback and analysis after the event is output from the memory . the
在上述实施例中,AED电除颤装置的心电检测(7)及胸阻抗测量(6)等生理参数采集 模块、R波同步电路(9)、存储器(13)、人机交互模块(10,11,12)、内部自放电模块(15)、高压充电模块(17)、电极(3)、电极导线(4)、电池组(19)和实时时钟(14)等功能模块和电路,成人和儿童电极识别、心电自动分析和心脏状况自动识别、各模块通讯协议及主控程序、CPR辅助抢救方法等内容不是本发明的内容,故未给出详细阐述,具体可参考相关技术资料和现有的心脏除颤装置及系统来实现。 In the above embodiment, the physiological parameter acquisition module such as the ECG detection (7) and chest impedance measurement (6) of the AED defibrillation device, the R wave synchronization circuit (9), the memory (13), and the human-computer interaction module (10 , 11, 12), internal self-discharge module (15), high-voltage charging module (17), electrodes (3), electrode wires (4), battery pack (19) and real-time clock (14) and other functional modules and circuits, adult And children's electrode identification, ECG automatic analysis and heart condition automatic identification, each module communication protocol and main control program, CPR assisted rescue method and other content are not the content of the present invention, so no detailed elaboration is given. For details, please refer to relevant technical materials and existing cardiac defibrillation devices and systems. the
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310669821.XACN103933665A (en) | 2013-12-10 | 2013-12-10 | Heart defibrillation method capable of automatically generating and controlling discharge mode and device thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310669821.XACN103933665A (en) | 2013-12-10 | 2013-12-10 | Heart defibrillation method capable of automatically generating and controlling discharge mode and device thereof |
| Publication Number | Publication Date |
|---|---|
| CN103933665Atrue CN103933665A (en) | 2014-07-23 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310669821.XAPendingCN103933665A (en) | 2013-12-10 | 2013-12-10 | Heart defibrillation method capable of automatically generating and controlling discharge mode and device thereof |
| Country | Link |
|---|---|
| CN (1) | CN103933665A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104784823A (en)* | 2015-04-27 | 2015-07-22 | 浪潮软件集团有限公司 | A portable cardiac defibrillator based on infrared heart rate detection and its application method |
| WO2016124054A1 (en)* | 2015-02-02 | 2016-08-11 | 深圳市科曼医疗设备有限公司 | System and method for synchronized defibrillation of defibrillator monitor |
| CN105879228A (en)* | 2016-04-01 | 2016-08-24 | 江苏鸿都医疗科技有限公司 | Portable automatic external defibrillator with disposable electrodes |
| CN106597357A (en)* | 2016-12-07 | 2017-04-26 | 中国计量科学研究院 | Calibrating device of defibrillation energy analyzer |
| CN106938121A (en)* | 2016-01-05 | 2017-07-11 | 陈生泰 | External defibrillation pacing system |
| WO2017118933A1 (en)* | 2016-01-05 | 2017-07-13 | 陈生泰 | Heart defibrillation pacing method and system |
| CN107137819A (en)* | 2017-06-15 | 2017-09-08 | 湖南暄程科技有限公司 | Intelligent defibrillation system |
| CN107249683A (en)* | 2014-12-12 | 2017-10-13 | 皇家飞利浦有限公司 | Utilize the automated external defibrillator (AED) of double ECG parsers |
| CN107376122A (en)* | 2017-07-14 | 2017-11-24 | 上海救要救信息科技有限公司 | A kind of automated external defibrillator system |
| CN107485786A (en)* | 2017-09-18 | 2017-12-19 | 电子科技大学 | Implantation evaluation system of full subcutaneous implantation type cardioverter defibrillator S _ ICD |
| CN107831418A (en)* | 2017-10-27 | 2018-03-23 | 深圳迈瑞生物医疗电子股份有限公司 | Detect method, system and the defibrillator of defibrillator |
| CN108355248A (en)* | 2018-02-09 | 2018-08-03 | 苏州无双医疗设备有限公司 | A kind of defibrillating system |
| CN108404292A (en)* | 2018-02-11 | 2018-08-17 | 中国人民解放军陆军军医大学 | A kind of method and its system of the external defibrillation based on thorax impedance detection |
| CN109107043A (en)* | 2017-06-23 | 2019-01-01 | 周厚荣 | A kind of animal inducing defibrillation that quivers is detecting device integrated |
| CN110755748A (en)* | 2019-11-07 | 2020-02-07 | 王兴炬 | Artificial atrial fibrillation cardiac resuscitation device and control method thereof |
| CN111420286A (en)* | 2020-04-22 | 2020-07-17 | 广州弘大医疗科技有限公司 | A kind of external intelligent defibrillation device and method |
| CN111449648A (en)* | 2020-03-31 | 2020-07-28 | 韩雪峰 | Electrocardio acquisition technology based on external defibrillator |
| CN111657927A (en)* | 2020-07-20 | 2020-09-15 | 杭州市第一人民医院 | Electric flutter-inducing method and device |
| CN111714775A (en)* | 2019-12-31 | 2020-09-29 | 苏州无双医疗设备有限公司 | Implantable medical device for stimulating the treatment of the heart |
| CN111991695A (en)* | 2020-07-31 | 2020-11-27 | 深圳京柏医疗科技股份有限公司 | Electric stimulation circuit, control method and device thereof and treatment equipment |
| CN112117797A (en)* | 2020-09-09 | 2020-12-22 | 深圳大学 | Defibrillation discharge device and defibrillation method |
| CN112138282A (en)* | 2019-06-28 | 2020-12-29 | 深圳迈瑞生物医疗电子股份有限公司 | Defibrillator |
| KR102216372B1 (en)* | 2020-12-10 | 2021-02-17 | 하정산업개발 주식회사 | External Defibrillator Having Control Function |
| CN113350695A (en)* | 2021-05-24 | 2021-09-07 | 广东省人民医院 | Defibrillation method and defibrillation apparatus |
| CN116159246A (en)* | 2023-02-09 | 2023-05-26 | 山东大学 | Self-adaptive synchronous defibrillator for different abnormal heart rhythms and defibrillation control method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5458619A (en)* | 1993-11-29 | 1995-10-17 | Medtronic, Inc. | Apparatus and method for treating a tachyarrhythmia |
| CN1553822A (en)* | 2001-09-14 | 2004-12-08 | �ʼҷ����ֵ��ӹɷ�����˾ | Method and apparatus for defibrillating patients of all ages |
| CN101248994A (en)* | 2007-10-10 | 2008-08-27 | 天津大学 | Active Neural Microelectrodes |
| CN102974038A (en)* | 2012-12-20 | 2013-03-20 | 久心医疗科技(苏州)有限公司 | Extended H-bridge circuit in defibrillator capable of generating biphasic sawtooth discharging waveform |
| CN102974041A (en)* | 2012-12-20 | 2013-03-20 | 久心医疗科技(苏州)有限公司 | Intelligent defibrillation device with self-adapting capacity |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5458619A (en)* | 1993-11-29 | 1995-10-17 | Medtronic, Inc. | Apparatus and method for treating a tachyarrhythmia |
| CN1553822A (en)* | 2001-09-14 | 2004-12-08 | �ʼҷ����ֵ��ӹɷ�����˾ | Method and apparatus for defibrillating patients of all ages |
| CN101248994A (en)* | 2007-10-10 | 2008-08-27 | 天津大学 | Active Neural Microelectrodes |
| CN102974038A (en)* | 2012-12-20 | 2013-03-20 | 久心医疗科技(苏州)有限公司 | Extended H-bridge circuit in defibrillator capable of generating biphasic sawtooth discharging waveform |
| CN102974041A (en)* | 2012-12-20 | 2013-03-20 | 久心医疗科技(苏州)有限公司 | Intelligent defibrillation device with self-adapting capacity |
| Title |
|---|
| 吴太虎 等: "《心肺复苏急救装备与应用》", 31 January 2013, 军事医学科学出版社* |
| 李宗浩: "《瓦尔登湖畔的沉思》", 31 July 2012, 北京出版社* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107249683A (en)* | 2014-12-12 | 2017-10-13 | 皇家飞利浦有限公司 | Utilize the automated external defibrillator (AED) of double ECG parsers |
| WO2016124054A1 (en)* | 2015-02-02 | 2016-08-11 | 深圳市科曼医疗设备有限公司 | System and method for synchronized defibrillation of defibrillator monitor |
| CN104784823A (en)* | 2015-04-27 | 2015-07-22 | 浪潮软件集团有限公司 | A portable cardiac defibrillator based on infrared heart rate detection and its application method |
| CN106938121A (en)* | 2016-01-05 | 2017-07-11 | 陈生泰 | External defibrillation pacing system |
| WO2017118933A1 (en)* | 2016-01-05 | 2017-07-13 | 陈生泰 | Heart defibrillation pacing method and system |
| CN105879228A (en)* | 2016-04-01 | 2016-08-24 | 江苏鸿都医疗科技有限公司 | Portable automatic external defibrillator with disposable electrodes |
| CN106597357A (en)* | 2016-12-07 | 2017-04-26 | 中国计量科学研究院 | Calibrating device of defibrillation energy analyzer |
| CN107137819A (en)* | 2017-06-15 | 2017-09-08 | 湖南暄程科技有限公司 | Intelligent defibrillation system |
| CN109107043A (en)* | 2017-06-23 | 2019-01-01 | 周厚荣 | A kind of animal inducing defibrillation that quivers is detecting device integrated |
| CN107376122A (en)* | 2017-07-14 | 2017-11-24 | 上海救要救信息科技有限公司 | A kind of automated external defibrillator system |
| CN107485786A (en)* | 2017-09-18 | 2017-12-19 | 电子科技大学 | Implantation evaluation system of full subcutaneous implantation type cardioverter defibrillator S _ ICD |
| CN107485786B (en)* | 2017-09-18 | 2020-10-30 | 电子科技大学 | Implantation evaluation system of full subcutaneous implantation type cardioverter defibrillator S _ ICD |
| CN107831418A (en)* | 2017-10-27 | 2018-03-23 | 深圳迈瑞生物医疗电子股份有限公司 | Detect method, system and the defibrillator of defibrillator |
| CN108355248A (en)* | 2018-02-09 | 2018-08-03 | 苏州无双医疗设备有限公司 | A kind of defibrillating system |
| CN108355248B (en)* | 2018-02-09 | 2022-02-01 | 苏州无双医疗设备有限公司 | Defibrillation system |
| CN108404292B (en)* | 2018-02-11 | 2021-07-30 | 中国人民解放军陆军军医大学 | A method and system for external defibrillation based on thoracic impedance detection |
| CN108404292A (en)* | 2018-02-11 | 2018-08-17 | 中国人民解放军陆军军医大学 | A kind of method and its system of the external defibrillation based on thorax impedance detection |
| CN112138282A (en)* | 2019-06-28 | 2020-12-29 | 深圳迈瑞生物医疗电子股份有限公司 | Defibrillator |
| CN112138282B (en)* | 2019-06-28 | 2024-05-24 | 深圳迈瑞生物医疗电子股份有限公司 | Defibrillation instrument |
| CN110755748B (en)* | 2019-11-07 | 2023-06-23 | 王兴炬 | Artificial atrial flutter heart resuscitation device and system |
| CN110755748A (en)* | 2019-11-07 | 2020-02-07 | 王兴炬 | Artificial atrial fibrillation cardiac resuscitation device and control method thereof |
| CN111714775A (en)* | 2019-12-31 | 2020-09-29 | 苏州无双医疗设备有限公司 | Implantable medical device for stimulating the treatment of the heart |
| CN111714775B (en)* | 2019-12-31 | 2024-07-26 | 苏州无双医疗设备有限公司 | Implantable medical device for stimulating a heart |
| CN111449648A (en)* | 2020-03-31 | 2020-07-28 | 韩雪峰 | Electrocardio acquisition technology based on external defibrillator |
| CN111420286A (en)* | 2020-04-22 | 2020-07-17 | 广州弘大医疗科技有限公司 | A kind of external intelligent defibrillation device and method |
| CN111657927B (en)* | 2020-07-20 | 2023-12-08 | 杭州市第一人民医院 | Electro-shock device |
| CN111657927A (en)* | 2020-07-20 | 2020-09-15 | 杭州市第一人民医院 | Electric flutter-inducing method and device |
| CN111991695A (en)* | 2020-07-31 | 2020-11-27 | 深圳京柏医疗科技股份有限公司 | Electric stimulation circuit, control method and device thereof and treatment equipment |
| CN112117797A (en)* | 2020-09-09 | 2020-12-22 | 深圳大学 | Defibrillation discharge device and defibrillation method |
| KR102216372B1 (en)* | 2020-12-10 | 2021-02-17 | 하정산업개발 주식회사 | External Defibrillator Having Control Function |
| CN113350695A (en)* | 2021-05-24 | 2021-09-07 | 广东省人民医院 | Defibrillation method and defibrillation apparatus |
| CN113350695B (en)* | 2021-05-24 | 2024-06-07 | 广东省人民医院 | Defibrillation method and defibrillation device |
| CN116159246A (en)* | 2023-02-09 | 2023-05-26 | 山东大学 | Self-adaptive synchronous defibrillator for different abnormal heart rhythms and defibrillation control method |
| Publication | Publication Date | Title |
|---|---|---|
| CN103933665A (en) | Heart defibrillation method capable of automatically generating and controlling discharge mode and device thereof | |
| US12400749B2 (en) | Defibrillator charging | |
| CN102974039B (en) | Defibrillator output stage with H bridge circuit and diphase sawtooth square wave defibrillation high-voltage discharge method | |
| US10617600B2 (en) | System for assisting rescuers in performing cardio-pulmonary resuscitation (CPR) on a patient | |
| US5782883A (en) | Suboptimal output device to manage cardiac tachyarrhythmias | |
| EP1814628B1 (en) | Medium voltage therapy applications in treating cardiac arrest | |
| US20110202101A1 (en) | Defibrillator Charging | |
| CN103816615A (en) | Discharge dose accurate control method and device applied to cardiac defibrillator | |
| CN102974040B (en) | Defibrillator with extended H bridge circuit output stage and biphase sawtooth square wave high-voltage discharge method for defibrillating | |
| CN102974038B (en) | The extended pattern H-bridge circuit of two-phase sawtooth discharge waveform is produced in cardiac defibrillator | |
| US9713727B2 (en) | Cardiac-safe electrotherapy method and apparatus | |
| EP2931364A1 (en) | Coordinated medium voltage therapy for improving effectiveness of defibrillation therapy | |
| WO2015184976A1 (en) | Heartbeat machine for first-aid and usage method, connection method of electronic pulse circuit and method of cardiac pacing thereof | |
| CN205867311U (en) | Externally defibrillat pace -making system | |
| CN106938121A (en) | External defibrillation pacing system | |
| CN203139392U (en) | Extended H-bridge circuit in defibrillator capable of realizing high-voltage discharge | |
| CN221787907U (en) | Chest fixation vest with defibrillator function |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20140723 | |
| RJ01 | Rejection of invention patent application after publication |