Movatterモバイル変換


[0]ホーム

URL:


CN103926947A - Semi-active vibration control method of nonlinear system of long-span cable bridge structure - Google Patents

Semi-active vibration control method of nonlinear system of long-span cable bridge structure
Download PDF

Info

Publication number
CN103926947A
CN103926947ACN201410151618.8ACN201410151618ACN103926947ACN 103926947 ACN103926947 ACN 103926947ACN 201410151618 ACN201410151618 ACN 201410151618ACN 103926947 ACN103926947 ACN 103926947A
Authority
CN
China
Prior art keywords
formula
omega
overbar
center dot
centerdot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410151618.8A
Other languages
Chinese (zh)
Other versions
CN103926947B (en
Inventor
梁燕军
吴世良
李翠霞
王爱民
王姝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anyang Normal University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IndividualfiledCriticalIndividual
Priority to CN201410151618.8ApriorityCriticalpatent/CN103926947B/en
Publication of CN103926947ApublicationCriticalpatent/CN103926947A/en
Application grantedgrantedCritical
Publication of CN103926947BpublicationCriticalpatent/CN103926947B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

Translated fromChinese

本发明是一种大跨度索桥结构非线性系统半主动振动控制方法,包括如下步骤:(1)建立作用在大跨度索桥结构上的抖振力荷载模型;(2)建立大跨度索桥结构振动控制系统模型;(3)选取如式3所描述的复合型性能指标; 式3;(4)对式2和式3实施极大值原理: 式2;(5)求最优振动控制律。本发明考虑了大跨度索桥结构中的非线性动力特征,建立了更加接近现实的控制系统;使用了较为合理的控制器的求解方案,最优振动控制律对于大跨度索桥结构非线性系统具有较好的减振作用,更加适应于大幅值振动的大跨度索桥的控制。

The invention is a semi-active vibration control method for a nonlinear system of a long-span cable bridge structure, comprising the following steps: (1) establishing a buffeting force load model acting on the long-span cable bridge structure; (2) establishing a long-span cable bridge Structural vibration control system model; (3) Select the composite performance index as described in formula 3; Equation 3; (4) Implement the maximum value principle for Equation 2 and Equation 3: Equation 2; (5) Find the optimal vibration control law. The present invention considers the nonlinear dynamic characteristics in the long-span cable bridge structure, establishes a control system closer to reality; uses a more reasonable controller solution scheme, and the optimal vibration control law is for the long-span cable bridge structure nonlinear system It has a good vibration damping effect and is more suitable for the control of large-span cable bridges with large-value vibrations.

Description

Translated fromChinese
大跨度索桥结构非线性系统半主动振动控制方法Semi-active vibration control method for nonlinear system of long-span cable bridge structure

技术领域technical field

本发明涉及一种振动控制方法,尤其是一种大跨度索桥结构非线性系统半主动振动控制方法。The invention relates to a vibration control method, in particular to a semi-active vibration control method for a nonlinear system of a large-span cable bridge structure.

背景技术Background technique

桥梁在交通系统中起着不可替代的作用,在政治、经济、文化以及军事方面具有重要的价值。尽管我国交通系统得到了很大的发展,然而仍然难以满足日益增长的交通需求,交通基础设施承受着巨大的压力。加之最近几年我国频繁出现极端天气和地质灾害,我国交通系统中的桥梁结构频频出现事故和险情。桥梁结构承受各种荷载作用导致结构振动剧烈,桥梁结构的振动不但降低了行车环境质量,还加速了结构的机械损伤和疲劳破坏,降低了桥梁的安全性。结构的长期振动能够导致桥梁倾覆,造成重大的经济损失和不良的社会影响。因此,构建桥梁振动控制系统,减小桥梁的振动,提高桥梁的可靠性和安全性,已经成为亟待解决的问题。Bridges play an irreplaceable role in the transportation system and have important values in politics, economy, culture and military. Although my country's transportation system has been greatly developed, it is still difficult to meet the growing traffic demand, and the transportation infrastructure is under tremendous pressure. Coupled with the frequent occurrence of extreme weather and geological disasters in my country in recent years, accidents and dangers frequently occur in bridge structures in my country's transportation system. The bridge structure is subject to various loads, resulting in severe structural vibration. The vibration of the bridge structure not only reduces the quality of the driving environment, but also accelerates the mechanical damage and fatigue damage of the structure, reducing the safety of the bridge. The long-term vibration of the structure can cause the bridge to overturn, resulting in significant economic losses and adverse social impacts. Therefore, building a bridge vibration control system to reduce bridge vibration and improve bridge reliability and safety has become an urgent problem to be solved.

近年来,国内外许多学者对不同荷载与桥梁之间的动力作用响应以及桥梁的振动控制进行了大量的理论分析与试验研究。随着结构动力学理论和有限元理论的不断完善及高速大容量计算机的广泛运用,车桥振动研究取得极大的发展。现在人们可以建立更加贴近实际工程的车辆和桥梁计算模型,可考虑车体和转向架的质量、阻尼器和弹簧的作用,行车速度,桥梁上部结构、下部结构的质量、刚度、阻尼,车轮和轨道、轨道和梁之间的动力相互作用,轨道不平顺等多种因素的影响,采用数值模拟方法研究车桥时变系统的空间振动控制。In recent years, many scholars at home and abroad have conducted a large number of theoretical analysis and experimental research on the dynamic response between different loads and bridges and the vibration control of bridges. With the continuous improvement of structural dynamics theory and finite element theory and the wide application of high-speed and large-capacity computers, the research on axle vibration has made great progress. Now people can establish a vehicle and bridge calculation model that is closer to the actual engineering, which can consider the mass of the car body and bogie, the effect of dampers and springs, the speed of the vehicle, the mass, stiffness, damping of the bridge superstructure and substructure, wheels and The dynamic interaction between the track, the track and the girder, the influence of various factors such as the track irregularity, the numerical simulation method is used to study the space vibration control of the time-varying system of the vehicle bridge.

在进行桥梁结构的振动控制系统的构建过程中,线性模型适用于小幅值的振动情况,对于结构上作用的强振动荷载(如地震等),另外,大跨度索桥结构常具有材料非线性、几何非线性等特点,线性模型已不再适用。因此找到一种适应于具有非线性动力特征的振动控制方法已成为亟待解决的问题。In the process of constructing the vibration control system of the bridge structure, the linear model is suitable for small-amplitude vibration. For the strong vibration load (such as earthquake, etc.) acting on the structure, in addition, the long-span cable bridge structure often has material nonlinearity. , geometric nonlinearity and other characteristics, the linear model is no longer applicable. Therefore, finding a vibration control method suitable for nonlinear dynamic characteristics has become an urgent problem to be solved.

有鉴于此,特提出本发明。In view of this, the present invention is proposed.

发明内容Contents of the invention

本发明的目的是提供一种适应于具有非线性动力特征的大跨度索桥结构半主动振动控制方法。The purpose of the present invention is to provide a semi-active vibration control method suitable for a long-span cable bridge structure with nonlinear dynamic characteristics.

为解决上述技术问题,本发明采用技术方案的基本构思是:In order to solve the problems of the technologies described above, the present invention adopts the basic idea of technical solution to be:

一种大跨度索桥结构非线性系统半主动振动控制方法,包括如下步骤:A semi-active vibration control method for a nonlinear system of a long-span cable bridge structure, comprising the following steps:

(1)建立作用在大跨度索桥结构上的抖振力荷载模型:(1) Establish the buffeting force load model acting on the long-span cable bridge structure:

由多个三角函数组成的谐波相互叠加模拟作用在大跨度索桥结构上的抖振力荷载,第j个组成波的作用在大跨度索桥结构上的抖振力可由下列式子给出:The harmonics composed of multiple trigonometric functions are superimposed to simulate the buffeting force load acting on the long-span cable bridge structure. The buffeting force of the jth component wave acting on the long-span cable bridge structure can be given by the following formula :

j=1,2,…,rj=1,2,...,r

其中,Ajωj分别表示第j个组成波的振幅、频率和初相角,Among them, Aj , ωj respectively represent the amplitude, frequency and initial phase angle of the jth component wave,

p‾(t)=[p1‾,p2‾,···,pr‾]T,make p ‾ ( t ) = [ p 1 ‾ , p 2 ‾ , · &Center Dot; &Center Dot; , p r ‾ ] T , have to

ppjj·&Center Dot;·&Center Dot;==--ωω22ppjj‾‾,,jj==1,21,2,,·&Center Dot;·&Center Dot;··,,rr,,

pp~~·&Center Dot;·&Center Dot;((tt))==--diagdiag{{ωω1122,,ωω2222,,·&Center Dot;·&Center Dot;·&Center Dot;,,ωωrr22}}pp~~((tt))==--ΩΩ‾‾22pp~~((tt))

其中,Ω‾=diag{ω1,ω2,···,ωr}.w(t)=p‾(t)p‾·(t)T可得in, Ω ‾ = diag { ω 1 , ω 2 , · · · , ω r } . make w ( t ) = p ‾ ( t ) p ‾ &Center Dot; ( t ) T Available

ww·&Center Dot;((tt))==00IIrr--ΩΩ‾‾2200ww((tt))==GG‾‾ww((tt)),,

其中,Ir是单位矩阵,0∈Rr×r是零矩阵;in, Ir is the identity matrix, 0∈Rr×r is the zero matrix;

作用在大跨度索桥结构上的抖振力荷载模型为式1所描述的外系统:The buffeting force load model acting on the long-span cable bridge structure is the external system described by formula 1:

w·(t)=G‾w(t),p(t)=F‾w(t)   式1,w · ( t ) = G ‾ w ( t ) , p ( t ) = f ‾ w ( t ) Formula 1,

其中:p(t)为作用在大跨度索桥结构上的抖振力;Where: p(t) is the buffeting force acting on the structure of the long-span cable bridge;

(2)建立大跨度索桥结构振动控制系统模型:(2) Establish the vibration control system model of the long-span cable bridge structure:

抖振力荷载作用下索-桥耦合振动动力系统为:The cable-bridge coupled vibration dynamic system under buffeting force load is:

WW·&Center Dot;·&Center Dot;((tt))++((ωω1122++aa33YY((tt))))WW++aa11WW33((tt))++aa22WW22((tt))++aa44YY((tt))==00,,

YY····((tt))++22ωω22ξξYY··((tt))++ωω2222YY((tt))++aa55WW((tt))++aa66WW22((tt))==uu((tt))++pp((tt))

其中,W(t)为偏离平衡位置的位移;Y(t)为索端的位移,即桥面沿索方向的位移;ω1和ω2为索和桥面的固有频率;ξ为为桥面的阻尼比;ai(i=1,2,…,6)为系统参数,u(t)是半主动控制力,p(t)是抖振力荷载,由式1产生;Among them, W(t) is the displacement away from the equilibrium position; Y(t) is the displacement of the cable end, that is, the displacement of the bridge deck along the direction of the cable; ω1 and ω2 are the natural frequencies of the cable and the bridge deck; ξ is the bridge deck The damping ratio of ; ai (i=1,2,…,6) is the system parameter, u(t) is the semi-active control force, p(t) is the buffeting force load, which is generated by formula 1;

选取状态变量:Select state variables:

xx11((tt))==WW((tt)),,xx22((tt))==WW·&Center Dot;((tt)),,xx33((tt))==YY((tt)),,xx44((tt))==YY·&Center Dot;((tt)),,

则大跨度索桥结构振动控制系统模型为:Then the structural vibration control system model of the long-span cable bridge is:

x·(t)=Ax(t)+Bu(t)+f(x)+Dp(t),x(0)=x0,   式2;其中,x &Center Dot; ( t ) = Ax ( t ) + Bu ( t ) + f ( x ) + Dp ( t ) , x ( 0 ) = x 0 , Formula 2; where,

AA==00110000--ωω112200--aa440000000011--aa5500--ωω2222--22ωω22ξξ,,BB==00000011,,DD.==00000011,,

ff((xx))==[[00--aa11xx1122((tt))--aa33xx33((tt))xx11((tt))00--aa66xx1122((tt))..]]TT

(3)选取如式3所描述的复合型性能指标;(3) Select the composite performance index as described in formula 3;

J=limT→∞1T∫0T[xT(t)Qx(t)+Ru2(t)]dt,   式3;J = lim T &Right Arrow; ∞ 1 T ∫ 0 T [ x T ( t ) Qx ( t ) + Ru 2 ( t ) ] dt , Formula 3;

(4)对式2和式3实施极大值原理:(4) Implement the maximum value principle for formula 2 and formula 3:

首先构造哈密顿函数如式4:First construct the Hamiltonian function as formula 4:

H(·)=xTQx1+Ru2T(Ax+Bu+f(x)+Dpω)   式4;H(·)=xT Qx1 +Ru2T (Ax+Bu+f(x)+Dpω ) Formula 4;

进而根据极值条件,把式1在性能指标式3的约束下求控制器u(t)的问题转化为求解下述非线性两点边值的问题,如式5:Furthermore, according to the extreme value condition, the problem of finding the controller u(t) in Equation 1 under the constraint of performance index Equation 3 is transformed into the problem of solving the following nonlinear two-point boundary value, such as Equation 5:

-λ·(t)=Qx(t)+ATλ(t)+fxT(x)λ(t),x·(t)=Ax(t)-Sλ(t)+f(x)+Dp(t),x(0)=x0,λ(∞)=0   式5;- λ · ( t ) = Qx ( t ) + A T λ ( t ) + f x T ( x ) λ ( t ) , x &Center Dot; ( t ) = Ax ( t ) - Sλ ( t ) + f ( x ) + Dp ( t ) , x ( 0 ) = x 0 , λ ( ∞ ) = 0 Formula 5;

(5)求最优振动控制律:(5) Find the optimal vibration control law:

使用逐次逼近方法求解式5描述的非线性两点边值问题的迭代解,令Using the successive approximation method to solve the iterative solution of the nonlinear two-point boundary value problem described in Equation 5, let

λ(t)=P1x(t)+P2p(t)+P3pω(t)+g(t)λ(t)=P1 x(t)+P2 p(t)+P3 pω (t)+g(t)

其中,g(t)是一个共态向量,对λ(t)=P1x(t)+P2p(t)+P3pω(t)+g(t)求导,然后把式2的第一式x·(t)=Ax(t)+Bu(t)+f(x)+Dp(t):代入其中,得Among them, g(t) is a co-state vector, for λ(t)=P1 x(t)+P2 p(t)+P3 pω (t)+g(t) derivative, then the formula The first formula of 2 x &Center Dot; ( t ) = Ax ( t ) + Bu ( t ) + f ( x ) + Dp ( t ) : Substitute into it, get

λλ·&Center Dot;((tt))==PP11xx··((tt))++PP22pp·&Center Dot;((tt))++PP33pp·&Center Dot;·&Center Dot;((tt))++gg··((tt))==((PP11AA--PP11SPSP11))xx((tt))++((PP11DD.--PP11SPSP22))pp((tt))++((PP22--PP11SPSP33))pp··((tt))++PP33pp·&Center Dot;··((tt))--PP11SgS g((tt))++PP11ff((xx))++gg·&Center Dot;((tt))..

由式2和式5,得From formula 2 and formula 5, get

λλ·&Center Dot;((tt))==--((QQ++AATTPP11))xx((tt))--AATTPP22pp((tt))--AATTPP33ppωω((tt))--AATTgg((tt))--ffxxTT((xx))λλ((tt))

考虑到considering

pp··((tt))==Ff‾‾ww··((tt))==Ff‾‾GG‾‾ww((tt))==AAppωω((tt))

通过比较的系数,得到矩阵方程组式7以及序列式8和式9,从而可求得式6所描述的最优振动控制律By comparison The coefficients of the matrix equation 7 and the sequence formula 8 and formula 9 are obtained, so that the optimal vibration control law described in formula 6 can be obtained

ATP1+P1A-P1SP1+Q=0,(AT-P1S)2P2F‾+P2F‾Ω2=-(AT-P1S)P1DF‾(AT-P1S)2P3F‾+P3F‾Ω2=P1DF‾,   式7;A T P 1 + P 1 A - P 1 S P 1 + Q = 0 , ( A T - P 1 S ) 2 P 2 f ‾ + P 2 f ‾ Ω 2 = - ( A T - P 1 S ) P 1 D. f ‾ ( A T - P 1 S ) 2 P 3 f ‾ + P 3 f ‾ Ω 2 = P 1 D. f ‾ , Formula 7;

x(0)(t)=Φ(t)x0+∫0tΦ(r-t)[(D-SP2)p(r)-SP3pω(r)-Sg(0)(r)]dr,x(k)(t)=Φ(t)x0+∫0tΦ(r-t)[(D-SP2)p(r)-SP3pω(r)-Sg(k)(r)+f(x(k-1)(r))]dr,k=1,2,···,   式8;x ( 0 ) ( t ) = Φ ( t ) x 0 + ∫ 0 t Φ ( r - t ) [ ( D. - SP 2 ) p ( r ) - SP 3 p ω ( r ) - S g ( 0 ) ( r ) ] dr , x ( k ) ( t ) = Φ ( t ) x 0 + ∫ 0 t Φ ( r - t ) [ ( D. - S P 2 ) p ( r ) - SP 3 p ω ( r ) - S g ( k ) ( r ) + f ( x ( k - 1 ) ( r ) ) ] dr , k = 1,2 , · · · , Formula 8;

g(0)(t)=∫t∞ΦT(r-t)fxT(0)[P2p(r)+P3pω(r)]dr,g(k)(t)=∫t∞ΦT(r-t){P1f(x(k-1)(r))+fxT(xk-1)(r))[P1x(k-1)(r)+P2p(r)+P3pω(r)+g(k-1)(r)]}dr,k=1,2···,   式9;g ( 0 ) ( t ) = ∫ t ∞ Φ T ( r - t ) f x T ( 0 ) [ P 2 p ( r ) + P 3 p ω ( r ) ] dr , g ( k ) ( t ) = ∫ t ∞ Φ T ( r - t ) { P 1 f ( x ( k - 1 ) ( r ) ) + f x T ( x k - 1 ) ( r ) ) [ P 1 x ( k - 1 ) ( r ) + P 2 p ( r ) + P 3 p ω ( r ) + g ( k - 1 ) ( r ) ] } dr , k = 1,2 &Center Dot; · · , Formula 9;

由上式7、8、9得出近似最优振动控制律为:From the above formulas 7, 8, and 9, the approximate optimal vibration control law can be obtained as:

u(k)(t)=-R-1BTλ(k)(t)=-R-1BT[P1x(k)(t)+P2p(t)+P3pω(t)+g(k)(t)]式6;u(k) (t)=-R-1 BT λ(k) (t)=-R-1 BT [P1 x(k) (t)+P2 p(t)+P3 pω (t)+g(k) (t)] formula 6;

其中,而P1,P2和P3由式7求得:x(k)及g(k)(t)由式8和式9求得。in, And P1 , P2 and P3 are obtained by formula 7; x(k) and g(k) (t) are obtained by formula 8 and formula 9.

进一步地,在步骤(2)后包括:将式(2)的大跨度索桥结构振动控制系统模型描述的大跨度索桥结构振动控制系统简化为一个单自由度系统。Further, after step (2), it includes: simplifying the structural vibration control system of the long-span cable bridge described by the structural vibration control system model of the long-span cable bridge in formula (2) into a single-degree-of-freedom system.

本发明的有益效果为:本发明考虑了大跨度索桥结构中的非线性动力特征,建立了更加接近现实的控制系统;使用了较为合理的控制器的求解方案,最优振动控制律对于大跨度索桥结构非线性系统具有较好的减振作用,更加适应于大幅值振动的大跨度索桥的控制,使用逐次逼近算法避免了直接求解非线性两点边值问题的解析解,只需要求解一个线性向量差分等式序列的解,把直线迭代整个控制律转位迭代共态向量,计算量大大降低。The beneficial effects of the present invention are as follows: the present invention considers the nonlinear dynamic characteristics in the structure of the long-span cable bridge, and establishes a control system closer to reality; uses a more reasonable solution for the controller, and the optimal vibration control law is suitable for large The nonlinear system of the span cable bridge structure has a better vibration damping effect, and is more suitable for the control of large-span cable bridges with large-scale vibrations. Using the successive approximation algorithm avoids directly solving the analytical solution of the nonlinear two-point boundary value problem, and only needs Solving the solution of a sequence of linear vector difference equations, and iterating the entire control law by transposing the straight line and iterating the common state vector, the amount of calculation is greatly reduced.

附图说明Description of drawings

图1为本发明的流程图;Fig. 1 is a flow chart of the present invention;

图2为拉索和桥面的力学模型图;Fig. 2 is the mechanical model diagram of stay cable and bridge deck;

图3为本发明的大跨度索桥结构的位移曲线图;Fig. 3 is the displacement curve figure of long-span cable bridge structure of the present invention;

图4为本发明的大跨度索桥结构的速度曲线图。Fig. 4 is a velocity curve diagram of the long-span cable bridge structure of the present invention.

具体实施方式Detailed ways

为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。In order to enable those skilled in the art to better understand the solution of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

参照图1,本发明是一种大跨度索桥结构非线性系统半主动振动控制方法,包括如下步骤:With reference to Fig. 1, the present invention is a kind of non-linear system semi-active vibration control method of long-span cable bridge structure, comprises the steps:

S100、建立作用在大跨度索桥结构上的抖振力荷载模型:S100, establish the buffeting force load model acting on the long-span cable bridge structure:

作用在大跨度索桥结构上的抖振力荷载可利用谐波合成法来进行构造。根据谐波合成法,作用在大跨度索桥结构上的抖振力荷载可由多个三角函数组成的谐波相互叠加模拟作用在大跨度索桥结构上的抖振力荷载,第j个组成波的作用在大跨度索桥结构上的抖振力可由下列式子给出:The buffeting force load acting on the long-span cable bridge structure can be constructed by using the harmonic synthesis method. According to the harmonic synthesis method, the buffeting force load acting on the long-span cable bridge structure can be superimposed by harmonics composed of multiple trigonometric functions to simulate the buffeting force load acting on the long-span cable bridge structure, the jth component wave The buffeting force acting on the long-span cable bridge structure can be given by the following formula:

j=1,2,…,rj=1,2,...,r

其中,Ajωj分别表示第j个组成波的振幅、频率和初相角,Among them, Aj , ωj respectively represent the amplitude, frequency and initial phase angle of the jth component wave,

p‾(t)=[p1‾,p2‾,···,pr‾]T,make p ‾ ( t ) = [ p 1 ‾ , p 2 ‾ , &Center Dot; &Center Dot; &Center Dot; , p r ‾ ] T , have to

ppjj·&Center Dot;·&Center Dot;==--ωω22ppjj‾‾,,jj==1,21,2,,·····&Center Dot;,,rr,,

pp~~···&Center Dot;((tt))==--diagdiag{{ωω1122,,ωω2222,,·&Center Dot;·&Center Dot;·&Center Dot;,,ωωrr22}}pp~~((tt))==--ΩΩ‾‾22pp~~((tt))

其中,Ω‾=diag{ω1,ω2,···,ωr}.w(t)=p‾(t)p‾·(t)T可得in, Ω ‾ = diag { ω 1 , ω 2 , &Center Dot; · · , ω r } . make w ( t ) = p ‾ ( t ) p ‾ &Center Dot; ( t ) T Available

ww··((tt))==00IIrr--ΩΩ‾‾2200ww((tt))==GG‾‾ww((tt)),,

其中,Ir是单位矩阵,0∈Rr×r是零矩阵;in, Ir is the identity matrix, 0∈Rr×r is the zero matrix;

作用在大跨度索桥结构上的抖振力荷载模型为式1所描述的外系统:The buffeting force load model acting on the long-span cable bridge structure is the external system described by formula 1:

w·(t)=G‾w(t),p(t)=F‾w(t)   式1,其中:p(t)为作用在大跨度索桥结构上的抖振力;w &Center Dot; ( t ) = G ‾ w ( t ) , p ( t ) = f ‾ w ( t ) Equation 1, where: p(t) is the buffeting force acting on the structure of the long-span cable bridge;

S101、建立大跨度索桥结构振动控制系统模型:S101. Establishing the structural vibration control system model of the long-span cable bridge:

为了研究的方便,将桥面简化为作用在索端的集中质量M,桥面刚度用弹簧K模拟,桥面阻尼由C模拟。抖振力荷载作用下索-桥耦合振动可以分解为沿轴向及垂直于索轴线的两种运动,轴向振动为本文的研究对象,拉索和桥面的力学模型如图2所示,其中:L为索的长度。For the convenience of the research, the bridge deck is simplified as the concentrated mass M acting on the cable end, the bridge deck stiffness is simulated by spring K, and the bridge deck damping is simulated by C. The cable-bridge coupling vibration under buffeting force load can be decomposed into two kinds of motions along the axial direction and perpendicular to the cable axis. The axial vibration is the research object of this paper. The mechanical model of the cable and the bridge deck is shown in Figure 2. Where: L is the length of the cable.

由于在拉索和桥面构成的振动系统中,基本模态占主要地位,此处取一阶振动模态,则抖振力荷载作用下索-桥耦合振动动力系统为:Since the fundamental mode plays a dominant role in the vibration system composed of the cables and the bridge deck, the first-order vibration mode is taken here, and the cable-bridge coupled vibration dynamic system under the buffeting force load is:

WW·&Center Dot;·&Center Dot;((tt))++((ωω1122++aa33YY((tt))))WW++aa11WW33((tt))++aa22WW22((tt))++aa44YY((tt))==00,,

YY·&Center Dot;·&Center Dot;((tt))++22ωω22ξξYY·&Center Dot;((tt))++ωω2222YY((tt))++aa55WW((tt))++aa66WW22((tt))==uu((tt))++pp((tt))

其中,W(t)为偏离平衡位置的位移;Y(t)为索端的位移,即桥面沿索方向的位移;ω1和ω2为索和桥面的固有频率;ξ为为桥面的阻尼比;ai(i=1,2,…,6)为系统参数,u(t)是半主动控制力,p(t)是抖振力荷载,由式1产生;Among them, W(t) is the displacement away from the equilibrium position; Y(t) is the displacement of the cable end, that is, the displacement of the bridge deck along the direction of the cable; ω1 and ω2 are the natural frequencies of the cable and the bridge deck; ξ is the bridge deck The damping ratio of ; ai (i=1,2,…,6) is the system parameter, u(t) is the semi-active control force, p(t) is the buffeting force load, which is generated by formula 1;

选取状态变量:Select state variables:

xx11((tt))==WW((tt)),,xx22((tt))==WW·&Center Dot;((tt)),,xx33((tt))==YY((tt)),,xx44((tt))==YY·&Center Dot;((tt)),,

则大跨度索桥结构振动控制系统模型为:Then the structural vibration control system model of the long-span cable bridge is:

x·(t)=Ax(t)+Bu(t)+f(x)+Dp(t),x(0)=x0,   式2;x &Center Dot; ( t ) = Ax ( t ) + Bu ( t ) + f ( x ) + Dp ( t ) , x ( 0 ) = x 0 , Formula 2;

其中,in,

AA==00110000--ωω112200--aa440000000011--aa5500--ωω2222--22ωω22ξξ,,BB==00000011,,DD.==00000011,,

ff((xx))==[[00--aa11xx1122((tt))--aa33xx33((tt))xx11((tt))00--aa66xx1122((tt))..]]TT

S102、选取如式3所描述的复合型性能指标,用来保证输入的控制力和控制时间达到最小;S102. Select a composite performance index as described in formula 3 to ensure that the input control force and control time are minimized;

   式3; Formula 3;

S103、对式2和式3实施极大值原理:将非线性最优控制问题转化为一个非线性非齐次两点边值S103, implement the maximum value principle on formula 2 and formula 3: transform the nonlinear optimal control problem into a nonlinear non-homogeneous two-point boundary value

首先构造哈密顿函数如式4:First construct the Hamiltonian function as formula 4:

H(·)=xTQx1+Ru2T(Ax+Bu+f(x)+Dpω)   式4;H(·)=xT Qx1 +Ru2T (Ax+Bu+f(x)+Dpω ) Formula 4;

进而根据极值条件,把式1在性能指标式3的约束下求控制器u(t)的问题转化为求解下述非线性两点边值的问题,如式5:Furthermore, according to the extreme value condition, the problem of finding the controller u(t) in Equation 1 under the constraint of performance index Equation 3 is transformed into the problem of solving the following nonlinear two-point boundary value, such as Equation 5:

-λ·(t)=Qx(t)+ATλ(t)+fxT(x)λ(t),x·(t)=Ax(t)-Sλ(t)+f(x)+Dp(t),x(0)=x0,λ(∞)=0   式5;- λ · ( t ) = Qx ( t ) + A T λ ( t ) + f x T ( x ) λ ( t ) , x &Center Dot; ( t ) = Ax ( t ) - Sλ ( t ) + f ( x ) + Dp ( t ) , x ( 0 ) = x 0 , λ ( ∞ ) = 0 Formula 5;

S104、求最优振动控制律:S104. Find the optimal vibration control law:

由于非线性两点边值问题的解析解难以求得,使用逐次逼近方法解决式5描述的非线性两点边值问题的迭代解,令Since the analytical solution of the nonlinear two-point boundary value problem is difficult to obtain, the iterative solution of the nonlinear two-point boundary value problem described in Equation 5 is solved by using the successive approximation method, so that

λ(t)=P1x(t)+P2p(t)+P3pω(t)+g(t)λ(t)=P1 x(t)+P2 p(t)+P3 pω (t)+g(t)

其中,g(t)是一个共态向量,对λ(t)=P1x(t)+P2p(t)+P3pω(t)+g(t)求导,然后把式2的第一式x·(t)=Ax(t)+Bu(t)+f(x)+Dp(t):代入其中,得Among them, g(t) is a co-state vector, for λ(t)=P1 x(t)+P2 p(t)+P3 pω (t)+g(t) derivative, then the formula The first formula of 2 x &Center Dot; ( t ) = Ax ( t ) + Bu ( t ) + f ( x ) + Dp ( t ) : Substitute into it, get

λλ·&Center Dot;((tt))==PP11xx·&Center Dot;((tt))++PP22pp·&Center Dot;((tt))++PP33pp·&Center Dot;·&Center Dot;((tt))++gg·&Center Dot;((tt))==((PP11AA--PP11SPSP11))xx((tt))++((PP11DD.--PP11SPSP22))pp((tt))++((PP22--PP11SPSP33))pp·&Center Dot;((tt))++PP33pp·&Center Dot;·&Center Dot;((tt))--PP11SgS g((tt))++PP11ff((xx))++gg·&Center Dot;((tt))..

由式2和式5,得From formula 2 and formula 5, get

λλ··((tt))==--((QQ++AATTPP11))xx((tt))--AATTPP22pp((tt))--AATTPP33ppωω((tt))--AATTgg((tt))--ffxxTT((xx))λλ((tt))

考虑到considering

pp··((tt))==Ff‾‾ww··((tt))==Ff‾‾GG‾‾ww((tt))==AAppωω((tt))

通过比较的系数,得到矩阵方程组式7以及序列式8和式9,从而可求得式6所描述的最优振动控制律By comparison The coefficients of the matrix equation 7 and the sequence formula 8 and formula 9 are obtained, so that the optimal vibration control law described in formula 6 can be obtained

ATP1+P1A-P1SP1+Q=0,(AT-P1S)2P2F‾+P2F‾Ω2=-(AT-P1S)P1DF‾(AT-P1S)2P3F‾+P3F‾Ω2=P1DF‾,   式7;A T P 1 + P 1 A - P 1 S P 1 + Q = 0 , ( A T - P 1 S ) 2 P 2 f ‾ + P 2 f ‾ Ω 2 = - ( A T - P 1 S ) P 1 D. f ‾ ( A T - P 1 S ) 2 P 3 f ‾ + P 3 f ‾ Ω 2 = P 1 D. f ‾ , Formula 7;

x(0)(t)=Φ(t)x0+∫0tΦ(r-t)[(D-SP2)p(r)-SP3pω(r)-Sg(0)(r)]dr,x(k)(t)=Φ(t)x0+∫0tΦ(r-t)[(D-SP2)p(r)-SP3pω(r)-Sg(k)(r)+f(x(k-1)(r))]dr,k=1,2,···,   式8;x ( 0 ) ( t ) = Φ ( t ) x 0 + ∫ 0 t Φ ( r - t ) [ ( D. - SP 2 ) p ( r ) - SP 3 p ω ( r ) - S g ( 0 ) ( r ) ] dr , x ( k ) ( t ) = Φ ( t ) x 0 + ∫ 0 t Φ ( r - t ) [ ( D. - S P 2 ) p ( r ) - SP 3 p ω ( r ) - S g ( k ) ( r ) + f ( x ( k - 1 ) ( r ) ) ] dr , k = 1,2 , &Center Dot; &Center Dot; &Center Dot; , Formula 8;

g(0)(t)=∫t∞ΦT(r-t)fxT(0)[P2p(r)+P3pω(r)]dr,g(k)(t)=∫t∞ΦT(r-t){P1f(x(k-1)(r))+fxT(xk-1)(r))[P1x(k-1)(r)+P2p(r)+P3pω(r)+g(k-1)(r)]}dr,k=1,2···,   式9;g ( 0 ) ( t ) = ∫ t ∞ Φ T ( r - t ) f x T ( 0 ) [ P 2 p ( r ) + P 3 p ω ( r ) ] dr , g ( k ) ( t ) = ∫ t ∞ Φ T ( r - t ) { P 1 f ( x ( k - 1 ) ( r ) ) + f x T ( x k - 1 ) ( r ) ) [ P 1 x ( k - 1 ) ( r ) + P 2 p ( r ) + P 3 p ω ( r ) + g ( k - 1 ) ( r ) ] } dr , k = 1,2 &Center Dot; &Center Dot; &Center Dot; , Formula 9;

由上式7、8、9得出近似最优振动控制律为:From the above formulas 7, 8, and 9, the approximate optimal vibration control law can be obtained as:

u(k)(t)=-R-1BTλ(k)(t)=-R-1BT[P1x(k)(t)+P2p(t)+P3pω(t)+g(k)(t)]  式6;u(k) (t)=-R-1 BT λ(k) (t)=-R-1 BT [P1 x(k) (t)+P2 p(t)+P3 pω (t)+g(k) (t)] Formula 6;

其中,而P1,P2和P3由式7求得:x(k)及g(k)(t)由式8和式9求得。in, And P1 , P2 and P3 are obtained by formula 7; x(k) and g(k) (t) are obtained by formula 8 and formula 9.

优选的,在步骤(2)后包括:将式(2)的大跨度索桥结构振动控制系统模型描述的大跨度索桥结构振动控制系统简化为一个单自由度系统。Preferably, after step (2), it includes: simplifying the structural vibration control system of the long-span cable bridge described by the structural vibration control system model of the long-span cable bridge in formula (2) into a single-degree-of-freedom system.

本发明考虑了大跨度索桥结构中的非线性动力特征,建立了更加接近现实的控制系统;使用了较为合理的控制器的求解方案,最优振动控制律对于大跨度索桥结构非线性系统具有较好的减振作用,更加适应于大幅值振动的大跨度索桥的控制,使用逐次逼近算法避免了直接求解非线性两点边值问题的解析解,只需要求解一个线性向量差分等式序列的解,把直线迭代整个控制律转位迭代共态向量,计算量大大降低。The present invention considers the nonlinear dynamic characteristics in the long-span cable bridge structure, establishes a control system closer to reality; uses a more reasonable controller solution scheme, and the optimal vibration control law is suitable for the long-span cable bridge structure nonlinear system It has a good vibration reduction effect and is more suitable for the control of large-span cable bridges with large-value vibrations. It uses the successive approximation algorithm to avoid directly solving the analytical solution of the nonlinear two-point boundary value problem, and only needs to solve a linear vector difference equation For the solution of the sequence, the linear iteration of the entire control law is transposed to iterate the common state vector, and the amount of calculation is greatly reduced.

为了验证该控制律的有效性,图3和图4给出了系统开环和系统在该控制律控制下的位移和速度曲线,从图中可以看出,该控制律对于大跨度索桥结构非线性系统具有较好的减振作用。在该控制律控制下该结构的位移和速度加速度分别下降到系统开环状态的19%及17%。In order to verify the validity of the control law, Fig. 3 and Fig. 4 show the displacement and velocity curves of the system open-loop and the system under the control of the control law. It can be seen from the figure that the control law is suitable for the long-span cable bridge structure Nonlinear systems have a better damping effect. Under the control of the control law, the displacement and velocity acceleration of the structure decrease to 19% and 17% of the system open-loop state, respectively.

以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that for those skilled in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications are also It should be regarded as the protection scope of the present invention.

Claims (2)

Translated fromChinese
1.一种大跨度索桥结构非线性系统半主动振动控制方法,其特征在于,包括如下步骤:1. a kind of semi-active vibration control method of non-linear system of long-span cable bridge structure, it is characterized in that, comprises the steps:(1)建立作用在大跨度索桥结构上的抖振力荷载模型:(1) Establish the buffeting force load model acting on the long-span cable bridge structure:由多个三角函数组成的谐波相互叠加模拟作用在大跨度索桥结构上的抖振力荷载,第j个组成波的作用在大跨度索桥结构上的抖振力可由下列式子给出:The harmonics composed of multiple trigonometric functions are superimposed to simulate the buffeting force load acting on the long-span cable bridge structure. The buffeting force of the jth component wave acting on the long-span cable bridge structure can be given by the following formula :j=1,2,…,rj=1,2,...,r其中,Ajωj分别表示第j个组成波的振幅、频率和初相角,Among them, Aj , ωj respectively represent the amplitude, frequency and initial phase angle of the jth component wave,p‾(t)=[p1‾,p2‾,···,pr‾]T,make p ‾ ( t ) = [ p 1 ‾ , p 2 ‾ , · · · , p r ‾ ] T , have toppjj·&Center Dot;··==--ωω22ppjj‾‾,,jj==1,21,2,,···&Center Dot;··,,rr,,pp~~·&Center Dot;·&Center Dot;((tt))==--diagdiag{{ωω1122,,ωω2222,,·&Center Dot;·&Center Dot;·&Center Dot;,,ωωrr22}}pp~~((tt))==--ΩΩ‾‾22pp~~((tt))其中,Ω‾=diag{ω1,ω2,···,ωr}.w(t)=p‾(t)p‾·(t)T可得in, Ω ‾ = diag { ω 1 , ω 2 , · &Center Dot; &Center Dot; , ω r } . make w ( t ) = p ‾ ( t ) p ‾ &Center Dot; ( t ) T Availableww··((tt))==00IIrr--ΩΩ‾‾2200ww((tt))==GG‾‾ww((tt)),,pp~~((tt))==IIrr00ww((tt)),,其中,Ir是单位矩阵,0∈Rr×r是零矩阵;in, Ir is the identity matrix, 0∈Rr×r is the zero matrix;作用在大跨度索桥结构上的抖振力荷载模型为式1所描述的外系统:The buffeting force load model acting on the long-span cable bridge structure is the external system described by formula 1:w·(t)=G‾w(t),p(t)=F‾w(t)   式1,w · ( t ) = G ‾ w ( t ) , p ( t ) = f ‾ w ( t ) Formula 1,其中:p(t)为作用在大跨度索桥结构上的抖振力;Among them: p(t) is the buffeting force acting on the structure of the long-span cable bridge;(2)建立大跨度索桥结构振动控制系统模型:(2) Establish the vibration control system model of the long-span cable bridge structure:抖振力荷载作用下索-桥耦合振动动力系统为:The cable-bridge coupled vibration dynamic system under buffeting force load is:WW·&Center Dot;·&Center Dot;((tt))++((ωω1122++aa33YY((tt))))WW++aa11WW33((tt))++aa22WW22((tt))++aa44YY((tt))==00,,YY·&Center Dot;··((tt))++22ωω22ξξYY·&Center Dot;((tt))++ωω2222YY((tt))++aa55WW((tt))++aa66WW22((tt))==uu((tt))++pp((tt))其中,W(t)为偏离平衡位置的位移;Y(t)为索端的位移,即桥面沿索方向的位移;ω1和ω2为索和桥面的固有频率;ξ为为桥面的阻尼比;ai(i=1,2,…,6)为系统参数,u(t)是半主动控制力,p(t)是抖振力荷载,由式1产生;Among them, W(t) is the displacement away from the equilibrium position; Y(t) is the displacement of the cable end, that is, the displacement of the bridge deck along the direction of the cable; ω1 and ω2 are the natural frequencies of the cable and the bridge deck; ξ is the bridge deck The damping ratio of ; ai (i=1,2,…,6) is the system parameter, u(t) is the semi-active control force, p(t) is the buffeting force load, which is generated by formula 1;选取状态变量:Select state variables:xx11((tt))==WW((tt)),,xx22((tt))==WW··((tt)),,xx33((tt))==YY((tt)),,xx44((tt))==YY··((tt)),,则大跨度索桥结构振动控制系统模型为:Then the structural vibration control system model of the long-span cable bridge is:x·(t)=Ax(t)+Bu(t)+f(x)+Dp(t),x(0)=x0,   式2;x &Center Dot; ( t ) = Ax ( t ) + Bu ( t ) + f ( x ) + Dp ( t ) , x ( 0 ) = x 0 , Formula 2;其中,in,AA==00110000--ωω112200--aa440000000011--aa5500--ωω2222--22ωω22ξξ,,BB==00000011,,DD.==00000011,,ff((xx))==[[00--aa11xx1122((tt))--aa33xx33((tt))xx11((tt))00--aa66xx1122((tt))..]]TT(3)选取如式3所描述的复合型性能指标;(3) Select the composite performance index as described in formula 3;J=limT→∞1T∫0T[xT(t)Qx(t)+Ru2(t)]dt,   式3;J = lim T &Right Arrow; ∞ 1 T ∫ 0 T [ x T ( t ) Qx ( t ) + Ru 2 ( t ) ] dt , Formula 3;(4)对式2和式3实施极大值原理:(4) Implement the maximum value principle for formula 2 and formula 3:首先构造哈密顿函数如式4:First, construct the Hamiltonian function as formula 4:H(·)=xTQx1+Ru2T(Ax+Bu+f(x)+Dpω)   式4;H(·)=xT Qx1 +Ru2T (Ax+Bu+f(x)+Dpω ) Formula 4;进而根据极值条件,把式1在性能指标式3的约束下求控制器u(t)的问题转化为求解下述非线性两点边值的问题,如式5:Furthermore, according to the extreme value condition, the problem of finding the controller u(t) in Equation 1 under the constraint of performance index Equation 3 is transformed into the problem of solving the following nonlinear two-point boundary value, such as Equation 5:-λ·(t)=Qx(t)+ATλ(t)+fxT(x)λ(t),x·(t)=Ax(t)-Sλ(t)+f(x)+Dp(t),x(0)=x0,λ(∞)=0   式5;- λ · ( t ) = Qx ( t ) + A T λ ( t ) + f x T ( x ) λ ( t ) , x &Center Dot; ( t ) = Ax ( t ) - Sλ ( t ) + f ( x ) + Dp ( t ) , x ( 0 ) = x 0 , λ ( ∞ ) = 0 Formula 5;(5)求最优振动控制律:(5) Find the optimal vibration control law:使用逐次逼近方法求解式5描述的非线性两点边值问题的迭代解,令Using the successive approximation method to solve the iterative solution of the nonlinear two-point boundary value problem described in Equation 5, letλ(t)=P1x(t)+P2p(t)+P3pω(t)+g(t)λ(t)=P1 x(t)+P2 p(t)+P3 pω (t)+g(t)其中,g(t)是一个共态向量,对λ(t)=P1x(t)+P2p(t)+P3pω(t)+g(t)求导,然后把式2的第一式x·(t)=Ax(t)+Bu(t)+f(x)+Dp(t):代入其中,得Among them, g(t) is a co-state vector, which is derived from λ(t)=P1 x(t)+P2 p(t)+P3 pω(t)+g(t), and then formula 2 the first formula x &Center Dot; ( t ) = Ax ( t ) + Bu ( t ) + f ( x ) + Dp ( t ) : Substitute into it, getλλ··((tt))==PP11xx··((tt))++PP22pp·&Center Dot;((tt))++PP33pp·&Center Dot;··((tt))++gg··((tt))==((PP11AA--PP11SPSP11))xx((tt))++((PP11DD.--PP11SPSP22))pp((tt))++((PP22--PP11SPSP33))pp··((tt))++PP33pp····((tt))--PP11SgS g((tt))++PP11ff((xx))++gg··((tt))..由式2和式5,得From formula 2 and formula 5, getλλ·&Center Dot;((tt))==--((QQ++AATTPP11))xx((tt))--AATTPP22pp((tt))--AATTPP33ppωω((tt))--AATTgg((tt))--ffxxTT((xx))λλ((tt))考虑到consideringpp·&Center Dot;((tt))==Ff‾‾ww··((tt))==Ff‾‾GG‾‾ww((tt))==AAppωω((tt))通过比较的系数,得到矩阵方程组式7以及序列式8和式9,从而可求得式6所描述的最优振动控制律By comparison The coefficients of the matrix equation 7 and the sequence formula 8 and formula 9 are obtained, so that the optimal vibration control law described in formula 6 can be obtainedATP1+P1A-P1SP1+Q=0,(AT-P1S)2P2F‾+P2F‾Ω2=-(AT-P1S)P1DF‾(AT-P1S)2P3F‾+P3F‾Ω2=P1DF‾,   式7;A T P 1 + P 1 A - P 1 S P 1 + Q = 0 , ( A T - P 1 S ) 2 P 2 f ‾ + P 2 f ‾ Ω 2 = - ( A T - P 1 S ) P 1 D. f ‾ ( A T - P 1 S ) 2 P 3 f ‾ + P 3 f ‾ Ω 2 = P 1 D. f ‾ , Formula 7;x(0)(t)=Φ(t)x0+∫0tΦ(r-t)[(D-SP2)p(r)-SP3pω(r)-Sg(0)(r)]dr,x(k)(t)=Φ(t)x0+∫0tΦ(r-t)[(D-SP2)p(r)-SP3pω(r)-Sg(k)(r)+f(x(k-1)(r))]dr,k=1,2,···,   式8;x ( 0 ) ( t ) = Φ ( t ) x 0 + ∫ 0 t Φ ( r - t ) [ ( D. - SP 2 ) p ( r ) - SP 3 p ω ( r ) - S g ( 0 ) ( r ) ] dr , x ( k ) ( t ) = Φ ( t ) x 0 + ∫ 0 t Φ ( r - t ) [ ( D. - S P 2 ) p ( r ) - SP 3 p ω ( r ) - S g ( k ) ( r ) + f ( x ( k - 1 ) ( r ) ) ] dr , k = 1,2 , &Center Dot; &Center Dot; &Center Dot; , Formula 8;g(0)(t)=∫t∞ΦT(r-t)fxT(0)[P2p(r)+P3pω(r)]dr,g(k)(t)=∫t∞ΦT(r-t){P1f(x(k-1)(r))+fxT(xk-1)(r))[P1x(k-1)(r)+P2p(r)+P3pω(r)+g(k-1)(r)]}dr,k=1,2···,   式9;g ( 0 ) ( t ) = ∫ t ∞ Φ T ( r - t ) f x T ( 0 ) [ P 2 p ( r ) + P 3 p ω ( r ) ] dr , g ( k ) ( t ) = ∫ t ∞ Φ T ( r - t ) { P 1 f ( x ( k - 1 ) ( r ) ) + f x T ( x k - 1 ) ( r ) ) [ P 1 x ( k - 1 ) ( r ) + P 2 p ( r ) + P 3 p ω ( r ) + g ( k - 1 ) ( r ) ] } dr , k = 1,2 &Center Dot; &Center Dot; · , Formula 9;由上式7、8、9得出近似最优振动控制律为:From the above formulas 7, 8, and 9, the approximate optimal vibration control law can be obtained as:u(k)(t)=-R-1BTλ(k)(t)=-R-1BT[P1x(k)(t)+P2p(t)+P3pω(t)+g(k)(t)]   式6;u(k) (t)=-R-1 BT λ(k) (t)=-R-1 BT [P1 x(k) (t)+P2 p(t)+P3 pω (t)+g(k) (t)] Formula 6;其中,而P1,P2和P3由式7求得:x(k)及g(k)(t)由式8和式9求得。in, And P1 , P2 and P3 are obtained by formula 7; x(k) and g(k) (t) are obtained by formula 8 and formula 9.2.根据权利要求1所述的大跨度索桥结构非线性系统半主动振动控制方法,其特征在于,在步骤(2)后包括:将式(2)的大跨度索桥结构振动控制系统模型描述的大跨度索桥结构振动控制系统简化为一个单自由度系统。2. The semi-active vibration control method for the nonlinear system of the long-span cable bridge structure according to claim 1, characterized in that, after step (2), it comprises: the vibration control system model of the long-span cable bridge structure of the formula (2) The described structural vibration control system of a long-span cable bridge is simplified to a single-degree-of-freedom system.
CN201410151618.8A2014-04-162014-04-16Semi-active vibration control method of nonlinear system of long-span cable bridge structureExpired - Fee RelatedCN103926947B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201410151618.8ACN103926947B (en)2014-04-162014-04-16Semi-active vibration control method of nonlinear system of long-span cable bridge structure

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201410151618.8ACN103926947B (en)2014-04-162014-04-16Semi-active vibration control method of nonlinear system of long-span cable bridge structure

Publications (2)

Publication NumberPublication Date
CN103926947Atrue CN103926947A (en)2014-07-16
CN103926947B CN103926947B (en)2017-03-22

Family

ID=51145205

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201410151618.8AExpired - Fee RelatedCN103926947B (en)2014-04-162014-04-16Semi-active vibration control method of nonlinear system of long-span cable bridge structure

Country Status (1)

CountryLink
CN (1)CN103926947B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107924162A (en)*2015-07-292018-04-17株式会社东芝Optimal control arrangement, method for optimally controlling, computer program and optimal control system
CN108827457A (en)*2018-06-122018-11-16太原理工大学Vibration amplitude iteration control method based on transmission function
CN111123705A (en)*2019-12-182020-05-08南京航空航天大学Design method for active vibration control of propeller and transmission shaft system

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0484697A2 (en)*1990-11-071992-05-13Robert Bosch GmbhSemi-active control method for a suspension
CN103410092A (en)*2013-07-242013-11-27东南大学Semi-active control method for vibration of inclined stay cable

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
EP0484697A2 (en)*1990-11-071992-05-13Robert Bosch GmbhSemi-active control method for a suspension
CN103410092A (en)*2013-07-242013-11-27东南大学Semi-active control method for vibration of inclined stay cable

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
张晋媛: "大跨度斜拉桥线性抖振时域分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》*
梁燕军: "海洋平台非线性系统最优减振控制研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》*
肖志荣: "大跨度斜拉桥拉索的非线性振动及智能半主动控制研究", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》*
陈水生: "大跨度斜拉桥拉索的振动及被动、半主动控制", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN107924162A (en)*2015-07-292018-04-17株式会社东芝Optimal control arrangement, method for optimally controlling, computer program and optimal control system
CN108827457A (en)*2018-06-122018-11-16太原理工大学Vibration amplitude iteration control method based on transmission function
CN111123705A (en)*2019-12-182020-05-08南京航空航天大学Design method for active vibration control of propeller and transmission shaft system

Also Published As

Publication numberPublication date
CN103926947B (en)2017-03-22

Similar Documents

PublicationPublication DateTitle
Zhu et al.Coupled dynamic analysis of the vehicle-bridge-wind-wave system
Kim et al.Wavelet-hybrid feedback linear mean squared algorithm for robust control of cable-stayed bridges
CN110889169B (en)Control surface system nonlinear flutter model modeling method based on multi-body system transfer matrix method
Tanabe et al.A simple and efficient numerical method for dynamic interaction analysis of a high-speed train and railway structure during an earthquake
Tanabe et al.Exact time integration for dynamic interaction of high-speed train and railway structure including derailment during an earthquake
CN105631128A (en)High-speed railway pantograph-net-train-rail vertical coupling large system dynamic modeling and simulation method
CN103926947B (en)Semi-active vibration control method of nonlinear system of long-span cable bridge structure
Li et al.A numerical approach to the interaction between airflow and a high-speed train subjected to crosswind
Yu et al.An efficient approach for stochastic vibration analysis of high-speed maglev vehicle-guideway system
Guo et al.Off-line hybrid simulation method on train–track–bridge coupling vibration in high-speed railway
Liu et al.A Fast Modeling Technique for the Vertical Train‐Track‐Bridge Interactions
ZhangDynamics of coupled systems in high-speed railways: theory and practice
Alizadeh et al.Flutter control of long span suspension bridges in time domain using optimized TMD
Li et al.Numerical simulation of feedback flutter control for a single-box-girder suspension bridge by twin-winglet system
Chang et al.High‐Speed Train‐Track‐Bridge Dynamic Interaction considering Wheel‐Rail Contact Nonlinearity due to Wheel Hollow Wear
Sadeghi et al.An efficient algorithm for nonlinear analysis of vehicle/track interaction problems
CN103901775B (en)A kind of based on T-S model with the rudder roll damping fuzzy controller of input constraint and control method thereof
Verros et al.Ride dynamics of nonlinear vehicle models using component mode synthesis
CN115292972B (en)Digital twin fine collaborative simulation method for driving on high-speed railway bridge under earthquake action
CN119538682B (en) A train-track-bridge coupling modeling analysis method and system
Yang et al.Straight-beam approach for vibration analysis of horizontal curved beams
Wang et al.Influence of structural parameters on dynamic characteristics and wind-induced buffeting responses of a super-long-span cable-stayed bridge
Ma et al.A Numerical Method for Solving Evolutionary Statistical Characteristics of Dynamic Responses of the Vehicle–Bridge Coupled System Based on the Recursion Principle
Liu et al.A modified numerical substructure method for dynamic analysis of vehicle–track–bridge systems
CN117763887A (en)Method and system for constructing rigid contact net wind-rail-vehicle-bow-net model

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C41Transfer of patent application or patent right or utility model
TA01Transfer of patent application right

Effective date of registration:20161229

Address after:No. 436 Anyang city of Henan Province, the 455000 Avenue

Applicant after:Anyang Normal University

Address before:455000 School of computer and information engineering, Anyang Normal University, the Yellow River Avenue, Henan, Anyang, China

Applicant before:Liang Yanjun

Applicant before:Wu Shiliang

Applicant before:Li Cuixia

C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20170322

Termination date:20170416


[8]ページ先頭

©2009-2025 Movatter.jp