Movatterモバイル変換


[0]ホーム

URL:


CN103897391B - Photo-curing polyimide membrane for thin-film solar cell and preparation method of photo-curing polyimide membrane - Google Patents

Photo-curing polyimide membrane for thin-film solar cell and preparation method of photo-curing polyimide membrane
Download PDF

Info

Publication number
CN103897391B
CN103897391BCN201210587629.1ACN201210587629ACN103897391BCN 103897391 BCN103897391 BCN 103897391BCN 201210587629 ACN201210587629 ACN 201210587629ACN 103897391 BCN103897391 BCN 103897391B
Authority
CN
China
Prior art keywords
thin
film solar
polyimide
film
solar cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210587629.1A
Other languages
Chinese (zh)
Other versions
CN103897391A (en
Inventor
张迎晨
吴红艳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongyuan University of Technology
Original Assignee
Zhongyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongyuan University of TechnologyfiledCriticalZhongyuan University of Technology
Priority to CN201210587629.1ApriorityCriticalpatent/CN103897391B/en
Publication of CN103897391ApublicationCriticalpatent/CN103897391A/en
Application grantedgrantedCritical
Publication of CN103897391BpublicationCriticalpatent/CN103897391B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention discloses a photo-curing polyimide membrane for a thin-film solar cell and a preparation method of the photo-curing polyimide membrane. The photo-curing polyimide membrane comprises the following components in parts by weight: 100 parts of polyimide, 0.0001-0.1 part of nano aluminite powder, 0.5-1.25 parts of light curing agent, 0.1-0.2 part of antioxidant, 0.1-0.2 part of ultraviolet absorbent and 0.1-0.2 part of amine light stabilizer. The method comprises the following steps: blending the polyimide, the nano aluminite powder, the light curing agent, the antioxidant, the hindered amine light stabilizer and the like by adopting screw-type blending and extruding equipment; extruding and introducing into a casting mold head after filtrating; and carrying out the procedures of cooling, drafting, rolling and the like, so as to obtain the photo-curing polyimide membrane for the thin-film solar cell. The fabricated photo-curing polyimide membrane is attached to the illuminated surface of the thin-film solar cell or an upper packaging film of the solar cell, so that the flexibility or the generating efficiency of the thin-film solar cell is directly improved.

Description

Translated fromChinese
薄膜太阳能电池用光固化聚酰亚胺膜及其制备方法Photocurable polyimide film for thin film solar cells and preparation method thereof

技术领域technical field

本发明涉及一种柔性或薄膜太阳能电池用光固化聚酰亚胺膜及其制备方法,通过使用该膜封装在柔性或薄膜太阳能电池入光面的表面,直接提高柔性或薄膜太阳能电池的效率。The invention relates to a photocurable polyimide film for flexible or thin-film solar cells and a preparation method thereof. By using the film to encapsulate the light-incident surface of the flexible or thin-film solar cell, the efficiency of the flexible or thin-film solar cell can be directly improved.

背景技术Background technique

在太阳能的有效利用项目当中:光电利用是近些年来发展最快,最具活力的研究领域。 一般太阳能电池的制作主要是以半导体材料为基础,利用光电材料吸收光能后发生光电转换反应发电。根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的太阳能电池;3、以功能高分子材料制备的太阳能电池;4、纳米晶太阳能电池等。Among the projects of effective utilization of solar energy: photovoltaic utilization is the fastest growing and most dynamic research field in recent years. Generally, the production of solar cells is mainly based on semiconductor materials, which use photoelectric materials to absorb light energy and generate photoelectric conversion reactions to generate electricity. According to the different materials used, solar cells can be divided into: 1. Silicon solar cells; 2. Solar cells made of inorganic salts such as gallium arsenide III-V compounds, cadmium sulfide, copper indium selenide and other multi-component compounds; 3. Solar cells made of Solar cells made of functional polymer materials; 4. Nanocrystalline solar cells, etc.

现有技术工作效率最高的是以III-V族半导体无机材料为原材料的产品。 例如:砷化镓/锗单一接面型的量子井陷晶结构,其光电转换效率可达>18 % ;而多重接面量子井陷晶结构之太阳电池,例如: 磷化铟镓/砷化镓/锗,其光电转换效率可高达>30 %。目前应用最广,以硅为主:包括非晶硅,光电转换效率约9 %;多晶硅,光电转换效率约14 %;单晶硅,光电转换效率约17 %。虽然在价格上,VI族元素Si要比III-V族半导体GaAs便宜,但其制造的价格,与高分子有机太阳能电池相比,还是昂贵许多;而在应用上,质轻又无破裂之虞的全塑化有机太阳能电池可经由印刷的加工实现,除价格降低外,更适合可携式电子产品的需求,且在室内或阴天均能正常使用(这是硅质太阳能电池所无法达到的),使得它的实用性及市场应用广度更加提升。The product with the highest working efficiency in the prior art is based on III-V group semiconductor inorganic materials as raw materials. For example: gallium arsenide/germanium single-junction quantum well trap structure, its photoelectric conversion efficiency can reach >18%; and solar cells with multi-junction quantum well trap structure, such as: indium gallium phosphide/arsenide Gallium/germanium, whose photoelectric conversion efficiency can be as high as >30%. At present, silicon is the most widely used, including amorphous silicon, with a photoelectric conversion efficiency of about 9%; polycrystalline silicon, with a photoelectric conversion efficiency of about 14%; and monocrystalline silicon, with a photoelectric conversion efficiency of about 17%. Although in terms of price, the group VI element Si is cheaper than the III-V group semiconductor GaAs, but its manufacturing price is still much more expensive than polymer organic solar cells; and in application, it is light in weight and has no risk of rupture. The fully plasticized organic solar cells can be realized by printing. In addition to lower prices, they are more suitable for the needs of portable electronic products, and can be used normally indoors or on cloudy days (this is something that silicon solar cells cannot achieve. ), making its practicability and market application breadth more enhanced.

太阳能电池是一项关键技术,会推进更清洁的能源生产。但是太阳能电池的成本问题,降低了太阳能技术的经济竞争力。为克服这个问题,薄膜太阳能电池是目前广泛应用的技术,可以大量减少昂贵半导体材料的使用量,但薄膜太阳能电池的光吸收量较低,性能比不上传统的太阳能电池。Solar cells are a key technology that will advance cleaner energy production. But the cost of solar cells has reduced the economic competitiveness of solar technology. To overcome this problem, thin-film solar cells are currently widely used technology, which can greatly reduce the use of expensive semiconductor materials, but thin-film solar cells have low light absorption, and their performance is not as good as traditional solar cells.

薄膜太阳能模块是由玻璃基板、金属层、透明导电层、电器功能盒、胶合材料、半导体层等所构成的。有机-无机复合太阳能电池是基于有机共轭高分子-无机纳米晶复合材料体系的太阳能电池,因同时具有机高分子材料成膜性好,能级结构及带隙易于调节,可以通过湿法制备低成本、大面积、柔性太阳能电池器件以及无机纳米晶材料高稳定性,高迁移率,可构筑有序纳米结构等优点,而成为近年来太阳能电池领域的研究热点。金属纳米粒子可以引导光更好地进入太阳能电池,防止光逃逸。在传统的“厚膜”太阳能电池中,纳米粒子没有什么效果,因为所有的光线吸收都是通过这种膜,这就依赖它的厚度。然而,对于薄膜而言,纳米粒子就可以发挥很大作用。它们的散射增加了光停留在薄膜中的时间,使总体吸收的光达到一种水平,可以媲美传统的太阳能电池。Thin-film solar modules are composed of glass substrates, metal layers, transparent conductive layers, electrical functional boxes, adhesive materials, semiconductor layers, etc. Organic-inorganic composite solar cells are solar cells based on the organic conjugated polymer-inorganic nanocrystalline composite material system. Because organic polymer materials have good film-forming properties, the energy level structure and band gap are easy to adjust, they can be prepared by wet methods. Low-cost, large-area, flexible solar cell devices and inorganic nanocrystalline materials with high stability, high mobility, and the ability to construct ordered nanostructures have become research hotspots in the field of solar cells in recent years. Metal nanoparticles can guide light into solar cells better and prevent light from escaping. In conventional "thick-film" solar cells, nanoparticles have little effect because all light absorption is through the film, which depends on its thickness. For thin films, however, nanoparticles can do a lot. Their scattering increases the time that light stays in the film, bringing the overall light absorption to a level comparable to conventional solar cells.

铝与银纳米粒子在可见部分的频谱中,可以很好地聚焦光线进入太阳能电池。但是光学共振也会导致纳米粒子吸收光,这就意味着太阳能电池的效率会较低。银纳米粒子共振正好处在太阳能电池关键吸收光谱部分,所以光的吸收是相当可观的。铝纳米粒子共振超出了太阳能电池关键光谱部分。对能量的损耗较小,此外,铝粒子很容易钝化,虽然会改变形状和大小,钝化后纳米粒子属性变化很小。纳米粒子有凹凸不平的表面,散射光线会更多地进入广谱波长范围。这会带来更大的吸收,从而提高电池的整体效率。Aluminum and silver nanoparticles in the visible part of the spectrum do a good job of focusing light into solar cells. But the optical resonance also causes the nanoparticles to absorb light, which means the solar cell will be less efficient. The resonance of silver nanoparticles is just in the key absorption spectrum part of solar cells, so the absorption of light is considerable. Aluminum nanoparticles resonate beyond critical spectral parts for solar cells. The loss of energy is small. In addition, aluminum particles are easily passivated. Although the shape and size will change, the properties of the nanoparticles will change little after passivation. Nanoparticles have uneven surfaces that scatter light more into a broad-spectrum wavelength range. This results in greater absorption, which increases the overall efficiency of the cell.

由于高技术材料芳香族均苯型聚酰亚胺(PI)树脂具有不溶、难熔、最高级别的耐热性、耐寒性、抗氧化性、耐辐射性、耐化学性、良好的机械和电气特性,被广泛应用于诸多领域。特别是光学透明的PI膜在一些领域中有特殊应用,如柔性太阳能辐射保护材料、太阳能电池基板材料、柔性透明导电膜基板材料、液晶显示器的取向膜材料、通讯领域中的光波导材料和平面光波电路的光学半波板等。Due to the high-tech material aromatic polyimide (PI) resin is insoluble, refractory, the highest level of heat resistance, cold resistance, oxidation resistance, radiation resistance, chemical resistance, good mechanical and electrical properties and are widely used in many fields. In particular, optically transparent PI films have special applications in some fields, such as flexible solar radiation protection materials, solar cell substrate materials, flexible transparent conductive film substrate materials, alignment film materials for liquid crystal displays, optical waveguide materials and planar materials in the communication field. Optical half-wave plates for light wave circuits, etc.

大多数芳香族PI由于存在高度共轭结构和/或分子间形成电荷转移络合物(CTC)使其在可见光区域有强烈的吸收,呈浅黄色或深棕色,限制了其在光学领域的应用。由于其具有较高的软化温度和有限的可溶性,因此存在加工困难的问题。PI的加工多是以聚酰胺酸溶液形式进行,浇注成膜后经热酰亚胺化得到PI薄膜。这种方法简单易行,但存在一些固有的缺点,如聚酰胺酸的贮存期较短,在酰亚胺化过程中由于产生挥发性副产物(如水)而易产生缺陷。为了克服这些缺陷,人们就可溶性和可加工性PI做了很多研究。可溶解性允许以PI形式加工,避免了加工聚酰胺酸所带来的一些问题,这对于微电子和光学领域应用是尤为重要。Due to the existence of highly conjugated structures and/or the formation of charge-transfer complexes (CTCs) between molecules, most aromatic PIs have strong absorption in the visible light region and appear light yellow or dark brown, which limits their applications in the field of optics. . Due to its high softening temperature and limited solubility, it presents processing difficulties. The processing of PI is mostly carried out in the form of polyamic acid solution, and the PI film is obtained by thermal imidization after casting into a film. This method is simple and easy to implement, but there are some inherent disadvantages, such as the short shelf life of polyamic acid, and it is prone to defects due to the generation of volatile by-products (such as water) during the imidization process. In order to overcome these shortcomings, many studies have been done on the solubility and processability of PIs. Solubility allows processing in the PI form, avoiding some of the problems associated with processing polyamic acid, which is particularly important for microelectronic and optical applications.

从分子结构设计上增加PI透明性的原则是避免或减少共轭单元,减少分子内或分子间的传荷作用,常用方法有:(1)引入含氟基团;(2)引入体积较大的取代基,如圈形结构及其他大的侧基;(3)在联苯的2,2′-位引入取代基以产生非共平面结构,破坏较大范围的共轭;(4)引入脂肪,尤其是脂环结构单元;(5)采用能使主链弯曲的单体,如3,4′-和3,3′-二酐,间位取代的二胺等。The principle of increasing the transparency of PI from the design of molecular structure is to avoid or reduce conjugated units, and reduce the intramolecular or intermolecular load transfer effect. The common methods are: (1) introducing fluorine-containing groups; (2) introducing large volume Substituents, such as ring structures and other large side groups; (3) Introduce substituents at the 2,2′-position of biphenyl to produce non-coplanar structures, destroying a wide range of conjugation; (4) Introduce Fat, especially alicyclic structural units; (5) Use monomers that can bend the main chain, such as 3,4'- and 3,3'-dianhydrides, meta-substituted diamines, etc.

改善PI溶解性的方法有两种:一种是引入对溶剂具有亲和性的结构;另一种是打乱大分子链的有序性和对称性,减弱分子链间的相互作用使聚合物的结构变得“松散”,具体方法有:(1)引入含氟、硅、磷的基团或羟基;(2)引入“圈”形结构;(3)引入侧基;(4)使大分子链弯曲;(5)引入脂肪结构等。There are two ways to improve the solubility of PI: one is to introduce a structure with affinity to the solvent; the other is to disrupt the order and symmetry of the macromolecular chains, weaken the interaction between the molecular chains and make the polymer The structure becomes "loose", the specific methods are: (1) introducing fluorine, silicon, phosphorus groups or hydroxyl groups; (2) introducing "ring" structure; (3) introducing side groups; (4) making large Molecular chain bending; (5) introduction of fat structure, etc.

聚酰亚胺膜本身为太阳能电池广泛应用的封装用膜,为适应以上工业需求,我们发明了纳米铝粉改性光固化聚酰亚胺膜。该膜既可以使用于薄膜太阳能电池的背光板处,也可以使用于薄膜太阳能电池的入光膜表面,同时也可以使用于薄膜太阳能电池的中间层,提高太阳能电池的光吸收效率。提高太阳能电池的发电效率。 发明内容Polyimide film itself is a widely used packaging film for solar cells. In order to meet the above industrial needs, we invented nano-aluminum powder modified photocurable polyimide film. The film can be used not only on the backlight of the thin film solar cell, but also on the surface of the light incident film of the thin film solar cell, and also can be used on the middle layer of the thin film solar cell to improve the light absorption efficiency of the solar cell. Improve the power generation efficiency of solar cells. Contents of the invention

本发明的目的是提供一种柔性或薄膜太阳能电池用光固化聚酰亚胺膜及其制备方法,通过使用该膜封装在柔性或薄膜太阳能电池入光面的表面,直接提高柔性或薄膜太阳能电池的效率。并具经封装的柔性或薄膜太阳能电池具有自清洁的作用。The object of the present invention is to provide a kind of flexible or thin-film solar cell photocurable polyimide film and its preparation method, by using this film to be packaged on the surface of flexible or thin-film solar cell light-incident surface, directly improve flexible or thin-film solar cell s efficiency. And the encapsulated flexible or thin-film solar cell has the effect of self-cleaning.

为实现上述目的,本发明采用的技术方案如下:To achieve the above object, the technical scheme adopted in the present invention is as follows:

本发明的薄膜太阳能电池用光固化聚酰亚胺膜,主要由下述重量份的如下组分制成:聚酰亚胺100;纳米铝粉0.0001-0.1;光固化剂0.5~1.25;抗氧剂0.1~0.2;紫外吸收剂0.1~0.2;胺类光稳定剂0.1~0.2。The light-cured polyimide film for thin-film solar cells of the present invention is mainly made of the following components in the following parts by weight: polyimide 100; nano-aluminum powder 0.0001-0.1; light curing agent 0.5-1.25; Agent 0.1~0.2; UV absorber 0.1~0.2; amine light stabilizer 0.1~0.2.

所述的聚酰亚胺树脂为经引入含氟、硅、磷的基团或羟基或引入体积较大的取代基(如圈形结构及其他大的侧基或在联苯的2,2′-位引入取代基以产生非共平面结构)破坏较大范围的共轭或使大分子链弯曲,引入脂肪,尤其是脂环结构单元或采用能使主链弯曲的单体(如3,4′-和3,3′-二酐,间位取代的二胺)等改性的聚酰亚胺树脂。The polyimide resin is made by introducing groups containing fluorine, silicon, phosphorus, or hydroxyl groups, or introducing bulky substituents (such as ring structures and other large side groups or 2,2' in biphenyl -position to introduce substituents to produce non-coplanar structures) to destroy a wide range of conjugation or to bend macromolecular chains, to introduce fats, especially alicyclic structural units, or to use monomers that can bend the main chain (such as 3, 4 '- and 3,3'-dianhydrides, meta-substituted diamines) and other modified polyimide resins.

比如中国专利CN102504255A、CN1970603A、CN102558556A, CN1018183B公开的聚酰亚胺树脂;或者文献:1.颜善银等,新型含吡啶环二胺及其可溶透明性氟化聚酰亚胺的合成与表征,合成技术及应用2010年第03期5-12,2.何曼等,含苯并噻唑氟化聚酰亚胺制备及非线性光学性质,物理化学学报,2010,26,3073-3079公开的聚酰亚胺树脂。For example, the polyimide resin disclosed in Chinese patents CN102504255A, CN1970603A, CN102558556A, CN1018183B; or literature: 1. Yan Shanyin, etc., synthesis and characterization of novel pyridine ring-containing diamine and its soluble transparent fluorinated polyimide, synthesis Technology and Application, Issue 03, 5-12, 2010, 2. Heman et al., Preparation and nonlinear optical properties of fluorinated polyimide containing benzothiazole, polyimide disclosed in Acta Physicochemical Sinica, 2010, 26, 3073-3079 imide resin.

胺类光稳定剂为双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酯或(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,聚丁二酸(4羟基-2,2,6,6-四甲基-1哌啶乙醇酯)中的一种或几种的混合。The amine light stabilizer is bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) decanedate or (2,2,6,6-tetramethyl-4 -piperidinyl) sebacate, polysuccinic acid (4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyl ethanol ester) or a mixture of several.

所述的光固化剂为芳香族羰基化合物,优选为苯基酮系化合物,如联苯甲酰,二苯甲酮,安息香及其醚类衍生物。The photocuring agent is an aromatic carbonyl compound, preferably a phenyl ketone compound, such as dibenzoyl, benzophenone, benzoin and its ether derivatives.

抗氧化剂为三(2,4-二叔丁基苯基)亚磷酸酯、二硬脂酸基季戊四醇二亚磷酸酯、亚磷酸三(单壬基苯和二壬基苯混合酯)、三(壬基苯)亚磷酸酯、四[B-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、B-(4-羟基-3,5二叔丁基苯基)丙酸正十八碳醇酯中的任意一种或几种。The antioxidants are tris(2,4-di-tert-butylphenyl)phosphite, distearyl pentaerythritol diphosphite, tris(mono-nonylbenzene and dinonylbenzene mixed ester), tri( Nonylphenyl) phosphite, tetrakis[B-(3,5-di-tert-butyl-4-hydroxyphenyl) propionate] pentaerythritol, B-(4-hydroxy-3,5-di-tert-butylphenyl ) any one or more of n-octadecanyl propionate.

本发明的的薄膜太阳能电池用光固化聚酰亚胺膜的制备方法,包括如下步骤:The preparation method of light-cured polyimide film for thin-film solar cell of the present invention comprises the steps:

(1)将聚酰亚胺;纳米铝粉;光固化剂;抗氧剂;受阻胺类光稳定剂等用搅拌器在-10~40℃温度环境下搅拌共混均匀;(1) Stir and blend polyimide; nano-aluminum powder; light curing agent; antioxidant; hindered amine light stabilizer, etc. with a stirrer at a temperature of -10~40°C;

(2)将以上共混物导入螺杆混合挤出机进行共混挤出,温度控制在220~290℃,挤出物经过滤、计量挤出、流延、冷却、牵伸、牵引、卷取工序,得到柔性或薄膜太阳能电池用光固化聚酰亚胺膜。(2) Import the above blend into the screw mixing extruder for blending and extrusion, the temperature is controlled at 220~290°C, the extrudate is filtered, metered and extruded, cast, cooled, drawn, drawn, coiled process to obtain a photocurable polyimide film for flexible or thin film solar cells.

本发明的有益效果:纳米金属铝粒子很容易钝化,虽然会改变形状和大小,钝化后纳米粒子属性变化很小。纳米粒子有凹凸不平的表面,散射光线会更多地进入广谱波长范围。这会带来更大的吸收,从而提高电池的整体效率。金属铝纳米粒子的散射增加了光停留在薄膜中的时间,使总体吸收的光达到一种水平,可以媲美传统的太阳能电池。经使用本发明光固化聚酰亚胺膜处理的薄膜太阳能电池比未经本光固化聚酰亚胺膜的薄膜太阳能电池性能提高3-15%。薄膜太阳能电池使用该用光固化聚酰亚胺膜后,金属铝纳米粒子可以引导光较好地进入太阳能电池,防止光逃逸。解决传统的“厚膜”太阳能电池中,纳米粒子没有什么效果而所有的光线吸收必需依赖厚度解决的问题。Beneficial effects of the invention: the nano metal aluminum particles are easy to passivate, although the shape and size will be changed, the properties of the nano particles change little after passivation. Nanoparticles have uneven surfaces that scatter light more into a broad-spectrum wavelength range. This results in greater absorption, which increases the overall efficiency of the cell. Scattering by the metallic aluminum nanoparticles increases the time that light stays in the film, bringing the overall light absorption to a level comparable to conventional solar cells. The performance of the thin film solar cell treated with the photocurable polyimide film of the invention is 3-15% higher than that of the thin film solar cell without the photocurable polyimide film. After the thin-film solar cell uses the light-cured polyimide film, the metal aluminum nanoparticles can guide light into the solar cell and prevent light from escaping. Solve the problem that in traditional "thick film" solar cells, nanoparticles have little effect and all light absorption must rely on thickness to solve the problem.

具体实施方式detailed description

实施例1Example 1

(1)将聚酰亚胺(宁波今山电子材料有限公司)100 Kg;纳米铝粉0.0001Kg;交联固化剂(2,5-二甲基-2,5双(叔丁基过氧)己烷)0.8Kg;紫外光吸收剂(2-羟基-4甲氧基二苯甲酮)0.1 Kg;抗氧剂(四[B-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯)0.1 Kg;胺类光稳定剂(双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酯)0.2 Kg,用搅拌器在-10-5℃温度环境下搅拌共混均匀;(1) Polyimide (Ningbo Jinshan Electronic Materials Co., Ltd.) 100 Kg; nano-aluminum powder 0.0001Kg; cross-linking curing agent (2,5-dimethyl-2,5 bis(tert-butyl peroxide) Hexane) 0.8Kg; UV absorber (2-hydroxy-4 methoxybenzophenone) 0.1 Kg; antioxidant (tetra[B-(3,5-di-tert-butyl-4-hydroxyphenyl ) propionic acid] pentaerythritol ester) 0.1 Kg; amine light stabilizer (bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl) decanedide) 0.2 Kg, use The agitator stirs and blends evenly at a temperature of -10-5°C;

(2)将以上共混物导入螺杆混合挤出机进行共混挤出,温度控制在250℃,挤出物经180目过滤器过滤、计量挤出(计量泵进出压力差为2MPa)、流延膜厚度50UM、10℃空气冷却、4倍牵伸率牵伸、离型纸覆膜、卷取等工序,得到一种柔性或薄膜太阳能电池用光固化聚酰亚胺膜。经使用本薄膜的薄膜太阳能电池比未使用的薄膜太阳能电池性能提高3.6%。(2) Import the above blend into a screw mixing extruder for blending and extrusion, the temperature is controlled at 250°C, the extrudate is filtered through a 180-mesh filter, metered and extruded (the pressure difference between the inlet and outlet of the metering pump is 2MPa), flow A light-cured polyimide film for flexible or thin-film solar cells is obtained by extending the film thickness to 50 UM, air cooling at 10°C, drawing at a 4-fold drafting ratio, film covering with release paper, and winding. The performance of the thin-film solar cell using the thin film is 3.6% higher than that of the unused thin-film solar cell.

实施例2Example 2

(1)将聚酰亚胺(宁波今山电子材料有限公司)100 Kg;纳米铝粉0.1 Kg;交联固化剂(2,5-二甲基-2,5双(叔丁基过氧)己烷)0.5 Kg;紫外光吸收剂(2-羟基-4甲氧基二苯甲酮)0.12 Kg;抗氧剂(三(壬基苯)亚磷酸酯)0.2 Kg;胺类光稳定剂(双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酯)0.1 Kg,用搅拌器在-10-40℃温度环境下搅拌共混均匀;(1) Polyimide (Ningbo Jinshan Electronic Materials Co., Ltd.) 100 Kg; nano-aluminum powder 0.1 Kg; cross-linking curing agent (2,5-dimethyl-2,5 bis(tert-butyl peroxide) Hexane) 0.5 Kg; UV absorber (2-hydroxy-4 methoxybenzophenone) 0.12 Kg; antioxidant (tris(nonylphenyl) phosphite) 0.2 Kg; amine light stabilizer ( Bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidinyl)decanediester) 0.1 Kg, stir and blend evenly with a stirrer at a temperature of -10-40°C;

(2)将以上共混物导入螺杆混合挤出机进行共混挤出,温度控制在230℃,挤出物经180目过滤器过滤、计量挤出(计量泵进出压力差为2MPa)、流延膜厚度50UM、10℃空气冷却、4倍牵伸率牵伸、离型纸覆膜、卷取等工序,得到一种柔性或薄膜太阳能电池用光固化聚酰亚胺膜。经使用本薄膜的薄膜太阳能电池比未使用的薄膜太阳能电池性能提高6.6%。(2) Import the above blend into a screw mixing extruder for blending and extrusion, the temperature is controlled at 230°C, the extrudate is filtered through a 180-mesh filter, metered and extruded (the pressure difference between the inlet and outlet of the metering pump is 2MPa), flow A light-cured polyimide film for flexible or thin-film solar cells is obtained by extending the film thickness to 50 UM, air cooling at 10°C, drawing at a 4-fold drafting ratio, film covering with release paper, and winding. The performance of the thin-film solar cell using the thin film is 6.6% higher than that of the unused thin-film solar cell.

实施例3Example 3

(1)聚酰亚胺(宁波今山电子材料有限公司)100 Kg;纳米铝粉,0.05Kg;交联固化剂(1,1-(双过氧化叔丁基)3,3,5-三甲基环己烷)1.25Kg;紫外光吸收剂(2-羟基-4正辛氧基二苯甲酮)0.16 Kg;抗氧剂(亚磷酸三(单壬基苯和二壬基苯)混合酯)0.15 Kg;胺类光稳定剂((2,2,6,6-四甲基-4-哌啶基)癸二酸酯)0.15 Kg,用搅拌器在0-10℃温度环境下搅拌共混均匀;(1) Polyimide (Ningbo Jinshan Electronic Materials Co., Ltd.) 100 Kg; nano-aluminum powder, 0.05Kg; Methylcyclohexane) 1.25Kg; UV light absorber (2-hydroxy-4 n-octyloxybenzophenone) 0.16 Kg; antioxidant (phosphite tris(monononylbenzene and dinonylbenzene) mix ester) 0.15 Kg; amine light stabilizer ((2,2,6,6-tetramethyl-4-piperidinyl) sebacate) 0.15 Kg, stir with a stirrer at 0-10°C Blend evenly;

(2)将以上共混物导入螺杆混合挤出机进行共混挤出,温度控制在220℃,挤出物经180目过滤器过滤、计量挤出(计量泵进出压力差为2MPa)、流延膜厚度50UM、10℃空气冷却、4倍牵伸率牵伸、离型纸覆膜、卷取等工序,得到一种柔性或薄膜太阳能电池用光固化聚酰亚胺膜。(2) Import the above blend into a screw mixing extruder for blending and extrusion, the temperature is controlled at 220°C, the extrudate is filtered through a 180-mesh filter, metered and extruded (the pressure difference between the inlet and outlet of the metering pump is 2MPa), flow A light-cured polyimide film for flexible or thin-film solar cells is obtained by extending the film thickness to 50 UM, air cooling at 10°C, drawing at a 4-fold drafting ratio, film covering with release paper, and winding.

经使用本薄膜的薄膜太阳能电池比未使用的薄膜太阳能电池性能提高14.8%。The performance of the thin-film solar cell using the thin film is 14.8% higher than that of the unused thin-film solar cell.

实施例4Example 4

(1)将聚酰亚胺(长春应用化学所)100 Kg;纳米铝粉0.008 Kg;交联固化剂(1,1-(双过氧化叔丁基)3,3,5-三甲基环己烷)1.0 Kg;紫外光吸收剂(2-[4,5-双(2,4-二甲基苯基)-1,3,5-三嗪-2-基]-5-(辛氧基)酚)0.18 Kg;抗氧剂(二硬脂酸基季戊四醇二亚磷酸酯)0.18Kg;胺类光稳定剂(聚丁二酸(4羟基-2,2,6,6-四甲基-1哌啶乙醇)酯)0.12 Kg,用搅拌器在10-20℃温度环境下搅拌共混均匀;(1) Polyimide (Changchun Institute of Applied Chemistry) 100 Kg; nano-aluminum powder 0.008 Kg; Hexane) 1.0 Kg; UV absorber (2-[4,5-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy base) phenol) 0.18 Kg; antioxidant (distearyl pentaerythritol diphosphite) 0.18Kg; amine light stabilizer (polysuccinic acid (4 hydroxy-2,2,6,6-tetramethyl -1 piperidine ethanol) ester) 0.12 Kg, stir and blend evenly with a stirrer at a temperature of 10-20°C;

(2)将以上共混物导入螺杆混合挤出机进行共混挤出,温度控制在260℃,挤出物经180目过滤器过滤、计量挤出(计量泵进出压力差为2MPa)、流延膜厚度50UM、10℃空气冷却、4倍牵伸率牵伸、离型纸覆膜、卷取等工序,得到一种柔性或薄膜太阳能电池用光固化聚酰亚胺膜。(2) Import the above blend into a screw mixing extruder for blending and extrusion, the temperature is controlled at 260°C, the extrudate is filtered through a 180-mesh filter, metered and extruded (the pressure difference between the inlet and outlet of the metering pump is 2MPa), flow A light-cured polyimide film for flexible or thin-film solar cells is obtained by extending the film thickness to 50 UM, air cooling at 10°C, drawing at a 4-fold drafting ratio, film covering with release paper, and winding.

经使用本薄膜的薄膜太阳能电池比未使用的薄膜太阳能电池性能提高8.2%。The performance of the thin-film solar cell using the thin film is 8.2% higher than that of the unused thin-film solar cell.

实施例5Example 5

(1)将聚酰亚胺(长春应用化学所)100 Kg;纳米铝粉0.002 Kg;交联固化剂(叔丁基过氧2-乙基己基碳酸酯)1.2 Kg;紫外光吸收剂(2-[4,5-双(2,4-二甲基苯基)-1,3,5-三嗪-2-基]-5-(辛氧基)酚)0.2 Kg;抗氧剂(三(2,4-二叔丁基苯基)亚磷酸酯)0.12 Kg;胺类光稳定剂(聚丁二酸(4羟基-2,2,6,6-四甲基-1哌啶乙醇)酯)0.18 Kg,用搅拌器在30-40℃温度环境下搅拌共混均匀;(1) Polyimide (Changchun Institute of Applied Chemistry) 100 Kg; nano-aluminum powder 0.002 Kg; cross-linking curing agent (tert-butyl peroxy 2-ethylhexyl carbonate) 1.2 Kg; ultraviolet light absorber (2 -[4,5-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]-5-(octyloxy)phenol) 0.2 Kg; antioxidant (tri (2,4-di-tert-butylphenyl)phosphite) 0.12 Kg; amine light stabilizer (polysuccinic acid (4-hydroxy-2,2,6,6-tetramethyl-1-piperidineethanol) Esters) 0.18 Kg, stir and blend evenly with a stirrer at a temperature of 30-40°C;

(2)将以上共混物导入螺杆混合挤出机进行共混挤出,温度控制在290℃,挤出物经180目过滤器过滤、计量挤出(计量泵进出压力差为2MPa)、流延膜厚度50UM、10℃空气冷却、4倍牵伸率牵伸、离型纸覆膜、卷取等工序,得到一种柔性或薄膜太阳能电池用光固化聚酰亚胺膜,经使用本薄膜的薄膜太阳能电池比未使用的薄膜太阳能电池性能提高11.3%。(2) Import the above blend into a screw mixing extruder for blending and extrusion. The temperature is controlled at 290°C. The extruded product is filtered through a 180-mesh filter, metered and extruded (the pressure difference between the inlet and outlet of the metering pump is 2MPa), flow A photocurable polyimide film for flexible or thin-film solar cells is obtained by extending the film thickness to 50 UM, air cooling at 10°C, drawing at 4 times the drafting ratio, coating with release paper, and coiling. After using this film The performance of the thin-film solar cells was 11.3% higher than that of the unused thin-film solar cells.

Claims (6)

Translated fromChinese
1.一种薄膜太阳能电池用光固化聚酰亚胺膜,其特征在于,包括下述重量份的如下组分:聚酰亚胺100;纳米铝粉0.0001-0.1;光固化剂0.5~1.25;抗氧剂0.1~0.2;紫外吸收剂0.1~0.2;胺类光稳定剂0.1~0.2;1. A light-cured polyimide film for thin-film solar cells, characterized in that it comprises the following components in parts by weight: polyimide 100; nanometer aluminum powder 0.0001-0.1; light curing agent 0.5 ~ 1.25; Antioxidant 0.1~0.2; UV absorber 0.1~0.2; amine light stabilizer 0.1~0.2;所述的聚酰亚胺树脂为经引入含氟、硅、磷的基团或羟基,或引入脂肪结构单元或采用能使主链弯曲的单体改性的聚酰亚胺树脂。The polyimide resin is a polyimide resin modified by introducing groups containing fluorine, silicon, phosphorus, or hydroxyl groups, or introducing aliphatic structural units, or using monomers capable of bending the main chain.2.根据权利要求1所述的薄膜太阳能电池用光固化聚酰亚胺膜,其特征在于:所述的胺类光稳定剂为双(1-辛氧基-2,2,6,6-四甲基-4-哌啶基)癸二酯或(2,2,6,6-四甲基-4-哌啶基)癸二酸酯,聚丁二酸(4-羟基-2,2,6,6-四甲基-1哌啶乙醇酯)中的一种或几种的混合。2. The photocurable polyimide film for thin film solar cells according to claim 1, characterized in that: the amine light stabilizer is bis(1-octyloxy-2,2,6,6- Tetramethyl-4-piperidinyl) sebacate or (2,2,6,6-tetramethyl-4-piperidinyl) sebacate, polysuccinic acid (4-hydroxy-2,2 , 6,6-tetramethyl-1 piperidine ethanol ester) or a mixture of several.3.根据权利要求1所述的薄膜太阳能电池用光固化聚酰亚胺膜,其特征在于:所述的光固化剂为芳香族羰基化合物。3 . The light-curable polyimide film for thin-film solar cells according to claim 1 , wherein the light-curing agent is an aromatic carbonyl compound. 4 .4.根据权利要求1所述的薄膜太阳能电池用光固化聚酰亚胺膜,其特征在于:所述的光固化剂为苯基酮系化合物。4 . The photocurable polyimide film for thin film solar cells according to claim 1 , wherein the photocuring agent is a phenyl ketone compound.5.根据权利要求1所述的薄膜太阳能电池用光固化聚酰亚胺膜,其特征在于:所述的抗氧化剂为三(2,4-二叔丁基苯基)亚磷酸酯、二硬脂酸基季戊四醇二亚磷酸酯、三(壬基苯)亚磷酸酯、四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯、β-(4-羟基-3,5二叔丁基苯基)丙酸正十八碳醇酯或中的任意一种或几种。5. The photocurable polyimide film for thin film solar cells according to claim 1, characterized in that: the antioxidant is tris(2,4-di-tert-butylphenyl) phosphite, dihard Fatty acid pentaerythritol diphosphite, tris(nonylphenyl) phosphite, tetrakis[β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate]pentaerythritol ester, β-(4- Hydroxy-3,5 di-tert-butylphenyl) n-octadecyl propionate or any one or more of them.6.权利要求1所述的薄膜太阳能电池用光固化聚酰亚胺膜的制备方法,其特征在于:包括如下步骤:6. the preparation method of light-cured polyimide film for thin-film solar cell as claimed in claim 1, is characterized in that: comprise the steps:(1)将聚酰亚胺、纳米铝粉、光固化剂、抗氧剂、紫外吸收剂、胺类光稳定剂用搅拌器在-10~40℃温度环境下搅拌共混均匀;(1) Stir and blend polyimide, nano-aluminum powder, light curing agent, antioxidant, ultraviolet absorber, and amine light stabilizer with a stirrer at a temperature of -10~40°C;(2)将以上共混物导入螺杆混合挤出机进行共混挤出,温度控制在220~290℃,挤出物经过滤、计量挤出、流延、冷却、牵伸、卷取工序,得到柔性或薄膜太阳能电池用光固化聚酰亚胺膜。(2) Import the above blend into the screw mixing extruder for blending and extrusion, the temperature is controlled at 220~290°C, and the extruded product is filtered, metered and extruded, cast, cooled, drawn, and coiled. Obtain photocurable polyimide films for flexible or thin film solar cells.
CN201210587629.1A2012-12-312012-12-31Photo-curing polyimide membrane for thin-film solar cell and preparation method of photo-curing polyimide membraneExpired - Fee RelatedCN103897391B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201210587629.1ACN103897391B (en)2012-12-312012-12-31Photo-curing polyimide membrane for thin-film solar cell and preparation method of photo-curing polyimide membrane

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201210587629.1ACN103897391B (en)2012-12-312012-12-31Photo-curing polyimide membrane for thin-film solar cell and preparation method of photo-curing polyimide membrane

Publications (2)

Publication NumberPublication Date
CN103897391A CN103897391A (en)2014-07-02
CN103897391Btrue CN103897391B (en)2017-04-12

Family

ID=50988985

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201210587629.1AExpired - Fee RelatedCN103897391B (en)2012-12-312012-12-31Photo-curing polyimide membrane for thin-film solar cell and preparation method of photo-curing polyimide membrane

Country Status (1)

CountryLink
CN (1)CN103897391B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
KR102002611B1 (en)*2015-07-222019-07-22스미또모 가가꾸 가부시키가이샤 A resin film, a laminate, an optical member, a display member, and a front plate
JP2017119821A (en)*2015-12-282017-07-06宇部興産株式会社Polyimide material and method for producing the same
WO2018134976A1 (en)*2017-01-202018-07-26住友化学株式会社Resin film, layered product, optical member, display member, and front panel
CN108455995A (en)*2018-02-092018-08-28青海大学A kind of silicon carbide fibre enhancing aluminum phosphate ceramic matric composite and preparation method thereof
JP2019172894A (en)*2018-03-292019-10-10信越化学工業株式会社Silicone-modified polyimide resin composition
CN116162351A (en)*2022-12-202023-05-26乐凯光电材料有限公司Colorless transparent polyimide film and preparation process and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101201541A (en)*2006-10-242008-06-18三星电子株式会社 Organic layer pattern, method for forming same, and organic memory device including same
CN102668108A (en)*2009-11-202012-09-12E.I.内穆尔杜邦公司Assemblies comprising a polyimide film and an electrode, and methods relating thereto

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP5346078B2 (en)*2008-05-202013-11-20イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thermal and dimensionally stable polyimide films and methods related thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101201541A (en)*2006-10-242008-06-18三星电子株式会社 Organic layer pattern, method for forming same, and organic memory device including same
CN102668108A (en)*2009-11-202012-09-12E.I.内穆尔杜邦公司Assemblies comprising a polyimide film and an electrode, and methods relating thereto

Also Published As

Publication numberPublication date
CN103897391A (en)2014-07-02

Similar Documents

PublicationPublication DateTitle
CN103897391B (en)Photo-curing polyimide membrane for thin-film solar cell and preparation method of photo-curing polyimide membrane
CN102532895B (en)Copolyimide solution, copolyimide, display element, and solar cell
CN103073948B (en)Flexibility or thin-film solar cells polycarbonate-base ink for ink-jet printer and preparation method thereof
CN101195682A (en) A kind of flexible transparent polyimide film material and preparation method thereof
CN102617877B (en)A kind of preparation method of Kapton
CN105802520A (en)Organic light conversion nano-particles, photovoltaic cell packaging adhesive film and preparation method
CN103897366B (en)Flexibility or thin-film solar cells photocuring polymer PET and preparation method thereof
CN103897394B (en)Thin-film solar cells photocuring fluorinated polyimide film and preparation method thereof
CN103897318B (en)Thin-film solar cells photocuring fluorine richness epoxy resin basement membrane and preparation method
CN103897341B (en)Flexibility or thin-film solar cells photo-curing epoxy resin basement membrane and preparation method
CN103897582B (en)Thin-film solar cells polyimide paint and preparation method thereof
CN103897392B (en)A kind of thin-film solar cells fluorinated polyimide film and preparation method thereof
CN103897251B (en)A kind of flexibility or thin-film solar cells photocuring EVA film and preparation method thereof
CN103897369A (en)Polycarbonate film for flexible or thin-film solar cells and preparation method thereof
CN103897370B (en)Flexibility or thin-film solar cells photocuring polycarbonate membrane and preparation method thereof
CN103897489B (en)Fluorinated polyimide base ink for ink-jet printer used for solar batteries and preparation method
CN103897365B (en)Flexibility or thin-film solar cells polymer PET and preparation method thereof
CN103897393A (en)Fluoridated polyimide film for thin-film solar cells and preparation method thereof
CN103897339B (en)Flexibility or thin-film solar cells epoxy resin basement membrane and preparation method thereof
CN103897316B (en)Flexibility or thin-film solar cells fluorine richness epoxy resin basement membrane and preparation method thereof
CN103897317B (en)Thin-film solar cells fluorine richness epoxy resin basement membrane and preparation method thereof
CN103897583B (en)Thin-film solar cells fluorinated polyimide coating and preparation method thereof
CN103897568B (en)Flexibility or thin-film solar cells Merlon coating and preparation method thereof
CN103904223A (en)Polycarbonate film for flexible or thin-film solar cell and preparing method thereof
CN104151936A (en)Fluorine modified polyurethane resin based inkjet printer ink and preparation method thereof

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20170412

Termination date:20191231

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp