


技术领域technical field
本发明涉及气体净化领域及温室气体减排领域,具体涉及一种低温甲醇洗工艺和CO2压缩工艺的耦合方法及系统。The invention relates to the field of gas purification and the field of greenhouse gas emission reduction, in particular to a coupling method and system of a low-temperature methanol washing process and aCO2 compression process.
背景技术Background technique
CO2的排放总量在过去100年中大幅增长,导致全球的平均气温明显上升,温室效应已经成为21世纪人类面临的最严峻的环境问题之一。将煤、石油等矿物燃料利用过程中产生并排放的CO2进行分离与回收,封存及利用(CCS&CCUS)已经引起世界各国的普遍重视。The total amount of CO2 emissions has increased significantly in the past 100 years, leading to a significant increase in the global average temperature, and the greenhouse effect has become one of the most serious environmental problems facing mankind in the 21st century. The separation and recovery, storage and utilization (CCS&CCUS) of CO2 produced and emitted during the utilization of coal, petroleum and other fossil fuels has attracted widespread attention from all over the world.
以煤气化为龙头的现代煤化工技术已经成为煤炭清洁利用的一个重要方向,具有煤的热利用效率高,操作费用低,粉尘、NOx、SO2等污染物接近零排放的特点。现代煤气化过程具有不仅原料来源广,热利用效率高,同时可以实现燃烧前CO2的脱除及捕集,以较低的能耗和经济成本实现CO2的减排。在未来的CO2减排过程中,煤气化与燃烧前CO2捕集技术的结合将具有广泛的应用。The modern coal chemical technology led by coal gasification has become an important direction for clean coal utilization. It has the characteristics of high thermal utilization efficiency of coal, low operating cost, and close to zero emission of dust, NOx , SO2 and other pollutants. The modern coal gasification process not only has a wide source of raw materials and high heat utilization efficiency, but also can remove and capture CO2 before combustion, and achieve CO2 emission reduction with low energy consumption and economic cost. In the futureCO2 emission reduction process, the combination of coal gasification and pre-combustionCO2 capture technology will have a wide range of applications.
低温甲醇洗工艺是一种成熟商业化应用的CO2、H2S气体脱除技术,也是极具代表性的燃烧前CO2分离技术。利用甲醇在低温条件下对酸性气体溶解度大的物理特性,可以有效的从粗合成气中脱除H2S、CO2等酸性气体,使合成气达到很高的净化度。The low-temperature methanol washing process is a mature and commercially applied CO2 and H2 S gas removal technology, and it is also a very representative pre-combustion CO2 separation technology. Utilizing the physical characteristics of methanol's high solubility to acid gases under low temperature conditions, it can effectively remove acid gases such as H2 S and CO2 from crude synthesis gas, so that the synthesis gas can reach a high degree of purification.
在以煤为原料,气化工艺采用激冷流程的工艺过程之后,低温甲醇洗可以有效的同时脱除粗变换气中的CO2和H2S等杂质。低温甲醇洗气体净化工艺,在得到净化合成气的同时,能够副产品气:富H2S产品气和CO2产品气。高浓度CO2产品气在工艺中的回收率一般60%左右。剩余CO2大部分在排放尾气中,浓度大致为60~85%,这部分CO2因浓度较低,得到高浓度CO2的能耗及费用高,多数处理方式为直接排空。还有少量CO2在富H2S产品气,随产品气进入克劳斯硫回收过程。After coal is used as raw material and the gasification process adopts a chilling process, low-temperature methanol washing can effectively remove impurities such as CO2 and H2 S in the crude shift gas at the same time. The low-temperature methanol scrubbing gas purification process, while obtaining purified synthesis gas, can produce by-product gases: H2 S-rich product gas and CO2 product gas. The recovery rate of high-concentration CO2 product gas in the process is generally about 60%. Most of the remaining CO2 is in the tail gas, with a concentration of approximately 60-85%. Due to the low concentration of this part of CO2 , the energy consumption and cost of obtaining high-concentration CO2 are high. Most of the treatment methods are direct emptying. There is also a small amount of CO2 in the H2 S-rich product gas, which enters the Claus sulfur recovery process with the product gas.
工艺产生的高浓度CO2产品气进行入管输送前需进行压缩处理。CO2产品气的压缩工段可分两步进行:首先用压缩机将CO2气体压缩为具有一定压力的液态,然后利用泵来进一步将其提压至规定的压力值。工程中常将(60bar,23℃)作为泵和压缩机工作区间的分界点,低于60bar时采用压缩机压缩,高于60bar后采用泵来压缩。经过压缩机压缩后,CO2温度会超过23℃,为了确保通过泵时的CO2处于液态,必须对CO2进行冷却处理,使其温度不超过23℃。The high-concentration CO2 product gas produced by the process needs to be compressed before being transported into the pipeline. The compression section ofCO2 product gas can be divided into two steps: first, the compressor is used to compress theCO2 gas into a liquid state with a certain pressure, and then the pump is used to further increase the pressure to the specified pressure value. In engineering, (60bar, 23°C) is often used as the dividing point between the working range of the pump and the compressor. When it is lower than 60bar, the compressor is used for compression, and when it is higher than 60bar, the pump is used for compression. After being compressed by the compressor, the temperature ofCO2 will exceed 23°C. In order to ensure that theCO2 is in a liquid state when passing through the pump, theCO2 must be cooled so that its temperature does not exceed 23°C.
出于对管道安全、可靠运行及可比经济性的考虑,CO2管道输送设计和操作的压力约在8.27-17.23MPa范围内,温度范围从地表温度至最高约48.9℃。这样的设计与操作条件下可以使高纯度的CO2产品气保持稳定的超临界或致密相态下,从而消除了潜在的两相运输的不稳定性。表1为大量CO2产品气管道输送要求。低温甲醇洗捕集系统所捕集的CO2能够满足以上要求,无需进一步净化。这种浓度的CO2可以用于地质封存或者强化石油开采。For the consideration of pipeline safety, reliable operation and comparable economy, the pressure of CO2 pipeline design and operation is in the range of 8.27-17.23MPa, and the temperature range is from the surface temperature to the highest of about 48.9°C. Such design and operating conditions can keep the high-purityCO2 product gas in a stable supercritical or dense phase state, thereby eliminating the potential instability of two-phase transport. Table 1 shows the pipeline transportation requirements for bulkCO2 product gas. The CO2 captured by the low-temperature methanol washing capture system can meet the above requirements without further purification. This concentration ofCO2 could be used for geological storage or enhanced oil recovery.
表1典型的CO2管道输送要求Table 1 TypicalCO2 Pipeline Delivery Requirements
申请号为201310247525.0的发明专利申请中公开了一种高CO2收率的低温甲醇洗方法及装置,如图1所示。在CO2解吸塔底与H2S浓缩塔之间增加CO2闪蒸塔,通过对CO2解吸塔底的甲醇富液的升温、降压强化达到CO2强化解吸,具有提高CO2产品收率的效果,其CO2产品气收率可以有效提高至91.2%。工艺中得到的高收率的CO2产品气通过多级间接冷却压缩,得到液化CO2产品,用于化工生产、强化石油开采或地质封存。但上述技术中存在以下不足:The invention patent application with application number 201310247525.0 discloses a low-temperature methanol washing method and device with highCO2 yield, as shown in Figure 1. A CO2 flash tower is added between the bottom of the CO2 desorption tower and the H2 S concentration tower, and the CO2 enhanced desorption can be achieved by increasing the temperature and depressurization of the methanol-rich liquid at the bottom of the CO2 desorption tower, which can improve the CO2 product absorption. The effect of efficiency, the CO2 product gas yield can be effectively increased to 91.2%. The high-yieldCO2 product gas obtained in the process is compressed through multi-stage indirect cooling to obtain liquefiedCO2 products for chemical production, enhanced oil recovery or geological storage. But there is following deficiency in above-mentioned technology:
(1)提高CO2产品气收率,通过额外热量供给使甲醇富液升温。随着捕集率的提高,工艺中需增加额外热量输入大量增加。(1) Increase the yield of CO2 product gas, and increase the temperature of methanol-rich liquid through additional heat supply. As the capture rate increases, the need for additional heat input to the process increases substantially.
(2)提高CO2产品气收率,通过额外冷量供给使CO2闪蒸塔顶的富CO2压缩气降温回送到CO2解吸塔底。随着捕集率的提高,工艺中需增加额外冷量输入增加。(2) To increase the CO2 product gas yield, the CO2 rich compressed gas at the top of the CO2 flash tower is cooled and returned to the bottom of the CO2 desorption tower through additional cooling supply. As the capture rate increases, the additional cooling input required in the process increases.
(3)CO2压缩过程需要一定的冷量输入,并且随着CO2产品气的增加,冷却处理的电力消耗会大量增加。(3) TheCO2 compression process requires a certain amount of cooling input, and with the increase of theCO2 product gas, the power consumption of the cooling process will increase significantly.
(4)CO2强化解吸过程和CO2压缩过程存在能量利用不合理,存在工艺能耗过高的问题。(4) The CO2 enhanced desorption process and the CO2 compression process have unreasonable energy utilization and high process energy consumption.
发明内容Contents of the invention
本发明的目的在于解决上述一种高CO2收率的低温甲醇洗工艺在提高CO2收率时能量利用不合理、工艺能耗过高的工艺问题,提供一种低温甲醇洗工艺和CO2压缩工艺的耦合方法及系统,该方法和系统能够在高CO2产品气的收率条件下,合理利用系统中的冷量和CO2压缩过程中的热量,降低高CO2捕集率下的系统能耗,减少操作成本。The purpose of the present invention is to solve the process problems of unreasonable energy utilization and high energy consumption of the above-mentioned low-temperature methanol washing process with highCO2 yield when increasing theCO2 yield, and provide a low-temperature methanol washing process andCO2 A coupling method and system for compression process, the method and system can rationally utilize the cooling capacity in the system and the heat in theCO2 compression process under the condition of highCO2 product gas yield, and reduce theCO2 capture rate under high System energy consumption reduces operating costs.
本发明解决上述技术问题的技术方案是:The technical scheme that the present invention solves the problems of the technologies described above is:
一种低温甲醇洗工艺和CO2压缩工艺的耦合方法,其中,低温甲醇洗工艺中的CO2解吸塔底与H2S浓缩塔之间设有CO2闪蒸塔,CO2压缩工艺具有CO2多级压缩装置和泵提压装置,该耦合方法包括以下步骤:A coupling method of a low-temperature methanol washing process and aCO2 compression process, wherein aCO2 flash tower is provided between the bottom of the CO2 desorption tower in the low-temperature methanol washing process and theH2S concentration tower, andtheCO2 compression process has a CO22 multi-stage compression device and pump pressure lifting device, the coupling method includes the following steps:
将所述CO2解吸塔塔底的甲醇富液和所述CO2多级压缩装置末端的压缩CO2产品气通过一个换热器进行耦合,耦合后的甲醇富液送入所述CO2闪蒸塔,耦合后的压缩CO2产品气降温液化成为液化CO2产品由泵提压装置提压至管道输送压力进行输送。Coupling the methanol-rich liquid at the bottom of theCO2 desorption tower and the compressedCO2 product gas at the end of theCO2 multi-stage compression device through a heat exchanger, the coupled methanol-rich liquid is sent to theCO2 flash In the distillation tower, the coupled compressed CO2 product gas is cooled and liquefied into a liquefied CO2 product, which is boosted by the pump pressure device to the pipeline delivery pressure for delivery.
本发明的耦合方法的一个优选方案,其中,当所述低温甲醇洗工艺中CO2收率为60.4%~79%时,该耦合方法包括以下步骤:A preferred version of the coupling method of the present invention, wherein, when theCO2 yield is 60.4% to 79% in the low-temperature methanol washing process, the coupling method comprises the following steps:
(1)低温甲醇洗工艺中再生产生的甲醇贫液与H2S浓缩塔塔底的甲醇富液以及CO2解吸塔塔底的甲醇富液分别进行热交换降温后输送至酸性气体吸收塔塔顶;(1) The lean methanol solution generated in the low-temperature methanol washing process is exchanged with the methanol-rich solution at the bottom of the H2 S concentration tower and the methanol-rich solution at the bottom of the CO2 desorption tower, respectively, and then transported to the acid gas absorption tower top;
(2)CO2解吸塔塔底的甲醇富液与甲醇贫液热交换升温后,再与CO2闪蒸塔塔顶的富CO2气进行热交换升温,然后与CO2多级压缩装置末端的压缩CO2产品气通过换热器进行耦合升温,最后送入所述CO2闪蒸塔。(2) After the methanol-rich liquid at the bottom of the CO2 desorption tower is heated up by heat exchange with the methanol-poor liquid, it is then heated up by heat exchange with the CO2- rich gas at the top of the
本发明的耦合方法的一个优选方案,其中,当所述低温甲醇洗工艺中CO2收率为80%~91.2%时,该耦合方法包括以下步骤:A preferred version of the coupling method of the present invention, wherein, when theCO2 yield is 80% to 91.2% in the low-temperature methanol washing process, the coupling method comprises the following steps:
(1)低温甲醇洗工艺中再生产生的甲醇贫液与H2S浓缩塔塔底的甲醇富液以及CO2解吸塔塔底的甲醇富液分别进行热交换降温后输送至酸性气体吸收塔塔顶;(1) The lean methanol solution generated in the low-temperature methanol washing process is exchanged with the methanol-rich solution at the bottom of the H2 S concentration tower and the methanol-rich solution at the bottom of the CO2 desorption tower, respectively, and then transported to the acid gas absorption tower top;
(2)CO2解吸塔塔底的甲醇富液与甲醇贫液热交换升温后,再与CO2多级压缩装置末端的压缩CO2产品气通过一个换热器进行耦合升温,然后与CO2多级压缩装置中的循环水热端进行热交换升温,最后送入所述CO2闪蒸塔。(2) After the methanol-rich liquid at the bottom of the CO2 desorption tower is heat-exchanged with the methanol-lean liquid to raise the temperature, it is coupled with the compressed CO2 product gas at the end of the CO2 multi-stage compression device through a heat exchanger to raise the temperature, and then with CO2 The hot end of the circulating water in the multi-stage compression device is subjected to heat exchange to raise the temperature, and finally sent to the CO2 flash tower.
本发明的耦合方法的一个优选方案,其中,当所述低温甲醇洗工艺中CO2收率为60.4%~79%时,CO2解吸塔塔底的甲醇富液与甲醇贫液热交换升温后,操作温度为-33~-31℃;再与CO2闪蒸塔塔顶的富CO2气进行热交换升温后,操作温度为-31~-28℃;再与CO2多级压缩装置末端的压缩CO2产品气通过一个换热器进行耦合升温后,操作温度为-26~-6℃。A preferred version of the coupling method of the present invention, wherein, when theCO2 yield in the low-temperature methanol washing process is 60.4% to 79%, the methanol-rich liquid at the bottom of theCO2 desorption tower and the methanol-poor liquid heat exchange and heat up , the operating temperature is -33~-31℃; after heat exchange with the CO2- rich gas at the top of theCO2 flash tower, the operating temperature is -31~-28℃; and then with the end of theCO2 multistage compression device After the compressed CO2 product gas is coupled and heated through a heat exchanger, the operating temperature is -26~-6°C.
本发明的耦合方法的一个优选方案,其中,当所述低温甲醇洗工艺中CO2收率为80%~91.2%时,CO2解吸塔塔底的甲醇富液与甲醇贫液热交换升温后,操作温度为-24~0℃;再与CO2多级压缩装置末端的压缩CO2产品气通过一个换热器进行耦合升温后,操作温度为-6~18℃;再与CO2多级压缩装置中的循环水热端进行热交换升温后,操作温度为-6~35℃。A preferred version of the coupling method of the present invention, wherein, when theCO2 yield in the low-temperature methanol washing process is 80% to 91.2%, the methanol-rich liquid at the bottom of theCO2 desorption tower and the methanol-poor liquid heat exchange after heating , the operating temperature is -24~0℃; then coupled with the compressed CO2 product gas at the end of the CO2 multistage compression device through a heat exchanger, the operating temperature is -6~18℃; then combined with the CO2 multistage The operating temperature of the circulating water hot end in the compression device is -6 to 35°C after heat exchange to raise the temperature.
一种低温甲醇洗工艺和CO2压缩工艺的耦合系统,其中,低温甲醇洗工艺中的CO2解吸塔底与H2S浓缩塔之间设有CO2闪蒸塔,CO2压缩工艺具有CO2多级压缩装置和泵提压装置,所述CO2解吸塔塔底通过管道连接于第一换热器后再与所述CO2闪蒸塔连接,所述CO2多级压缩装置末端通过管道连接于所述第一换热器后再与泵提压装置连接。A coupling system of low-temperature methanol washing process andCO2 compression process, wherein aCO2 flash tower is set between the bottom of the CO2 desorption tower and theH2S concentration tower in the low-temperature methanol washing process, andtheCO2 compression process has a CO2 multi-stage compression device and pump pressure-lifting device, the bottom of theCO2 desorption tower is connected to the first heat exchanger through a pipeline and then connected to theCO2 flash tower, and the end of theCO2 multi-stage compression device is passed The pipeline is connected to the first heat exchanger and then connected to the pump pressure raising device.
本发明的耦合系统的一个优选方案,其中,所述CO2多级压缩装置包括具有多级压缩汽缸的压缩机和多个换热器,所述每级压缩汽缸外设置有换热器,每个换热器分别与进水管和出水管连接。A preferred solution of the coupling system of the present invention, wherein theCO2 multi-stage compression device includes a compressor with a multi-stage compression cylinder and multiple heat exchangers, and a heat exchanger is arranged outside each compression cylinder, and each The heat exchangers are respectively connected to the water inlet pipe and the water outlet pipe.
本发明的耦合系统的一个优选方案,其中,所述低温甲醇洗工艺中再生产生的甲醇贫液的输送管分别与H2S浓缩塔塔底连接在第二换热器上、与CO2解吸塔塔底连接在第三换热器上;A preferred solution of the coupling system of the present invention, wherein, the delivery pipes of the methanol lean liquid regenerated in the low-temperature methanol washing process are respectively connected to the bottom of theH2S concentration tower on the second heat exchanger, desorbed withCO2 The bottom of the tower is connected to the third heat exchanger;
所述CO2解吸塔塔底通过管道连接于所述第三换热器上后,再与CO2闪蒸塔塔顶连接于第四换热器上,然后与所述第一换热器连接,最后与所述CO2闪蒸塔连接。After the bottom of theCO desorption tower is connected to the third heat exchanger through a pipeline, it is connected with the top of theCO flash tower to the fourth heat exchanger, and then connected to the first heat exchanger , and finally connected with the CO2 flash tower.
本发明的耦合系统的一个优选方案,其中,所述低温甲醇洗工艺中再生产生的甲醇贫液的输送管分别与H2S浓缩塔塔底连接在第二换热器上、与CO2解吸塔塔底连接在第三换热器上;A preferred solution of the coupling system of the present invention, wherein, the delivery pipes of the methanol lean liquid regenerated in the low-temperature methanol washing process are respectively connected to the bottom of theH2S concentration tower on the second heat exchanger, desorbed withCO2 The bottom of the tower is connected to the third heat exchanger;
所述CO2解吸塔塔底通过管道连接于所述第三换热器上后,再与所述第一换热器连接,然后与所述出水管连接在第五换热器上,最后与所述CO2闪蒸塔连接。TheCO desorption tower bottom is connected to the third heat exchanger through a pipeline, then connected to the first heat exchanger, then connected to the fifth heat exchanger with the water outlet pipe, and finally connected to the fifth heat exchanger. TheCO2 flash column is connected.
本发明与现有技术相比具有以下的有益效果:Compared with the prior art, the present invention has the following beneficial effects:
在低温甲醇洗工艺中,为了提高CO2产品收率,在CO2解吸塔底与H2S浓缩塔之间增加CO2闪蒸塔,CO2解吸塔底的低温甲醇富液需经过升温、降压后再进入CO2闪蒸塔进行强化解吸;而在CO2压缩工艺中,CO2气体经过多次压缩后,需要冷却到一定的温度才便于后续的泵送;本发明巧妙地利用上述两个工艺过程中一个需要升温、一个需要冷却的特点,将两者耦合在一起,实现能量的相互利用,使得两个工艺中的上述处理过程无需再由外部单独提供热量或冷量,节省了电耗,提高了整体系统的能量利用率。In the low-temperature methanol washing process, in order to increase the yield ofCO2 products, aCO2 flash tower is added between the bottom of theCO2 desorption tower and theH2S concentration tower, and the low-temperature methanol-rich liquid at the bottom of theCO2 desorption tower needs to be heated, After depressurization, enter theCO2 flash tower for enhanced desorption; while in theCO2 compression process,CO2 gas needs to be cooled to a certain temperature to facilitate subsequent pumping after multiple compressions; the present invention cleverly utilizes the above One of the two processes needs to be heated and the other needs to be cooled. The two processes are coupled together to realize the mutual utilization of energy, so that the above-mentioned processes in the two processes do not need to be provided with heat or cooling separately from the outside, saving Power consumption improves the energy utilization rate of the overall system.
附图说明Description of drawings
图1为现有技术中的一种高CO2收率的低温甲醇洗工艺流程图,其中:4吸收塔;14CO2解吸塔;19H2S浓缩塔;28甲醇热再生塔;43甲醇精馏塔,50CO2闪蒸塔;3、11、12、13、30、33为闪蒸塔;2、8、9、10、25、27、29、32、36、42、46、49、53为换热器;26、31、38、41、55为泵;43、52压缩机;1、5、6、7、15、16、17、18、20、22、23、34、35、37、39、40、44、45、47、48、51、54为物料编号。Fig. 1 is a kind of high CO in the prior art Low- temperature methanol washing process flow chart of yield, wherein: 4 absorption towers;14CO Desorption towers;19H S concentration towers; 28 methanol heat regeneration towers; 43 methanol rectification tower, 50CO2 flash tower; 3, 11, 12, 13, 30, 33 are flash towers; Heat exchanger; 26, 31, 38, 41, 55 are pumps; 43, 52 compressors; 1, 5, 6, 7, 15, 16, 17, 18, 20, 22, 23, 34, 35, 37, 39, 40, 44, 45, 47, 48, 51, 54 are the material numbers.
图2为本发明的低温甲醇洗工艺和CO2压缩工艺的耦合方系统中,当CO2收率为60.4%~78%时的系统示意图;其中:56、60、62、63、64、65为换热器,61为多级压缩机,68为泵,70循环水冷端,71为循环水热端,66为压缩CO2产品气,67、69为液化CO2产品;其余零件编号与图1中的相同零件编号表示相同的部件或物料;并且,在换热器中,60为第一换热器,27为第二换热器,56为第三换热器,53为第四换热器。Fig. 2 is the low-temperature methanol washing process of the present invention andCO Compression process in the coupling system, whenCO The yield is 60.4% ~ 78% of the system diagram; wherein: 56, 60, 62, 63, 64, 65 61 is a multi-stage compressor, 68 is a pump, 70 is a circulating water cooling end, 71 is a circulating water heating end, 66 is a compressed CO2 product gas, 67, 69 are a liquefied CO2 product; The same part numbers in 1 represent the same parts or materials; and, among the heat exchangers, 60 is the first heat exchanger, 27 is the second heat exchanger, 56 is the third heat exchanger, and 53 is the fourth heat exchanger heater.
图3为本发明的低温甲醇洗工艺和CO2压缩工艺的耦合方系统中,当CO2收率为79%~91.2%时的系统示意图;其中:56、60、62、63、64、65、72为换热器,61为多级压缩机,68为泵,70循环水冷端,71、73为循环水热端,66压缩CO2为产品气,67、69为液化CO2产品;其余零件编号与图1中的相同零件编号表示相同的部件或物料;并且,在换热器中,60为第一换热器,27为第二换热器,56为第三换热器,53为第四换热器,72是第五换热器。Fig. 3 is the low-temperature methanol washing process of the present invention andCO Compression process in the coupling system, when COThe yield is 79% ~ 91.2% system schematic diagram; wherein: 56, 60, 62, 63, 64, 65 , 72 is a heat exchanger, 61 is a multi-stage compressor, 68 is a pump, 70 is a circulating water cooling end, 71, 73 is a circulating water heating end, 66 is compressedCO2 as a product gas, 67, 69 is a liquefiedCO2 product; the rest The part number and the same part number in Fig. 1 represent the same parts or materials; and, in the heat exchanger, 60 is the first heat exchanger, 27 is the second heat exchanger, 56 is the third heat exchanger, 53 Is the fourth heat exchanger, 72 is the fifth heat exchanger.
具体实施方式Detailed ways
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。The present invention will be further described in detail below with reference to the examples and drawings, but the implementation of the present invention is not limited thereto.
参见图1~图3,低温甲醇洗工艺和CO2压缩工艺的耦合方法和系统中,所述低温甲醇洗工艺中的低温甲醇洗装置的基本构成(参见图2和图3)与申请号为201310247525.0的发明专利申请中所公开的一种高CO2收率的低温甲醇洗装置(参见图1)相同,具体由吸收塔4、CO2解吸塔14、H2S浓缩塔19、甲醇热再生塔28、甲醇精馏塔43、多个闪蒸塔、多个换热器、多个泵以及多个压缩机等组成,CO2解吸塔14底与H2S浓缩塔19之间设有CO2闪蒸塔50,且图2、图3与图1中相同的零件标号表示相同的部件或物料,因此对于相同的部分,申请号为201310247525.0的发明专利申请中对图1的工艺流程及装置的描述适用于本实施例对图2、图3的描述,此处不再重复。Referring to Figures 1 to 3, in the coupling method and system of the low-temperature methanol washing process and theCO2 compression process, the basic composition of the low-temperature methanol washing device in the low-temperature methanol washing process (see Figures 2 and 3) and the application number are A low-temperature methanol washing device with high CO2 yield (see Figure 1) disclosed in the invention patent application of 201310247525.0 is the same, specifically consists of absorption tower 4, CO2 desorption tower 14, H2
本发明的低温甲醇洗装置与图1所示低温甲醇洗装置的不同之处在于,本发明中,所述CO2解吸塔14塔底的甲醇富液16不是通过外部的热源进行加热,而是与CO2压缩工艺中的热源进行耦合,从而获得热量。The difference between the low-temperature methanol washing device of the present invention and the low-temperature methanol washing device shown in Figure 1 is that in the present invention, the methanol-
本发明的CO2压缩工艺具有CO2多级压缩装置和泵提压装置,与现有技术的不同之处在于,CO2多级压缩装置末端的压缩CO2产品气不是通过外部的冷源进行降温液化,而是与低温甲醇洗工艺中的冷源进行耦合,从而获得本发明所述的低温甲醇洗工艺和CO2压缩工艺的耦合方法和系统。TheCO2 compression process of the present invention has aCO2 multi-stage compression device and a pump pressure-lifting device, and the difference from the prior art is that the compressedCO2 product gas at the end of the CO2 multi-stage compression device is not carried out by an external cold source Instead of cooling and liquefying, it is coupled with the cold source in the low-temperature methanol washing process, so as to obtain the coupling method and system of the low-temperature methanol washing process andCO2 compression process described in the present invention.
具体地,本发明的低温甲醇洗工艺和CO2压缩工艺的耦合方法包括以下步骤:将所述CO2解吸塔14塔底的甲醇富液16和所述CO2多级压缩装置末端的压缩CO2产品气通过一个换热器进行耦合,耦合后的甲醇富液16送入所述CO2闪蒸塔50,耦合后的压缩CO2产品气降温液化成为液化CO2产品再由泵提压装置提压至管道输送压力进行输送。Specifically, the coupling method of the low-temperature methanol washing process and theCO2 compression process of the present invention includes the following steps: the methanol-
本发明的低温甲醇洗工艺和CO2压缩工艺的耦合系统为:CO2解吸塔14塔底通过管道连接于第一换热器60后再与所述CO2闪蒸塔50连接,所述CO2多级压缩装置末端通过管道连接于所述第一换热器60后再与泵提压装置连接。The low-temperature methanol washing process of the present invention and thecoupling system of the CO compression process are: the bottom of theCO
更进一步地,由于当低温甲醇洗工艺中CO2的收率不同时,述CO2解吸塔14塔底的甲醇富液16在进入CO2闪蒸塔50之前的温度要求不同,CO2的收率越高,需要的温度也越高。同时,基于低温冷量梯级利用的原则,将所述CO2解吸塔底14的甲醇富液16冷量进行梯级换热,即依次与循环甲醇贫液37、CO2闪蒸塔50塔顶的压缩富CO2气51、多级压缩过程的CO2产品气换热,从而获得图2的技术方案。但是随着CO2收率的提高,CO2闪蒸塔50的操作压力降低,压缩机52功耗增大,富CO2气51压缩后温度明显提高,在CO2收率为79-80%时,富CO2气51压缩后温度在42-60℃之间,在CO2收率高于80%范围时,压缩富CO2气51需经过循环冷却水冷却降温,而不适合直接利用CO2解吸塔底14的甲醇富液16冷量;并且,随着CO2收率的提高,CO2闪蒸塔50的操作温度也相应提高,进入CO2闪蒸塔的甲醇富液温度升温明显,因此经过多级压缩后的CO2产品气的热量不足以达到操作要求,而CO2多级压缩装置中产生的循环水热端则可以补充更多的热量,结合该特点,形成图3所示的技术方案。Further, because when the yield ofCO in the low-temperature methanol washing process is different, the methanol rich liquid 16 at the bottom of theCO
下面实施例1和实施例2为收率为60.4%~79%时的具体实施方式,实施例3和实施例4为收率为80%~91.2%时的具体实施方式。The
实施例1Example 1
参见图2,本实施例的低温甲醇洗工艺和CO2压缩工艺的耦合方法包括以下步骤:Referring to Fig. 2, the low-temperature methanol washing process of the present embodiment andCO The coupling method of compression process comprises the following steps:
(1)低温甲醇洗工艺中再生产生的甲醇贫液37与H2S浓缩塔19塔底的甲醇富液22以及CO2解吸塔14塔底的甲醇富液16分别进行热交换降温后输送至酸性气体吸收塔4塔顶;(1) The
(2)CO2解吸塔14塔底的甲醇富液16与甲醇贫液37热交换升温后,再与CO2闪蒸塔50塔顶的富CO2气51进行热交换升温,然后与CO2多级压缩装置末端的压缩CO2产品气66通过一个换热器进行耦合升温,最后送入所述CO2闪蒸塔50。(2) After the methanol-
本实施例的低温甲醇洗工艺和CO2压缩工艺的耦合系统为:所述低温甲醇洗工艺中再生产生的甲醇贫液37的输送管分别与H2S浓缩塔19塔底连接在第二换热器27上、与CO2解吸塔14塔底连接在第三换热器56上;所述CO2解吸塔14通过管道连接于所述第三换热器56上后,再与CO2闪蒸塔50塔顶连接于第四换热器53上,然后与所述第一换热器60连接,最后与所述CO2闪蒸塔50连接。The coupling system of the low-temperature methanol washing process and theCO2 compression process of this embodiment is: the delivery pipes of the methanol lean liquid 37 regenerated in the low-temperature methanol washing process are respectively connected to the bottom of the
所述CO2多级压缩装置包括具有四个压缩汽缸的压缩机61和多个换热器62、63、64、65,所述每个压缩汽缸上设置有一个换热器,每个换热器分别与进水管和出水管连接,所述进水管构成循环冷水冷端70,出水管构成循环水热端71。所述泵提压装置包括泵67以及输送管道。TheCO2 multistage compression device includes a
下面结合具体的例子对本实施例的耦合方法和耦合系统的工作过程作进一步详细的描述:The working process of the coupling method and the coupling system of this embodiment will be further described in detail in combination with specific examples:
参见图2,进入本发明工艺的粗合成气1来自以煤为原料,德士古气化得到的耐硫变换合成气,从变换工段来的气体流量为95760Nm3/hr,组成如下表。Referring to Fig. 2, the
表2粗气化煤气的成分Table 2 Composition of crude gasification gas
进入流程的原料气1在经换热器2冷却后进入闪蒸塔3,从塔底分离出水甲醇溶液48。从闪蒸塔3塔顶出的脱水合成气进入吸收塔4底部,吸收塔4顶部注入低温甲醇液47,流量168.2t/hr,操作温度-50℃,操作压力35bar。在吸收塔4塔顶得到净化合成气5。不含H2S的甲醇富液7和富H2S甲醇富液6分别经过降温减压后,进入闪蒸塔11和闪蒸塔13,进行闪蒸分离。The
闪蒸塔11、13塔底的甲醇富液进入CO2解吸过程。CO2解吸塔14塔底甲醇富液16进入CO2闪蒸塔50之前,先后经过换热器56、53、60,以充分回收利用解吸过程产生的低温冷量,其中,经过换热器56后,操作温度为-34℃,经过换热器53后,操作温度为-31℃,经过换热器60后,操作温度为-26℃;CO2闪蒸塔50的操作压力为2.5bar。CO2闪蒸塔50顶出的富CO2气51经过加压降温后输送至CO2解吸塔14塔底,经换热器53后温度降温-31℃,压缩机52操作压力为4bar。闪蒸塔13塔顶得到体积浓度为99.1%的CO2产品气15,产品气流量为20068Nm3/hr,CO2产品气15的收率为60.4%。The methanol-rich liquid at the bottom of flash towers 11 and 13 enters theCO2 desorption process. Before the methanol-
CO2产品气15经换热器2后进入多级间接冷却压缩过程,CO2产品气15经过多级压缩装置间接冷却至操作温度40℃,压力为70bar。压缩CO2产品气66经换热器60得到液化CO2产品,操作温度为21℃,通过泵68进行提压至管道输送压力150bar。The CO2 product gas 15 enters the multi-stage indirect cooling compression process after passing through the
实施例2Example 2
本实施例的低温甲醇洗工艺和CO2压缩工艺的耦合方法和系统与实施例1相同,不同之处在于:CO2收率不同,因此相应的操作温度也不同。具体如下:The coupling method and system of the low-temperature methanol washing process and theCO2 compression process in this embodiment are the same as in Example 1, except that theCO2 yield is different, so the corresponding operating temperature is also different. details as follows:
参见图2,CO2解吸塔14塔底甲醇富液16进入CO2闪蒸塔50之前,先后经过换热器56、53、60,以充分回收利用解吸过程产生的低温冷量,其中,经过换热器56后,操作温度为-33℃,经过换热器53后,操作温度为-26℃,经过换热器60后,操作温度为-5℃,CO2闪蒸塔50的操作压力为1.7bar。CO2闪蒸塔50顶出的富CO2气51经过加压降温后输送至CO2解吸塔14塔底,经换热器53后温度降温-30.5℃,压缩机52操作压力为4bar。闪蒸塔13塔顶得到体积浓度为99.0%的CO2产品气15,产品气流量为25357Nm3/hr,CO2产品气15的收率为78.3%。Referring to Fig. 2, the methanol-
CO2产品气15经换热器2后进入多级间接冷却压缩过程,CO2产品气15经过多级压缩装置间接冷却至操作温度40℃,压力为65bar。压缩CO2产品气66经换热器60得到液化CO2产品,操作温度为15℃,通过泵68进行提压至管道输送压力150bar。The CO2 product gas 15 enters the multi-stage indirect cooling and compression process after passing through the
本实施例上述以外的其他实施方式与实施例1相同Other implementations other than the above in this embodiment are the same as in
实施例3Example 3
参见图3,本实施例的低温甲醇洗工艺和CO2压缩工艺的耦合方法包括以下步骤:Referring to Fig. 3, the low-temperature methanol washing process of the present embodiment and the COThe coupling method of the compression process comprises the following steps:
(1)低温甲醇洗工艺中再生产生的甲醇贫液37与H2S浓缩塔19塔底的甲醇富液22以及CO2解吸塔14塔底的甲醇富液16分别进行热交换降温后输送至酸性气体吸收塔4塔顶;(1) The
(2)CO2解吸塔14塔底的甲醇富液16与甲醇贫液37热交换升温后,再与CO2多级压缩装置末端的压缩CO2产品气66通过一个换热器进行耦合升温,然后与CO2多级压缩装置中的循环水热端71进行热交换升温,最后送入所述CO2闪蒸塔50。(2) After the methanol- rich liquid 16 at the bottom of the
本实施例的低温甲醇洗工艺和CO2压缩工艺的耦合系统为:所述低温甲醇洗工艺中再生产生的甲醇贫液37的输送管分别与H2S浓缩塔19塔底连接在第二换热器27上、与CO2解吸塔14塔底连接在第三换热器56上;所述CO2解吸塔14塔底通过管道连接于所述第三换热器56上后,再与所述第一换热器60连接,然后与所述出水管连接在第五换热器72上,最后与所述CO2闪蒸塔50连接。The coupling system of the low-temperature methanol washing process and theCO2 compression process in this embodiment is: the delivery pipes of the methanol lean liquid 37 regenerated in the low-temperature methanol washing process are respectively connected to the bottom of theH2S
下面结合具体的例子对本实施例的耦合方法和耦合系统的工作过程作进一步详细的描述:The working process of the coupling method and the coupling system of this embodiment will be further described in detail in combination with specific examples:
进入本发明工艺的原料气来自以煤为原料,德士古气化得到的耐硫变换合成气,从变换工段来的气体流量为104292Nm3/hr,组成如下表,工艺流程见图3。The raw material gas entering the process of the present invention comes from the sulfur-resistant shift synthesis gas obtained by Texaco gasification with coal as raw material. The gas flow rate from the shift section is 104292Nm3 / hr. The composition is as follows. The process flow is shown in Figure 3.
表3粗气化煤气的成分Table 3 Composition of crude gasification gas
进入流程的原料气1在经换热器2冷却后进入闪蒸塔3,从塔底分离出水甲醇溶液48。从闪蒸塔3塔顶出的脱水合成气进入吸收塔4底部,吸收塔4顶部注入低温甲醇液47,流量186.8t/hr,操作温度-50℃,操作压力35bar。在吸收塔4塔顶得到净化合成气5。不含H2S的甲醇富液7和富H2S甲醇富液6分别经过降温减压后,进入闪蒸塔11和闪蒸塔13,进行闪蒸分离。The
闪蒸塔11、13塔底的甲醇富液进入CO2解吸过程。CO2解吸塔14塔底甲醇富液16进入CO2闪蒸塔50之前,先后经过换热器56、60、72,以充分回收利用解吸过程产生的低温冷量,其中,经过换热器56后,操作温度为-25℃,经过换热器60后,操作温度为6℃,经过换热器72后,操作温度为-2℃,CO2闪蒸塔50的操作压力为1.5bar。CO2闪蒸塔50顶出的富CO2气51经过加压降温后输送至CO2解吸塔14塔底,经换热器53后温度降温-31℃,压缩机52操作压力为4bar。闪蒸塔13塔顶得到体积浓度为99.1%的CO2产品气15,产品气流量为28883.5Nm3/hr,CO2产品气15的收率为80.9%。The methanol-rich liquid at the bottom of flash towers 11 and 13 enters theCO2 desorption process. Before the methanol-
CO2产品气15经换热器2后进入多级间接冷却压缩过程,CO2产品气15经过多级压缩装置间接冷却至操作温度40℃,压力为65bar。压缩CO2产品气66经换热器60得到液化CO2产品,操作温度为17℃,通过泵68进行提压至管道输送压力150bar。The CO2 product gas 15 enters the multi-stage indirect cooling and compression process after passing through the
实施例4Example 4
具体实施如下:The specific implementation is as follows:
参见图3,本实施例的低温甲醇洗工艺和CO2压缩工艺的耦合方法和系统与实施例3相同,不同之处在于:CO2收率不同,因此相应的操作温度也不同。具体如下:Referring to Fig. 3, the coupling method and system of the low-temperature methanol washing process and the CO2 compression process in this embodiment are the same as in
CO2解吸塔14塔底甲醇富液16进入CO2闪蒸塔50之前,先后经过换热器56、60、72,以充分回收利用解吸过程产生的低温冷量,其中,经过换热器56后,操作温度为-2℃,经过换热器60后,操作温度为17℃,经过换热器72后,操作温度为35℃,CO2闪蒸塔50的操作压力为1bar。CO2闪蒸塔50顶出的富CO2气51经过加压降温后输送至CO2解吸塔14塔底,经换热器53后温度降温-32℃,压缩机52操作压力为4bar。闪蒸塔13塔顶得到体积浓度为99.3%的CO2产品气15,产品气流量为32431Nm3/hr,CO2产品气15的收率为91.2%。Before the methanol-
CO2产品气15经换热器2后进入多级间接冷却压缩过程,CO2产品气15经过多级压缩装置间接冷却至操作温度40℃,压力为65bar。压缩CO2产品气66经换热器60得到液化CO2产品,操作温度为20℃,通过泵68进行提压至管道输送压力150bar。The CO2 product gas 15 enters the multi-stage indirect cooling and compression process after passing through the
本实施例上述以外的其他实施方式与实施例3相同。Embodiments other than the above in this embodiment are the same as those in
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310656838.1ACN103666585B (en) | 2013-12-06 | 2013-12-06 | Coupling method and system of low-temperature methanol washing process and CO2 compression process |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310656838.1ACN103666585B (en) | 2013-12-06 | 2013-12-06 | Coupling method and system of low-temperature methanol washing process and CO2 compression process |
| Publication Number | Publication Date |
|---|---|
| CN103666585Atrue CN103666585A (en) | 2014-03-26 |
| CN103666585B CN103666585B (en) | 2015-03-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310656838.1AExpired - Fee RelatedCN103666585B (en) | 2013-12-06 | 2013-12-06 | Coupling method and system of low-temperature methanol washing process and CO2 compression process |
| Country | Link |
|---|---|
| CN (1) | CN103666585B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107355680A (en)* | 2017-07-19 | 2017-11-17 | 陕西延长石油(集团)有限责任公司研究院 | A kind of CO2Trapping, conveying, using with sealing full-flow process up for safekeeping |
| CN111659147A (en)* | 2019-03-08 | 2020-09-15 | 大连佳纯气体净化技术开发有限公司 | Recovery of CO from low-temperature methanol washing process2And a recycling system |
| CN113532191A (en)* | 2021-07-22 | 2021-10-22 | 华亭煤业集团有限责任公司 | Optimized heat exchange network of low-temperature methanol washing system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4528002A (en)* | 1983-04-21 | 1985-07-09 | Linde Aktiengesellschaft | Process for separation of CO2 from CO2 -containing gases |
| WO2007012143A1 (en)* | 2005-07-29 | 2007-02-01 | Commonwealth Scientific And Industrial Research Organisation | Recovery of carbon dioxide from flue gases |
| US20080056972A1 (en)* | 2006-09-06 | 2008-03-06 | Mitsubishi Heavy Industries, Ltd. | Co2 recovery system and co2 recovery method |
| CN101601956A (en)* | 2008-06-10 | 2009-12-16 | 现代自动车株式会社 | The method of regenerating carbon dioxide absorbent |
| CN101703880A (en)* | 2009-11-02 | 2010-05-12 | 西安交通大学 | Power plant flue gas desulphurization and decarbonization integrated purification system |
| CN103320176A (en)* | 2013-06-20 | 2013-09-25 | 华南理工大学 | A low-temperature methanol washing method and device with high CO2 yield |
| US20130269526A1 (en)* | 2011-09-12 | 2013-10-17 | E I Du Pont De Nemours And Company | Methods and apparatus for carbon dixoide capture |
| CN203639434U (en)* | 2013-12-06 | 2014-06-11 | 华南理工大学 | A coupling system of low temperature methanol washing process and CO2 compression process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4528002A (en)* | 1983-04-21 | 1985-07-09 | Linde Aktiengesellschaft | Process for separation of CO2 from CO2 -containing gases |
| WO2007012143A1 (en)* | 2005-07-29 | 2007-02-01 | Commonwealth Scientific And Industrial Research Organisation | Recovery of carbon dioxide from flue gases |
| US20080056972A1 (en)* | 2006-09-06 | 2008-03-06 | Mitsubishi Heavy Industries, Ltd. | Co2 recovery system and co2 recovery method |
| CN101601956A (en)* | 2008-06-10 | 2009-12-16 | 现代自动车株式会社 | The method of regenerating carbon dioxide absorbent |
| CN101703880A (en)* | 2009-11-02 | 2010-05-12 | 西安交通大学 | Power plant flue gas desulphurization and decarbonization integrated purification system |
| US20130269526A1 (en)* | 2011-09-12 | 2013-10-17 | E I Du Pont De Nemours And Company | Methods and apparatus for carbon dixoide capture |
| CN103320176A (en)* | 2013-06-20 | 2013-09-25 | 华南理工大学 | A low-temperature methanol washing method and device with high CO2 yield |
| CN203639434U (en)* | 2013-12-06 | 2014-06-11 | 华南理工大学 | A coupling system of low temperature methanol washing process and CO2 compression process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107355680A (en)* | 2017-07-19 | 2017-11-17 | 陕西延长石油(集团)有限责任公司研究院 | A kind of CO2Trapping, conveying, using with sealing full-flow process up for safekeeping |
| CN107355680B (en)* | 2017-07-19 | 2019-06-04 | 陕西延长石油(集团)有限责任公司研究院 | A kind of CO2Trapping, conveying, using with seal full-flow process up for safekeeping |
| CN111659147A (en)* | 2019-03-08 | 2020-09-15 | 大连佳纯气体净化技术开发有限公司 | Recovery of CO from low-temperature methanol washing process2And a recycling system |
| CN113532191A (en)* | 2021-07-22 | 2021-10-22 | 华亭煤业集团有限责任公司 | Optimized heat exchange network of low-temperature methanol washing system |
| Publication number | Publication date |
|---|---|
| CN103666585B (en) | 2015-03-11 |
| Publication | Publication Date | Title |
|---|---|---|
| CN115069057B (en) | Method for purifying and recovering carbon dioxide by low-temperature rectification | |
| CN103215093B (en) | Miniature skid type nitrogen expansion natural gas liquefaction system and method thereof | |
| CN203375800U (en) | Deep cooling air separation oxygen generation system by adoption of synthesis ammonia process | |
| CN101538040B (en) | Method for coproducing or singly producing food grade carbon dioxide and industrial grade carbon dioxide by utilizing industrial waste gas | |
| US20090235822A1 (en) | CO2 recovery from IGCC power plants | |
| CN109999618B (en) | System and method for separating carbon dioxide from medium-high pressure gas source | |
| CN203639434U (en) | A coupling system of low temperature methanol washing process and CO2 compression process | |
| CN105502294B (en) | A kind of electronic grade high-purity hydrogen chloride high pressure method for preparing | |
| CN106369935A (en) | Air separation system and method utilizing pressure energy of high-pressure natural gas pipeline network | |
| CN103666585B (en) | Coupling method and system of low-temperature methanol washing process and CO2 compression process | |
| CN102256686B (en) | Method for purifying gases and obtaining acid gases | |
| CN102269509B (en) | CO2 compression and liquefaction system combined with waste heat driven refrigeration | |
| CN104987279B (en) | Methanol-making system and method through coal gasification integrating waste heat cooling and carbon trapping | |
| CN103881781A (en) | Marsh gas membrane separation methane purifying technology | |
| CN102445054A (en) | Process for preparing oxygen and nitrogen by air separation | |
| CN217661593U (en) | Device for purifying and recovering carbon dioxide by low-temperature rectification | |
| CN206160625U (en) | Utilize air separation system of high -pressure natural gas pipe network pressure ability | |
| CN210832753U (en) | Carbon dioxide compression and purification system of coal-fired boiler | |
| CN109357475A (en) | A system for producing liquid oxygen and liquid nitrogen by using LNG cold energy in steps | |
| CN202630585U (en) | Air separation equipment | |
| CN217809266U (en) | Integrated membrane separation light hydrocarbon recovery system for shale oil associated gas | |
| CN108007068A (en) | A kind of LNG cold energy uses are thermally integrated rectifying space division system | |
| CN102706101A (en) | Air separating device | |
| CN114459236A (en) | Energy-saving cement kiln flue gas carbon capture method | |
| CN207751222U (en) | A kind of LNG cold energy uses are thermally integrated rectifying space division system |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20150311 | |
| CF01 | Termination of patent right due to non-payment of annual fee |