技术领域technical field
本发明涉及一种喇叭天线,尤其是一种薄基片相位幅度校正槽线差波束平面喇叭天线。The invention relates to a horn antenna, in particular to a planar horn antenna with thin substrate phase amplitude correction groove line difference beam.
背景技术Background technique
喇叭天线在卫星通信、地面微波链路及射电望远镜等系统中有着广泛的应用。但是,三维喇叭天线的巨大几何尺寸制约了其在平面电路中的应用和发展。近年来,基片集成波导技术的提出和发展很好的促进了平面喇叭天线的发展。基片集成波导有尺寸小、重量轻、易于集成和加工制作等优点。基于基片集成波导的平面的基片集成波导平面喇叭天线除了具有喇叭天线的特点外,还很好的实现了喇叭天线的小型化、轻型化,而且易于集成在微波毫米波平面电路中。传统的基片集成波导平面喇叭天线的有一个限制,天线喇叭口基板的厚度要大于十分之一工作波长,天线才能有较好的辐射性能,不然由于反射,天线里的能量辐射不出去。这样就要求天线基板的厚度不能太薄,在L波段等较低频段要满足这个要求更是十分困难,很厚的基板不仅体积和重量很大,抵消了集成的优点,而且还增加了成本,另外这些天线辐射场的极化方向一般都是垂直于介质基板,而有些应用需要辐射场的极化平行于介质基板。已有的一些天线在平面喇叭天线前面加载贴片改善薄基片平面喇叭天线的辐射,但加载的贴片尺寸较大,而且工作频带较窄。通常为了实现差波束,需要采用特别的馈电装置,这些馈电装置或者在平面电路中不易实现,或者是窄带的移相电路。另外传统的基片集成波导平面喇叭天线的增益相对比较低,其原因在于由于喇叭口不断的张开,导致电磁波传播到喇叭口径面时出现相位不同步,口径电场强度的幅度分布也不均匀,辐射方向性和增益降低,使得构成的差波束天线的零深较浅且斜率较低,影响雷达的测向精度。目前已有采用介质加载、介质棱镜等方法,矫正喇叭口径场,但是这些方法都只能改善相位分布的一致性,不能改善幅度分布的均匀性,而且这些相位校准结构增加了天线的整体结构尺寸。Horn antennas are widely used in systems such as satellite communications, ground microwave links, and radio telescopes. However, the huge geometric size of the three-dimensional horn antenna restricts its application and development in planar circuits. In recent years, the proposal and development of substrate-integrated waveguide technology have greatly promoted the development of planar horn antennas. The substrate-integrated waveguide has the advantages of small size, light weight, easy integration and fabrication. The planar substrate-integrated waveguide horn antenna based on the planar substrate-integrated waveguide not only has the characteristics of the horn antenna, but also realizes the miniaturization and light weight of the horn antenna, and is easy to integrate in the microwave and millimeter-wave planar circuits. The traditional substrate-integrated waveguide planar horn antenna has a limitation. The thickness of the base plate of the antenna horn must be greater than one-tenth of the operating wavelength in order for the antenna to have better radiation performance. Otherwise, due to reflection, the energy in the antenna will not radiate out. This requires that the thickness of the antenna substrate should not be too thin, and it is very difficult to meet this requirement in lower frequency bands such as the L-band. A very thick substrate not only has a large volume and weight, which offsets the advantages of integration, but also increases the cost. In addition, the polarization direction of the radiation field of these antennas is generally perpendicular to the dielectric substrate, and some applications require the polarization of the radiation field to be parallel to the dielectric substrate. In some existing antennas, a patch is loaded in front of the planar horn antenna to improve the radiation of the thin-substrate planar horn antenna, but the size of the loaded patch is large and the working frequency band is narrow. Usually, in order to realize the difference beam, special feeding devices need to be used, and these feeding devices are either difficult to implement in planar circuits, or are narrow-band phase-shifting circuits. In addition, the gain of the traditional substrate-integrated waveguide planar horn antenna is relatively low. The reason is that due to the continuous opening of the horn mouth, the phase is not synchronized when the electromagnetic wave propagates to the horn aperture surface, and the amplitude distribution of the aperture electric field intensity is not uniform. The radiation directivity and gain are reduced, which makes the zero depth of the formed differential beam antenna shallower and the slope lower, which affects the direction finding accuracy of the radar. At present, methods such as dielectric loading and dielectric prisms have been used to correct the horn aperture field, but these methods can only improve the consistency of the phase distribution, but cannot improve the uniformity of the amplitude distribution, and these phase calibration structures increase the overall structural size of the antenna .
发明内容Contents of the invention
技术问题:本发明的目的是提出一种薄基片相位幅度校正槽线差波束平面喇叭天线,该天线辐射场的极化方向与介质基板平行,可以使用非常薄的介质基板制造,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,而且该平面喇叭天线可以矫正天线口径面上电磁波的相位和幅度不一致,增加天线差波束的零深及提高天线差波束的斜率。Technical problem: The purpose of this invention is to propose a planar horn antenna with thin substrate phase amplitude correction groove line difference beam. The polarization direction of the antenna radiation field is parallel to the dielectric substrate, which can be manufactured using a very thin dielectric substrate. In the case of very thin electrical thickness, it still has excellent radiation performance, and the planar horn antenna can correct the phase and amplitude inconsistency of electromagnetic waves on the antenna aperture surface, increase the zero depth of the antenna difference beam and increase the slope of the antenna difference beam.
技术方案:本发明的薄基片相位幅度校正槽线差波束平面喇叭天线,其特征在于该天线包括设置在介质基板上的微带馈线、基片集成喇叭天线和多个槽线喇叭;所述微带馈线的第一端口是该天线的输入输出端口,微带馈线的第二端口与基片集成喇叭天线相接;基片集成喇叭天线由位于介质基板一面的第一金属平面、位于介质基板另一面的第二金属平面和穿过介质基板连接第一金属平面和第二金属平面的两排金属化过孔喇叭侧壁组成,基片集成喇叭天线的两排金属化过孔喇叭侧壁之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线的口径面;基片集成喇叭天线中有奇数个金属化过孔阵列连接第一金属平面和第二金属平面,金属化过孔阵列的一端在基片集成喇叭天线内部,金属化过孔阵列的另一端在基片集成喇叭天线的口径面上;在金属化过孔阵列中有一个中间金属化过孔阵列把基片集成喇叭天线分成对称的左半天线和右半天线两部分;相邻的两个金属化过孔阵列、或者是一个金属化过孔阵列与其相邻的一排金属化过孔喇叭侧壁,与第一金属平面和第二金属平面构成介质填充波导;在基片集成喇叭天线的口径面上,每个介质填充波导的宽度相等,在口径面上每个介质填充波导接有一个槽线喇叭。Technical solution: The thin substrate phase amplitude correction slot line difference beam planar horn antenna of the present invention is characterized in that the antenna includes a microstrip feeder arranged on a dielectric substrate, a substrate integrated horn antenna and a plurality of slot line horns; The first port of the microstrip feeder is the input and output port of the antenna, and the second port of the microstrip feeder is connected to the substrate integrated horn antenna; the substrate integrated horn antenna consists of a first metal plane located on one side of the dielectric substrate, located on the dielectric substrate The second metal plane on the other side is composed of two rows of metallized through-hole horn side walls passing through the dielectric substrate to connect the first metal plane and the second metal plane. The width between them gradually increases to form a horn-shaped opening, and the end of the opening is the aperture surface of the substrate-integrated horn antenna; there are an odd number of metallized via-hole arrays connecting the first metal plane and the second metal plane in the substrate-integrated horn antenna , one end of the metallized via array is inside the substrate-integrated horn antenna, and the other end of the metallized via-hole array is on the aperture surface of the substrate-integrated horn antenna; there is an intermediate metallized via-hole array in the metallized via-hole array Divide the substrate-integrated horn antenna into two symmetrical left half antennas and right half antennas; two adjacent metallized via arrays, or a metallized via array and a row of metallized vias adjacent to the horn side The wall forms a dielectric-filled waveguide with the first metal plane and the second metal plane; on the aperture surface of the substrate-integrated horn antenna, the width of each dielectric-filled waveguide is equal, and each dielectric-filled waveguide is connected with a slot on the aperture surface line horn.
微带馈线的导带与第一金属平面相接,微带馈线的接地面与第二金属平面相接。The conduction band of the microstrip feeder is connected to the first metal plane, and the ground plane of the microstrip feeder is connected to the second metal plane.
所述的金属化过孔阵列的形状由头端折线段、多边形和尾端折线段三段相连构成,金属化过孔阵列中的多边形可以是三角形、四边形、五边形或其它多边形,多边形的一条边或者多条边的形状可以是直线、弧线或其它曲线;金属化过孔阵列中的头端折线段或尾端折线段的形状可以是直线、折线或指数线等,其长度可以是接近零或者是有限长度。The shape of the metallized via array is composed of a head end broken line segment, a polygon and a tail end broken line segment. The polygon in the metallized via hole array can be a triangle, a quadrangle, a pentagon or other polygons. One of the polygons The shape of one side or multiple sides can be a straight line, an arc or other curves; the shape of the head-end or tail-end broken line segment in the metallized via array can be a straight line, broken line or exponential line, etc., and its length can be close to Zero or a finite length.
介质填充波导的宽度要使得电磁波可以在其中传播而不被截止。The width of the dielectric-filled waveguide is such that electromagnetic waves can propagate through it without being blocked.
所述的金属化过孔阵列中,调整相邻两列金属化过孔阵列之间的距离、或者调整一列金属化过孔阵列与基片集成波导喇叭天线侧壁金属化过孔之间的距离,能够改变介质填充波导的宽度,进而调整在该介质填充波导(15)中电磁波传播的相速,使得到达天线口径面上电磁波的相位分布更均匀。In the metallized via hole array, adjust the distance between two adjacent metallized via hole arrays, or adjust the distance between a row of metallized via hole arrays and the metallized via hole on the side wall of the substrate integrated waveguide horn antenna , the width of the dielectric-filled waveguide can be changed, and then the phase velocity of electromagnetic wave propagation in the dielectric-filled waveguide (15) can be adjusted, so that the phase distribution of the electromagnetic wave reaching the antenna aperture surface is more uniform.
所述的金属化过孔阵列中,改变一列或者多列金属化过孔阵列的长度能够改变相应介质填充波导的长度,使得到达天线口径面上电磁波的相位分布更均匀。In the metallized via hole array, changing the length of one or more rows of the metallized via hole array can change the length of the corresponding medium-filled waveguide, so that the phase distribution of the electromagnetic wave reaching the antenna aperture surface is more uniform.
选择金属化过孔阵列中头端折线段或多边形在基片集成喇叭天线中的位置和尺寸,使得在每个介质填充波导中传输的电磁波功率相等。The position and size of the head-end broken line segment or polygon in the metallized via hole array in the substrate integrated horn antenna are selected so that the electromagnetic wave power transmitted in each dielectric-filled waveguide is equal.
每个槽线喇叭在位于介质基板的两面分别有第一辐射贴片和第二辐射贴片,槽线喇叭的第一辐射贴片与基片集成喇叭天线的第一金属平面相连,槽线喇叭的第二辐射贴片与基片集成喇叭天线的第二金属平面相连,第一辐射贴片的斜边和第二辐射贴片的斜边逐渐张开形成喇叭形的开口。Each slotted horn has a first radiating patch and a second radiating patch on both sides of the dielectric substrate, the first radiating patch of the slotted horn is connected to the first metal plane of the substrate integrated horn antenna, and the slotted horn The second radiating patch is connected to the second metal plane of the substrate-integrated horn antenna, and the hypotenuse of the first radiating patch and the hypotenuse of the second radiating patch are gradually opened to form a horn-shaped opening.
左半天线所接的所有槽线喇叭的第一辐射贴片的斜边指向都相同,左半天线所接的所有槽线喇叭的第二辐射贴片的斜边指向都相同;右半天线所接的所有槽线喇叭的第一辐射贴片的斜边指向都相同,右半天线所接的所有槽线喇叭的第二辐射贴片的斜边指向都相同;左半天线所接的槽线喇叭的第一辐射贴片的斜边指向与右半天线所接的槽线喇叭的第二辐射贴片的斜边指向相同,左半天线所接的槽线喇叭的第二辐射贴片的斜边指向与右半天线所接的槽线喇叭的第一辐射贴片的斜边指向相同。The hypotenuses of the first radiating patches of all the slotted horns connected to the left-half antenna have the same direction, and the hypotenuses of the second radiating patches of all the slotted horns connected to the left-half antenna are all the same; The hypotenuses of the first radiating patch of all the slotted horns connected to the right antenna have the same orientation, and the hypotenuses of the second radiating patch of all the slotted speakers connected to the right half antenna are all the same; the slot line connected to the left half antenna The direction of the hypotenuse of the first radiation patch of the horn is the same as the direction of the hypotenuse of the second radiation patch of the slotted horn connected to the right half antenna, and the oblique direction of the second radiation patch of the slotted horn connected to the left half antenna The direction of the side is the same as that of the hypotenuse of the first radiation patch of the slotted horn connected to the right half antenna.
金属化过孔喇叭侧壁和金属化过孔阵列中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁和金属化过孔阵列能够等效为电壁。In the side wall of the metallized via hole horn and the metallized via hole array, the distance between two adjacent metallized via holes should be less than or equal to one-tenth of the working wavelength, so that the formed metallized via hole horn side wall and metal The via array can be equivalent to an electrical wall.
在介质填充波导中,电磁波主模(TE10模)的传播相速与介质填充波导的宽度有关,介质填充波导的宽度越宽,主模传播的相速越低;反之,介质填充波导的宽度越窄,主模传播的相速越高。电磁波从微带馈线的一端输入,经过微带馈线的另一端进入基片集成波导喇叭天线,传播一段距离后,遇到金属化过孔阵列,就分别进入各个介质填充波导传输。调整金属化过孔阵列的头端折线段和尾端折线段的位置和长度以及多边形顶点的位置,就可以调节进入各个介质填充波导的相对功率以及电磁波在各个介质波导传输的相对相速,进而调整到达天线口径面上电磁波的相对幅度和相对相位。In the dielectric-filled waveguide, the propagation phase velocity of the main mode (TE10 mode) of the electromagnetic wave is related to the width of the dielectric-filled waveguide. The wider the dielectric-filled waveguide, the lower the phase velocity of the main mode propagation; conversely, the wider the dielectric-filled waveguide Narrower, the higher the phase velocity of the main mode propagation. The electromagnetic wave is input from one end of the microstrip feeder, and enters the substrate-integrated waveguide horn antenna through the other end of the microstrip feeder. After propagating for a certain distance, it encounters a metallized via hole array, and then enters each medium-filled waveguide for transmission. By adjusting the positions and lengths of the first and last broken line segments of the metallized via array and the position of the vertices of the polygon, the relative power entering each medium-filled waveguide and the relative phase velocity of electromagnetic waves transmitted in each medium waveguide can be adjusted, and then Adjust the relative amplitude and relative phase of the electromagnetic waves arriving at the aperture surface of the antenna.
进入各个介质填充波导电磁波的相对功率主要由金属化过孔阵列的头端折线段及多边形顶点的位置决定,调整金属化过孔阵列的头端折线段及多边形顶点的位置,可以调整经过每个介质填充波导传输的电磁波的相对功率,进而可以保证在每个介质填充波导中传输的功率相等,由于在口径面上每个介质填充波导都接有一个同样口径大小的槽线喇叭,这样进入每个槽线喇叭辐射的功率也相等,也就是保证整个天线是等幅幅射的,这就提高了天线的增益。The relative power of the electromagnetic wave entering each medium-filled waveguide is mainly determined by the position of the head end of the metallized via array and the position of the polygon vertex. Adjusting the position of the head end of the metallized via array and the polygon vertex can be adjusted through each The relative power of the electromagnetic waves transmitted by the dielectric-filled waveguide can ensure that the power transmitted in each dielectric-filled waveguide is equal. Since each dielectric-filled waveguide is connected with a slotted horn with the same caliber on the aperture surface, each The radiated power of the two slot line horns is also equal, which means that the entire antenna is radiated at equal amplitude, which increases the gain of the antenna.
在天线口径面上电磁波的相位分布主要由各个介质填充波导的长度和宽度决定,调整金属化过孔阵列的头端折线段和尾端折线段的位置和长度以及多边形顶点的位置,就可以调节电磁波在各个介质波导传输的相对相速,进而使得通过各个介质填充波导的电磁波同相到达天线的口径面,这样在天线口径面上每个介质填充波导端口的场强幅度分布和相位都一样。The phase distribution of electromagnetic waves on the antenna aperture surface is mainly determined by the length and width of each medium-filled waveguide. Adjust the position and length of the head-end and tail-end fold line segments of the metallized via array and the position of the polygon vertices. The relative phase velocity of electromagnetic wave transmission in each dielectric waveguide makes the electromagnetic waves passing through each dielectric-filled waveguide reach the aperture surface of the antenna in phase, so that the field strength amplitude distribution and phase of each dielectric-filled waveguide port on the antenna aperture surface are the same.
来自各个介质波导的电磁波通过天线口径面进入槽线喇叭辐射,由于左半天线槽线喇叭的辐射贴片与右半天线槽线喇叭的辐射贴片是对称的,因此左半天线槽线喇叭辐射场的极化方向与右半天线槽线喇叭辐射场的极化方向相反,这样就在平行介质基板的方向形成了差波束。The electromagnetic wave from each dielectric waveguide enters the slot line horn through the antenna aperture and radiates. Since the radiation patch of the left half antenna slot line horn is symmetrical to the radiation patch of the right half antenna slot line horn, the left half antenna slot line horn radiates The polarization direction of the field is opposite to the polarization direction of the radiation field of the right half antenna slot line horn, so that a difference beam is formed in the direction parallel to the dielectric substrate.
以上述方式就可以控制在天线口径面上电磁波的幅度和相位分布,如果保持在天线口径面上的每个介质填充波导的端口宽度相等,并调整金属化过孔阵列的位置大小和形状,使得通过每个介质填充波导传输电磁波的同幅同相到达天线口径面,进而同幅同相的进入每个槽线喇叭辐射,辐射场的极化方向也变成与基板接近平行的水平方向,这样不仅可以使得在电薄基片的情况下,整个天线具有优良的辐射性能,而且也达到提高天线的口径效率和增益的目的。In the above manner, the amplitude and phase distribution of electromagnetic waves on the antenna aperture surface can be controlled. If the port widths of each dielectric-filled waveguide on the antenna aperture surface are kept equal, and the position size and shape of the metallized via hole array are adjusted, so that The same amplitude and phase of the electromagnetic wave transmitted through each medium-filled waveguide reaches the antenna aperture surface, and then enters each slot line horn to radiate with the same amplitude and phase, and the polarization direction of the radiation field becomes a horizontal direction close to parallel with the substrate, which not only can In the case of an electro-thin substrate, the entire antenna has excellent radiation performance, and also achieves the purpose of improving the aperture efficiency and gain of the antenna.
由于有多个金属化过孔阵列把天线的口径面分成很多个小的口径面,每个小口径面上接的槽线喇叭的尺寸可以做的很小,这样天线的结构紧凑、尺寸也只增加很少。Since there are multiple metallized via hole arrays to divide the aperture surface of the antenna into many small aperture surfaces, the size of the slot line horn connected to each small aperture surface can be made very small, so that the antenna has a compact structure and a small size. The increase is very small.
天线从馈电微带线到槽线喇叭之间,都是封闭的基片集成波导结构,因此馈电损耗较小。The antenna is a closed substrate integrated waveguide structure from the feed microstrip line to the slot line horn, so the feed loss is small.
同理也可以按照需要在天线的口径面上实现特定的场强幅度和相位分布。Similarly, a specific field intensity amplitude and phase distribution can also be realized on the aperture surface of the antenna as required.
有益效果:本发明薄基片相位幅度校正槽线差波束平面喇叭天线的有益效果是,该天线辐射场的极化方向与介质基板平行;该天线可以使用低于百分之二的波长的厚度的介质基板制造,远低于通常平面喇叭天线所要求的十分之一波长的基板厚度,在基板的电厚度很薄的情况下,依然具有优良的辐射性能,例如在6GHz频率,采用环氧树脂材料基板的厚度可以2.5mm减小到0.5mm,从而大大减小尺寸、重量和成本;而且该平面喇叭天线内部嵌有金属化过孔阵列可以矫正天线口径面上电磁波的相位和幅度不一致,增加天线差波束的零深及提高天线差波束的斜率,天线的结构紧凑、馈电损耗小。Beneficial effect: the beneficial effect of the thin substrate phase amplitude correction groove line difference beam planar horn antenna of the present invention is that the polarization direction of the antenna radiation field is parallel to the dielectric substrate; the antenna can use a thickness lower than 2% of the wavelength The dielectric substrate is manufactured, which is far lower than the substrate thickness of one-tenth of the wavelength required by the usual planar horn antenna. It still has excellent radiation performance when the electrical thickness of the substrate is very thin. For example, at 6GHz frequency, epoxy The thickness of the resin material substrate can be reduced from 2.5mm to 0.5mm, thereby greatly reducing the size, weight and cost; and the planar horn antenna is embedded with a metallized via array to correct the phase and amplitude inconsistency of the electromagnetic wave on the antenna aperture surface. The zero depth of the difference beam of the antenna is increased and the slope of the difference beam of the antenna is increased, the structure of the antenna is compact, and the feeding loss is small.
附图说明Description of drawings
下面结合附图对本发明进一步说明。The present invention will be further described below in conjunction with the accompanying drawings.
图1为本发明薄基片相位幅度校正槽线差波束平面喇叭天线的结构示意图。Fig. 1 is a schematic structural diagram of a planar horn antenna with a thin substrate phase amplitude correction slot line difference beam of the present invention.
图中有:介质基板1、微带馈线2、基片集成喇叭天线3、槽线喇叭4;微带馈线2的第一端口5、微带馈线2的第二端口6、介质基板1的第一金属平面7、介质基板1的第二金属平面8、金属化过孔喇叭侧壁9、基片集成喇叭天线3的口径面10、金属化过孔阵列11、中间金属化过孔阵列12、左半天线13、右半天线14、介质填充波导15、微带馈线2的导带16、微带馈线2的接地面17、头端折线段18、多边形19、尾端折线段20、槽线喇叭4的第一辐射贴片21、槽线喇叭4的第二辐射贴片22、第一辐射贴片21的斜边23和第二辐射贴片22的斜边24。In the figure, there are: dielectric substrate 1, microstrip feeder 2, substrate integrated horn antenna 3, slotted horn 4; the first port 5 of microstrip feeder 2, the second port 6 of microstrip feeder 2, and the first port of dielectric substrate 1 A metal plane 7, a second metal plane 8 of the dielectric substrate 1, a metallized via hole horn side wall 9, an aperture surface 10 of the substrate integrated horn antenna 3, a metallized via hole array 11, an intermediate metallized via hole array 12, Left-half antenna 13, right-half antenna 14, dielectric-filled waveguide 15, conduction strip 16 of microstrip feeder 2, ground plane 17 of microstrip feeder 2, head-end broken line segment 18, polygon 19, tail-end broken line segment 20, slot line The first radiating patch 21 of the speaker 4 , the second radiating patch 22 of the slotted speaker 4 , the hypotenuse 23 of the first radiating patch 21 and the hypotenuse 24 of the second radiating patch 22 .
具体实施方式Detailed ways
本发明所采用的实施方案是:薄基片相位幅度校正槽线差波束平面喇叭天线包括设置在介质基板1上的微带馈线2、基片集成喇叭天线3和多个槽线喇叭4;所述微带馈线2的第一端口5是该天线的输入输出端口,微带馈线2的第二端口6与基片集成喇叭天线3相接;基片集成喇叭天线3由位于介质基板1一面的第一金属平面7、位于介质基板1另一面的第二金属平面8和穿过介质基板1连接第一金属平面7和第二金属平面8的两排金属化过孔喇叭侧壁9组成,基片集成喇叭天线3的两排金属化过孔喇叭侧壁9之间的宽度逐渐变大,形成一个喇叭形张口,张口的末端是基片集成喇叭天线3的口径面10;基片集成喇叭天线3中有奇数个金属化过孔阵列11连接第一金属平面7和第二金属平面8,金属化过孔阵列11的一端在基片集成喇叭天线3内部,金属化过孔阵列11的另一端在基片集成喇叭天线3的口径面10上;在金属化过孔阵列11中有一个中间金属化过孔阵列12把基片集成喇叭天线3分成对称的左半天线13和右半天线14两部分;相邻的两个金属化过孔阵列11、或者是一个金属化过孔阵列11与其相邻的一排金属化过孔喇叭侧壁9,与第一金属平面7和第二金属平面8构成介质填充波导15;在基片集成喇叭天线3的口径面10上,每个介质填充波导15的宽度相等,在口径面10上每个介质填充波导15接有一个槽线喇叭4。The embodiment adopted in the present invention is: the thin substrate phase amplitude correction groove line difference beam planar horn antenna includes a microstrip feeder 2 arranged on a dielectric substrate 1, a substrate integrated horn antenna 3 and a plurality of slot line horns 4; The first port 5 of the microstrip feeder 2 is the input and output port of the antenna, and the second port 6 of the microstrip feeder 2 is connected to the substrate integrated horn antenna 3; The first metal plane 7, the second metal plane 8 located on the other side of the dielectric substrate 1, and two rows of metallized via hole horn sidewalls 9 passing through the dielectric substrate 1 to connect the first metal plane 7 and the second metal plane 8, basically The width between the two rows of metallized via hole horn side walls 9 of the chip integrated horn antenna 3 gradually increases to form a horn-shaped opening, and the end of the opening is the aperture surface 10 of the chip integrated horn antenna 3; the substrate integrated horn antenna 3, there are an odd number of metallized via arrays 11 connecting the first metal plane 7 and the second metal plane 8, one end of the metallized via array 11 is inside the substrate integrated horn antenna 3, and the other end of the metallized via array 11 is On the aperture surface 10 of the substrate integrated horn antenna 3; in the metallized via hole array 11, there is an intermediate metallized via hole array 12 to divide the substrate integrated horn antenna 3 into symmetrical left half antenna 13 and right half antenna 14. Part; two adjacent metallized via hole arrays 11, or a metallized via hole array 11 and a row of metallized via hole horn sidewalls 9 adjacent to it, and the first metal plane 7 and the second metal plane 8 Dielectric-filled waveguides 15 are formed; on the aperture surface 10 of the substrate-integrated horn antenna 3 , each dielectric-filled waveguide 15 has the same width, and each dielectric-filled waveguide 15 is connected with a slotted horn 4 on the aperture surface 10 .
微带馈线2的导带16与第一金属平面7相接,微带馈线2的接地面17与第二金属平面8相接。The conduction strip 16 of the microstrip feeder 2 is in contact with the first metal plane 7 , and the ground plane 17 of the microstrip feeder 2 is in contact with the second metal plane 8 .
所述的金属化过孔阵列11的形状由头端折线段18、多边形19和尾端折线段20三段相连构成,金属化过孔阵列11中的多边形19可以是三角形、四边形、五边形或其它多边形,多边形19的一条边或者多条边的形状可以是直线、弧线或其它曲线;金属化过孔阵列11中的头端折线段18或尾端折线段20的形状可以是直线、折线或指数线等,其长度可以是接近零或者是有限长度。The shape of the metallized via array 11 is composed of three segments connected with a head end broken line segment 18, a polygon 19 and a tail end broken line segment 20. The polygon 19 in the metallized via hole array 11 can be a triangle, a quadrangle, a pentagon or For other polygons, the shape of one or more sides of the polygon 19 can be a straight line, an arc or other curves; Or an exponential line, etc., whose length can be close to zero or finite.
介质填充波导15的宽度要使得电磁波可以在其中传播而不被截止。The width of the dielectric-filled waveguide 15 is such that electromagnetic waves can propagate therein without being blocked.
所述的金属化过孔阵列11中,调整相邻两列金属化过孔阵列11之间的距离、或者调整一列金属化过孔阵列11与基片集成波导喇叭天线3侧壁金属化过孔9之间的距离,能够改变介质填充波导15的宽度,进而调整在该介质填充波导15中电磁波传播的相速,使得到达天线口径面10上电磁波的相位分布更均匀。In the metallized via hole array 11, adjust the distance between two adjacent metallized via hole arrays 11, or adjust the metallized via hole between one row of metallized via hole arrays 11 and the side wall of the substrate integrated waveguide horn antenna 3 The distance between 9 can change the width of the dielectric-filled waveguide 15, and then adjust the phase velocity of electromagnetic wave propagation in the dielectric-filled waveguide 15, so that the phase distribution of the electromagnetic wave reaching the antenna aperture surface 10 is more uniform.
所述的金属化过孔阵列11中,改变一列或者多列金属化过孔阵列11的长度能够改变相应介质填充波导15的长度,使得到达天线口径面10上电磁波的相位分布更均匀。In the metallized via array 11 , changing the length of one or more rows of metallized via arrays 11 can change the length of the corresponding dielectric-filled waveguide 15 , so that the phase distribution of electromagnetic waves reaching the antenna aperture surface 10 is more uniform.
选择金属化过孔阵列11中头端折线段18或多边形19在基片集成喇叭天线3中的位置和尺寸,使得在每个介质填充波导15中传输的电磁波功率相等。The position and size of the head-end broken line segment 18 or polygon 19 in the metallized via hole array 11 in the substrate-integrated horn antenna 3 are selected so that the electromagnetic wave power transmitted in each dielectric-filled waveguide 15 is equal.
每个槽线喇叭4在位于介质基板1的两面分别有第一辐射贴片21和第二辐射贴片22,槽线喇叭4的第一辐射贴片21与基片集成喇叭天线3的第一金属平面7相连,槽线喇叭4的第二辐射贴片22与基片集成喇叭天线3的第二金属平面8相连,第一辐射贴片21的斜边23和第二辐射贴片22的斜边24逐渐张开形成喇叭形的开口。Each slot line horn 4 has a first radiation patch 21 and a second radiation patch 22 on both sides of the dielectric substrate 1, the first radiation patch 21 of the slot line horn 4 is connected with the first radiation patch 21 of the substrate integrated horn antenna 3. The metal plane 7 is connected, the second radiation patch 22 of the slot line horn 4 is connected with the second metal plane 8 of the substrate integrated horn antenna 3, the hypotenuse 23 of the first radiation patch 21 and the slope of the second radiation patch 22 The side 24 flares gradually to form a trumpet-shaped opening.
左半天线13所接的所有槽线喇叭4的第一辐射贴片21的斜边23指向都相同,左半天线13所接的所有槽线喇叭4的第二辐射贴片22的斜边24指向都相同;右半天线14所接的所有槽线喇叭4的第一辐射贴片21的斜边23指向都相同,右半天线14所接的所有槽线喇叭4的第二辐射贴片22的斜边24指向都相同;左半天线13所接的槽线喇叭4的第一辐射贴片21的斜边23指向与右半天线14所接的槽线喇叭4的第二辐射贴片22的斜边24指向相同,左半天线13所接的槽线喇叭4的第二辐射贴片22的斜边24指向与右半天线14所接的槽线喇叭4的第一辐射贴片21的斜边23指向相同。The hypotenuses 23 of the first radiation patches 21 of all the slot line horns 4 connected to the left half antenna 13 point to the same direction, and the hypotenuses 24 of the second radiation patches 22 of all the slot line horns 4 connected to the left half antenna 13 The directions are all the same; the hypotenuses 23 of the first radiation patches 21 of all the slot line speakers 4 connected to the right half antenna 14 are all pointing to the same, and the second radiation patches 22 of all the slot line speakers 4 connected to the right half antenna 14 The hypotenuses 24 point to the same; the hypotenuse 23 of the first radiation patch 21 of the slot line horn 4 connected to the left half antenna 13 points to the second radiation patch 22 of the slot line horn 4 connected to the right half antenna 14 The hypotenuse 24 points to the same, the hypotenuse 24 of the second radiation patch 22 of the slot line horn 4 connected to the left half antenna 13 points to the first radiation patch 21 of the slot line horn 4 connected to the right half antenna 14 The hypotenuses 23 point the same.
所述的金属化过孔喇叭侧壁9和金属化过孔阵列11中,相邻的两个金属化过孔的间距要小于或等于工作波长的十分之一,使得构成的金属化过孔喇叭侧壁9和金属化过孔阵列11能够等效为电壁。In the metallized via hole horn side wall 9 and the metallized via hole array 11, the distance between two adjacent metallized via holes should be less than or equal to one-tenth of the working wavelength, so that the formed metallized via hole The horn side wall 9 and the metallized via hole array 11 can be equivalent to electrical walls.
在设计时,金属化过孔阵列11中头端折线段18在基片集成喇叭天线3中的相对位置是决定电磁波进入各个介质填充波导15中的相对功率大小的主要因素。调节电磁波在介质填充波导15的相速就要改变介质填充波导15的宽度,由于多边形19在金属化过孔阵列11的中部,而且由于多边形19的内部基本没有电磁波可以进入,因此只改变多边形19的某些边的大小和位置,可以只对这个金属化过孔阵列11所构建的一个介质填充波导15产生影响,而对由这个金属化过孔阵列11构建的另一个介质填充波导15的影响很小。这样为了减少调节相速对进入各个介质填充波导15中的相对功率大小的影响,通常采用改变金属化过孔阵列11中多边形19的形状和大小的方法,During design, the relative position of the head-end broken line section 18 in the metallized via array 11 and the substrate-integrated horn antenna 3 is the main factor determining the relative power of electromagnetic waves entering each dielectric-filled waveguide 15 . Adjusting the phase velocity of the electromagnetic wave in the dielectric-filled waveguide 15 will change the width of the dielectric-filled waveguide 15. Since the polygon 19 is in the middle of the metallized via array 11, and since there is basically no electromagnetic wave inside the polygon 19, only the polygon 19 can be changed. The size and position of some sides of the metallized via hole array 11 can only have an impact on a dielectric-filled waveguide 15 constructed by the metallized via-hole array 11, but have an impact on another dielectric-filled waveguide 15 constructed by the metallized via-hole array 11 very small. In order to reduce the impact of adjusting the phase velocity on the relative power entering each dielectric-filled waveguide 15, a method of changing the shape and size of the polygon 19 in the metallized via hole array 11 is usually used,
在工艺上,薄基片相位幅度校正槽线差波束平面喇叭天线既可以采用普通的印刷电路板(PCB)工艺,也可以采用低温共烧陶瓷(LTCC)工艺或者CMOS、Si基片等集成电路工艺实现。其中金属化过孔可以是空心金属通孔也可以是实心金属孔,也可以是连续的金属化壁,金属通孔的形状可以是圆形,也可以是方形或者其他形状的。In terms of technology, the thin substrate phase amplitude correction slot line difference beam planar horn antenna can use either ordinary printed circuit board (PCB) technology, or low temperature co-fired ceramic (LTCC) technology or integrated circuits such as CMOS and Si substrates. Craft realized. The metallized via hole can be a hollow metal via hole or a solid metal hole, or a continuous metallized wall, and the shape of the metal via hole can be circular, square or other shapes.
在结构上,依据同样的原理,可以增加或者减少金属化过孔阵列11的数量,进而改变槽线喇叭4的数量和尺寸,只要保证介质填充波导15能够传输主模以及槽线喇叭4的张口尺寸可以达到工作波长的一半左右。由于越靠近天线的金属化过孔侧壁9,电磁波到达天线口径面10的路程越远,因此相对于离金属化过孔侧壁9较远的介质填充波导15,离金属化过孔侧壁9较近的介质填充波导15的宽度相对较窄以得到较高的电磁波传输相速。Structurally, according to the same principle, the number of metallized via hole arrays 11 can be increased or decreased, and then the number and size of the slotted horn 4 can be changed, as long as the dielectric filled waveguide 15 can transmit the main mode and the opening of the slotted horn 4 The size can be up to about half of the operating wavelength. Since the closer to the metallized via sidewall 9 of the antenna, the farther the electromagnetic wave travels to the antenna aperture surface 10, the distance from the metallized via sidewall 9 The width of the closer dielectric-filled waveguide 15 is relatively narrow to obtain a higher phase velocity of electromagnetic wave transmission.
根据以上所述,便可实现本发明。According to the above, the present invention can be realized.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310618314.3ACN103606747B (en) | 2013-11-29 | 2013-11-29 | Thin substrate phase amplitude corrects slot-line difference-beam planar horn antenna |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310618314.3ACN103606747B (en) | 2013-11-29 | 2013-11-29 | Thin substrate phase amplitude corrects slot-line difference-beam planar horn antenna |
| Publication Number | Publication Date |
|---|---|
| CN103606747A CN103606747A (en) | 2014-02-26 |
| CN103606747Btrue CN103606747B (en) | 2015-11-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310618314.3AExpired - Fee RelatedCN103606747B (en) | 2013-11-29 | 2013-11-29 | Thin substrate phase amplitude corrects slot-line difference-beam planar horn antenna |
| Country | Link |
|---|---|
| CN (1) | CN103606747B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3513459A4 (en)* | 2016-10-28 | 2019-09-11 | Huawei Technologies Canada Co., Ltd. | INTEGRATED WAVEGUIDE CORNET ANTENNA WITH CIRCULAR POLARIZATION SUBSTRATE OF SINGLE-LEAD END |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113506985B (en)* | 2021-06-29 | 2022-09-20 | 华南理工大学 | A millimeter-wave substrate integrated waveguide horn with a one-dimensional three-dimensional layout scanning phased array |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102324627A (en)* | 2011-09-06 | 2012-01-18 | 电子科技大学 | Miniaturized Substrate Integrated Multi-beam Antenna |
| CN103022666A (en)* | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase amplitude impedance calibration |
| CN103022715A (en)* | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase calibration |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102324627A (en)* | 2011-09-06 | 2012-01-18 | 电子科技大学 | Miniaturized Substrate Integrated Multi-beam Antenna |
| CN103022666A (en)* | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase amplitude impedance calibration |
| CN103022715A (en)* | 2012-12-21 | 2013-04-03 | 东南大学 | Planar horn antenna for phase calibration |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3513459A4 (en)* | 2016-10-28 | 2019-09-11 | Huawei Technologies Canada Co., Ltd. | INTEGRATED WAVEGUIDE CORNET ANTENNA WITH CIRCULAR POLARIZATION SUBSTRATE OF SINGLE-LEAD END |
| Publication number | Publication date |
|---|---|
| CN103606747A (en) | 2014-02-26 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103022716B (en) | Planar horn antenna for phase amplitude calibration | |
| CN103022715B (en) | Planar horn antenna for phase calibration | |
| CN103594807B (en) | Thin substrate amplitude correction broadband difference-beam planar horn antenna | |
| CN103594806B (en) | Thin substrate amplitude correction slot-line planar horn antenna | |
| CN103594816B (en) | Thin substrate phasing slot-line planar horn antenna | |
| CN103606747B (en) | Thin substrate phase amplitude corrects slot-line difference-beam planar horn antenna | |
| CN103606754B (en) | Thin substrate phase amplitude corrects accurate Yagi spark gap difference beam planar horn antenna | |
| CN103594819B (en) | Thin substrate phase amplitude corrects broadband planar horn antenna | |
| CN103606752B (en) | Thin substrate phasing broadband difference-beam planar horn antenna | |
| CN103022706B (en) | Substrate integrated waveguide antenna with embedded metalized via holes for phase and range calibration | |
| CN103022681A (en) | Amplitude-calibrated SIW (substrate integrated waveguide) antenna with embedded pated through holes | |
| CN103618147B (en) | Thin substrate phase amplitude correction slot-line planar horn antenna | |
| CN103606753B (en) | Thin substrate phase amplitude corrects oscillator difference-beam planar horn antenna | |
| CN103594805B (en) | Thin substrate amplitude correction slot-line difference-beam planar horn antenna | |
| CN103022717B (en) | Amplitude impedance calibrated planar horn antenna | |
| CN103594817B (en) | Thin substrate phase amplitude corrects broadband difference-beam planar horn antenna | |
| CN103618146B (en) | Thin substrate phasing broadband planar horn antenna | |
| CN103594810B (en) | Thin substrate amplitude correction surface of oscillator horn antenna | |
| CN103594813B (en) | thin substrate amplitude correction quasi-Yagi planar horn antenna | |
| CN103594809B (en) | Thin substrate amplitude correction broadband planar horn antenna | |
| CN103594818B (en) | Thin substrate phasing slot-line difference-beam planar horn antenna | |
| CN103618144B (en) | Thin substrate phasing oscillator difference-beam planar horn antenna | |
| CN103594822B (en) | Thin substrate phase amplitude corrects accurate Yagi spark gap planar horn antenna | |
| CN103606732A (en) | Thin-substrate phase amplitude correction oscillator planar horn antenna | |
| CN103618142B (en) | thin substrate amplitude correction quasi-Yagi difference beam planar horn antenna |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20151118 Termination date:20181129 |