技术领域technical field
本发明涉及在连续波伪随机码调制雷达领域中的一种用于解算目标速度的方法,特别适用于小型化伪随机码调制连续波雷达的速度测量。The invention relates to a method for calculating target velocity in the field of continuous wave pseudo-random code modulation radar, and is especially suitable for speed measurement of miniaturized pseudo-random code modulation continuous wave radar.
背景技术Background technique
目前,在国内外伪随机码调制连续波雷达中采用多普勒目标检测体制,没有速度模糊,但距离模糊严重,其优点是在多普勒较高的检测区是无杂波区,检测性能优越,但在多普勒较底的检测区,杂波、目标经距离相关后往往混叠在一起,难以区分。At present, the Doppler target detection system is adopted in domestic and foreign pseudo-random code modulated continuous wave radars. There is no velocity ambiguity, but the distance ambiguity is serious. Superior, but in the lower Doppler detection area, clutter and targets are often aliased together after distance correlation, making it difficult to distinguish.
发明内容Contents of the invention
本发明所要解决的就是在雷达量程范围内距离不模糊,而速度模糊的问题,采用参差伪随机码对载波进行相位调制,并交替轮法,利用两次测量到的目标速度余数进行速度模糊解算,从而可以确定目标的真实速度。该方法保证了在雷达量程范围内距离测量是不模糊的,从而可以通过距离分段目标检测提高雷达对远处目标的探测能力,可以通过距离-灵敏度控制方法降低因近处地、海杂波引起的虚警,提高雷达在复杂环境中对慢速目标的检测能力。What the present invention is to solve is the problem that the distance is not ambiguous but the velocity is ambiguous within the range of the radar. The phase modulation of the carrier wave is carried out by using the staggered pseudo-random code, and the alternate wheel method is used to solve the velocity ambiguity by using the remainder of the target velocity measured twice. calculation, so that the true speed of the target can be determined. This method ensures that the distance measurement is not ambiguous within the range of the radar, so that the detection ability of the radar for distant targets can be improved through the range-segmented target detection, and the distance-sensitivity control method can be used to reduce the distance caused by nearby ground and sea clutter. The false alarms caused by the radar improve the detection ability of the radar for slow targets in complex environments.
为解决以上提出的问题,本发明提出了一种伪随机码调相连续波雷达速度模糊解算方法,包括以下步骤:In order to solve the above problems, the present invention proposes a pseudo-random code phase modulation continuous wave radar velocity ambiguity solution method, comprising the following steps:
(1)雷达采用a、b两组时钟频率不同的伪随机码在波束驻留时间内完成一次交替轮发;(1) The radar uses two groups of pseudo-random codes with different clock frequencies a and b to complete an alternate rotation within the beam dwell time;
(2)雷达分别接收目标反射回来的电磁波信号,并从中提取出目标参数,目标参数包括:距离、方位、速度余数和测量时刻;(2) The radar receives the electromagnetic wave signal reflected by the target separately, and extracts the target parameters from it. The target parameters include: distance, azimuth, speed remainder and measurement time;
(3)同一目标的判断:若目标的距离、方位和测量时刻满足数据关联条件,则为同一目标;(3) Judgment of the same target: if the distance, azimuth and measurement time of the target meet the data association conditions, it is the same target;
步骤(3)具体包括以下三个步骤:Step (3) specifically includes the following three steps:
301、时间相关判断:若满足时间相关条件,继续进行下一步骤的相关判断;301. Time-related judgment: if the time-related condition is satisfied, proceed to the next step of related judgment;
时间相关条件为:T1-T2≤Δt;The time-related condition is: T1 -T2 ≤Δt;
其中:Δt为目标测量周期;Where: Δt is the target measurement cycle;
T1为a组伪随机码测量周期内的目标测量时刻;T1 is the target measurement moment in the measurement period of group a pseudo-random code;
T2为b组伪随机码测量周期内的目标测量时刻;T2 is the target measurement moment in the measurement period of group b pseudo-random codes;
302、方位相关判断:若满足方位相关条件,继续进行下一步骤的相关判断;302. Orientation-related judgment: if the orientation-related conditions are met, proceed to the next step of related judgment;
先计算出方位门限:First calculate the azimuth threshold:
方位门限:
其中vmax为目标运动最大速度,Δt为目标测量周期,σA为方位角度误差,kA分别为方位门限系数;Where vmax is the maximum speed of target movement, Δt is the target measurement period, σA is the azimuth angle error, and kA are the azimuth threshold coefficients;
方位相关条件为:|A1-A2|≤GAAzimuth-related conditions are: |A1 -A2 |≤GA
式中:A1为a组伪随机码测量周期内的目标方位值;In the formula: A1 is the target orientation value in the measurement period of group a pseudo-random code;
A2为b组伪随机码测量周期内的目标方位值;A2 is the target azimuth value in the measurement period of group b pseudo-random code;
303、距离相关判断:若满足距离相关条件,则认为是同一目标;303. Distance-related judgment: if the distance-related conditions are met, they are considered to be the same target;
距离相关条件:Conditions related to distance:
|R1-R2|≤Δtvmax+kRσR|R1 -R2 |≤Δtvmax +kR σR
式中:vmax为目标运动最大速度,Δt为目标测量周期,kR为距离门限系数,σR为距离误差,R1为a组伪随机码测量周期内的目标距离值,R2为b组伪随机码测量周期内的目标距离值。In the formula: vmax is the maximum speed of the target movement, Δt is the target measurement period, kR is the distance threshold coefficient, σR is the distance error, R1 is the target distance value in the measurement period of group a pseudo-random code, R2 is b The target distance value within the group pseudo-random code measurement period.
(4)对同一目标的目标参数,分别取a,b两组伪随机码的速度余数和整数倍模糊速度模值相加,获得a,b两组伪随机码各自对应的目标可能速度值:(4) For the target parameters of the same target, the velocity remainders of the two groups of pseudo-random codes of a and b are added together with the integral multiple fuzzy velocity modulus, and the possible velocity values of the targets corresponding to the two groups of pseudo-random codes of a and b are obtained:
式中:i、j=0,1,……,N,i、j、N均为自然数;In the formula: i, j=0,1,...,N, i, j, N are all natural numbers;
V1为发射a组伪随机码时测量到的速度余数;V1 is the velocity remainder measured when transmitting a group of pseudo-random codes;
V2为发射b组伪随机码时测量到的速度余数;V2 is the velocity remainder measured when transmitting group b pseudo-random codes;
Vmoda为a组伪随机码覆盖的模糊速度模值;Vmoda is the fuzzy velocity modulus covered by a group of pseudo-random codes;
Vmodb为b组伪随机码覆盖的模糊速度模值;Vmodb is the fuzzy velocity modulus covered by group b pseudo-random codes;
为利用a组伪随机码计算到的目标可能速度值; is the target possible speed value calculated by using a group of pseudo-random codes;
为利用b组伪随机码计算到的目标可能速度值; is the target possible speed value calculated by using group b pseudo-random codes;
(5)对a组伪随机码对应的目标可能速度值和b组伪随机码对应的目标可能速度值取差值:(5) The possible speed value of the target corresponding to the pseudo-random code of group a The target possible speed value corresponding to group b pseudo-random code Take the difference:
当差值Δdij≤3σv,其中σv为速度测量误差,即满足速度误差压缩关系,则对应的i、j为目标速度对应的真实速度模糊模值,记为m、n,目标速度就可以表示为:When the difference Δdij ≤3σv , where σv is the speed measurement error, that is, the speed error compression relationship is satisfied, then the corresponding i and j are the real speed fuzzy modulus corresponding to the target speed, denoted as m and n, and the target speed is It can be expressed as:
V=m×Vmoda+V1或V=n×Vmodb+V2;V=m×Vmoda +V1 or V=n×Vmodb +V2 ;
式中:V为目标速度;In the formula: V is the target speed;
m为a组伪随机码对应的目标真实速度模糊数值;m is the fuzzy value of the target's real speed corresponding to the pseudo-random code of group a;
n为b组伪随机码对应的目标真实速度模糊数值;n is the fuzzy value of the target real speed corresponding to group b pseudo-random code;
完成目标速度解算。Complete target speed solution.
本发明与背景技术相比,具有以下优点:Compared with the background technology, the present invention has the following advantages:
1.采用距离分段目标检测方法,近距离杂波不会干扰远距离目标的检测,远距离目标检测能力增强;1. Adopting the detection method of distance segmented targets, the short-distance clutter will not interfere with the detection of long-distance targets, and the detection ability of long-distance targets is enhanced;
2.可通过距离-灵敏度控制方法降低因近处地、海杂波引起的虚警,提高雷达在复杂环境中对慢速目标的检测能力。2. The false alarm caused by nearby ground and sea clutter can be reduced through the distance-sensitivity control method, and the radar's ability to detect slow targets in complex environments can be improved.
具体实施方式Detailed ways
一种伪随机码调相连续波雷达速度模糊解算方法,通过合理选择调制伪码的重复频率,使得在雷达量程范围内距离不模糊,而速度是模糊的,具体包括以下步骤:A pseudo-random code phase modulation continuous wave radar speed ambiguity resolution method, by reasonably selecting the repetition frequency of the modulation pseudo code, so that the distance is not ambiguous within the range of the radar, but the velocity is ambiguous, specifically comprising the following steps:
(1)雷达采用a、b两组时钟频率不同的伪随机码在波束驻留时间内完成一次交替轮发;(1) The radar uses two groups of pseudo-random codes with different clock frequencies a and b to complete an alternate rotation within the beam dwell time;
实施例中,雷达量程为25km,雷达波长为0.03m,伪随机码a时钟频率选为2.5MHz,伪随机码b时钟频率选为3MHz,伪随机码码长选为511位,对应的无模糊距离是:25.5km;伪随机码a对应的无模糊速度为73.39m/s,伪随机码b对应的无模糊速度为88.06m/s;伪随机码a、b交替轮发,轮发时间间隔为20ms;In the embodiment, the radar range is 25km, the radar wavelength is 0.03m, the pseudo-random code a clock frequency is selected as 2.5MHz, the pseudo-random code b clock frequency is selected as 3MHz, the pseudo-random code length is selected as 511 bits, and the corresponding unambiguous The distance is: 25.5km; the unambiguous speed corresponding to the pseudo-random code a is 73.39m/s, and the unambiguous speed corresponding to the pseudo-random code b is 88.06m/s; the pseudo-random code a and b are sent alternately, and the time interval 20ms;
(2)雷达分别接收目标反射回来的电磁波信号,并从中提取出目标参数,目标参数包括:距离、方位、速度余数和测量时间;(2) The radar receives the electromagnetic wave signal reflected by the target separately, and extracts the target parameters from it. The target parameters include: distance, azimuth, speed remainder and measurement time;
(3)同一目标的判断:若目标的距离、方位和测量时刻满足数据关联条件,则为同一目标;(3) Judgment of the same target: if the distance, azimuth and measurement time of the target meet the data association conditions, it is the same target;
步骤(3)具体包括以下三个步骤:Step (3) specifically includes the following three steps:
301、时间相关判断:若满足时间相关条件,继续进行下一步骤的相关判断;301. Time-related judgment: if the time-related condition is satisfied, proceed to the next step of related judgment;
时间相关条件为:T1-T2≤Δt;The time-related condition is: T1 -T2 ≤Δt;
其中:Δt为目标测量周期;Where: Δt is the target measurement cycle;
T1为a组伪随机码测量周期内的目标测量时刻;T1 is the target measurement moment in the measurement period of group a pseudo-random code;
T2为b组伪随机码测量周期内的目标测量时刻;T2 is the target measurement moment in the measurement period of group b pseudo-random codes;
302、方位相关判断:若满足方位相关条件,继续进行下一步骤的相关判断;302. Orientation-related judgment: if the orientation-related conditions are satisfied, proceed to the next step of related judgment;
先计算出方位门限:First calculate the azimuth threshold:
方位门限:
其中vmax为目标运动最大速度,Δt为目标测量周期,σA为方位角度误差,kA分别为方位门限系数;Where vmax is the maximum speed of target movement, Δt is the target measurement period, σA is the azimuth angle error, and kA are the azimuth threshold coefficients;
方位相关条件为:|A1-A2|≤GAAzimuth-related conditions are: |A1 -A2 |≤GA
式中:A1为a组伪随机码测量周期内的目标方位值;In the formula: A1 is the target orientation value in the measurement period of group a pseudo-random code;
A2为b组伪随机码测量周期内的目标方位值;A2 is the target azimuth value in the measurement period of group b pseudo-random code;
303、距离相关判断:若满足距离相关条件,则认为是同一目标;303. Distance-related judgment: if the distance-related conditions are satisfied, they are considered to be the same target;
距离相关条件:Conditions related to distance:
|R1-R2|≤Δtvmax+kRσR|R1 -R2 |≤Δtvmax +kR σR
式中:vmax为目标运动最大速度,Δt为目标测量周期,kR为距离门限系数,σR为距离误差,R1为a组伪随机码测量周期内的目标距离值,R2为b组伪随机码测量周期内的目标距离值。In the formula: vmax is the maximum speed of the target movement, Δt is the target measurement period, kR is the distance threshold coefficient, σR is the distance error, R1 is the target distance value in the measurement period of group a pseudo-random code, R2 is b The target distance value within the group pseudo-random code measurement period.
实施例中,a码发射时间段的回波目标参数为R1=9350m,A1=35.6°,V1=60m/s,T1=10.06s;b码发射时间段的回波目标参数为R2=9330m,A2=35.6°,V2=3m/s,T2=10.08s;通过计算得到所测量到的距离、方位、时间参数满足数据关联关系,可以认为是同一个目标;In the embodiment, the echo target parameter in the code a transmission period is R1 =9350m, A1 =35.6°, V1 =60m/s, T1 =10.06s; the echo target parameter in the code b transmission period is R2 =9330m, A2 =35.6°, V2 =3m/s, T2 =10.08s; through calculation, the measured distance, azimuth, and time parameters satisfy the data association relationship, which can be considered as the same target;
(4)对同一目标的目标参数,分别取a,b两组伪随机码的速度余数和整数倍模糊速度模值相加,获得a,b两组伪随机码各自对应的目标可能速度值:(4) For the target parameters of the same target, the velocity remainders of the two groups of pseudo-random codes of a and b are added together with the integral multiple fuzzy velocity modulus, and the possible velocity values of the targets corresponding to the two groups of pseudo-random codes of a and b are obtained:
式中:i、j=0,1,……,N,i、j、N均为自然数;In the formula: i, j=0,1,...,N, i, j, N are all natural numbers;
V1为发射a组伪随机码时测量到的速度余数;V1 is the velocity remainder measured when transmitting a group of pseudo-random codes;
V2为发射b组伪随机码时测量到的速度余数;V2 is the velocity remainder measured when transmitting group b pseudo-random codes;
Vmoda为a组伪随机码覆盖的模糊速度模值;Vmoda is the fuzzy velocity modulus covered by a group of pseudo-random codes;
Vmodb为b组伪随机码覆盖的模糊速度模值;Vmodb is the fuzzy velocity modulus covered by group b pseudo-random codes;
为利用a组伪随机码计算到的目标可能速度值; is the target possible speed value calculated by using a group of pseudo-random codes;
为利用b组伪随机码计算到的目标可能速度值; is the target possible speed value calculated by using group b pseudo-random codes;
实施例中,计算In the example, the calculation
计算calculate
(5)对a组伪随机码对应的目标可能速度值和b组伪随机码对应的目标可能速度值取差值:(5) The possible speed value of the target corresponding to the pseudo-random code of group a The target possible speed value corresponding to group b pseudo-random code Take the difference:
当差值Δdij≤3σv,其中σv为速度测量误差,即满足速度误差压缩关系,则对应的i、j为目标速度对应的真实速度模糊模值,记为m、n,目标速度就可以表示为:When the difference Δdij ≤3σv , where σv is the speed measurement error, that is, the speed error compression relationship is satisfied, then the corresponding i and j are the real speed fuzzy modulus corresponding to the target speed, denoted as m and n, and the target speed is It can be expressed as:
V=m×Vmoda+V1或V=n×Vmodb+V2;V=m×Vmoda +V1 or V=n×Vmodb +V2 ;
式中:V为目标速度;In the formula: V is the target speed;
m为a组伪随机码对应的目标真实速度模糊数值;m is the fuzzy value of the target real speed corresponding to the pseudo-random code of group a;
n为b组伪随机码对应的目标真实速度模糊数值;n is the fuzzy value of the target real speed corresponding to group b pseudo-random code;
完成目标速度解算。Complete target speed solution.
实施例中,计算Δdij,表示为矩阵形式如下:In the embodiment, the calculation of Δdij is expressed as a matrix as follows:
设雷达测量误差σv=2m/s,则满足条件Δdij≤3σv的只有:Assuming that the radar measurement error σv =2m/s, the only ones that satisfy the condition Δdij ≤3σv are:
Δdij=-1.68(i=4,j=4)Δdij = -1.68 (i=4, j=4)
所以有:m=4,n=4。So there are: m=4, n=4.
目标速度可计算如下:The target velocity can be calculated as follows:
完成目标速度解算。Complete target speed solution.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310593940.1ACN103592645B (en) | 2013-11-22 | 2013-11-22 | The fuzzy calculation method of a kind of pseudo-random code phase modulating continuous wave radar speed |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310593940.1ACN103592645B (en) | 2013-11-22 | 2013-11-22 | The fuzzy calculation method of a kind of pseudo-random code phase modulating continuous wave radar speed |
| Publication Number | Publication Date |
|---|---|
| CN103592645Atrue CN103592645A (en) | 2014-02-19 |
| CN103592645B CN103592645B (en) | 2016-04-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310593940.1AActiveCN103592645B (en) | 2013-11-22 | 2013-11-22 | The fuzzy calculation method of a kind of pseudo-random code phase modulating continuous wave radar speed |
| Country | Link |
|---|---|
| CN (1) | CN103592645B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103954948A (en)* | 2014-02-28 | 2014-07-30 | 天津工业大学 | Fuzzy hypothesis test using fuzzy data and confidence interval in radar detection standard |
| CN105572660A (en)* | 2014-10-30 | 2016-05-11 | 恩智浦有限公司 | Radar ambiguity resolving detector |
| CN105785332A (en)* | 2016-03-07 | 2016-07-20 | 沈阳承泰科技有限公司 | Radar anti-interference method |
| WO2017069680A1 (en) | 2015-10-21 | 2017-04-27 | Qamcom Technology Ab | Method and system for resolving range ambiguity |
| CN108226875A (en)* | 2017-12-27 | 2018-06-29 | 中国电子科技集团公司第五十四研究所 | A kind of secondary lobe target suppressing method of simultaneous multiple beams radar |
| CN109034629A (en)* | 2018-08-01 | 2018-12-18 | 北京电子工程总体研究所 | A kind of analysis method and system for evaluating Combat Command System multivariate information fusion performance |
| CN110673105A (en)* | 2019-09-25 | 2020-01-10 | 武汉滨湖电子有限责任公司 | Method for resolving velocity ambiguity of pulse Doppler radar |
| US10712437B2 (en) | 2017-07-07 | 2020-07-14 | Veoneer Us, Inc. | Radar systems and methods utilizing composite waveforms for customization of resolution requirements |
| CN115267721A (en)* | 2022-09-27 | 2022-11-01 | 中国电子科技集团公司第十四研究所 | Ground moving target radial velocity estimation method based on double-frequency SAR |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1316811A2 (en)* | 2001-11-28 | 2003-06-04 | Itt Manufacturing Enterprises, Inc. | Staggered pulse acquisition method and apparatus |
| WO2011009027A1 (en)* | 2009-07-17 | 2011-01-20 | Sensis Corporation | System and method for data communications on dme transponder links |
| CN102288946A (en)* | 2011-05-12 | 2011-12-21 | 中国电子科技集团公司第五十四研究所 | Distance measuring defuzzification method for pseudo-random code phase modulation continuous-wave radar |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1316811A2 (en)* | 2001-11-28 | 2003-06-04 | Itt Manufacturing Enterprises, Inc. | Staggered pulse acquisition method and apparatus |
| WO2011009027A1 (en)* | 2009-07-17 | 2011-01-20 | Sensis Corporation | System and method for data communications on dme transponder links |
| CN102288946A (en)* | 2011-05-12 | 2011-12-21 | 中国电子科技集团公司第五十四研究所 | Distance measuring defuzzification method for pseudo-random code phase modulation continuous-wave radar |
| Title |
|---|
| 卫青春等: "帧间码参差解距离模糊方法", 《无线电通信技术》* |
| 王彬: "在连续波伪码测距雷达中通过参差码钟解距离模糊", 《无线电通信技术》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103954948A (en)* | 2014-02-28 | 2014-07-30 | 天津工业大学 | Fuzzy hypothesis test using fuzzy data and confidence interval in radar detection standard |
| CN103954948B (en)* | 2014-02-28 | 2016-08-17 | 天津工业大学 | Radar detecting standard uses fuzzy data and trusts interval Fuzzy Hypothesis Testing |
| CN105572660A (en)* | 2014-10-30 | 2016-05-11 | 恩智浦有限公司 | Radar ambiguity resolving detector |
| CN105572660B (en)* | 2014-10-30 | 2018-10-09 | 恩智浦有限公司 | Radar ambiguity solves detector |
| US9835723B2 (en) | 2014-10-30 | 2017-12-05 | Nxp B.V. | Radar ambiguity resolving detector |
| WO2017069680A1 (en) | 2015-10-21 | 2017-04-27 | Qamcom Technology Ab | Method and system for resolving range ambiguity |
| CN105785332B (en)* | 2016-03-07 | 2018-06-29 | 深圳承泰科技有限公司 | A kind of radar anti-interference method |
| CN105785332A (en)* | 2016-03-07 | 2016-07-20 | 沈阳承泰科技有限公司 | Radar anti-interference method |
| US10712437B2 (en) | 2017-07-07 | 2020-07-14 | Veoneer Us, Inc. | Radar systems and methods utilizing composite waveforms for customization of resolution requirements |
| CN108226875A (en)* | 2017-12-27 | 2018-06-29 | 中国电子科技集团公司第五十四研究所 | A kind of secondary lobe target suppressing method of simultaneous multiple beams radar |
| CN109034629A (en)* | 2018-08-01 | 2018-12-18 | 北京电子工程总体研究所 | A kind of analysis method and system for evaluating Combat Command System multivariate information fusion performance |
| CN110673105A (en)* | 2019-09-25 | 2020-01-10 | 武汉滨湖电子有限责任公司 | Method for resolving velocity ambiguity of pulse Doppler radar |
| CN110673105B (en)* | 2019-09-25 | 2021-12-10 | 武汉滨湖电子有限责任公司 | Method for resolving velocity ambiguity of pulse Doppler radar |
| CN115267721A (en)* | 2022-09-27 | 2022-11-01 | 中国电子科技集团公司第十四研究所 | Ground moving target radial velocity estimation method based on double-frequency SAR |
| CN115267721B (en)* | 2022-09-27 | 2022-12-20 | 中国电子科技集团公司第十四研究所 | A Radial Velocity Estimation Method for Ground Moving Targets Based on Dual-frequency SAR |
| Publication number | Publication date |
|---|---|
| CN103592645B (en) | 2016-04-20 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103592645B (en) | The fuzzy calculation method of a kind of pseudo-random code phase modulating continuous wave radar speed | |
| JP7197594B2 (en) | System and method for virtual aperture radar tracking | |
| CN102288946B (en) | Distance measuring defuzzification method for pseudo-random code phase modulation continuous-wave radar | |
| US8115672B2 (en) | Method of measuring distance, notably for short-range radar | |
| CN103176178B (en) | Radon-Fractional Fourier Transform Long-term Coherent Accumulation Detection Method for Radar Moving Targets | |
| CN102288942B (en) | A Design Method of Millimeter Wave Radar Signal Waveform | |
| US20180188365A1 (en) | Systems and methods for 4-dimensional radar tracking | |
| KR20180083865A (en) | Radar systems including interleaved serial transmission and parallel reception | |
| CN106646446A (en) | Detection method for moving target of pulse compression frequency-agile radar | |
| CN109375206B (en) | Moving target speed measurement method based on speed search | |
| CN112578342B (en) | Signal sending method, signal processing method and radar device | |
| US11561299B1 (en) | System and method for multi-waveform radar tracking | |
| CN104155649A (en) | Distance-speed decoupling method based on triply periodic frequency modulation continuous wave coherent radar | |
| CN105022037A (en) | Automobile radar cross-interference inhibition method based on hyperchaos coding | |
| CN115407279A (en) | A Compensation Method for Range-Doppler Coupling Error in Pulse Compression Radar | |
| CN101561503B (en) | Method for quickly imaging for double-linear-array three-dimensional imaging synthetic aperture radar | |
| CN114624694B (en) | Radar signal processing method based on unequal interval modulation DDMA-MIMO | |
| Yang et al. | Beat-frequency matching for multi-target based on improved trapezoid wave with FMCW Radar | |
| Klemen et al. | The mathematical model of the simulation of the doppler effect | |
| Chen et al. | Joint Azimuth-Velocity Estimation for Moving Targets with 2-D Frequency-Mode Hopping OAM Radar | |
| Hanusa et al. | Estimation of position from multistatic Doppler measurements | |
| CN104502627A (en) | ADCP (acoustic Doppler current profiler) phase ambiguity solving method based on emission signal designing and processing | |
| KR102312939B1 (en) | Multi-Target Detection Apparatus and Method | |
| EP4624978A1 (en) | A method for determining a target information of a radar target based on an incoherent signal processing chain, radar system and motor vehicle | |
| EP4624991A1 (en) | A method for determining a target information of a radar target based on an coherent signal processing chain, radar system and motor vehicle |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |