技术领域technical field
本发明涉及电池检测技术领域,具体涉及一种锂离子电池筛选方法。The invention relates to the technical field of battery detection, in particular to a lithium ion battery screening method.
背景技术Background technique
锂离子蓄电池作为最受欢迎的绿色电池之一,凭借其比能量高、寿命长、开路电压高、自放电率低、对环境友好、价格低廉等优点,成为电池市场的新力军。随着锂离子蓄电池在民用领域(手机、笔记本、摄像机、电动玩具)得到了广泛使用,其安全性和实用性均得到业界好评。目前,锂离子蓄电池已朝着大功率,高比能量,高循环寿命方向迅速发展,以锂离子电池为动力源的电动汽车将逐步取代部分燃油汽车;大型锂离子电堆作为储能设备更多的进入储能电站、智能电网系统中。As one of the most popular green batteries, lithium-ion batteries have become a new force in the battery market due to their advantages such as high specific energy, long life, high open circuit voltage, low self-discharge rate, environmental friendliness, and low price. As lithium-ion batteries are widely used in civilian fields (mobile phones, notebooks, cameras, electric toys), their safety and practicality have been well received by the industry. At present, lithium-ion batteries have developed rapidly in the direction of high power, high specific energy, and high cycle life. Electric vehicles powered by lithium-ion batteries will gradually replace some fuel vehicles; large-scale lithium-ion stacks are used as energy storage devices. into energy storage power stations and smart grid systems.
锂离子电池的筛选对于保持电池一致性具有重要意义,特别是对于大规模的动力或储能电池系统,电池性能一致性偏差将会对电池组长期循环后容量和功率发挥造成影响。电池性能的不一致是由在工厂内生产过程中材料或制造条件控制不一致,以及电池在不同使用环境下衰减状态可能不一致造成的,因此对电池在不同使用阶段的性能筛选也是电池组和电池系统维护的重要组成部分。The screening of lithium-ion batteries is of great significance to maintain the consistency of batteries, especially for large-scale power or energy storage battery systems, the deviation of battery performance consistency will affect the capacity and power performance of the battery pack after long-term cycling. The inconsistency of battery performance is caused by the inconsistency in the control of materials or manufacturing conditions during the production process in the factory, and the possible inconsistency of the decay state of the battery in different use environments. Therefore, the performance screening of batteries in different stages of use is also the maintenance of battery packs and battery systems. important parts of.
目前锂离子电池的筛选主要通过对电池在特定时段的性能进行一次筛选,例如在出厂时对电池的开路电压OCV、直流内阻IR、容量Capacity进行一次测试,并以此为依据设定门槛,将电池进行分组筛选。这种方法容易造成的问题是在特定时刻电池的状态相同并不能等同于电池未来状态相同,将当前时刻性能相近的电池成组固然在短时间内能够实现良好的一致性,但对于长期循环使用而言电池性能变化趋势的不一致会导致电池组性能的急剧衰减。在不可能进行频繁的筛选条件下,在一次筛选时将电池在之前工作状态下的变化作为筛选的标准具有重要意义。At present, the screening of lithium-ion batteries is mainly through a screening of the performance of the battery in a specific period of time, such as a test of the open circuit voltage OCV, DC internal resistance IR, and capacity of the battery before leaving the factory, and set the threshold based on this. The batteries are grouped and screened. The problem that this method is likely to cause is that the same state of the battery at a specific moment does not mean the same state of the battery in the future. Grouping batteries with similar performance at the current moment can achieve good consistency in a short period of time, but for long-term cycle use In other words, the inconsistency of the changing trend of battery performance will lead to a sharp decline in the performance of the battery pack. Under the condition that frequent screening is not possible, it is of great significance to use the change of the battery in the previous working state as the screening criterion during a screening.
发明内容Contents of the invention
本发明的目的在于提供一种锂离子电池筛选方法,能够将电池按照相似的性能和性能变化趋势进行筛选,从而最大可能地降低电池衰减不一致的可能,进而保障电池组性能的稳定发挥。The purpose of the present invention is to provide a lithium-ion battery screening method, which can screen the batteries according to similar performance and performance change trends, thereby reducing the possibility of inconsistent battery attenuation to the greatest possible extent, and then ensuring the stable performance of the battery pack.
为了达到上述目的,本发明通过以下技术方案实现:一种锂离子电池筛选方法,其特征在于,包含以下步骤:In order to achieve the above object, the present invention is achieved through the following technical solutions: a lithium ion battery screening method, characterized in that, comprising the following steps:
步骤1、将多个单体电池固定于电池测试设备上,利用信息扫码设备获取多个单体电池的编码信息;Step 1. Fix multiple single batteries on the battery test equipment, and use the information scanning device to obtain the coded information of multiple single batteries;
步骤2、对多个单体电池进行首次充放电循环后记录电容量C1、开路电压U1、交流内阻R1;Step 2. Record the capacitance C1, open circuit voltage U1, and AC internal resistance R1 after the first charge and discharge cycle of multiple single batteries;
步骤3、依照电池使用环境,对多个单体电池进行一次充放电循环,记录电容量C2、开路电压U2、交流内阻R2;Step 3. According to the battery usage environment, perform a charge-discharge cycle on multiple single batteries, and record the capacitance C2, open circuit voltage U2, and AC internal resistance R2;
步骤4、计算同一个单体电池步骤2和步骤3中测量的电容量差ΔC1,电压差ΔU1,交流内阻差ΔR1;Step 4. Calculate the capacitance difference ΔC1, voltage difference ΔU1, and AC internal resistance difference ΔR1 measured in steps 2 and 3 of the same single battery;
步骤5、将多个单体电池进行搁置后,采集电池信息后进行一次充放电循环,记录电容量C3、开路电压U3、交流内阻R3;Step 5. After putting multiple single batteries on hold, collect battery information and perform a charge-discharge cycle, and record capacitance C3, open circuit voltage U3, and AC internal resistance R3;
步骤6、计算同一个单体电池步骤3和步骤5中测量的电容量差ΔC2,电压差ΔU2,交流内阻差ΔR2;Step 6. Calculate the capacitance difference ΔC2, voltage difference ΔU2, and AC internal resistance difference ΔR2 measured in steps 3 and 5 of the same single battery;
步骤7、按照容量差别标准分档各单体电池,再将同一档的多个单体电池按电压降标准分档各单体电池,最后将同一类别的单体电池按交流内阻值标准进行分档;Step 7. Classify each single battery according to the capacity difference standard, and then classify multiple single cells in the same class according to the voltage drop standard, and finally classify the single cells of the same category according to the AC internal resistance standard binning;
步骤8、将同一交流内阻档的多个单体电池分配到一组。Step 8. Assign multiple single cells of the same AC internal resistance to a group.
上述的充放电循环包含以下步骤:The above charge and discharge cycle includes the following steps:
步骤a:恒流充电至额定电压;Step a: Constant current charging to rated voltage;
步骤b:恒压充电至0.05C;Step b: Constant voltage charging to 0.05C;
步骤c:搁置一段时间后进行恒流放电,所述的搁置时间为0~30分钟。Step c: conduct a constant current discharge after a period of rest, and the rest time is 0 to 30 minutes.
上述的步骤5中搁置时间为3~10天。The shelf time in the above step 5 is 3 to 10 days.
上述的容量差别标准为:额定容量的0.1%-1%。The capacity difference standard above is: 0.1%-1% of the rated capacity.
上述的电压降标准为:额定电压的0.03%-0.3%。The above-mentioned voltage drop standard is: 0.03%-0.3% of the rated voltage.
上述的交流内阻值标准为:额定电阻的1%-10%。The above AC internal resistance standard is: 1%-10% of the rated resistance.
本发明一种锂离子电池筛选方法与现有技术相比具有以下优点:本发明采用通用电池信息采集和测试设备,具有较高的适用性;采用本方法筛选电池一致性良好,可保证长期循环性能良好;本发明具有良好的推广性,可以应用于各种类型、体系、规格的锂离子电池。Compared with the prior art, a lithium-ion battery screening method of the present invention has the following advantages: the present invention adopts general-purpose battery information collection and testing equipment, and has high applicability; adopting this method to screen batteries has good consistency and can ensure long-term circulation The performance is good; the invention has good popularization and can be applied to lithium ion batteries of various types, systems and specifications.
附图说明Description of drawings
图1为本发明一种锂离子电池筛选方法的流程图。Fig. 1 is a flow chart of a lithium ion battery screening method of the present invention.
图2为经过筛选的典型数据图。Figure 2 is a typical data graph after screening.
具体实施方式Detailed ways
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。The present invention will be further elaborated below by describing a preferred specific embodiment in detail in conjunction with the accompanying drawings.
一种锂离子电池筛选方法,其特征在于,包含以下步骤:A lithium-ion battery screening method, characterized in that, comprising the following steps:
步骤1、将多个单体电池固定于电池测试设备上,利用信息扫码设备获取多个单体电池的编码信息;Step 1. Fix multiple single batteries on the battery test equipment, and use the information scanning device to obtain the coded information of multiple single batteries;
步骤2、对多个单体电池进行首次充放电循环后记录电容量C1、开路电压U1、交流内阻R1;Step 2. Record the capacitance C1, open circuit voltage U1, and AC internal resistance R1 after the first charge and discharge cycle of multiple single batteries;
步骤3、依照电池使用环境,对多个单体电池进行一次充放电循环,记录电容量C2、开路电压U2、交流内阻R2;Step 3. According to the battery usage environment, perform a charge-discharge cycle on multiple single batteries, and record the capacitance C2, open circuit voltage U2, and AC internal resistance R2;
步骤4、计算同一个单体电池步骤2和步骤3中测量的电容量差ΔC1,电压差ΔU1,交流内阻差ΔR1;Step 4. Calculate the capacitance difference ΔC1, voltage difference ΔU1, and AC internal resistance difference ΔR1 measured in steps 2 and 3 of the same single battery;
步骤5、将多个单体电池进行搁置3~10天后,采集电池信息后进行一次充放电循环,记录电容量C3、开路电压U3、交流内阻R3;Step 5. After putting multiple single batteries on hold for 3~10 days, collect battery information and perform a charge-discharge cycle, and record capacitance C3, open circuit voltage U3, and AC internal resistance R3;
步骤6、计算同一个单体电池步骤3和步骤5中测量的电容量差ΔC2,电压差ΔU2,交流内阻差ΔR2;Step 6. Calculate the capacitance difference ΔC2, voltage difference ΔU2, and AC internal resistance difference ΔR2 measured in steps 3 and 5 of the same single battery;
步骤7、按照容量差别标准分档各单体电池,再将同一档的多个单体电池按电压降标准分档各单体电池,最后将同一类别的单体电池按交流内阻值标准进行分档;Step 7. Classify each single battery according to the capacity difference standard, and then classify multiple single cells in the same class according to the voltage drop standard, and finally classify the single cells of the same category according to the AC internal resistance standard binning;
步骤8、将同一交流内阻档的多个单体电池分配到一组。Step 8. Assign multiple single cells of the same AC internal resistance to a group.
充放电循环包含以下步骤:A charge-discharge cycle consists of the following steps:
步骤a:恒流充电至额定电压;Step a: Constant current charging to rated voltage;
步骤b:恒压充电至0.05C;Step b: Constant voltage charging to 0.05C;
步骤c:搁置一段时间后进行恒流放电,所述的搁置时间为0~30分钟。Step c: conduct a constant current discharge after a period of rest, and the rest time is 0 to 30 minutes.
容量差别标准为:额定容量的0.1%-1%。The capacity difference standard is: 0.1%-1% of the rated capacity.
电压降标准为:额定电压的0.03%-0.3%。The voltage drop standard is: 0.03%-0.3% of the rated voltage.
交流内阻值标准为:额定电阻的1%-10%。The AC internal resistance standard is: 1%-10% of the rated resistance.
实施例一,以10Ah单体电池为例。Embodiment 1, a 10Ah single battery is taken as an example.
电池生产初始状态测试:将由生产线产出的10Ah电池单体固定于电池测试设备,利用信息扫码设备获得其编码信息,设置以10A恒流充电至2.8V,恒压2.8V充电至电流0.5A,搁置30min,10A恒流放电至1.6V。记录放电容量为C1,采用内阻测试仪测试其开路电压和交流内阻,分别记录为U1和R1。Initial state test of battery production: Fix the 10Ah battery cell produced by the production line on the battery testing equipment, use the information scanning device to obtain its code information, set the charging to 2.8V at a constant current of 10A, and charge at a constant voltage of 2.8V to a current of 0.5A , put it on hold for 30min, and discharge it to 1.6V with a constant current of 10A. Record the discharge capacity as C1, use the internal resistance tester to test its open circuit voltage and AC internal resistance, and record them as U1 and R1 respectively.
依照电池使用环境,对电池进行1次充放电循环,1C恒流充电2.7V,放电至1.6V,分别记录其容量、开路电压和交流内阻为C2、U2和R2。According to the battery use environment, the battery is charged and discharged once, charged at 1C constant current to 2.7V, discharged to 1.6V, and its capacity, open circuit voltage and AC internal resistance are respectively recorded as C2, U2 and R2.
将电池搁置,搁置时间为7天,后进行充放循环,记录容量C3、U3和R3。Put the battery on hold for 7 days, then perform a charge-discharge cycle, and record the capacities C3, U3, and R3.
通过公式:ΔU1=U2-U1,ΔU2=U3-U2,ΔR1=R2-R1,ΔR2=R3-R2,ΔC1=C2-C1,ΔC2=C3-C2,计算获得ΔC1、ΔC2、ΔU1、ΔU2、ΔR1、ΔR2。Through the formula: ΔU1=U2-U1, ΔU2=U3-U2, ΔR1=R2-R1, ΔR2=R3-R2, ΔC1=C2-C1, ΔC2=C3-C2, calculate ΔC1, ΔC2, ΔU1, ΔU2, ΔR1 , ΔR2.
C1≥10000mAh,C2≥10000mAh,C3≥9900mAh,ΔC1≤100mAh,ΔC2≤300mAh,在此标准上将ΔC2按照每50mAh为一档归类;U1≥2.49V,U2≥2.49V,U3≥2.488V,ΔU1≤0.002V,ΔU2≤0.005V,在此基础上将ΔU2按照每0.001V为一档归类;R1≤1.2mΩ,R2≤1.2 mΩ,R3≤1.1 mΩ,ΔR1≤0.1 mΩ,ΔR2≤0.2 mΩ,在此基础上将ΔR2按照每0.05 mΩ为一档归类。C1≥10000mAh, C2≥10000mAh, C3≥9900mAh, ΔC1≤100mAh, ΔC2≤300mAh, in this standard, ΔC2 is classified according to every 50mAh; U1≥2.49V, U2≥2.49V, U3≥2.488V, ΔU1≤0.002V, ΔU2≤0.005V, on this basis, ΔU2 is classified according to every 0.001V; R1≤1.2mΩ, R2≤1.2 mΩ, R3≤1.1 mΩ, ΔR1≤0.1 mΩ, ΔR2≤0.2 mΩ , and on this basis, ΔR2 is classified according to every 0.05 mΩ.
将这批电池分为120档,配组时按照同档电池优先分组的原则,获得的电池组性能最佳。This batch of batteries is divided into 120 grades, and the battery packs with the best performance are obtained according to the principle of prioritizing grouping of batteries of the same grade.
如图2所示,经过筛选的典型数据图,获得的搁置电压变化ΔU2,从中可以看到电池搁置过程中不同电池电压衰减有一定的变化,电压变化越大说明电池的搁置性能越差,以此为便准将电池分类:根据该次测试可以将电压变化大于0.005V和反常上升的筛除,将剩余电池按0.001V为一档分类。As shown in Figure 2, the filtered typical data graph and obtained shelving voltage change ΔU2, from which it can be seen that the voltage attenuation of different batteries has certain changes during the battery shelving process, and the greater the voltage change, the worse the shelving performance of the battery is. This is for the convenience of classifying batteries: According to this test, the voltage change greater than 0.005V and abnormal rise can be screened out, and the remaining batteries can be classified into 0.001V.
实施例二,以动力电池达不到使用标准的电池为例。In the second embodiment, a power battery that does not meet the use standard is taken as an example.
对动力电池达不到使用标准的电池进行重新分类配组,使其能够用于其他用于,如储能、EPS、路灯等对电池性能要求相对较低的场合。动力电池出厂时通过其标准测试获得其C1、U1和R1。Reclassify and group batteries that do not meet the standard for power batteries, so that they can be used in other applications, such as energy storage, EPS, street lights and other occasions that require relatively low battery performance. The power battery obtains its C1, U1 and R1 through its standard test when it leaves the factory.
当电池容量降低至额定容量的80%时,认为已不适宜作为动力电池使用,对其进行测试,以标准18650LFP为例,2.2A充电至3.6V,恒压至电流0.11A,搁置10min后2.2A放电至2.5V,记录其C2、U2和R2。When the battery capacity is reduced to 80% of the rated capacity, it is considered unsuitable to be used as a power battery, and it is tested, taking the standard 18650LFP as an example, charging to 3.6V at 2.2A, constant voltage to 0.11A, and 2.2 A discharge to 2.5V, record its C2, U2 and R2.
搁置10天和采用步骤2相同方法,记录其C2、U3和R3,计算得到ΔC1、ΔC2、ΔU1、ΔU2、ΔR1、ΔR2。Set aside for 10 days and use the same method as step 2, record its C2, U3 and R3, and calculate ΔC1, ΔC2, ΔU1, ΔU2, ΔR1, ΔR2.
C1≥2200mAh,C2≥1760mAh,C3≥1700mAh,ΔC1≤500mAh,ΔC2≤100mAh,在此标准上将ΔC2按照每20mAh为一档归类;U1≥3.2V,U2≥3.1V,U3≥3.05V,ΔU1≤0.15V,ΔU2≤0.05V,在此基础上将ΔU2按照每0.01V为一档归类;R1≤10mΩ,R2≤15mΩ,R3≤16mΩ,ΔR1≤8mΩ,ΔR2≤3mΩ,在此基础上将ΔR2按照每0.5 mΩ为一档归类。C1≥2200mAh, C2≥1760mAh, C3≥1700mAh, ΔC1≤500mAh, ΔC2≤100mAh, in this standard, ΔC2 is classified according to every 20mAh; U1≥3.2V, U2≥3.1V, U3≥3.05V, ΔU1≤0.15V, ΔU2≤0.05V, on this basis, ΔU2 is classified according to every 0.01V; R1≤10mΩ, R2≤15mΩ, R3≤16mΩ, ΔR1≤8mΩ, ΔR2≤3mΩ, on this basis Classify ΔR2 according to every 0.5 mΩ.
将这批电池分为150档,配组时按照同档电池优先分组的原则,获得的电池组性能最佳。This batch of batteries is divided into 150 grades, and the battery pack with the best performance is obtained according to the principle of prioritizing the grouping of batteries of the same grade.
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。Although the content of the present invention has been described in detail through the above preferred embodiments, it should be understood that the above description should not be considered as limiting the present invention. Various modifications and alterations to the present invention will become apparent to those skilled in the art upon reading the above disclosure. Therefore, the protection scope of the present invention should be defined by the appended claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310445622.0ACN103464388B (en) | 2013-09-26 | 2013-09-26 | Lithium ion battery screening method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310445622.0ACN103464388B (en) | 2013-09-26 | 2013-09-26 | Lithium ion battery screening method |
| Publication Number | Publication Date |
|---|---|
| CN103464388A CN103464388A (en) | 2013-12-25 |
| CN103464388Btrue CN103464388B (en) | 2015-04-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310445622.0AExpired - Fee RelatedCN103464388B (en) | 2013-09-26 | 2013-09-26 | Lithium ion battery screening method |
| Country | Link |
|---|---|
| CN (1) | CN103464388B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103901350B (en)* | 2014-03-13 | 2017-01-18 | 奇瑞汽车股份有限公司 | Worn-out power battery secondary use screening method |
| CN103840225B (en)* | 2014-03-27 | 2016-09-14 | 合肥国轩高科动力能源有限公司 | Screening method of lithium ion battery |
| CN104014491B (en)* | 2014-06-26 | 2016-08-31 | 武汉中原长江科技发展有限公司 | A kind of screening technique of lithium ion battery in parallel |
| CN104617339B (en)* | 2014-11-18 | 2017-01-11 | 中国南方电网有限责任公司调峰调频发电公司 | Lithium ion battery matching method |
| CN104438138B (en) | 2014-12-08 | 2017-02-22 | 江苏华东锂电技术研究院有限公司 | Lithium ion battery screening method |
| CN104459558B (en)* | 2014-12-09 | 2018-09-21 | 江苏华东锂电技术研究院有限公司 | Lithium ion battery screening technique |
| CN104624524B (en)* | 2014-12-26 | 2017-04-26 | 东莞市金源电池科技有限公司 | Screening method for lithium ion battery consistency matching by using voltage recovery differential pressure |
| CN105988085A (en)* | 2015-02-06 | 2016-10-05 | 国家电网公司 | Health state assessment method of retired electric automobile power cell |
| CN105319516A (en)* | 2015-11-24 | 2016-02-10 | 苏州新中能源科技有限公司 | A battery set-making and screening method |
| CN105396800B (en)* | 2015-12-30 | 2017-11-14 | 哈尔滨工业大学 | Lithium ion storage battery screening method |
| CN105710050B (en)* | 2016-03-11 | 2018-04-03 | 北京华特时代电动汽车技术有限公司 | Battery cell method for separating |
| CN105728351B (en)* | 2016-03-11 | 2018-03-30 | 北京华特时代电动汽车技术有限公司 | Battery cell method for separating |
| CN105680108B (en)* | 2016-04-13 | 2018-07-17 | 合肥国轩高科动力能源有限公司 | Screening method of lithium ion battery |
| CN106371027B (en)* | 2016-08-24 | 2019-05-21 | 合肥国轩高科动力能源有限公司 | Test method for echelon recycling of retired battery |
| CN107783044A (en)* | 2016-08-26 | 2018-03-09 | 神讯电脑(昆山)有限公司 | Battery screening plant and its method |
| CN106378317B (en)* | 2016-09-30 | 2019-05-03 | 上海空间电源研究所 | Method and system for single cell screening of high voltage and high power lithium-ion battery pack |
| CN106824831A (en)* | 2016-12-19 | 2017-06-13 | 金同林 | A kind of manufacture method of the motive-power battery for improving lithium ion battery uniformity |
| CN106684475B (en)* | 2017-01-16 | 2019-03-26 | 哈尔滨理工大学 | A kind of sorting method of lithium iron phosphate battery |
| CN107290681A (en)* | 2017-07-14 | 2017-10-24 | 顺丰科技有限公司 | Battery fault detection method and terminal |
| CN107607874B (en)* | 2017-08-10 | 2019-08-02 | 上海交通大学 | The bikini screening technique of quick charge/discharge lithium ion battery |
| CN107597619A (en)* | 2017-08-31 | 2018-01-19 | 天津普兰能源科技有限公司 | Lithium titanate cell uniformity method for separating |
| CN109696633A (en)* | 2017-10-19 | 2019-04-30 | 江苏金阳光新能源科技有限公司 | A kind of method of quick inspection lithium ion battery circulation consistency |
| CN109794439A (en)* | 2017-11-16 | 2019-05-24 | 河北银隆新能源有限公司 | A kind of lithium battery performance screening technique |
| CN107983667B (en)* | 2017-11-23 | 2020-06-12 | 中国东方电气集团有限公司 | Lithium ion battery matching method |
| CN108365253B (en)* | 2018-02-09 | 2020-06-09 | 上海理工大学 | Method for rapidly screening internal resistance and capacity of battery |
| CN108598611A (en)* | 2018-04-20 | 2018-09-28 | 桑顿新能源科技有限公司 | A kind of retired battery can echelon utilize quick judgment method |
| CN109482521A (en)* | 2018-10-30 | 2019-03-19 | 江苏双登富朗特新能源有限公司 | Improve the self discharge screening technique of lithium ion battery combo consistency |
| CN110180802A (en)* | 2019-05-22 | 2019-08-30 | 中国电力科学研究院有限公司 | A kind of echelon utilizes the screening grouping method and system of battery |
| CN111007417A (en)* | 2019-12-06 | 2020-04-14 | 重庆大学 | Battery pack SOH and RUL prediction method and system based on inconsistency assessment |
| CN111760805A (en)* | 2020-06-18 | 2020-10-13 | 合肥国轩高科动力能源有限公司 | A method for testing and screening lithium-ion experimental batteries |
| CN111722138B (en)* | 2020-07-01 | 2021-02-19 | 兰州现代职业学院 | New energy automobile battery detection device |
| CN113064094B (en)* | 2021-03-22 | 2022-11-04 | 中国人民解放军国防科技大学 | A single battery screening method and system for a cellular spacecraft lithium battery |
| CN113172008A (en)* | 2021-04-21 | 2021-07-27 | 芜湖楚睿智能科技有限公司 | Cell consistency sorting method applied to energy storage lithium battery of semiconductor factory |
| CN114114024A (en)* | 2021-12-04 | 2022-03-01 | 国网河南省电力公司电力科学研究院 | A battery consistency screening device and screening method |
| CN114284543B (en)* | 2021-12-29 | 2023-09-22 | 蜂巢能源科技(无锡)有限公司 | Battery cell assembling method and battery module assembled by adopting same |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008298786A (en)* | 2001-08-13 | 2008-12-11 | Hitachi Maxell Ltd | Battery capacity detection method |
| CN102698968A (en)* | 2012-06-07 | 2012-10-03 | 北京有色金属研究总院 | Method for sorting lithium-ion power batteries |
| CN103302040A (en)* | 2013-06-13 | 2013-09-18 | 高平唐一新能源科技有限公司 | Screening method for lithium-ion battery consistency |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3960241B2 (en)* | 2003-03-11 | 2007-08-15 | トヨタ自動車株式会社 | Secondary battery remaining capacity estimation device, secondary battery remaining capacity estimation method, and computer-readable recording medium storing a program for causing a computer to execute processing by the secondary battery remaining capacity estimation method |
| US8502494B2 (en)* | 2009-08-28 | 2013-08-06 | Front Edge Technology, Inc. | Battery charging apparatus and method |
| JP5633227B2 (en)* | 2009-10-14 | 2014-12-03 | ソニー株式会社 | Battery pack and battery pack deterioration detection method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008298786A (en)* | 2001-08-13 | 2008-12-11 | Hitachi Maxell Ltd | Battery capacity detection method |
| CN102698968A (en)* | 2012-06-07 | 2012-10-03 | 北京有色金属研究总院 | Method for sorting lithium-ion power batteries |
| CN103302040A (en)* | 2013-06-13 | 2013-09-18 | 高平唐一新能源科技有限公司 | Screening method for lithium-ion battery consistency |
| Publication number | Publication date |
|---|---|
| CN103464388A (en) | 2013-12-25 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103464388B (en) | Lithium ion battery screening method | |
| CN103545567B (en) | A kind of method of quick sorting lithium ion battery | |
| CN107607874B (en) | The bikini screening technique of quick charge/discharge lithium ion battery | |
| CN101907688B (en) | Method for detecting electrical property consistency of lithium ion battery | |
| CN103594742B (en) | A kind of sorting method for group matching of power lead-acid storage battery group | |
| CN110726940B (en) | Rapid evaluation method for cycle performance of high nickel cathode materials for lithium ion batteries | |
| CN102394315B (en) | Cell characteristic vector based lithium ion cell configuration method | |
| CN106680726A (en) | A kind of inspection method of cycle performance of lithium ion battery | |
| CN109201521B (en) | Self-discharge screening process for nickel-cobalt lithium manganate lithium ion battery | |
| CN106093781A (en) | Method for testing calendar life of power lithium ion battery | |
| CN102508165A (en) | Method for evaluating self-discharge consistency of lithium iron phosphate battery | |
| CN104062594A (en) | Lithium-ion power battery matching method | |
| CN108511815A (en) | Method and system for evaluating consistency of lithium ion battery | |
| CN103163480A (en) | Method for estimating health state of lithium battery | |
| CN105489962A (en) | Recycling method for waste power lithium ion batteries | |
| CN101504443A (en) | Prediction method for discharge capacity of lithium ion battery | |
| CN103487758B (en) | A kind of lithium ion battery grouping method | |
| CN108363017A (en) | A kind of retired lithium battery stabilization capability value scaling method of long-time storage | |
| CN107422265A (en) | A kind of detection method of cell uniformity | |
| CN111366864B (en) | An online estimation method of battery SOH based on fixed voltage rise interval | |
| CN110850323A (en) | Method and device for evaluating accelerated attenuation of retired ternary lithium battery | |
| CN104237802A (en) | Detection method for low-temperature performance uniformity of lithium ion batteries | |
| CN111077457A (en) | Method and device for evaluating accelerated attenuation of lithium iron phosphate battery by gradient utilization | |
| WO2020015226A1 (en) | Abuse and over-discharge performance evaluation and capacity recovery method for lead-acid battery | |
| CN111495800A (en) | A screening and grouping method for cascade reuse of power battery packs |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20150401 |