Summary of the invention
The object of the invention is to solve existing gyroscope and be applied in the product that direction of motion is single, have measuring result error problem bigger than normal, a kind of single shaft MEMS (micro electro mechanical system) gyroscope is provided.
The technical solution used in the present invention is: a kind of single shaft MEMS (micro electro mechanical system) gyroscope, comprise the twisting mass, be distributed in each anchor point of twisting mass surrounding and be arranged on each capacitance group in the capacitance group setting area between each anchor point and twisting mass, definition be take the center of twisting mass and is pointed to right side as the forward of the x axle of the cartesian coordinate system of initial point, the forward of y axle points to upside, and the fixed fingers of each capacitance group and movable comb have the axial difference of height along z;
Described capacitance group comprises that at least one pair of drives capacitance group, at least one pair of Detection capacitance group and at least one pair of sensitization capacitance group, two every pair drive the left and right side that capacitance group is divided into the twisting mass, the fixed fingers that is positioned at the driving capacitance group of left and right side is fixed in substrate by the left and right driving anchor point respectively, the movable comb that is positioned at the driving capacitance group of left and right side is connected with the left and right sidewall of twisting mass respectively, and described left and right driving anchor point is used for receiving as a pair of drive electrode the driving signal that peripheral circuit provides;
Every pair of two Detection capacitance components are located at the left side of twisting mass, right side, be positioned at a left side, the fixed fingers of the Detection capacitance group on right side is by being fixed in described substrate with each self-corresponding detection anchor point, be positioned at a left side, the movable comb of the Detection capacitance group on right side respectively with the twisting mass a left side, right side wall connects, each detects anchor point and divides two groups of formations that link together a pair of for the detecting electrode of the capacitance variations signal feedback by the Detection capacitance group to a pair of described drive electrode, two Detection capacitance groups of every pair of Detection capacitance group are connected from different detecting electrodes, to regulate the Oscillation Amplitude that drives capacitance group,
Every pair of two sensitization capacitance components are located at the upper and lower side of twisting mass, the fixed fingers that is positioned at the sensitization capacitance group of upper and lower side is fixed in described substrate by the responsive anchor point with corresponding separately, and the movable comb that is positioned at the sensitization capacitance group of upper and lower side is connected with the twisting mass by the periphery elastic beam; Each responsive anchor point divides two groups to link together and form a pair of sensitive electrode that is provided for measuring the sensitive signal of additional magnitude of angular velocity, two sensitization capacitance groups of every pair of sensitization capacitance group are connected from different sensitive electrodes, and the movable comb of all sensitization capacitance groups is passed through fixedly elastic beam and is connected with each fixed anchor point; And,
The center anchor point that is positioned at twisting mass center position is connected with the twisting mass by the middle part elastic beam.
Preferably, two every pair drive capacitance group about the y rotational symmetry, and two the every pair link positions that drive electric capacity and twisting mass are about the y rotational symmetry.
Preferably, described capacitance group comprises that two pairs drive capacitance group, and two pairs drive capacitance group and arrange about the x rotational symmetry.
Preferably, described left and right driving anchor point arranges about the y rotational symmetry on the x axle.
Preferably, described capacitance group comprises two pairs of Detection capacitance groups, each arranges about the y rotational symmetry the Detection capacitance group, the two pairs of Detection capacitance groups arrange about the x rotational symmetry, and the detection anchor point be connected with the fixed fingers of the Detection capacitance group that lays respectively at left and right side in two pairs of Detection capacitance groups is joined together to form a pair of detecting electrode.
Preferably, described capacitance group comprises two pairs of sensitization capacitance groups, each arranges about the x rotational symmetry the sensitization capacitance group, two pairs of sensitization capacitance groups are symmetrical arranged about y, and the responsive anchor point be connected with the fixed fingers of the sensitization capacitance group that lays respectively at upper and lower side in two pairs of sensitization capacitance groups is joined together to form a pair of sensitive electrode.
Preferably, described fixed anchor point is arranged at gyrostatic four edges of single shaft MEMS (micro electro mechanical system).
Beneficial effect of the present invention is: simple in structure, less for the angular velocity measurement resultant error of individual sport, resistance to shock is good.
Embodiment
The present invention will be further described in detail below in conjunction with the drawings and specific embodiments:
Now take arrange two pairs drive capacitance group C1, the two couples of Detection capacitance group C2 and the two couples of sensitization capacitance group C3 as embodiment illustrates the gyrostatic concrete structure of single shaft MEMS (micro electro mechanical system) of the present invention.Definition be take twisting mass m1De center and is left and right direction as the x direction of principal axis of the cartesian coordinate system of initial point, the y direction of principal axis be upper and lower to, the fixed fingers of each capacitance group and movable comb have the axial difference of height along z, as shown in Figure 1, the surrounding of twisting mass m1 is distributed with anchor point, zone between anchor point and twisting mass m1 is for be used to the capacitance group setting area of all kinds of capacitance group is set, and the capacitance group setting area comprises and lays respectively at that the twisting mass is left and right, left and right, the upper and lower capacitance group setting area of upper and lower side.Every couple of two driving capacitance group C1 that drive capacitance group are separately positioned in left and right capacitance group setting area, two fixed fingers that drive capacitance group C1 that are positioned at left capacitance group setting area are fixed in gyrostatic substrate by left driving anchor point 1a, and movable comb is connected with the left side wall of twisting mass m1; Two fixed fingers that drive capacitance group C2 that are positioned at right capacitance group setting area are fixed in described substrate by right driving anchor point 1b, and movable comb is connected with the right side wall of twisting mass m1; Left and right driving anchor point 1a, 1b are used for receiving as a pair of drive electrode the driving signal that peripheral circuit provides.
Two sensitization capacitance components of every pair of sensitization capacitance group are located in left and right capacitance group setting area, the fixed fingers that is positioned at first, second Detection capacitance group C21, the C22 of left capacitance group setting area detects anchor point 2a1,2b1 by first, second respectively and is fixed in described substrate, and movable comb is connected with the left side wall of twisting mass m1, be positioned at the 3rd of right capacitance group setting area, the 4th Detection capacitance group C23, the fixed fingers of C24 is respectively by the 3rd, the 4th detects anchor point 2a2, 2b2 is fixed in described substrate, movable comb is connected with the right side wall of twisting mass m1, wherein, first, the 3rd detects anchor point 2a1, 2a2 links together, form a detecting electrode, second, the 4th detects anchor point 2b1, 2b2 links together and forms another detecting electrode, make four Detection capacitance group C2 form differential connection, as shown in Figure 4, two detecting electrodes are for giving a pair of drive electrode by the capacitance variations signal feedback of Detection capacitance group C2, namely feed back to and drive capacitance group C1, to pass through to change the impressed voltage size, regulate the Oscillation Amplitude that drives capacitance group C1, at this, the capacitance variations signal can feed back to a pair of drive electrode again through charge amplifying circuit.The above movable comb be connected with twisting mass m1 will be with twisting mass m1 motion, the capacitance group be connected on same anchor point is equivalent to be connected in parallel, the capacitance group be connected in parallel has identical capacitance variations trend, such as, in structure motion, the capacitance of the capacitance group be connected in parallel can increase simultaneously or reduce.
The center anchor point 3 that is positioned at twisting mass m1 center position is connected with twisting mass m1 by middle part elastic beam b1.
Two sensitization capacitance components of every pair of sensitization capacitance group are located in upper and lower capacitance group setting area, the fixed fingers that is positioned at first, second sensitization capacitance group C31, the C32 of capacitance group setting area is fixed in described substrate by first, second responsive anchor point 4a1,4b1 respectively, and movable comb is connected with twisting mass m1 by periphery elastic beam b2; The fixed fingers that is positioned at the 3rd, the 4th sensitization capacitance group C33, the C34 of lower capacitance group setting area is fixed in described substrate by the 3rd, the 4th responsive anchor point 4a2,4b2 respectively, and movable comb is connected with twisting mass m1 by periphery elastic beam b2; The first, the 3rd responsive anchor point 4a1,4a2 link together and form a sensitive electrode, the second, the 4th responsive anchor point 4b1,4b2 link together and form another sensitive electrode, by a pair of sensitive electrode, are provided for measuring the sensitive signal of additional magnitude of angular velocity.At this, the movable comb of all sensitization capacitance group C3 can be passed through fixedly elastic beam b3 and be connected with each fixed anchor point 5, supports and equilibrium activity to play.
In order to guarantee the harmony of gyroscope integral body, left, right driving anchor point 1a, 1b on the x axle about the origin symmetry setting, first detects anchor point 2a1 and the 4th detects the top that anchor point 2b2 is positioned at the x axle, and about the y rotational symmetry, the second detection anchor point 2b1 and first detects anchor point 2a1 and arranges about the x rotational symmetry, the 3rd detection anchor point 2a2 and the 4th detects anchor point 2b2 and arranges about the x rotational symmetry, first, the second responsive anchor point 4a1, 4b1 is positioned at the top of twisting mass m1, and arrange about the y rotational symmetry, the first responsive anchor point 4a1 and the 4th responsive anchor point 4b2 arrange about the x rotational symmetry, the second responsive anchor point 4b1 and the 3rd responsive anchor point 4a2 arrange about the x rotational symmetry, in addition, the present embodiment arranges 5, four fixed anchor points of four fixed anchor points and was located at gyrostatic four edges in 5 minutes.For above-mentioned configuration, be positioned at a pair of driving capacitance group of left and right capacitance group setting area about the setting of y rotational symmetry, two pairs drive capacitance group and arrange about the x rotational symmetry.The first Detection capacitance group C21 and the 4th Detection capacitance group C24 arrange about the y rotational symmetry above driving capacitance group C1 as a pair of Detection capacitance group, and the second Detection capacitance group C22 and the 3rd Detection capacitance group C23 arrange about the x rotational symmetry Detection capacitance group and upper a pair of Detection capacitance group as another.The first sensitization capacitance group C31 and the 4th sensitization capacitance group C34 arrange about the x rotational symmetry as a pair of sensitization capacitance group, and the second sensitization capacitance group C32 and the 3rd sensitization capacitance group C33 arrange about the y rotational symmetry sensitization capacitance group and upper a pair of sensitization capacitance group as another.
At this, it will be apparent to those skilled in the art that and drive capacitance group C1, number and the connected mode of Detection capacitance group C2 and sensitization capacitance group C3 not are restricted to the above embodiment provided.The driving capacitance group is set, the purpose of Detection capacitance group and sensitization capacitance group is respectively to provide driving, detect and sensitive signal, the number of capacitance group and connection driving difference only is provided, detect and sensitive signal size and symmetric difference, and do not change corresponding driving, detect and responsive function.
As shown in Figure 2, there is difference of height in the height on the z direction of principal axis that drives capacitance group C1 adjacent fingers (movable and fixed fingers is spaced), when the current potential of fixed fingers and movable comb is unequal, the fixed fingers and the movable comb that drive capacitance group C1 will produce the axial interaction force along z.As shown in Figure 1, a pair of drive electrode 1a, 1b are upper will apply amplitude, and frequency equates, the driving voltage of single spin-echo, make two of left and right side to drive the anti-phase driving force of generation between capacitance group and twisting mass m1, along the y axle, do simple harmonic oscillation thereby drive twisting mass m1.Detection capacitance group C2 is due to the vibration of twisting mass M1, and its capacitance also changes, and according to the variation of Detection capacitance group C2 numerical value, regulates the variation of additional driving voltage, the final Oscillation Amplitude of regulating twisting mass m1.
As shown in Figure 3, the twisting mass swings around the y axle, when additional angular velocity acts on the x direction, the coriolis force of its generation will make to twist mass and rotate around the z axle, and by the movable comb motion of periphery elastic beam b2 drive sensitization capacitance group C3, the capacitance of sensitization capacitance group C3 is changed, thereby measure the size of additional angular velocity.
As can be known according to gyrostatic principle of work described above, there are two mode at least in it: driven-mode and sensed-mode, driven-mode twists around the y axle for twisting mass m1, now, the end that periphery elastic beam b2 is connected with twisting mass m1 can be with twisting mass m1 twisting, and the other end is fixedly elastic beam b3 and connected fixed anchor point 5 are motionless under acting on, therefore, under driven-mode, periphery elastic beam b2 can twist; Under responsive mode, total, except the fixed fingers and each anchor point of capacitance group, will be rotated with respect to initial point around Z axis, and now periphery elastic beam b2 is not considering that in the mismachining tolerance situation, a meeting deform in the XY plane.
Only be in sum preferred embodiment of the present invention, not be used for limiting practical range of the present invention.Be that all equivalences of doing according to the content of the present patent application the scope of the claims change and modify, all should belong to technology category of the present invention.