Movatterモバイル変換


[0]ホーム

URL:


CN103359283A - High-reliability unmanned aerial vehicle with tilt rotors - Google Patents

High-reliability unmanned aerial vehicle with tilt rotors
Download PDF

Info

Publication number
CN103359283A
CN103359283ACN2013102731488ACN201310273148ACN103359283ACN 103359283 ACN103359283 ACN 103359283ACN 2013102731488 ACN2013102731488 ACN 2013102731488ACN 201310273148 ACN201310273148 ACN 201310273148ACN 103359283 ACN103359283 ACN 103359283A
Authority
CN
China
Prior art keywords
motor
flight control
rotor
unmanned aerial
aerial vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013102731488A
Other languages
Chinese (zh)
Inventor
鲜斌
张旭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin UniversityfiledCriticalTianjin University
Priority to CN2013102731488ApriorityCriticalpatent/CN103359283A/en
Publication of CN103359283ApublicationCriticalpatent/CN103359283A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromChinese

一种高可靠性倾转旋翼无人飞行器,包括有机架,机架的中心设置有飞行控制系统,机架是由三个相同的机臂对接组成的Y字型机架,每一个机臂的端部都设置一组与飞行控制系统电连接并能够旋转设定角度的电动动力单元。电动动力单元包括有能够旋转的连接在机臂端部的电机座,固定在电机座上的永磁无刷直流电机和连接在永磁无刷直流电机输出轴上的旋翼,以及连接在电机座一侧用于驱动电机座以机臂为轴进行旋转的电机转向伺服器,永磁无刷直流电机和电机转向伺服器的输入端电连接飞行控制系统的输出端。本发明在某一旋翼失效后具有保持姿态稳定的能力,飞行器构型可变,如从三旋翼水平构型可转换为双旋翼竖直构型,可以减小飞行器投影面积,更适合在有限空间里飞行。

Figure 201310273148

A high-reliability tilt-rotor unmanned aerial vehicle, including a frame, the center of the frame is provided with a flight control system, the frame is a Y-shaped frame composed of three identical arms docked, each arm A group of electric power units that are electrically connected to the flight control system and can rotate to set angles are arranged at the ends of each flight. The electric power unit includes a rotatable motor base connected to the end of the machine arm, a permanent magnet brushless DC motor fixed on the motor base, a rotor connected to the output shaft of the permanent magnet brushless DC motor, and a rotor connected to the motor base. One side is used to drive the motor base that rotates with the machine arm as the axis to turn the servo, and the permanent magnet brushless DC motor and the input end of the motor steering servo are electrically connected to the output end of the flight control system. The invention has the ability to maintain a stable attitude after a certain rotor fails, and the configuration of the aircraft can be changed. For example, it can be converted from a three-rotor horizontal configuration to a double-rotor vertical configuration, which can reduce the projected area of the aircraft and is more suitable for use in limited spaces. fly.

Figure 201310273148

Description

Translated fromChinese
一种高可靠性倾转旋翼无人飞行器A high-reliability tilt-rotor unmanned aerial vehicle

技术领域technical field

本发明涉及一种多旋翼无人飞行器。特别是涉及一种高可靠性倾转旋翼无人飞行器。The invention relates to a multi-rotor unmanned aerial vehicle. In particular, it relates to a high-reliability tilt-rotor unmanned aerial vehicle.

背景技术Background technique

多旋翼飞行器,国外又称Multi-rotor,是一种具有多个螺旋桨的飞行器,与传统的直升机不同,多旋翼飞行器通过改变螺旋桨的速度来实现各种动作。Multi-rotor aircraft, also known as Multi-rotor abroad, is an aircraft with multiple propellers. Unlike traditional helicopters, multi-rotor aircraft achieves various actions by changing the speed of the propellers.

具有垂直起降和悬停能力的旋翼飞行器,较之传统单旋翼直升机,具有结构简单、维护容易,桨叶杀伤力小,操作安全的特点。不但在军事领域发挥着日益重要的作用,也在灾害救援、评估,危险环境调查,交通巡视及空中摄影等多个民用领域得到广泛的应用。Compared with traditional single-rotor helicopters, the rotorcraft with vertical take-off and landing and hovering capabilities has the characteristics of simple structure, easy maintenance, small blade lethality, and safe operation. Not only is it playing an increasingly important role in the military field, but it is also widely used in many civilian fields such as disaster rescue, assessment, dangerous environment investigation, traffic inspection and aerial photography.

现有的多旋翼无人飞行器,在任一套动力装置出现故障的情况下,均将无法维持姿态稳定而坠毁,通过简单的概率计算可以得出,多旋翼飞行器系统的整体可靠性远低于固定翼飞行器及普通单旋翼飞行器,这极大的限制了多旋翼飞行器的应用领域。例如,在需要搭载昂贵设备的飞行任务中,尽管多旋翼飞行器有诸多优点,仍然被排除在选择范围外。Existing multi-rotor unmanned aerial vehicles, in the case of failure of any set of power devices, will not be able to maintain a stable attitude and crash. Through simple probability calculations, it can be concluded that the overall reliability of multi-rotor aircraft systems is much lower than that of fixed-rotor aircraft systems. Wing aircraft and ordinary single-rotor aircraft, which greatly limits the application field of multi-rotor aircraft. For example, in missions that require carrying expensive equipment on board, multirotors, despite their many advantages, are still ruled out as an option.

另一方面,目前多旋翼无人飞行器均为固定构型,飞行器面积大,不利于在狭小空间飞行。On the other hand, the current multi-rotor unmanned aerial vehicles are all in a fixed configuration, and the area of the aircraft is large, which is not conducive to flying in a small space.

发明内容Contents of the invention

本发明所要解决的技术问题是,提供一种能够大大提高多旋翼飞行器可靠性的高可靠性倾转旋翼无人飞行器。The technical problem to be solved by the present invention is to provide a high-reliability tilt-rotor unmanned aircraft that can greatly improve the reliability of the multi-rotor aircraft.

本发明所采用的技术方案是:一种高可靠性倾转旋翼无人飞行器,包括有机架,所述的机架的中心设置有飞行控制系统,所述的机架是由三个相同的机臂对接组成的Y字型机架,每一个机臂的端部都设置一组与飞行控制系统电连接并能够旋转设定角度的电动动力单元。The technical solution adopted in the present invention is: a high-reliability tilt-rotor unmanned aerial vehicle, including a frame, the center of the frame is provided with a flight control system, and the frame is composed of three identical A Y-shaped frame composed of docked arms, each end of the arm is provided with a group of electric power units that are electrically connected to the flight control system and can rotate to set an angle.

所述的每一个机臂上还设置有在飞行器着地时具有缓冲作用的起落装置。Each arm is also provided with a landing gear with a buffering effect when the aircraft touches the ground.

所述的电动动力单元包括有能够旋转的连接在机臂端部的电机座,固定在电机座上的永磁无刷直流电机和连接在永磁无刷直流电机输出轴上的旋翼,以及连接在电机座一侧用于驱动电机座以机臂为轴进行旋转的电机转向伺服器,所述的永磁无刷直流电机和电机转向伺服器的输入端电连接飞行控制系统的输出端。The electric power unit includes a rotatable motor base connected to the end of the machine arm, a permanent magnet brushless DC motor fixed on the motor base and a rotor connected to the output shaft of the permanent magnet brushless DC motor, and a connecting On the side of the motor base, the motor steering servo is used to drive the motor base to rotate with the machine arm as the axis. The permanent magnet brushless DC motor and the input end of the motor steering servo are electrically connected to the output end of the flight control system.

所述旋翼的叶片为对称翼型或非对称翼型。The blades of the rotor are symmetrical airfoils or asymmetrical airfoils.

所述的机臂为中空结构,所述中空结构内置有飞行控制系统分别与电机转向私服器和电动动力单元中的永磁无刷直流电机之间的连接导线。The arm is a hollow structure, and the hollow structure is built with connecting wires between the flight control system and the motor steering server and the permanent magnet brushless DC motor in the electric power unit.

所述Y字型的机架的中心固定设置有中心板,所述的飞行控制系统固定设置在所述的中心板上。A center plate is fixedly arranged in the center of the Y-shaped frame, and the flight control system is fixedly arranged on the center plate.

所述的飞行控制系统包括有飞行控制单元,与飞行控制单元的信号输出端相连接的用于驱动电动动力单元中的永磁无刷直流电机的驱动单元,以及与所述的驱动单元相连用于提供电源的储能动力电池,所述的飞行控制单元的信号输出端还连接电动动力单元中的电机转向私服器。The flight control system includes a flight control unit, a drive unit connected to the signal output end of the flight control unit for driving the permanent magnet brushless DC motor in the electric power unit, and a drive unit connected with the drive unit For the energy storage power battery that provides power, the signal output end of the flight control unit is also connected to the motor steering server in the electric power unit.

所述的飞行控制单元包括有处理器,分别连接处理器的惯性测量模块和数据收发模块,所述处理器的输出信号分别连接驱动单元和电动动力单元中的电机转向私服器。The flight control unit includes a processor, which is respectively connected to the inertial measurement module and the data transceiver module of the processor, and the output signal of the processor is respectively connected to the motor steering server in the drive unit and the electric power unit.

本发明的一种高可靠性倾转旋翼无人飞行器,通过对每个旋翼倾转角度的控制,在某一旋翼失效后具有保持姿态稳定的能力,飞行器构型可变,如从三旋翼水平构型可转换为双旋翼竖直构型,可以减小飞行器投影面积,更适合在有限空间里飞行。本发明具有如下有益效果:A high-reliability tilt-rotor unmanned aerial vehicle of the present invention has the ability to maintain a stable attitude after a certain rotor fails by controlling the tilt angle of each rotor. The configuration can be converted to a dual-rotor vertical configuration, which can reduce the projected area of the aircraft and is more suitable for flying in a limited space. The present invention has following beneficial effect:

1、大大提高了多旋翼飞行器可靠性,在有一组动力单元失效的情况下,通过伺服器转动剩余动力单元,切换飞行模式后仍可以稳定飞行器的姿态,保证飞行器能安全降落,从而保护了地面人员及机载设备;1. The reliability of the multi-rotor aircraft has been greatly improved. In the case of failure of one group of power units, the attitude of the aircraft can still be stabilized after switching the flight mode by turning the remaining power units through the servo to ensure that the aircraft can land safely, thereby protecting the ground personnel and airborne equipment;

2、当飞行器遇到狭小的空间需要穿过时,也可以切换为双动力单元飞行方式,从而拓展了多旋翼飞行器的使用范围。2. When the aircraft encounters a narrow space and needs to pass through, it can also switch to the dual power unit flight mode, thereby expanding the use range of the multi-rotor aircraft.

附图说明Description of drawings

图1是本发明的整体结构示意图;Fig. 1 is the overall structural representation of the present invention;

图2是本发明处于双电动动力单元构型时的示意图;Fig. 2 is the schematic diagram when the present invention is in double electric power unit configuration;

图3是本发明的飞行控制系统构成框图。Fig. 3 is a block diagram of the flight control system of the present invention.

1:机架               11:机臂1: Frame 11: Arm

12:电动动力单元      121:电机座12: Electric power unit 121: Motor base

122:永磁无刷直流电机 123:旋翼122: Permanent magnet brushless DC motor 123: Rotor

124:电机转向伺服器   2:飞行控制系统124: Motor steering servo 2: Flight control system

21:飞行控制单元      22:驱动单元21: Flight control unit 22: Drive unit

23:储能动力电池      24:电机转向私服器23: Energy storage power battery 24: Motor steering private server

211:处理器           212:惯性测量模块211: Processor 212: Inertial Measurement Module

213:数据收发模块213: Data transceiver module

具体实施方式Detailed ways

下面结合实施例和附图对本发明的一种高可靠性倾转旋翼无人飞行器做出详细说明。A high-reliability tilt-rotor unmanned aerial vehicle of the present invention will be described in detail below in conjunction with the embodiments and accompanying drawings.

本发明的一种高可靠性倾转旋翼无人飞行器,包括有机架1,所述的机架1的中心设置有飞行控制系统2,所述的机架1是由三个相同的机臂11对接组成的Y字型机架,每一个机臂11的端部都设置一组与飞行控制系统2电连接并能够旋转设定角度的电动动力单元12。三个电动动力单元12形成一个等边三角形。为了保证无人飞行器着路时的稳定性,所述的每一个机臂11上还设置有在飞行器着地时具有缓冲作用的起落装置3。A kind of high-reliability tilt-rotor unmanned aerial vehicle of the present invention comprisesframe 1, and the center of describedframe 1 is provided withflight control system 2, and describedframe 1 is made of threeidentical machine arms 11 are docked to form a Y-shaped frame, and the end of eacharm 11 is provided with a group ofelectric power units 12 that are electrically connected to theflight control system 2 and can rotate to set an angle. Threeelectric power units 12 form an equilateral triangle. In order to ensure the stability of the unmanned aerial vehicle when it lands, each of thearms 11 is also provided with alanding gear 3 that has a buffering effect when the aircraft touches the ground.

所述的电动动力单元12包括有能够以机臂11为轴旋转的连接在机臂11端部的电机座121,固定在电机座121上的永磁无刷直流电机122和连接在永磁无刷直流电机122输出轴上的旋翼123,以及连接在电机座121一侧用于驱动电机座121以机臂11为轴进行旋转的电机转向伺服器124,所述的永磁无刷直流电机122和电机转向伺服器124的输入端电连接飞行控制系统2的输出端。所述旋翼123的叶片为对称翼型或非对称翼型。Theelectric power unit 12 includes a motor base 121 connected to the end of themachine arm 11 that can rotate around themachine arm 11, a permanent magnetbrushless DC motor 122 fixed on the motor base 121 and a permanent magnetbrushless DC motor 122 connected to the permanent magnet brushless DC motor. Therotor 123 on the output shaft of thebrush DC motor 122, and themotor steering servo 124 connected to the side of the motor base 121 for driving the motor base 121 to rotate on the axis of themachine arm 11, the permanent magnetbrushless DC motor 122 The output end of theflight control system 2 is electrically connected with the input end of themotor steering servo 124 . The blades of therotor 123 are symmetrical or asymmetrical.

所述的机臂11为中空结构,所述中空结构内置有飞行控制系统2分别与电机转向伺服器124和电动动力单元12中的永磁无刷直流电机122之间的连接导线。从而使整机外部没有导线,整体简洁,安全。Thearm 11 is a hollow structure, and the hollow structure is built with connecting wires between theflight control system 2 and themotor steering servo 124 and the permanent magnetbrushless DC motor 122 in theelectric power unit 12 . Therefore, there is no wire outside the whole machine, and the whole machine is simple and safe.

所述Y字型的机架1的中心固定设置有中心板4,所述的飞行控制系统2固定设置在所述的中心板4上。所述的飞行控制系统2包括有飞行控制单元21,与飞行控制单元21的信号输出端相连接的用于驱动电动动力单元12中的永磁无刷直流电机122的驱动单元22,以及与所述的驱动单元22相连用于提供电源的储能动力电池23,所述的飞行控制单元21的信号输出端还连接电动动力单元12中的电机转向私服器124。Acenter plate 4 is fixedly arranged at the center of the Y-shaped frame 1 , and theflight control system 2 is fixedly arranged on thecenter plate 4 . Theflight control system 2 includes aflight control unit 21, adrive unit 22 connected to the signal output end of theflight control unit 21 for driving the permanent magnetbrushless DC motor 122 in theelectric power unit 12, and the Thedrive unit 22 is connected to the energystorage power battery 23 for providing power, and the signal output terminal of theflight control unit 21 is also connected to themotor steering server 124 in theelectric power unit 12 .

其中,所述的驱动单元22可以采用型号为Hobbywing Skywalker40A或ZTW AL30A或Align REC-BL35P的驱动模块。Wherein, thedrive unit 22 can adopt a drive module whose model is Hobbywing Skywalker40A or ZTW AL30A or Align REC-BL35P.

具体的是所述的飞行控制单元21包括有处理器211,分别连接处理器211的惯性测量模块212和数据收发模块213,所述处理器211的输出信号分别连接驱动单元22和电动动力单元12中的电机转向私服器13。Specifically, theflight control unit 21 includes aprocessor 211, which is respectively connected to theinertial measurement module 212 and thedata transceiver module 213 of theprocessor 211, and the output signal of theprocessor 211 is connected to thedrive unit 22 and theelectric power unit 12 respectively. The motor in it turns to private server 13.

其中,所述的惯性测量模块212可以采用型号为Xsens MTI或Crossbow NAV440或VMsens VM-i的惯性测量模块。所述的处理器211以采用型号为STMicroelectronicsSTM32F103或STMicroelectronics STM32F405或Atmel ATmega2560-16AU的处理器。所述的数据收发模块213以采用型号为YL-100IL或FY-602或RSD-500T的模块。Wherein, theinertial measurement module 212 can be an inertial measurement module whose model is Xsens MTI or Crossbow NAV440 or VMsens VM-i. Describedprocessor 211 can adopt the processor that model is STMicroelectronics STM32F103 or STMicroelectronics STM32F405 or Atmel ATmega2560-16AU. Thedata transceiving module 213 can adopt a module whose model is YL-100IL or FY-602 or RSD-500T.

本发明的一种高可靠性倾转旋翼无人飞行器,的工作原理是:正常飞行时,无人飞行器的三个电动动力单元中的两个处于在同一平面,另一个动力单元在电机转向伺服器的驱动下旋转一定角度,实现扭矩的平衡及姿态控制;当三个电动动力单元之一发生故障时,无人飞行器切换为双电动动力单元飞行方式,通过剩余两套电动动力单元的摆动稳定飞行姿态,使无人飞行器安全着陆。当无人飞行器遇到狭小的空间需要穿过时,也可以切换为双电动动力单元的飞行方式。A kind of high-reliability tilt-rotor unmanned aerial vehicle of the present invention, the working principle is: during normal flight, two of the three electric power units of the unmanned aerial vehicle are in the same plane, and the other power unit is in the motor steering servo Driven by the UAV, it rotates at a certain angle to achieve torque balance and attitude control; when one of the three electric power units fails, the unmanned aerial vehicle switches to the dual electric power unit flight mode, and stabilizes the aircraft through the swing of the remaining two electric power units. The flight attitude enables the unmanned aerial vehicle to land safely. When the unmanned aerial vehicle encounters a narrow space and needs to pass through, it can also switch to the flying mode of dual electric power units.

上述实例仅仅是为清楚的说明所作的举例,而并非对实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其他不同形式的变化或变动。这里无需也无法对所有实施方式予以穷举。而由此引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。The above examples are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all implementation manners here. However, the obvious changes or variations derived therefrom are still within the scope of protection of the present invention.

Claims (8)

Translated fromChinese
1.一种高可靠性倾转旋翼无人飞行器,包括有机架(1),其特征在于,所述的机架(1)的中心设置有飞行控制系统(2),所述的机架(1)是由三个相同的机臂(11)对接组成的Y字型机架,每一个机臂(11)的端部都设置一组与飞行控制系统(2)电连接并能够旋转设定角度的电动动力单元(12)。1. A high-reliability tilt-rotor unmanned aerial vehicle, comprising a frame (1), characterized in that, the center of the frame (1) is provided with a flight control system (2), and the frame (1) It is a Y-shaped frame composed of three identical arms (11) docked, each end of each arm (11) is provided with a set of electrical connections with the flight control system (2) and can rotate the device Angled electric power unit (12).2.根据权利要求1所述的一种高可靠性倾转旋翼无人飞行器,其特征在于,所述的每一个机臂(11)上还设置有在飞行器着地时具有缓冲作用的起落装置(3)。2. A high-reliability tilt-rotor unmanned aerial vehicle according to claim 1, characterized in that each arm (11) is also provided with a landing gear ( 3).3.根据权利要求1所述的一种高可靠性倾转旋翼无人飞行器,其特征在于,所述的电动动力单元(12)包括有能够旋转的连接在机臂(11)端部的电机座(121),固定在电机座(121)上的永磁无刷直流电机(122)和连接在永磁无刷直流电机(122)输出轴上的旋翼(123),以及连接在电机座(121)一侧用于驱动电机座(121)以机臂(11)为轴进行旋转的电机转向伺服器(124),所述的永磁无刷直流电机(122)和电机转向伺服器(124)的输入端电连接飞行控制系统(2)的输出端。3. A high-reliability tilt-rotor unmanned aerial vehicle according to claim 1, characterized in that the electric power unit (12) includes a rotatable motor connected to the end of the arm (11) seat (121), the permanent magnet brushless DC motor (122) that is fixed on the motor seat (121) and the rotor (123) that is connected on the permanent magnet brushless DC motor (122) output shaft, and is connected on the motor seat ( 121) One side is used to drive the motor base (121) to rotate the motor steering servo (124) with the machine arm (11) as the axis, the permanent magnet brushless DC motor (122) and the motor steering servo (124) ) is electrically connected to the output terminal of the flight control system (2).4.根据权利要求3所述的一种高可靠性倾转旋翼无人飞行器,其特征在于,所述旋翼(123)的叶片为对称翼型或非对称翼型。4. The high-reliability tilt-rotor unmanned aerial vehicle according to claim 3, characterized in that, the blades of the rotor (123) are symmetrical airfoils or asymmetrical airfoils.5.根据权利要求1所述的一种高可靠性倾转旋翼无人飞行器,其特征在于,所述的机臂(11)为中空结构,所述中空结构内置有飞行控制系统(2)分别与电机转向私服器(124)和电动动力单元(12)中的永磁无刷直流电机(122)之间的连接导线。5. A high-reliability tilt-rotor unmanned aerial vehicle according to claim 1, characterized in that, the arm (11) is a hollow structure, and the hollow structure is built with a flight control system (2) respectively Connecting wires with the motor steering gear (124) and the permanent magnet brushless DC motor (122) in the electric power unit (12).6.根据权利要求1所述的一种高可靠性倾转旋翼无人飞行器,其特征在于,所述Y字型的机架(1)的中心固定设置有中心板(4),所述的飞行控制系统(2)固定设置在所述的中心板(4)上。6. A high-reliability tilt-rotor unmanned aerial vehicle according to claim 1, characterized in that, the center of the Y-shaped frame (1) is fixedly provided with a center plate (4), and the The flight control system (2) is fixedly arranged on the center board (4).7.根据权利要求1所述的一种高可靠性倾转旋翼无人飞行器,其特征在于,所述的飞行控制系统(2)包括有飞行控制单元(21),与飞行控制单元(21)的信号输出端相连接的用于驱动电动动力单元(12)中的永磁无刷直流电机(122)的驱动单元(22),以及与所述的驱动单元(22)相连用于提供电源的储能动力电池(23),所述的飞行控制单元(21)的信号输出端还连接电动动力单元(12)中的电机转向私服器(124)。7. A high-reliability tilt-rotor unmanned aerial vehicle according to claim 1, characterized in that, the flight control system (2) includes a flight control unit (21), and the flight control unit (21) The drive unit (22) connected to the signal output terminal for driving the permanent magnet brushless DC motor (122) in the electric power unit (12), and the drive unit (22) connected to provide power The energy storage power battery (23), the signal output end of the flight control unit (21) is also connected to the motor steering server (124) in the electric power unit (12).8.根据权利要求7所述的一种高可靠性倾转旋翼无人飞行器,其特征在于,所述的飞行控制单元(21)包括有处理器(211),分别连接处理器(211)的惯性测量模块(212)和数据收发模块(213),所述处理器(211)的输出信号分别连接驱动单元(22)和电动动力单元(12)中的电机转向私服器(13)。8. A high-reliability tilt-rotor unmanned aerial vehicle according to claim 7, characterized in that, the flight control unit (21) includes a processor (211), respectively connected to the processor (211) The inertial measurement module (212) and the data transceiver module (213), the output signals of the processor (211) are respectively connected to the motor steering server (13) in the drive unit (22) and the electric power unit (12).
CN2013102731488A2013-06-292013-06-29High-reliability unmanned aerial vehicle with tilt rotorsPendingCN103359283A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN2013102731488ACN103359283A (en)2013-06-292013-06-29High-reliability unmanned aerial vehicle with tilt rotors

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN2013102731488ACN103359283A (en)2013-06-292013-06-29High-reliability unmanned aerial vehicle with tilt rotors

Publications (1)

Publication NumberPublication Date
CN103359283Atrue CN103359283A (en)2013-10-23

Family

ID=49361734

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN2013102731488APendingCN103359283A (en)2013-06-292013-06-29High-reliability unmanned aerial vehicle with tilt rotors

Country Status (1)

CountryLink
CN (1)CN103359283A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN104626904A (en)*2015-02-242015-05-20丁乃祥Multifunctional flying saucer
CN104802985A (en)*2015-04-302015-07-29江苏数字鹰科技发展有限公司Variable axial multi-rotor aircraft and flight attitude adjustment method thereof
CN104843177A (en)*2015-04-302015-08-19何春旺Aircraft
CN105292466A (en)*2015-11-062016-02-03东莞华南设计创新院 A differential vector propulsion servo system
CN105526923A (en)*2016-01-192016-04-27昆明理工大学Mounting equipment for multi-rotor type aircraft
CN105797392A (en)*2014-12-272016-07-27张向东A foldable tilted aeromodel support component
CN105882952A (en)*2016-04-202016-08-24羊丁Unmanned aerial vehicle for automatically clearing garbage on overhead lines
CN105981258A (en)*2014-08-082016-09-28深圳市大疆创新科技有限公司 System and method for unmanned aerial vehicle battery energy backup
CN106005372A (en)*2016-07-012016-10-12周小勇Four-rotor aircraft and control system thereof
CN106081088A (en)*2016-08-152016-11-09成都创年科技有限公司A kind of professional big flood rescue unmanned plane rescuing disaster affected people in flood damage
CN106143870A (en)*2015-07-282016-11-23英华达(上海)科技有限公司Unmanned vehicle
US9823664B2 (en)2016-02-252017-11-21A.M.T.S., LlcUnmanned aircraft for positioning an instrument for inspection purposes and methods of inspecting a target surface
CN107405527A (en)*2015-03-162017-11-28艾克斯克拉夫特企业公司Unmanned vehicle with detachable computing device
CN107878752A (en)*2017-12-282018-04-06四川建筑职业技术学院From steady wind resistance unmanned plane
EP3269640A4 (en)*2015-04-132018-08-22Korea Aerospace Research InstituteUnmanned aerial vehicle
CN108945395A (en)*2018-07-252018-12-07浙江大学Multivariant rotor system, the rotor system and unmanned plane for preventing kinking
CN109116860A (en)*2018-08-292019-01-01天津大学The nonlinear robust control method of three rotor wing unmanned aerial vehicles
US10195952B2 (en)2014-11-212019-02-05SZ DJI Technology Co., Ltd.System and method for managing unmanned aerial vehicles
CN110065627A (en)*2019-04-302019-07-30中北大学A kind of bionical unmanned vehicle of multifunctional rescue
US10363826B2 (en)2014-08-082019-07-30SZ DJI Technology Co., Ltd.Systems and methods for UAV battery exchange
CN110422326A (en)*2019-04-302019-11-08李泽波A kind of course of new aircraft and its control method
WO2020034137A1 (en)*2018-08-152020-02-20东北大学Unmanned aerial vehicle-based four-axis tilt rotor mechanism and tilting method
US11091043B2 (en)2014-08-082021-08-17SZ DJI Technology Co., Ltd.Multi-zone battery exchange system
CN113353252A (en)*2021-07-272021-09-07零重力南京飞机工业有限公司Tilting three-rotor aircraft and working method thereof
WO2021223173A1 (en)*2020-05-072021-11-11深圳市大疆创新科技有限公司Multi-rotor unmanned aerial vehicle and control method therefor, control device, and computer-readable storage medium
CN115285365A (en)*2022-09-012022-11-04福建天蒙建设有限公司 A three-dimensional modeling and mapping device for fixed-wing unmanned aerial vehicles without image control points
CN116280297A (en)*2022-08-302023-06-23南京壮大智能科技研究院有限公司 Working method of tandem double-rotor unmanned helicopter safety guarantee device

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101391651A (en)*2008-11-172009-03-25西安智澜科技发展有限公司Foldable Y shaped three axis two-layer six rotorcraft
US20100243794A1 (en)*2009-03-242010-09-30Alien Technologies LtdFlying apparatus
US20120056041A1 (en)*2010-09-022012-03-08Dream Space World CorporationUnmanned Flying Vehicle Made With PCB
CN202244078U (en)*2011-07-292012-05-30深圳市大疆创新科技有限公司Multi-rotor unmanned aerial vehicle
CN103072688A (en)*2013-01-222013-05-01西安交通大学Tiltable four-rotor wing aircraft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101391651A (en)*2008-11-172009-03-25西安智澜科技发展有限公司Foldable Y shaped three axis two-layer six rotorcraft
US20100243794A1 (en)*2009-03-242010-09-30Alien Technologies LtdFlying apparatus
US20120056041A1 (en)*2010-09-022012-03-08Dream Space World CorporationUnmanned Flying Vehicle Made With PCB
CN102381471A (en)*2010-09-022012-03-21梦想空间世界有限公司Unmanned flying vehicle made with PCB
CN202244078U (en)*2011-07-292012-05-30深圳市大疆创新科技有限公司Multi-rotor unmanned aerial vehicle
CN103072688A (en)*2013-01-222013-05-01西安交通大学Tiltable four-rotor wing aircraft

Cited By (37)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US10363826B2 (en)2014-08-082019-07-30SZ DJI Technology Co., Ltd.Systems and methods for UAV battery exchange
US10611252B2 (en)2014-08-082020-04-07SZ DJI Technology Co., Ltd.Systems and methods for UAV battery power backup
CN105981258A (en)*2014-08-082016-09-28深圳市大疆创新科技有限公司 System and method for unmanned aerial vehicle battery energy backup
US11332033B2 (en)2014-08-082022-05-17SZ DJI Technology Co., Ltd.Systems and methods for UAV battery exchange
US11091043B2 (en)2014-08-082021-08-17SZ DJI Technology Co., Ltd.Multi-zone battery exchange system
US10195952B2 (en)2014-11-212019-02-05SZ DJI Technology Co., Ltd.System and method for managing unmanned aerial vehicles
CN105797392A (en)*2014-12-272016-07-27张向东A foldable tilted aeromodel support component
CN104626904A (en)*2015-02-242015-05-20丁乃祥Multifunctional flying saucer
CN107405527A (en)*2015-03-162017-11-28艾克斯克拉夫特企业公司Unmanned vehicle with detachable computing device
EP3269640A4 (en)*2015-04-132018-08-22Korea Aerospace Research InstituteUnmanned aerial vehicle
CN104802985B (en)*2015-04-302017-01-18数字鹰(泰州)农业科技有限公司Variable axial multi-rotor aircraft and flight attitude adjustment method thereof
CN104802985A (en)*2015-04-302015-07-29江苏数字鹰科技发展有限公司Variable axial multi-rotor aircraft and flight attitude adjustment method thereof
CN104843177A (en)*2015-04-302015-08-19何春旺Aircraft
CN104843177B (en)*2015-04-302017-01-18珠海磐磊智能科技有限公司Aircraft
CN106155080B (en)*2015-07-282020-04-10英华达(上海)科技有限公司Unmanned plane
CN106143870A (en)*2015-07-282016-11-23英华达(上海)科技有限公司Unmanned vehicle
CN106143870B (en)*2015-07-282020-07-17英华达(上海)科技有限公司Unmanned aerial vehicle
CN106155080A (en)*2015-07-282016-11-23英华达(上海)科技有限公司Unmanned plane
CN105292466A (en)*2015-11-062016-02-03东莞华南设计创新院 A differential vector propulsion servo system
CN105526923B (en)*2016-01-192017-11-10昆明理工大学A kind of multi-rotor aerocraft installs equipment
CN105526923A (en)*2016-01-192016-04-27昆明理工大学Mounting equipment for multi-rotor type aircraft
US9823664B2 (en)2016-02-252017-11-21A.M.T.S., LlcUnmanned aircraft for positioning an instrument for inspection purposes and methods of inspecting a target surface
CN105882952A (en)*2016-04-202016-08-24羊丁Unmanned aerial vehicle for automatically clearing garbage on overhead lines
CN106005372A (en)*2016-07-012016-10-12周小勇Four-rotor aircraft and control system thereof
CN106081088A (en)*2016-08-152016-11-09成都创年科技有限公司A kind of professional big flood rescue unmanned plane rescuing disaster affected people in flood damage
CN107878752A (en)*2017-12-282018-04-06四川建筑职业技术学院From steady wind resistance unmanned plane
CN108945395A (en)*2018-07-252018-12-07浙江大学Multivariant rotor system, the rotor system and unmanned plane for preventing kinking
WO2020034137A1 (en)*2018-08-152020-02-20东北大学Unmanned aerial vehicle-based four-axis tilt rotor mechanism and tilting method
CN109116860A (en)*2018-08-292019-01-01天津大学The nonlinear robust control method of three rotor wing unmanned aerial vehicles
CN109116860B (en)*2018-08-292022-05-03天津大学 Nonlinear Robust Control Method for Trirotor UAV
CN110422326A (en)*2019-04-302019-11-08李泽波A kind of course of new aircraft and its control method
CN110065627A (en)*2019-04-302019-07-30中北大学A kind of bionical unmanned vehicle of multifunctional rescue
WO2021223173A1 (en)*2020-05-072021-11-11深圳市大疆创新科技有限公司Multi-rotor unmanned aerial vehicle and control method therefor, control device, and computer-readable storage medium
US12287645B2 (en)2020-05-072025-04-29SZ DJI Technology Co., Ltd.Multi-rotor unmanned aerial vehicle and control method thereof, control apparatus and computer-readable storage medium
CN113353252A (en)*2021-07-272021-09-07零重力南京飞机工业有限公司Tilting three-rotor aircraft and working method thereof
CN116280297A (en)*2022-08-302023-06-23南京壮大智能科技研究院有限公司 Working method of tandem double-rotor unmanned helicopter safety guarantee device
CN115285365A (en)*2022-09-012022-11-04福建天蒙建设有限公司 A three-dimensional modeling and mapping device for fixed-wing unmanned aerial vehicles without image control points

Similar Documents

PublicationPublication DateTitle
CN103359283A (en)High-reliability unmanned aerial vehicle with tilt rotors
ES2925005T3 (en) Multirotor aerial vehicle with redundancy for single arm failure
CN111094126B (en)Unmanned aerial vehicle with coaxial, reversible rotors
CN202071985U (en)Novel plane symmetrical layout type multi-rotor unmanned air vehicle
CN104743112B (en)Novel tilt wing aircraft
CN101823556B (en)Coaxial contrarotation birotor twelve-rotary wing air vehicle
CN101575004A (en)Flight-mode-variable unmanned aircraft with multiple sets of coaxial rotors
CN103895860A (en)Novel coaxial double-rotary double-degree-of-freedom eight-rotor-wing amphibious aircraft
CN102126554A (en)Unmanned air vehicle with multiple rotary wings in plane-symmetry layout
CN103332293A (en)Tilting double-duct subminiature unmanned plane
CN105564642A (en)Tilt-rotor UAV (Unmanned Aerial Vehicle)
CN105438458A (en)Double-layer and eight-rotor-wing aircraft
CN107856850A (en)Multi-rotor unmanned aerial vehicle and its control method
CN206719540U (en) Tilt-rotor vertical take-off and landing UAV based on flying wing layout
CN101811572A (en)Coaxial-inversion birotor eight-rotary wing aircraft
CN107089322A (en)One kind becomes the dynamic multi-rotor unmanned aerial vehicle of lift structure oil
CN105173076B (en)A kind of vertical take-off and landing drone
CN106741903B (en) A hybrid drone
CN105346718A (en)Vertical take-off and landing unmanned plane
CN207902745U (en)Unmanned aerial vehicle
CN104176249B (en)A kind of non co axial anti-oar many rotors unmanned gyroplane
CN113682471A (en)Rotor solar energy unmanned aerial vehicle verts
CN206871352U (en)Hybrid power unmanned plane with small rotor
CN104590552A (en)Miniature multi-rotor aircraft based on visual navigation
CN105059525A (en)Aerodynamic layout of small-sized vertical takeoff and landing aircraft

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C02Deemed withdrawal of patent application after publication (patent law 2001)
WD01Invention patent application deemed withdrawn after publication

Application publication date:20131023


[8]ページ先頭

©2009-2025 Movatter.jp