
技术领域technical field
本发明涉及光学成像技术领域,特别是一种基于内窥镜的多光谱成像系统和方法。The invention relates to the technical field of optical imaging, in particular to an endoscope-based multispectral imaging system and method.
背景技术Background technique
近年来,由于分子影像学技术的不断发展,继放射性核素成像、正电子发射断层扫描、单光子发射计算机断层和磁共振成像之后,出现了高分辨率的光学成像,其中近红外荧光成像倍受关注。但是即使光学分子影像的应用领域较广,组织穿透深度仍是其广泛应用的一大障碍,如何能够实现在体的深度探测是目前亟待解决的问题。In recent years, due to the continuous development of molecular imaging technology, after radionuclide imaging, positron emission tomography, single photon emission computed tomography and magnetic resonance imaging, high-resolution optical imaging has appeared, among which near-infrared fluorescence imaging attention. However, even though optical molecular imaging has a wide range of applications, the tissue penetration depth is still a major obstacle to its wide application. How to achieve in-vivo depth detection is an urgent problem to be solved.
内窥式的探测方式具有探测深度可控等优点,可以有效解决组织穿透深度的问题。通过本发明方法,可以在体观测和定位荧光位置,并通过内窥镜头进入组织中进行深度探测。The endoscopic detection method has the advantages of controllable detection depth, which can effectively solve the problem of tissue penetration depth. Through the method of the invention, the fluorescent position can be observed and positioned in the body, and the endoscopic lens can enter into the tissue for depth detection.
发明内容Contents of the invention
本发明的目的是解决上述现有技术存在的缺陷,提供一种基于内窥镜的多光谱成像系统和方法。本发明根据光学分子影像的特点,并基于长期在光学成像领域的研究经验,采用两台相机来实现荧光、可见光以及拼合图像的获取等功能。The purpose of the present invention is to solve the above-mentioned defects in the prior art, and provide an endoscope-based multi-spectral imaging system and method. According to the characteristics of optical molecular images and based on long-term research experience in the field of optical imaging, the present invention uses two cameras to realize functions such as acquisition of fluorescence, visible light and stitched images.
根据本发明的一方面,提出一种基于内窥镜的多光谱成像系统,该系统包括:内窥镜头模块110、光源模块120、光学信号采集模块130、控制与处理模块140和多光谱切换模块150,其中:According to one aspect of the present invention, an endoscope-based multispectral imaging system is proposed, which includes: an endoscope lens module 110, a light source module 120, an optical signal acquisition module 130, a control and
所述内窥镜头模块110,用于对待测组织的探测区域100进行内窥,并将所述探测区域100的反射光传输至所述光学信号采集模块130;The endoscopic lens module 110 is used to endoscopically observe the
所述光源模块120与所述内窥镜头模块110连接,用于为所述内窥镜头模块110提供激发光和可见光;The light source module 120 is connected to the endoscopic lens module 110 for providing excitation light and visible light to the endoscopic lens module 110;
所述光学信号采集模块130与所述内窥镜头模块110连接,用于根据所述内窥镜头模块110传输的所述探测区域100的反射光得到荧光和可见光图像;The optical signal acquisition module 130 is connected to the endoscopic lens module 110, and is used to obtain fluorescence and visible light images according to the reflected light of the
所述控制与处理模块140与所述光学信号采集模块130连接,用于对所述光学信号采集模块130中的荧光相机134和彩色相机136进行控制,对所述光学信号采集模块130采集得到的荧光和可见光图像进行处理并显示;The control and
所述多光谱切换模块150,用于为所述光源模块120和所述光学信号采集模块130提供不同光谱的滤光片。The multi-spectrum switching module 150 is configured to provide filters of different spectra for the light source module 120 and the optical signal collection module 130 .
根据本发明的另一方面,提出一种利用所述基于内窥镜的多光谱成像系统进行多光谱成像的方法,该方法包括以下步骤:According to another aspect of the present invention, a method for performing multispectral imaging using the endoscope-based multispectral imaging system is proposed, the method comprising the following steps:
步骤S1,使激发光源121和可见光光源123对探测区域100分别进行照射;Step S1, making the
步骤S2,根据探测特性,光谱切换模块150对于光源模块120、光学信号采集模块130中滤光片的参数进行设置;Step S2, according to the detection characteristics, the spectrum switching module 150 sets the parameters of the optical filters in the light source module 120 and the optical signal acquisition module 130;
步骤S3,控制模块141对荧光相机134和彩色相机136的成像参数进行调整,所述荧光相机134和彩色相机136分别根据所述探测区域100具有不同光谱或者能量的反射光采集得到图像;Step S3, the control module 141 adjusts the imaging parameters of the
步骤S4,图像处理模块142对所述荧光相机134和彩色相机136采集得到的图像进行处理;Step S4, the image processing module 142 processes the images collected by the
步骤S5,显示模块143对于所述步骤S4得到的处理后的图像进行实时显示,若显示的图像达不到清晰度要求,则通过光学信号采集模块130来调节镜头131的参数,直到所述显示模块143显示的图像达到清晰度要求;Step S5, the display module 143 displays the processed image obtained in the step S4 in real time, if the displayed image does not meet the definition requirement, the parameters of the
步骤S6,移动内窥镜头模块110,在待测组织的探测区域100内寻找荧光物体,最终得到所述荧光物体的清晰图像。In step S6, the endoscopic lens module 110 is moved to search for a fluorescent object in the
本发明通过内窥镜头模块实现光源的激发和光线的采集,光学信号采集模块进行实时采集光线,多光谱转换模块对不同谱段的光线进行过滤,控制与处理模块对采集到的图像信息进行实时的处理,将不同谱段的图像拼合到一起,实现光谱的图像融合并进行显示。目前市面上绝大部分内窥镜荧光产品均采用单一CCD相机进行成像,其缺点在于成像时只能看到荧光图像或者可见光图像,而无法看到多光谱的图像。而本发明有效的解决了该问题,同时也打破了国外公司在华的技术垄断状况,降低了多光谱内窥镜成像研究的门槛,拓展了光学分子影像探针可供选择的空间,延伸了光学分子影像研究与应用的范围。The invention realizes the excitation of the light source and the collection of light through the endoscopic lens module, the optical signal acquisition module collects the light in real time, the multi-spectral conversion module filters the light of different spectral bands, and the control and processing module performs real-time collection of the collected image information The image processing of different spectral bands is stitched together, and the image fusion of the spectrum is realized and displayed. At present, most endoscopic fluorescence products on the market use a single CCD camera for imaging. The disadvantage is that only fluorescence images or visible light images can be seen during imaging, and multi-spectral images cannot be seen. However, the present invention effectively solves this problem, breaks the technological monopoly of foreign companies in China, lowers the threshold for multispectral endoscopic imaging research, expands the space for optical molecular imaging probes, and extends the The scope of research and application of optical molecular imaging.
附图说明Description of drawings
图1是本发明基于内窥镜的多光谱成像系统的结构框图;Fig. 1 is the structural block diagram of the multispectral imaging system based on endoscope of the present invention;
图2是本发明基于内窥镜的多光谱成像系统的系统原理图;Fig. 2 is the system schematic diagram of the multispectral imaging system based on the endoscope of the present invention;
图3是本发明基于内窥镜的多光谱成像方法的流程图。Fig. 3 is a flow chart of the endoscope-based multispectral imaging method of the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
根据本发明的一方面,提出一种基于内窥镜的多光谱成像系统,图1是本发明基于内窥镜的多光谱成像系统的结构框图,图2是本发明基于内窥镜的多光谱成像系统的系统原理图,如图1和图2所示,所述多光谱成像系统包括:内窥镜头模块110、光源模块120、光学信号采集模块130、控制与处理模块140和多光谱切换模块150,其中:According to one aspect of the present invention, a kind of multi-spectral imaging system based on endoscope is proposed, Fig. 1 is the structural block diagram of the multi-spectral imaging system based on endoscope of the present invention, Fig. 2 is the multi-spectral imaging system based on endoscope of the present invention The system schematic diagram of the imaging system, as shown in Figure 1 and Figure 2, the multispectral imaging system includes: endoscopic lens module 110, light source module 120, optical signal acquisition module 130, control and
所述内窥镜头模块110,用于对待测组织的探测区域100进行内窥,并将所述探测区域100的反射光传输至所述光学信号采集模块130;The endoscopic lens module 110 is used to endoscopically observe the
所述光源模块120与所述内窥镜头模块110连接,用于为所述内窥镜头模块110提供激发光和可见光,所述可见光作为背景照明光;The light source module 120 is connected to the endoscopic lens module 110, and is used to provide excitation light and visible light for the endoscopic lens module 110, and the visible light is used as background illumination light;
所述光学信号采集模块130与所述内窥镜头模块110连接,用于根据所述内窥镜头模块110传输的所述探测区域100的反射光得到荧光和可见光图像;The optical signal acquisition module 130 is connected to the endoscopic lens module 110, and is used to obtain fluorescence and visible light images according to the reflected light of the
所述控制与处理模块140与所述光学信号采集模块130连接,用于对所述光学信号采集模块130中的荧光相机134和彩色相机136进行控制,对所述光学信号采集模块130采集得到的荧光和可见光图像进行处理并显示;The control and
所述多光谱切换模块150,用于为所述光源模块120和所述光学信号采集模块130提供不同光谱的滤光片。The multi-spectrum switching module 150 is configured to provide filters of different spectra for the light source module 120 and the optical signal collection module 130 .
所述内窥镜镜头模块110进一步包括激发光光纤111、可见光光纤112和信号采集光纤113,所述激发光光纤111、可见光光纤112分布在所述信号采集光纤113的周围,其中,所述激发光光纤111与所述光源模块120中的滤光片一122连接,用于引导出所述光源模块120中的激发光源121发出的激发光,以对所述探测区域100进行激发光照射;所述可见光光纤112与所述光源模块120中的滤光片二124连接,用于引导出所述光源模块120中的可见光光源123发出的可见光,以为所述探测区域100提供照明光源;所述信号采集光纤113与所述光学信号采集模块130中的镜头131的前端连接,用于采集所述激发光和可见光在所述探测区域100的反射光,并将所述反射光引导至所述镜头131处。The endoscope lens module 110 further includes an excitation light fiber 111, a
所述光源模块120进一步包括激发光源121、滤光片一122、可见光光源123和滤光片二124,其中,所述激发光源121通过所述滤光片一122与所述内窥镜镜头模块110中的激发光光纤111连接,用于为所述激发光光纤111提供激发光,所述激发光源121可采用波长可调激光器或者卤钨灯等宽谱段光源;所述可见光光源123通过所述滤光片二124与所述内窥镜镜头模块110中的可见光光纤112连接,用于为所述可见光光纤112提供可见光,所述可见光光源123可采用卤钨灯或者LED灯等窄谱段特定波长或波段光源。The light source module 120 further includes an
所述光学信号采集模块130进一步包括镜头131、分光棱镜132、滤光片三133、荧光相机134、滤光片四135和彩色相机136,其中,所述镜头131与所述内窥镜镜头模块110中的信号采集光纤113相连接,用于将所述发射光引导至所述分光棱镜132处,并通过调整焦距、调焦环等参数来调整成像清晰度;所述分光棱镜132由二向分光棱镜或者55分光棱镜等分光原件组成,所述分光棱镜132的入射光端与所述镜头131的末端相连,所述分光棱镜132的两个出射端分别通过滤光片三133和滤光片四135与所述荧光相机134和彩色相机136相连,用于将所述镜头131传输的一束光线按照光线的光谱或者能量的不同分成两束;所述荧光相机134和彩色相机136通过数据线101与所述控制与处理模块140连接,用于根据所述分光棱镜132的出射光线进行成像,并将分别得到的具有不同光谱或者不同能量的图像传输至所述控制与处理模块140。The optical signal acquisition module 130 further includes a
所述控制与处理模块140进一步包括控制模块141、图像处理模块142和显示模块143,其中,所述控制模块141用于对所述荧光相机134和彩色相机136的成像参数(比如曝光时间等)进行控制;所述图像处理模块142用于对所述荧光相机134和彩色相机136拍摄得到的图像数据进行处理,所述处理至少包括图像融合,另外还可以包括图像去噪等处理操作;所述显示模块143用于对于所述图像处理模块142处理后得到的图像进行实时显示,以供工作人员观察。The control and
所述多光谱切换模块150为滤光轮装置,用于根据不同荧光的激发特性,调整各个滤光片的谱段,以保证多光谱光线的激发和采集,避免不同光谱光线的相互干扰,各个滤光片的谱段一旦调整好后,在整个实时成像的过程中将不再切换。所述滤光片的数量可根据需要进行安装,在本发明一实施例中,所述滤光片的数量为4片:滤光片一122、滤光片二124、滤光片三133和滤光片四135,所述滤光片的谱段为近红外范围,具体为:The multi-spectral switching module 150 is a filter wheel device, which is used to adjust the spectral bands of each filter according to the excitation characteristics of different fluorescent lights, so as to ensure the excitation and collection of multi-spectral light and avoid mutual interference of different spectral light. Once the spectral band of the filter is adjusted, it will not be switched during the whole real-time imaging process. The number of the optical filters can be installed according to the needs. In one embodiment of the present invention, the number of the optical filters is 4: optical filter one 122, optical filter two 124, optical filter three 133 and Optical filter four 135, the spectral band of described optical filter is near-infrared range, specifically:
滤光片一122的谱段为710nm-770nm,直径为25mm;The spectral band of filter one 122 is 710nm-770nm, and the diameter is 25mm;
滤光片二124的谱段为400nm-650nm,直径为25mm;The spectral band of filter 2 124 is 400nm-650nm, and the diameter is 25mm;
滤光片三133的谱段为810nm-870nm,直径为50mm;The spectral band of the
滤光片四135的谱段为400nm-650nm,直径为50mm。The spectral band of filter four 135 is 400nm-650nm, and the diameter is 50mm.
在操作人员实际使用过程中,可以根据具体的需求切换具有合适光谱的滤光片。During the actual use of the operator, the filter with a suitable spectrum can be switched according to the specific needs.
根据本发明的另一方面,还提出一种利用所述基于内窥镜的多光谱成像系统进行多光谱成像的方法,所述方法包括以下步骤:According to another aspect of the present invention, a method for performing multispectral imaging using the endoscope-based multispectral imaging system is also proposed, the method comprising the following steps:
步骤S1,使激发光源121和可见光光源123对探测区域100分别进行照射;Step S1, making the
步骤S2,根据探测特性,光谱切换模块150对于光源模块120、光学信号采集模块130中滤光片的参数进行设置;Step S2, according to the detection characteristics, the spectrum switching module 150 sets the parameters of the optical filters in the light source module 120 and the optical signal acquisition module 130;
步骤S3,控制模块141对荧光相机134和彩色相机136的成像参数进行调整,所述荧光相机134和彩色相机136分别根据所述探测区域100具有不同光谱或者能量的反射光采集得到图像;Step S3, the control module 141 adjusts the imaging parameters of the
步骤S4,图像处理模块142对所述荧光相机134和彩色相机136采集得到的图像进行处理,所述处理至少包括图像融合,另外还可以包括图像去噪等处理操作;Step S4, the image processing module 142 processes the images collected by the
步骤S5,显示模块143对于所述步骤S4得到的处理后的图像进行实时显示,若显示的图像达不到清晰度要求,则通过光学信号采集模块130来调节镜头131的参数,直到所述显示模块143显示的图像达到清晰度要求;Step S5, the display module 143 displays the processed image obtained in the step S4 in real time, if the displayed image does not meet the definition requirement, the parameters of the
步骤S6,移动内窥镜头模块110,在待测组织的探测区域100内寻找荧光物体,最终得到所述荧光物体的清晰图像。Step S6, moving the endoscopic lens module 110 to search for fluorescent objects in the
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013102619238ACN103340601A (en) | 2013-06-27 | 2013-06-27 | Multi-spectral imaging system and method based on endoscope |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013102619238ACN103340601A (en) | 2013-06-27 | 2013-06-27 | Multi-spectral imaging system and method based on endoscope |
| Publication Number | Publication Date |
|---|---|
| CN103340601Atrue CN103340601A (en) | 2013-10-09 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2013102619238APendingCN103340601A (en) | 2013-06-27 | 2013-06-27 | Multi-spectral imaging system and method based on endoscope |
| Country | Link |
|---|---|
| CN (1) | CN103340601A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103654700A (en)* | 2013-12-31 | 2014-03-26 | 中国人民武装警察部队总医院 | Fluorescent endoscope imaging system and method |
| WO2014205738A1 (en)* | 2013-06-27 | 2014-12-31 | 中国科学院自动化研究所 | Endoscope-based multispectral video navigation system and method |
| WO2016011611A1 (en)* | 2014-07-22 | 2016-01-28 | 中国科学院自动化研究所 | Endoscopic optical molecular image navigation system and multi-spectral imaging method |
| CN106066981A (en)* | 2016-06-01 | 2016-11-02 | 上海慧银信息科技有限公司 | Scanning head |
| CN106236265A (en)* | 2016-08-31 | 2016-12-21 | 北京数字精准医疗科技有限公司 | A kind of hand-held molecular image guider and system |
| CN106303279A (en)* | 2016-08-31 | 2017-01-04 | 北京数字精准医疗科技有限公司 | Multi-spectrum endoscopic automatic exposure formation method |
| CN106644068A (en)* | 2016-12-30 | 2017-05-10 | 聚光科技(杭州)股份有限公司 | Long-optical-path optical system |
| CN106821330A (en)* | 2017-03-20 | 2017-06-13 | 深圳市和虎科技有限公司 | For the imaging device and equipment of molecular image operation |
| CN107405094A (en)* | 2014-10-14 | 2017-11-28 | 东卡罗莱娜大学 | Method, system and computer program product for visualizing anatomy and blood flow and perfusion physiology using imaging techniques |
| CN107510430A (en)* | 2017-09-23 | 2017-12-26 | 武汉迅微光电技术有限公司 | Endoscopic optical imaging method and system a kind of while that obtain otherwise visible light color image and blood-stream image |
| CN107518879A (en)* | 2017-10-11 | 2017-12-29 | 北京数字精准医疗科技有限公司 | A kind of fluoroscopic imaging device and method |
| CN107744382A (en)* | 2017-11-20 | 2018-03-02 | 北京数字精准医疗科技有限公司 | Optical molecular image navigation system |
| CN108508569A (en)* | 2018-05-25 | 2018-09-07 | 北京数字精准医疗科技有限公司 | Prism fixing device and its spectroscopic imaging system |
| CN108634916A (en)* | 2018-07-30 | 2018-10-12 | 鹰利视医疗科技有限公司 | A kind of fluorescence endoscope cold light source |
| CN110793633A (en)* | 2019-11-14 | 2020-02-14 | 北京理工大学 | Single-pixel multispectral computational imaging system and imaging method based on bundled fiber |
| CN110833399A (en)* | 2019-11-29 | 2020-02-25 | 中国科学院自动化研究所 | Near-infrared second-region single-channel time-division multiplexing imaging system and using method thereof |
| WO2020052626A1 (en)* | 2018-09-12 | 2020-03-19 | 上海逸思医学影像设备有限公司 | Image exposure-based multi-spectrum imaging system and method |
| CN110927073A (en)* | 2019-11-06 | 2020-03-27 | 广东弓叶科技有限公司 | Multispectral imaging method, electronic device and storage medium |
| WO2020181414A1 (en)* | 2019-03-08 | 2020-09-17 | 北京数字精准医疗科技有限公司 | Multi-spectral imaging system, apparatus and method, and storage medium |
| US10792492B2 (en) | 2014-10-14 | 2020-10-06 | East Carolina University | Methods, systems and computer program products for determining physiologic status parameters using signals derived from multispectral blood flow and perfusion imaging |
| CN112414987A (en)* | 2020-12-14 | 2021-02-26 | 华南师范大学 | Fluorescence imaging device and testing method using spectral detection |
| CN114390746A (en)* | 2022-01-27 | 2022-04-22 | 上海安翰医疗技术有限公司 | Capsule endoscope and illumination control method thereof |
| CN115381384A (en)* | 2022-08-09 | 2022-11-25 | 安徽七色光医疗科技有限公司 | An endoscope camera module and system with infrared imaging |
| US11553844B2 (en) | 2014-10-14 | 2023-01-17 | East Carolina University | Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics |
| CN115633940A (en)* | 2022-10-28 | 2023-01-24 | 珠海市迪谱医疗科技有限公司 | Fluorescence imaging device and electronic device |
| CN116849624A (en)* | 2023-08-31 | 2023-10-10 | 南京诺源医疗器械有限公司 | Fluorescence imaging method and system based on 4CMOS image sensor |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101943796A (en)* | 2010-08-26 | 2011-01-12 | 杨晓峰 | Multi-spectrum endoscopic optics switching system |
| CN102440760A (en)* | 2010-08-31 | 2012-05-09 | 富士胶片株式会社 | Image acquisition and display method and image capturing and display apparatus |
| CN102809429A (en)* | 2012-07-26 | 2012-12-05 | 中国科学院自动化研究所 | Multi-spectral imaging system and multi-spectral imaging method based on double cameras |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101943796A (en)* | 2010-08-26 | 2011-01-12 | 杨晓峰 | Multi-spectrum endoscopic optics switching system |
| CN102440760A (en)* | 2010-08-31 | 2012-05-09 | 富士胶片株式会社 | Image acquisition and display method and image capturing and display apparatus |
| CN102809429A (en)* | 2012-07-26 | 2012-12-05 | 中国科学院自动化研究所 | Multi-spectral imaging system and multi-spectral imaging method based on double cameras |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014205738A1 (en)* | 2013-06-27 | 2014-12-31 | 中国科学院自动化研究所 | Endoscope-based multispectral video navigation system and method |
| CN103654700A (en)* | 2013-12-31 | 2014-03-26 | 中国人民武装警察部队总医院 | Fluorescent endoscope imaging system and method |
| CN103654700B (en)* | 2013-12-31 | 2016-08-31 | 中国人民武装警察部队总医院 | Fluorescent endoscopic imgaing system and formation method |
| WO2016011611A1 (en)* | 2014-07-22 | 2016-01-28 | 中国科学院自动化研究所 | Endoscopic optical molecular image navigation system and multi-spectral imaging method |
| CN107405094A (en)* | 2014-10-14 | 2017-11-28 | 东卡罗莱娜大学 | Method, system and computer program product for visualizing anatomy and blood flow and perfusion physiology using imaging techniques |
| US11553844B2 (en) | 2014-10-14 | 2023-01-17 | East Carolina University | Methods, systems and computer program products for calculating MetaKG signals for regions having multiple sets of optical characteristics |
| US10792492B2 (en) | 2014-10-14 | 2020-10-06 | East Carolina University | Methods, systems and computer program products for determining physiologic status parameters using signals derived from multispectral blood flow and perfusion imaging |
| US10722173B2 (en) | 2014-10-14 | 2020-07-28 | East Carolina University | Methods, systems and computer program products for visualizing anatomical structures and blood flow and perfusion physiology using imaging techniques |
| CN106066981A (en)* | 2016-06-01 | 2016-11-02 | 上海慧银信息科技有限公司 | Scanning head |
| CN106066981B (en)* | 2016-06-01 | 2018-08-24 | 上海慧银信息科技有限公司 | Scanning head |
| CN106236265A (en)* | 2016-08-31 | 2016-12-21 | 北京数字精准医疗科技有限公司 | A kind of hand-held molecular image guider and system |
| CN106303279A (en)* | 2016-08-31 | 2017-01-04 | 北京数字精准医疗科技有限公司 | Multi-spectrum endoscopic automatic exposure formation method |
| CN106303279B (en)* | 2016-08-31 | 2019-08-09 | 北京数字精准医疗科技有限公司 | Multi-spectrum endoscopic automatic exposure imaging method |
| CN106236265B (en)* | 2016-08-31 | 2018-08-21 | 北京数字精准医疗科技有限公司 | A kind of hand-held molecular image navigation apparatus and system |
| CN106644068A (en)* | 2016-12-30 | 2017-05-10 | 聚光科技(杭州)股份有限公司 | Long-optical-path optical system |
| CN106821330A (en)* | 2017-03-20 | 2017-06-13 | 深圳市和虎科技有限公司 | For the imaging device and equipment of molecular image operation |
| CN107510430A (en)* | 2017-09-23 | 2017-12-26 | 武汉迅微光电技术有限公司 | Endoscopic optical imaging method and system a kind of while that obtain otherwise visible light color image and blood-stream image |
| CN107518879A (en)* | 2017-10-11 | 2017-12-29 | 北京数字精准医疗科技有限公司 | A kind of fluoroscopic imaging device and method |
| CN107744382A (en)* | 2017-11-20 | 2018-03-02 | 北京数字精准医疗科技有限公司 | Optical molecular image navigation system |
| CN108508569A (en)* | 2018-05-25 | 2018-09-07 | 北京数字精准医疗科技有限公司 | Prism fixing device and its spectroscopic imaging system |
| CN108508569B (en)* | 2018-05-25 | 2025-02-07 | 北京数字精准医疗科技有限公司 | Prism fixing device and spectroscopic imaging system thereof |
| CN108634916A (en)* | 2018-07-30 | 2018-10-12 | 鹰利视医疗科技有限公司 | A kind of fluorescence endoscope cold light source |
| WO2020052626A1 (en)* | 2018-09-12 | 2020-03-19 | 上海逸思医学影像设备有限公司 | Image exposure-based multi-spectrum imaging system and method |
| WO2020181414A1 (en)* | 2019-03-08 | 2020-09-17 | 北京数字精准医疗科技有限公司 | Multi-spectral imaging system, apparatus and method, and storage medium |
| CN110927073A (en)* | 2019-11-06 | 2020-03-27 | 广东弓叶科技有限公司 | Multispectral imaging method, electronic device and storage medium |
| CN110793633A (en)* | 2019-11-14 | 2020-02-14 | 北京理工大学 | Single-pixel multispectral computational imaging system and imaging method based on bundled fiber |
| CN110833399B (en)* | 2019-11-29 | 2021-08-13 | 中国科学院自动化研究所 | Near-infrared second-region single-channel time-division multiplexing imaging system and using method thereof |
| CN110833399A (en)* | 2019-11-29 | 2020-02-25 | 中国科学院自动化研究所 | Near-infrared second-region single-channel time-division multiplexing imaging system and using method thereof |
| CN112414987A (en)* | 2020-12-14 | 2021-02-26 | 华南师范大学 | Fluorescence imaging device and testing method using spectral detection |
| CN114390746A (en)* | 2022-01-27 | 2022-04-22 | 上海安翰医疗技术有限公司 | Capsule endoscope and illumination control method thereof |
| CN115381384A (en)* | 2022-08-09 | 2022-11-25 | 安徽七色光医疗科技有限公司 | An endoscope camera module and system with infrared imaging |
| CN115633940A (en)* | 2022-10-28 | 2023-01-24 | 珠海市迪谱医疗科技有限公司 | Fluorescence imaging device and electronic device |
| CN116849624A (en)* | 2023-08-31 | 2023-10-10 | 南京诺源医疗器械有限公司 | Fluorescence imaging method and system based on 4CMOS image sensor |
| CN116849624B (en)* | 2023-08-31 | 2023-11-10 | 南京诺源医疗器械有限公司 | Image sensor fluorescence imaging method and system based on 4CMOS |
| Publication | Publication Date | Title |
|---|---|---|
| CN103340601A (en) | Multi-spectral imaging system and method based on endoscope | |
| CN103300812A (en) | Endoscope-based multispectral video navigation system and method | |
| JP7596435B6 (en) | Medical imaging devices and methods of use | |
| CN104116497B (en) | Spy optical molecular image-guidance system and multispectral imaging method | |
| WO2014205738A1 (en) | Endoscope-based multispectral video navigation system and method | |
| CN102721469B (en) | Multispectral imaging system and method based on two cameras | |
| CN106901679B (en) | Fluorescence microscopy endoscopic imaging system and fluorescence microscopy endoscopic imaging method | |
| JP2023120180A6 (en) | Medical imaging devices and methods of use | |
| JP2021100574A6 (en) | Medical imaging devices and methods of use | |
| US11744439B2 (en) | Micro CMOS scopes for medical imaging | |
| CN103654700A (en) | Fluorescent endoscope imaging system and method | |
| US10524647B2 (en) | Smartphone endoscope system | |
| CN107072520A (en) | Endoscopic system for parallel imaging at visible and infrared wavelengths | |
| CN107440669A (en) | A kind of binary channels spy imaging system | |
| CN107049214A (en) | Automatic focusing microscopy endoscopic fluoroscopic imaging systems | |
| CN204207717U (en) | Endoscope irradiation spectrum selection device and hyperspectral endoscope imaging system | |
| CN204120989U (en) | Inner peeping type optical molecular image-guidance system | |
| CN106983495A (en) | Multispectral fluorescence imaging system and imaging method based on rigid endoscope | |
| CN103134784B (en) | Optical fiber living body fluorescence excitation spectral imaging device | |
| CA3040851A1 (en) | Multi-wavelength endoscopic system and image processing method using same | |
| CN105852784A (en) | Multi-spectral medical endoscope lens and system | |
| CN217792957U (en) | Endoscope system | |
| CN107811706A (en) | A kind of operation guiding system based on image transmission optical fibre | |
| CN203634145U (en) | Fluorescence endoscopy imaging system | |
| CN104352216B (en) | Endoscope irradiation spectrum selection device and hyperspectral endoscope imaging system |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20131009 |