
技术领域technical field
本发明属于电气工程技术领域,涉及一种六脉波融冰整流器直流电压输出机构,尤其适用于高压大功率六脉波融冰整流器。The invention belongs to the technical field of electrical engineering, and relates to a DC voltage output mechanism of a six-pulse ice-melting rectifier, especially suitable for high-voltage and high-power six-pulse ice-melting rectifiers.
背景技术Background technique
我国南方冰雪灾害频发,易给电网输电线路带来严重损害。对覆冰线路进行电流融冰是电网应对冰冻灾害最直接、最有效、最安全、最经济的重要手段之一。采用直流融冰,输电线路上电抗分量将不起作用,加上同样大小的融冰电流,采用直流融冰所施加的电压比交流融冰小得多,大大提高了融冰过程的安全性和经济性。直流融冰在国内输电线路覆冰抗冰中得到了广泛的运用。而直流融冰装置最重要的部分为整流器,用以实现融冰电源交流向直流的转变,为覆冰线路提供有效的直流融冰电流。六脉波融冰整流器的变流部分结构简单,在融冰整流器中得到较多运用。但由于输入、输出电压高,输出直流电流大,融冰功率大,融冰整流器内结构设计与器件绝缘设计是高压大功率融冰整流器生产的重点与难点。传统的六脉波融冰整流器,均是通过绝缘板等绝缘材料对高压变流部分实现绝缘,由于功率器件较多,且有众多输入输出连接铜排要进行绝缘设计,因此需要用绝缘材料做成大量各种形状的绝缘件,借以对融冰整流器内的功率器件、连接铜排等实现绝缘。由此,其所造成的整流器内部结构复杂且装配困难。为简化六脉波融冰整流器结构,如何对融冰整流器内带电部件实现有效绝缘与结构设计成为了一项亟待解决的问题。Ice and snow disasters occur frequently in southern my country, which can easily cause serious damage to power grid transmission lines. Current melting of ice-covered lines is one of the most direct, most effective, safest and most economical means for power grids to deal with freezing disasters. With DC ice melting, the reactance component on the transmission line will not work, and with the same size of ice melting current, the voltage applied by DC ice melting is much smaller than that of AC ice melting, which greatly improves the safety and security of the ice melting process. economy. DC icing has been widely used in domestic transmission line icing anti-icing. The most important part of the DC ice-melting device is the rectifier, which is used to realize the transformation of the ice-melting power supply from AC to DC, and provide effective DC ice-melting current for the ice-coated line. The structure of the variable flow part of the six-pulse ice-melting rectifier is simple, and it is widely used in the ice-melting rectifier. However, due to high input and output voltages, large output DC current, and high ice-melting power, the internal structure design and device insulation design of the ice-melting rectifier are the key points and difficulties in the production of high-voltage and high-power ice-melting rectifiers. The traditional six-pulse ice-melting rectifier uses insulating materials such as insulating plates to insulate the high-voltage converter part. Since there are many power devices and there are many input and output connection copper bars that need to be insulated, it is necessary to use insulating materials. A large number of insulating parts of various shapes are formed to insulate the power devices and connecting copper bars in the ice-melting rectifier. Therefore, the internal structure of the resulting rectifier is complex and difficult to assemble. In order to simplify the structure of the six-pulse ice-melting rectifier, how to effectively insulate and design the live parts in the ice-melting rectifier has become an urgent problem to be solved.
发明内容Contents of the invention
本发明要解决的技术问题是:针对传统的六脉波融冰整流器内部结构复杂且装配困难,及部件高压绝缘问题,提供一种六脉波融冰整流器直流电压输出机构,使用该机构可大大简化六脉波融冰整流器内部结构并由此实现内部带电部件的高压绝缘。The technical problem to be solved by the present invention is to provide a DC voltage output mechanism of a six-pulse wave ice-melting rectifier, which can greatly improve Simplify the internal structure of the six-pulse ice-melting rectifier and thereby realize high-voltage insulation of internal live parts.
本发明的技术方案是,所提供的六脉波融冰整流器直流电压输出机构,参见图1,它如图1所示,由第一侧面固定支柱绝缘子1、六脉波变流器2、第二侧面固定支柱绝缘子3、第一底部支柱复合绝缘子4、正极承重铝架构5、第二底部支柱复合绝缘子6、负极承重铝架构7连接组成。其中所述六脉波变流器2的正极输出端接正极承重铝架构5,该正极承重铝架构5的输出端并联连接所述第一底部支柱复合绝缘子4和第一侧面固定支柱绝缘子1;所述六脉波变流器2的负极输出端接负极承重铝架构7,该负极承重铝架构7的输出端并联连接所述第二底部支柱复合绝缘子6和第二侧面固定支柱绝缘子3。The technical solution of the present invention is that the provided six-pulse wave ice-melting rectifier DC voltage output mechanism is shown in Fig. 1, and it is shown in Fig. Two side fixed
由此构成的本发明的六脉波融冰整流器直流电压输出机构使用时,由六脉波变流器2的输入端外接三相交流电源,实现三相交流电源向六脉波直流电压的转变。由正极承重铝架构5和负极承重铝架构7分别实现六脉波变流器2的正负极输出,并承载六脉波变流器2的重量,第一底部支柱复合绝缘子4实现正极承重铝架构5的承重与底部绝缘,第一侧面固定支柱绝缘子1实现正极承重铝架构5侧面固定与绝缘,第二底部支柱复合绝缘子6实现负极承重铝架构7的承重与底部绝缘,第二侧面固定支柱绝缘子3实现负极承重铝架构7侧面固定与绝缘。When the six-pulse wave melting ice-melting rectifier DC voltage output mechanism of the present invention thus formed is used, the input end of the six-pulse wave converter 2 is externally connected with a three-phase AC power supply to realize the conversion of the three-phase AC power supply to a six-pulse wave DC voltage . The positive pole load-bearing aluminum frame 5 and the negative pole load-bearing aluminum frame 7 respectively realize the positive and negative pole outputs of the six-pulse wave converter 2 and carry the weight of the six-pulse wave converter 2, and the first bottom
本发明的有益效果是:The beneficial effects of the present invention are:
1)、将六脉波融冰整流器内六脉波变流器采用正负极承重铝架构结构后,有效简化了融冰整流器内部结构。1) After the six-pulse wave converter in the six-pulse wave ice-melting rectifier adopts the positive and negative load-bearing aluminum structure, the internal structure of the ice-melting rectifier is effectively simplified.
2)、六脉波变流器采用正负极承重铝架构结构后,整流器内复杂的绝缘问题就简化为正负极承重铝架构的绝缘问题,其利用数个支柱绝缘子就可简单实现高压绝缘。2) After the six-pulse converter adopts the positive and negative load-bearing aluminum structure, the complex insulation problem in the rectifier is simplified to the insulation problem of the positive and negative load-bearing aluminum structure, which can simply realize high-voltage insulation by using several post insulators .
3)、六脉波变流器采用正负极承重铝架构结构后,整流器内输入输出连接铜排可以直接在正负极承重铝架构上连接,可以有效简化整流器内铜排的连接。3) After the six-pulse converter adopts the positive and negative load-bearing aluminum structure, the input and output connection copper bars in the rectifier can be directly connected to the positive and negative load-bearing aluminum structure, which can effectively simplify the connection of the copper bars in the rectifier.
附图说明Description of drawings
图1为本发明六脉波融冰整流器直流电压输出机构一个具体实施例的结构框图,图中标示为:Fig. 1 is a structural block diagram of a specific embodiment of the DC voltage output mechanism of the six-pulse ice-melting rectifier of the present invention, marked as:
1—第一侧面固定支柱绝缘子,1—fixed post insulator on the first side,
2—六脉波变流器,2—six-pulse converter,
3—第二侧面固定支柱绝缘子,3—Second side fixed post insulator,
4—第一底部支柱复合绝缘子,4—First bottom post composite insulator,
5—正极承重铝架构,5—Positive load-bearing aluminum structure,
6—第二底部支柱复合绝缘子,6—Second bottom post composite insulator,
7—负极承重铝架构。7—Negative load-bearing aluminum structure.
具体实施方式Detailed ways
参见图1所示本发明六脉波融冰整流器直流电压输出机构一个具体的实施例,该实施例的第一侧面固定支柱绝缘子1和第二侧面固定支柱绝缘子3均采用中国福建省福州福一开电气有限公司生产的FN7型支柱绝缘子;六脉波变流器2采用中国湖南省汇粹电力科技有限公司研制开发的HCBLQ-6型二极管六脉波变流器;第一底部支柱复合绝缘子4和第二底部支柱复合绝缘子6采用中国浙江省金凤凰电气有限公司成产的FZSW-10型支柱复合绝缘子;正极承重铝架构5采用中国上海弘秀机械有限公司生产的SHHXZ-500型铝架构;负极承重铝架构7采用中国上海弘秀机械有限公司生产的SHHXF-500型铝架构。所述第一侧面固定支柱绝缘子1、六脉波变流器2、第二侧面固定支柱绝缘子3、第一底部支柱复合绝缘子4、正极承重铝架构5、第二底部支柱复合绝缘子6、负极承重铝架构7,按照上述技术方案并参照图1所示连接。其中六脉波变流器2的正极输出端接正极承重铝架构5,正极承重铝架构5的输出端并联连接第一底部支柱复合绝缘子4和第一侧面固定支柱绝缘子1;六脉波变流器2的负极输出端接负极承重铝架构7,负极承重铝架构7的输出端并联连接第二底部支柱复合绝缘子6和第二侧面固定支柱绝缘子3。Referring to a specific embodiment of the DC voltage output mechanism of the six-pulse ice-melting rectifier of the present invention shown in Figure 1, the first side fixed post insulator 1 and the second side fixed
上述结构的六脉波融冰整流器直流电压输出机构,经过多次试制、试用、试运行均被证明变流效果良好、结构简洁、高压绝缘可靠,完全达到设计要求。The DC voltage output mechanism of the six-pulse ice-melting rectifier with the above structure has been proved to have good current conversion effect, simple structure, and reliable high-voltage insulation after many trials, trials, and trials, and fully meets the design requirements.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013102465899ACN103296899A (en) | 2013-06-20 | 2013-06-20 | Direct-current voltage output mechanism of six-pulse-wave de-icing rectifier |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013102465899ACN103296899A (en) | 2013-06-20 | 2013-06-20 | Direct-current voltage output mechanism of six-pulse-wave de-icing rectifier |
| Publication Number | Publication Date |
|---|---|
| CN103296899Atrue CN103296899A (en) | 2013-09-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2013102465899APendingCN103296899A (en) | 2013-06-20 | 2013-06-20 | Direct-current voltage output mechanism of six-pulse-wave de-icing rectifier |
| Country | Link |
|---|---|
| CN (1) | CN103296899A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090250449A1 (en)* | 2008-04-02 | 2009-10-08 | The Trustees Of Dartmouth College | System And Method For Deicing Of Power Line Cables |
| CN101834421A (en)* | 2010-05-05 | 2010-09-15 | 浙江省电力设计院 | Double-arm support type direct current melting ice access combined fittings |
| CN102255274A (en)* | 2011-08-03 | 2011-11-23 | 南方电网科学研究院有限责任公司 | Direct-current ice melting method for overhead ground wire and composite optical fiber ground wire |
| CN202455019U (en)* | 2012-03-13 | 2012-09-26 | 都匀供电局 | Direct current switching box |
| CN203301386U (en)* | 2013-06-20 | 2013-11-20 | 国家电网公司 | DC voltage output mechanism of 6-pulse wave ice melting rectifier |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090250449A1 (en)* | 2008-04-02 | 2009-10-08 | The Trustees Of Dartmouth College | System And Method For Deicing Of Power Line Cables |
| CN101834421A (en)* | 2010-05-05 | 2010-09-15 | 浙江省电力设计院 | Double-arm support type direct current melting ice access combined fittings |
| CN102255274A (en)* | 2011-08-03 | 2011-11-23 | 南方电网科学研究院有限责任公司 | Direct-current ice melting method for overhead ground wire and composite optical fiber ground wire |
| CN202455019U (en)* | 2012-03-13 | 2012-09-26 | 都匀供电局 | Direct current switching box |
| CN203301386U (en)* | 2013-06-20 | 2013-11-20 | 国家电网公司 | DC voltage output mechanism of 6-pulse wave ice melting rectifier |
| Publication | Publication Date | Title |
|---|---|---|
| CN202634261U (en) | Low stray inductance structure in electronic equipment | |
| CN104577926B (en) | A test platform that can realize the combination of conductors and ground wires for direct current melting | |
| WO2021136286A1 (en) | System and method for melting ice on overhead line by using photovoltaic power generation | |
| CN103280755A (en) | Twelve-pulse-wave ice melting rectifier variable flow output mechanism | |
| CN102157929A (en) | Main wiring method of multi-terminal ultra high voltage direct current transmission system | |
| CN203301386U (en) | DC voltage output mechanism of 6-pulse wave ice melting rectifier | |
| CN204030619U (en) | A kind of light DC power transmission equipment high voltage direct current lateral capacitance charging structure | |
| CN102664379B (en) | Equivalent 24 pulse wave non-control rectification DC thawing apparatus | |
| CN204651854U (en) | A kind of ice-melt supply unit | |
| CN101262124B (en) | An ice removing method and device for high-voltage power transmission line | |
| JP2008104253A5 (en) | ||
| CN103594990A (en) | Heat conduction type bus duct | |
| CN103296899A (en) | Direct-current voltage output mechanism of six-pulse-wave de-icing rectifier | |
| CN103715644A (en) | Six-pulse converter valve direct-current device integrating deicing function and SVC function | |
| CN203660898U (en) | Low-cost layout structure with low stray inductance in electronic equipment | |
| CN106332500A (en) | Crimping device based single-phase half-bridge power module | |
| CN203481758U (en) | Output switching system of direct current ice-melting device | |
| CN107465191B (en) | Photovoltaic power station DC/DC-DC/AC harmonic control method | |
| CN102244382A (en) | Novel power unit for light DC power transmission equipment | |
| CN203675001U (en) | Novel low-power three-level inverter inversion unit | |
| CN203839974U (en) | A high-voltage three-pole direct current transmission system | |
| CN202997462U (en) | Waterproof busway device | |
| CN202424566U (en) | Single-phase unfenced photovoltaic grid-connected inverted circuit | |
| CN203301110U (en) | Automatic wiring system for ground wire direct current ice melting | |
| CN204720262U (en) | A kind of line insulator |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20130911 |