Movatterモバイル変換


[0]ホーム

URL:


CN103279037B - Based on the Robot Force accompany movement control method of six-dimensional force/torque sensor - Google Patents

Based on the Robot Force accompany movement control method of six-dimensional force/torque sensor
Download PDF

Info

Publication number
CN103279037B
CN103279037BCN201310200246.9ACN201310200246ACN103279037BCN 103279037 BCN103279037 BCN 103279037BCN 201310200246 ACN201310200246 ACN 201310200246ACN 103279037 BCN103279037 BCN 103279037B
Authority
CN
China
Prior art keywords
force
delta
sensor
torque sensor
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310200246.9A
Other languages
Chinese (zh)
Other versions
CN103279037A (en
Inventor
张铁
林君健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUTfiledCriticalSouth China University of Technology SCUT
Priority to CN201310200246.9ApriorityCriticalpatent/CN103279037B/en
Publication of CN103279037ApublicationCriticalpatent/CN103279037A/en
Application grantedgrantedCritical
Publication of CN103279037BpublicationCriticalpatent/CN103279037B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Landscapes

Abstract

Translated fromChinese

本发明公开了基于六维力/力矩传感器的机器人力跟随运动控制方法,在利用机器人作示教等目的时,这种方法能获得很好的效果。本发明主要涉及4个重要步骤,第一个是利用较为简单的方法对力/力矩传感器的零位值进行标定,第二个是利用特定方法对力/力矩传感器在不同姿态下,由于自身和安装在传感器上面工具的重力对力/力矩传感器零位值造成影响进行补偿,然后是设定一个力/力矩传感器在相应姿态下的稳定区间,最后一个是利用力/力矩传感器的力和力矩值对机器人进行力跟随运动控制。

The invention discloses a force-following motion control method for a robot based on a six-dimensional force/torque sensor. When the robot is used for teaching purposes, the method can achieve good results. The present invention mainly involves four important steps. The first is to use a relatively simple method to calibrate the zero value of the force/torque sensor, and the second is to use a specific method to calibrate the force/torque sensor under different attitudes. The gravity of the tool installed on the sensor compensates for the influence of the zero value of the force/torque sensor, and then sets a stable range of the force/torque sensor under the corresponding attitude, and the last one is to use the force and moment value of the force/torque sensor Force-following motion control of a robot.

Description

Translated fromChinese
基于六维力/力矩传感器的机器人力跟随运动控制方法Robot force-following motion control method based on six-dimensional force/torque sensor

技术领域technical field

本发明涉及机器人控制领域,尤其涉及基于六维力/力矩传感器的机器人力跟随运动控制方法。The invention relates to the field of robot control, in particular to a robot force-following motion control method based on a six-dimensional force/torque sensor.

背景技术Background technique

在工业领域中常会用到力/力矩传感器,常用的力/力矩传感器在使用时姿态是固定的,但是若力/力矩传感器运行在姿态会改变的场合,由于传感器及在其上面安装的工具受重力影响,传感器的零位置(传感器在该姿态下没有对其施加外力时传感器的输出值)会发生改变,因此对其补偿的效果直接影响到实际的性能。为了对这种改变进行补偿,需要用到特殊的方法。在六维力/力矩传感器的标定方面,本领域技术人员提出了一种对六维力/力矩传感器在某一姿态下的测量线性度进行标定的方法,但它们在应用方面比较复杂。Force/torque sensors are often used in the industrial field. The posture of the commonly used force/torque sensors is fixed when used. Due to the influence of gravity, the zero position of the sensor (the output value of the sensor when no external force is applied to the sensor in this attitude) will change, so the effect of its compensation directly affects the actual performance. In order to compensate for this change, special methods are required. Regarding the calibration of the six-dimensional force/torque sensor, those skilled in the art have proposed a method for calibrating the measurement linearity of the six-dimensional force/torque sensor at a certain attitude, but they are relatively complicated in application.

发明内容Contents of the invention

本发明的目的在于克服上述现有技术的缺点和不足,提供基于六维力/力矩传感器的机器人力跟随运动控制方法,通过力补偿实现对机器人的力跟随运动控制。The object of the present invention is to overcome the shortcomings and deficiencies of the above-mentioned prior art, provide a robot force-following motion control method based on a six-dimensional force/torque sensor, and realize the force-following motion control of the robot through force compensation.

本发明通过下述技术方案实现:The present invention realizes through following technical scheme:

基于六维力/力矩传感器的机器人力跟随运动控制方法,包括下述步骤:A force-following motion control method for a robot based on a six-dimensional force/torque sensor comprises the following steps:

步骤(1):通过反馈力/力矩传感器当前姿态并利用以下公式对力/力矩传感器的力和力矩数值进行补偿:Step (1): Compensate the force and moment values of the force/torque sensor by feeding back the current attitude of the force/torque sensor and using the following formula:

Ffxcxc==rr3131kkxzxzGG++Ffxx00Ffycyc==rr3232kkyzyzGG++Ffythe y00Ffzczc==rr3333GG++Ffzz00Mmxcxc==Mmxx00Mmycyc==Mmythe y00Mmzczc==Mmzz00

式中,r31、r32、r33分别从力传感器当前姿态T=r11r12r13r21r22r23r31r32r33中获得;In the formula, r31 , r32 , and r33 are respectively from the current attitude of the force sensor T = r 11 r 12 r 13 r twenty one r twenty two r twenty three r 31 r 32 r 33 obtained from

步骤(2):先以力传感器x轴朝上作为初始位置1,测得当前力传感器的数据为Fx1,Fy1,Fz1,Mx1,My1,Mz1;在初始位置1基础上绕z轴逆时针旋转90°得到位置2,测得当前力传感器的变量为Fx2,Fy2,Fz2,Mx2,My2,Mz2;在位置2基础上绕z轴逆时针旋转90°得到位置3,测得当前力传感器的变量为Fx3,Fy3,Fz3,Mx3,My3,Mz3;在位置3基础上绕z轴逆时针旋转90°得到位置4,测得当前力传感器的变量为Fx4,Fy4,Fz4,Mx4,My4,Mz4;在初始位置1基础上绕y轴逆时针旋转90°得到位置5,测得当前力传感器的变量为Fx5,Fy5,Fz5,Mx5,My5,Mz5;在初始位置1基础上绕y轴顺时针旋转90°得到位置6,测得当前力传感器的变量为Fx6,Fy6,Fz6,Mx6,My6,Mz6Step (2): First take the force sensor x-axis upward as the initial position 1, and measure the data of the current force sensor as Fx1 , Fy1 , Fz1 , Mx1 , My1 , Mz1 ; based on the initial position 1 Rotate 90° counterclockwise around the z-axis to obtain position 2, and measure the current force sensor variables as Fx2 , Fy2 , Fz2 , Mx2 , My2 , Mz2 ; rotate 90 counterclockwise around the z-axis on the basis of position 2 ° to obtain position 3, the measured variables of the current force sensor are Fx3 , Fy3 , Fz3 , Mx3 , My3 , Mz3 ; on the basis of position 3, rotate 90° counterclockwise around the z-axis to obtain position 4, and measure The variables of the current force sensor are Fx4 , Fy4 , Fz4 , Mx4 , My4 , Mz4 ; on the basis of the initial position 1, rotate 90° counterclockwise around the y-axis to obtain position 5, and the measured variable of the current force sensor is Fx5 , Fy5 , Fz5 , Mx5 , My5 , Mz5 ; rotate 90° clockwise around the y-axis on the basis of the initial position 1 to obtain position 6, and the measured variables of the current force sensor are Fx6 , Fy6 , Fz6 , Mx6 , My6 , Mz6

通过以下公式获得相应的初值:The corresponding initial value is obtained by the following formula:

Ffxx00==((Ffxx11++Ffxx33))//22Ffythe y00==((Ffythe y22++Ffythe y44))//22Ffzz00==((Ffzz55++Ffzz66))//22

Mmxx00==((Mmxx22++Mmxx44++Mmxx55++Mmxx66))//44Mmythe y00==((Mmythe y11++Mmythe y33++Mmythe y55++Mmythe y66))//44Mmzz00==((Mmzz11++Mmzz22++Mmzz33++Mmzz44))//44

算出初值后,计算x轴、y轴和z轴分别测得的重力值:After calculating the initial value, calculate the gravity values measured by the x-axis, y-axis and z-axis respectively:

GGxx==||Ffxx33--Ffxx11||//22GGythe y==||Ffythe y22--Ffythe y44||//22GGzz==||Ffzz66--Ffzz55||//22

根据这个重力值计算出传感器各轴线性度之间的偏差关系Calculate the deviation relationship between the linearity of each axis of the sensor according to this gravity value

kkxzxz==GGxx//GGzzkkyzyz==GGythe y//GGzz

以Gz为重力基准,即G=GzTake Gz as the gravity reference, that is, G=Gz

根据当前力/力矩传感器的姿态,利用步骤(1)中的公式算出力/力矩传感器当前的姿态的零位值Fxc、Fyc、Fzc、Mxc、Myc、Mzc,通过以上公式,对力/力矩传感器的基本参数进行标定;According to the current attitude of the force/torque sensor, use the formula in step (1) to calculate the zero position value Fxc , Fyc , Fzc , Mxc , Myc , Mzc of the current attitude of the force/torque sensor, through the above formula , to calibrate the basic parameters of the force/torque sensor;

步骤(3):利用步骤(1)中的公式分别求出步骤(2)中所测得的6个位置的零位值,并与测量值进行比较,通过下面公式算出此时各个测量量的误差最大绝对值:Step (3): Use the formula in step (1) to calculate the zero value of the 6 positions measured in step (2), and compare with the measured value, and calculate the value of each measured quantity at this time by the following formula Maximum absolute value of error:

ηηff==maxmaxii==1166||Ffnini--Ffncnc||,,((nno==xx,,ythe y,,zz))

ηηmm==maxmaxii==1166||Mmnini--Mmncnc||,,((nno==xx,,ythe y,,zz))

式中Fni、Mni表示传感器测量回来的量,Fnc、Mnc表示相应通道计算出来的补偿量;各通道误差的最大绝对值分别记为ηfx、ηfy、ηfz、ηmx、ηmy、ηmzIn the formula, Fni and Mni represent the amount measured by the sensor, Fnc and Mnc represent the compensation amount calculated by the corresponding channel; the maximum absolute value of each channel error is respectively recorded as ηfx , ηfy , ηfz , ηmx , ηmy , ηmz

取稳定系数εfx、εfy、εfz(均大于1,建议选1.5~2.0),令力/力矩传感器的当前零位稳定区间为:Take the stability coefficients εfx , εfy , εfz (all greater than 1, it is recommended to choose 1.5~2.0), so that the current zero stability range of the force/torque sensor is:

δδfxfx==ηηfxfxϵϵfxfxδδfyfy==ηηfyfyϵϵfyfyδδfzfz==ηηfzfzϵϵfzfzδδmxmx==ηηmxmxϵϵmxmxδδmymy==ηηmymyϵϵmymyδδmzmz==ηηmzmzϵϵmzmz

则力/力矩传感器的力端零位稳定区间分别为力矩端的零位稳定区间分别为[Mxcmx,Mxcmx]、[Mzcmz,Mzcmz]。Then the zero stability range of the force end of the force/torque sensor is The zero stable intervals at the torque end are [Mxcmx ,Mxcmx ], [Mzcmz ,Mzcmz ].

通过上述方法获得对力/力矩传感器当前姿态下的力和力矩数值稳定区间进行设置;Obtain and set the stable range of force and moment values under the current attitude of the force/torque sensor through the above method;

步骤(4):根据步骤(1)、(2)和(3)设计得到力跟随的控制方法力端为:Step (4): According to the design of steps (1), (2) and (3), the force end of the force-following control method is:

uuff==kkfcfc((Ffmm--Ffcc++&delta;&delta;))Ffmm<<Ffcc--&delta;&delta;00Ffcc--&delta;&delta;<<Ffmm<<Ffcc++&delta;&delta;kkfcfc((Ffmm--Ffcc--&delta;&delta;))Ffmm>>Ffcc++&delta;&delta;

式中Fm表示在某个力方向上施加力后的测量值,Fc表示在该方向上对力的补偿量,δ表示该方向上的稳定区间;In the formula, Fm represents the measured value after applying a force in a certain force direction, Fc represents the compensation amount for force in this direction, and δ represents the stable interval in this direction;

同理,力矩端的控制方法为:Similarly, the control method of the torque end is:

uumm==kkmcmc((Mmmm--Mmcc++&delta;&delta;))Mmmm<<Mmcc--&delta;&delta;00Mmcc--&delta;&delta;<<Mmmm<<Mmcc++&delta;&delta;kkmcmc((Mmmm--Mmcc--&delta;&delta;))Mmmm>>Mmcc++&delta;&delta;

式中Mm表示在某个力矩方向上施加力后的测量值,Mc表示在该方向上对力的补偿量,δ表示该方向上的稳定区间;In the formula, Mm represents the measured value after applying a force in a certain moment direction, Mc represents the compensation amount for force in this direction, and δ represents the stable range in this direction;

控制值将反馈到机器人上进行力跟随控制,并通过以下公式进行:The control value will be fed back to the robot for force-following control, and is performed by the following formula:

qq&CenterDot;&CenterDot;==JJ--11uu

其中J为机器人当前的雅可比矩阵,u为力和力矩的控制输入,表示为Where J is the current Jacobian matrix of the robot, u is the control input of force and torque, expressed as

uu==uuffuumm==uufxfxuufyfyuufzfzuumxmxuumymyuumzmz

为机器人各关节的速度,算出各关节的速度后,利用该速度对机器人各关节进行控制,使其作力跟随运动,每当机器人姿态发生改变,都需要使用步骤(2)中的方法对传感器的零位值重新标定。 is the speed of each joint of the robot. After calculating the speed of each joint, use the speed to control each joint of the robot, so that its force follows the movement. Whenever the posture of the robot changes, it is necessary to use the method in step (2) to adjust the sensor The zero value of the recalibration.

本发明通过简单几个步骤能够得出对于力/力矩传感器来说精度较高的补偿效果;提供了由于各种测量误差及数据干扰所造成的零位变动的解决方法。The invention can obtain a high-precision compensation effect for the force/torque sensor through a few simple steps; it provides a solution to the zero position variation caused by various measurement errors and data interference.

附图说明Description of drawings

图1为本发明力控制函数表示意图。Fig. 1 is a schematic diagram of the force control function table of the present invention.

图2为本发明力矩控制函数表示意图。Fig. 2 is a schematic diagram of the torque control function table of the present invention.

图3为本发明力/力矩传感器所要测量的初始6个位置的状态(重力都朝下)变化框图,其中:Fig. 3 is a block diagram of changes in the states of the initial six positions (gravity is all facing down) to be measured by the force/torque sensor of the present invention, wherein:

表1(初始位置1)所示的位置为以力传感器的x轴朝上作为初始位置,测得当前力传感器的变量为Fx1,Fy1,Fz1,Mx1,My1,Mz1The position shown in Table 1 (initial position 1) is that the x-axis of the force sensor is upward as the initial position, and the measured variables of the current force sensor are Fx1 , Fy1 , Fz1 , Mx1 , My1 , Mz1 ;

表2(位置2)所示的位置为表1所述位置绕z轴逆时针旋转90°所得到的位置,测得当前力传感器的变量为Fx2,Fy2,Fz2,Mx2,My2,Mz2The position shown in Table 2 (position 2) is the position obtained by rotating the position described in Table 1 counterclockwise by 90° around the z-axis. The measured variables of the current force sensor are Fx2 , Fy2 , Fz2 , Mx2 , My2 , Mz2 ;

表3(位置3)所示的位置为表2所述位置绕z轴逆时针旋转90°所得到的位置,测得当前力传感器的变量为Fx3,Fy3,Fz3,Mx3,My3,Mz3The position shown in Table 3 (position 3) is the position obtained by rotating the position described in Table 2 counterclockwise by 90° around the z-axis. The measured variables of the current force sensor are Fx3 , Fy3 , Fz3 , Mx3 , My3 , Mz3 ;

表4(位置4)所示的位置为表3所述位置绕z轴逆时针旋转90°所得到的位置,测得当前力传感器的变量为Fx4,Fy4,Fz4,Mx4,My4,Mz4The position shown in Table 4 (position 4) is the position obtained by rotating the position described in Table 3 counterclockwise by 90° around the z-axis. The measured variables of the current force sensor are Fx4 , Fy4 , Fz4 , Mx4 , My4 , Mz4 ;

表5(位置5)所示的位置为表1所述位置绕y轴逆时针旋转90°所得到的位置,测得当前力传感器的变量为Fx5,Fy5,Fz5,Mx5,My5,Mz5The position shown in Table 5 (position 5) is the position obtained by rotating the position described in Table 1 counterclockwise by 90° around the y-axis, and the measured variables of the current force sensor are Fx5 , Fy5 , Fz5 , Mx5 , My5 , Mz5 ;

表6(位置6)所示的位置为表1所述位置绕y轴顺时针旋转90°所得到的位置,测得当前力传感器的变量为Fx6,Fy6,Fz6,Mx6,My6,Mz6The position shown in Table 6 (position 6) is the position obtained by rotating the position described in Table 1 clockwise by 90° around the y-axis. The measured variables of the current force sensor are Fx6 , Fy6 , Fz6 , Mx6 , My6 , Mz6 .

具体实施方式Detailed ways

下面结合具体实施例对本发明作进一步具体详细描述。The present invention will be described in further detail below in conjunction with specific embodiments.

实施例Example

如图1、图2、图3所示。本发明基于六维力/力矩传感器的机器人力跟随运动控制方法,其特征在于包括下述步骤:As shown in Figure 1, Figure 2, and Figure 3. The robot force-following motion control method based on the six-dimensional force/torque sensor of the present invention is characterized in that comprising the following steps:

步骤(1):通过反馈力/力矩传感器当前姿态并利用以下公式对力/力矩传感器的力和力矩数值进行补偿:Step (1): Compensate the force and moment values of the force/torque sensor by feeding back the current attitude of the force/torque sensor and using the following formula:

Ffxcxc==rr3131kkxzxzGG++Ffxx00Ffycyc==rr3232kkyzyzGG++Ffythe y00Ffzczc==rr3333GG++Ffzz00Mmxcxc==Mmxx00Mmyzyz==Mmythe y00Mmzczc==Mmzz00

式中,r31、r32、r33分别从力传感器当前姿态T=r11r12r13r21r22r23r31r32r33中获得;In the formula, r31 , r32 , and r33 are respectively from the current attitude of the force sensor T = r 11 r 12 r 13 r twenty one r twenty two r twenty three r 31 r 32 r 33 obtained from

步骤(2):先以力传感器x轴朝上作为初始位置1,测得当前力传感器的数据为Fx1,Fy1,Fz1,Mx1,My1,Mz1;在初始位置1基础上绕z轴逆时针旋转90°得到位置2,测得当前力传感器的变量为Fx2,Fy2,Fz2,Mx2,My2,Mz2;在位置2基础上绕z轴逆时针旋转90°得到位置3,测得当前力传感器的变量为Fx3,Fy3,Fz3,Mx3,My3,Mz3;在位置3基础上绕z轴逆时针旋转90°得到位置4,测得当前力传感器的变量为Fx4,Fy4,Fz4,Mx4,My4,Mz4;在初始位置1基础上绕y轴逆时针旋转90°得到位置5,测得当前力传感器的变量为Fx5,Fy5,Fz5,Mx5,My5,Mz5;在初始位置1基础上绕y轴顺时针旋转90°得到位置6,测得当前力传感器的变量为Fx6,Fy6,Fz6,Mx6,My6,Mz6Step (2): First take the force sensor x-axis upward as the initial position 1, and measure the data of the current force sensor as Fx1 , Fy1 , Fz1 , Mx1 , My1 , Mz1 ; based on the initial position 1 Rotate 90° counterclockwise around the z-axis to obtain position 2, and measure the current force sensor variables as Fx2 , Fy2 , Fz2 , Mx2 , My2 , Mz2 ; rotate 90 counterclockwise around the z-axis on the basis of position 2 ° to obtain position 3, the measured variables of the current force sensor are Fx3 , Fy3 , Fz3 , Mx3 , My3 , Mz3 ; on the basis of position 3, rotate 90° counterclockwise around the z-axis to obtain position 4, and measure The variables of the current force sensor are Fx4 , Fy4 , Fz4 , Mx4 , My4 , Mz4 ; on the basis of the initial position 1, rotate 90° counterclockwise around the y-axis to obtain position 5, and the measured variable of the current force sensor is Fx5 , Fy5 , Fz5 , Mx5 , My5 , Mz5 ; rotate 90° clockwise around the y-axis on the basis of the initial position 1 to obtain position 6, and the measured variables of the current force sensor are Fx6 , Fy6 , Fz6 , Mx6 , My6 , Mz6

通过以下公式获得相应的初值:The corresponding initial value is obtained by the following formula:

Ffxx00==((Ffxx11++Ffxx33))//22Ffythe y00==((Ffythe y22++Ffythe y44))//22Ffzz00==((Ffzz55++Ffzz66))//22

Mmxx00==((Mmxx22++Mmxx44++Mmxx55++Mmxx66))//44Mmythe y00==((Mmythe y11++Mmythe y33++Mmythe y55++Mmythe y66))//44Mmzz00==((Mmzz11++Mmzz22++Mmzz33++Mmzz44))//44

算出初值后,计算x轴、y轴和z轴分别测得的重力值:After calculating the initial value, calculate the gravity values measured by the x-axis, y-axis and z-axis respectively:

GGxx==||Ffxx33--Ffxx11||//22GGythe y==||Ffythe y22--Ffythe y44||//22GGzz==||Ffzz66--Ffzz55||//22

根据这个重力值计算出传感器各轴线性度之间的偏差关系Calculate the deviation relationship between the linearity of each axis of the sensor according to this gravity value

kkxzxz==GGxx//GGzzkkyzyz==GGythe y//GGzz

以Gz为重力基准,即G=GzTake Gz as the gravity reference, that is, G=Gz

根据当前力/力矩传感器的姿态,利用步骤(1)中的公式算出力/力矩传感器当前的姿态的零位值Fxc、Fyc、Fzc、Mxc、Myc、Mzc,通过以上公式,对力/力矩传感器的基本参数进行标定;According to the current attitude of the force/torque sensor, use the formula in step (1) to calculate the zero position value Fxc , Fyc , Fzc , Mxc , Myc , Mzc of the current attitude of the force/torque sensor, through the above formula , to calibrate the basic parameters of the force/torque sensor;

步骤(3):利用步骤(1)中的公式分别求出步骤(2)中所测得的6个位置的零位值,并与测量值进行比较,通过下面公式算出此时各个测量量的误差最大绝对值:Step (3): Use the formula in step (1) to calculate the zero value of the 6 positions measured in step (2), and compare with the measured value, and calculate the value of each measured quantity at this time by the following formula Maximum absolute value of error:

&eta;&eta;ff==maxmaxii==1166||Ffnini--Ffncnc||,,((nno==xx,,ythe y,,zz))

&eta;&eta;mm==maxmaxii==1166||Mmnini--Mmncnc||,,((nno==xx,,ythe y,,zz))

式中Fni、Mni表示传感器测量回来的量,Fnc、Mnc表示相应通道计算出来的补偿量;各通道误差的最大绝对值分别记为ηfx、ηfy、ηfz、ηmx、ηmy、ηmzIn the formula, Fni and Mni represent the amount measured by the sensor, Fnc and Mnc represent the compensation amount calculated by the corresponding channel; the maximum absolute value of each channel error is respectively recorded as ηfx , ηfy , ηfz , ηmx , ηmy , ηmz

取稳定系数εfx、εfy、εfz(均大于1,建议选1.5~2.0),令力/力矩传感器的当前零位稳定区间为:Take the stability coefficients εfx , εfy , εfz (all greater than 1, it is recommended to choose 1.5~2.0), so that the current zero stability range of the force/torque sensor is:

&delta;&delta;fxfx==&eta;&eta;fxfx&epsiv;&epsiv;fxfx&delta;&delta;fyfy==&eta;&eta;fyfy&epsiv;&epsiv;fyfy&delta;&delta;fzfz==&eta;&eta;fzfz&epsiv;&epsiv;fzfz&delta;&delta;mxmx==&eta;&eta;mxmx&epsiv;&epsiv;mxmx&delta;&delta;mymy==&eta;&eta;mymy&epsiv;&epsiv;mymy&delta;&delta;mzmz==&eta;&eta;mzmz&epsiv;&epsiv;mzmz

则力/力矩传感器的力端零位稳定区间分别为力矩端的零位稳定区间分别为[Mxcmx,Mxcmx]、[Mzcmz,Mzcmz]。Then the zero stability range of the force end of the force/torque sensor is The zero stable intervals at the torque end are [Mxcmx ,Mxcmx ], [Mzcmz ,Mzcmz ].

通过上述方法获得对力/力矩传感器当前姿态下的力和力矩数值稳定区间进行设置;Obtain and set the stable range of force and moment values under the current attitude of the force/torque sensor through the above method;

步骤(4):根据步骤(1)、(2)和(3)设计得到力跟随的控制方法力端为:Step (4): According to the design of steps (1), (2) and (3), the force end of the force-following control method is:

uuff==kkfcfc((Ffmm--Ffcc++&delta;&delta;))Ffmm<<Ffcc--&delta;&delta;00Ffcc--&delta;&delta;<<Ffmm<<Ffcc++&delta;&delta;kkfcfc((Ffmm--Ffcc--&delta;&delta;))Ffmm>>Ffcc++&delta;&delta;

式中Fm表示在某个力方向上施加力后的测量值,Fc表示在该方向上对力的补偿量,δ表示该方向上的稳定区间;In the formula, Fm represents the measured value after applying a force in a certain force direction, Fc represents the compensation amount for force in this direction, and δ represents the stable interval in this direction;

同理,力矩端的控制方法为:Similarly, the control method of the torque end is:

uumm==kkmcmc((Mmmm--Mmcc++&delta;&delta;))Mmmm<<Mmcc--&delta;&delta;00Mmcc--&delta;&delta;<<Mmmm<<Mmcc++&delta;&delta;kkmcmc((Mmmm--Mmcc--&delta;&delta;))Mmmm>>Mmcc++&delta;&delta;

式中Mm表示在某个力矩方向上施加力后的测量值,Mc表示在该方向上对力的补偿量,δ表示该方向上的稳定区间;In the formula, Mm represents the measured value after applying a force in a certain moment direction, Mc represents the compensation amount for force in this direction, and δ represents the stable range in this direction;

控制值将反馈到机器人上进行力跟随控制,并通过以下公式进行:The control value will be fed back to the robot for force-following control, and is performed by the following formula:

qq&CenterDot;&CenterDot;==JJ--11uu

其中J为机器人当前的雅可比矩阵,u为力和力矩的控制输入,表示为Where J is the current Jacobian matrix of the robot, u is the control input of force and moment, expressed as

uu==uuffuumm==uufxfxuufyfyuufzfzuumxmxuumymyuumzmz

为机器人各关节的速度,算出各关节的速度后,利用该速度对机器人各关节进行控制,使其作力跟随运动,每当机器人姿态发生改变,都需要使用步骤(2)中的方法对传感器的零位值重新标定。 is the speed of each joint of the robot. After calculating the speed of each joint, use the speed to control each joint of the robot, so that its force follows the movement. Whenever the posture of the robot changes, it is necessary to use the method in step (2) to adjust the sensor The zero value of the recalibration.

如上所述,便可较好地实现本发明。As described above, the present invention can be preferably carried out.

本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The implementation of the present invention is not limited by the above examples, and any other changes, modifications, substitutions, combinations, and simplifications that do not deviate from the spirit and principles of the present invention should be equivalent replacement methods, and are included in within the protection scope of the present invention.

Claims (1)

Translated fromChinese
1.基于六维力/力矩传感器的机器人力跟随运动控制方法,其特征在于包括下述步骤:1. The robot force following motion control method based on six-dimensional force/moment sensor, is characterized in that comprising the following steps:(1)通过反馈力/力矩传感器当前姿态并利用以下公式对力/力矩传感器的力和力矩数值进行补偿:(1) Compensate the force and moment values of the force/torque sensor by feeding back the current attitude of the force/torque sensor and using the following formula:Ffxxcc==rr3131kkxxzzGG++Ffxx00Ffythe ycc==rr3232kkythe yzzGG++Ffythe y00Ffzzcc==rr3333GG++Ffzz00Mmxxcc==Mmxx00Mmythe ycc==Mmythe y00Mmzzcc==Mmzz00式中,Fx0,Fy0,Fz0,Mx0,My0,Mz0分别为力/力矩传感器不受重力影响时所在的零位点;kxz为同一作用力在力/力矩传感器X轴与Z轴上线性度的偏差,kyz为同一作用力在力/力矩传感器Y轴与Z轴上线性度的偏差;G为力/力矩传感器的重量;r31、r32、r33分别从力传感器当前姿态T=r11r12r13r21r22r23r31r32r33中获得;In the formula, Fx0 , Fy0 , Fz0 , Mx0 , My0 , Mz0 are the zero point where the force/torque sensor is not affected by gravity; kxz is the same force on the X-axis of the force/torque sensor The deviation from the linearity on the Z axis, kyz is the deviation of the linearity of the same force on the Y axis and the Z axis of the force/torque sensor; G is the weight of the force/torque sensor; r31 , r32 , and r33 are respectively from Current attitude of the force sensor T = r 11 r 12 r 13 r twenty one r twenty two r twenty three r 31 r 32 r 33 obtained from(2)先以力传感器x轴朝上作为初始位置1,测得当前力传感器的数据为Fx1,Fy1,Fz1,Mx1,My1,Mz1;在初始位置1基础上绕z轴逆时针旋转90°得到位置2,测得当前力传感器的变量为Fx2,Fy2,Fz2,Mx2,My2,Mz2;在初始位置2基础上绕z轴逆时针旋转90°得到位置3,测得当前力传感器的变量为Fx3,Fy3,Fz3,Mx3,My3,Mz3;在初始位置3基础上绕z轴逆时针旋转90°得到位置4,测得当前力传感器的变量为Fx4,Fy4,Fz4,Mx4,My4,Mz4;在初始位置1基础上绕y轴逆时针旋转90°得到位置5,测得当前力传感器的变量为Fx5,Fy5,Fz5,Mx5,My5,Mz5;在初始位置1基础上绕y轴顺时针旋转90°得到位置6,测得当前力传感器的变量为Fx6,Fy6,Fz6,Mx6,My6,Mz6(2) First take the force sensor x-axis upward as the initial position 1, and measure the data of the current force sensor as Fx1 , Fy1 , Fz1 , Mx1 , My1 , Mz1 ; on the basis of the initial position 1, circle z Rotate the shaft counterclockwise by 90° to obtain position 2, and the measured variables of the current force sensor are Fx2 , Fy2 , Fz2 , Mx2 , My2 , Mz2 ; rotate 90° counterclockwise around the z-axis on the basis of the initial position 2 Get position 3, measure the current variable of the force sensor as Fx3 , Fy3 , Fz3 , Mx3 , My3 , Mz3 ; rotate 90° counterclockwise around the z-axis on the basis of the initial position 3 to get position 4, and measure The variables of the current force sensor are Fx4 , Fy4 , Fz4 , Mx4 , My4 , Mz4 ; on the basis of the initial position 1, rotate 90° counterclockwise around the y-axis to obtain position 5, and the measured variable of the current force sensor is Fx5 , Fy5 , Fz5 , Mx5 , My5 , Mz5 ; rotate 90° clockwise around the y-axis on the basis of the initial position 1 to obtain position 6, and the measured variables of the current force sensor are Fx6 , Fy6 , Fz6 , Mx6 , My6 , Mz6通过以下公式获得相应的初值:The corresponding initial value is obtained by the following formula:Ffxx00==((Ffxx11++Ffxx33))//22Ffythe y00==((Ffythe y22++Ffythe y44))//22Ffzz00==((Ffzz55++Ffzz66))//22Mmxx00==((Mmxx22++Mmxx44++Mmxx55++Mmxx66))//44Mmythe y00==((Mmythe y11++Mmythe y33++Mmythe y55++Mmythe y66))//44Mmzz00==((Mmzz11++Mmzz22++Mmzz33++Mmzz44))//44算出初值后,计算x轴、y轴和z轴分别测得的重力值:After calculating the initial value, calculate the gravity values measured by the x-axis, y-axis and z-axis respectively:GGxx==||Ffxx33--Ffxx11||//22GGythe y==||Ffythe y22--Ffythe y44||//22GGzz==||Ffzz66--Ffzz55||//22根据这个重力值计算出传感器各轴线性度之间的偏差关系Calculate the deviation relationship between the linearity of each axis of the sensor according to this gravity valuekkxxzz==GGxx//GGzzkkythe yzz==GGythe y//GGzz以Gz为重力基准,即G=GzTake Gz as the gravity reference, that is, G=Gz根据当前力/力矩传感器的姿态,利用步骤(1)中的公式算出力/力矩传感器当前的姿态的零位值Fxc、Fyc、Fzc、Mxc、Myc、Mzc,通过以上公式,对力/力矩传感器的基本参数进行标定;According to the attitude of the current force/torque sensor, use the formula in step (1) to calculate the zero position value Fxc , Fyc , Fzc , Mxc , Myc , Mzc of the current attitude of the force/torque sensor, through the above formula , to calibrate the basic parameters of the force/torque sensor;(3)利用步骤(1)中的公式分别求出步骤(2)中所测得的6个位置的零位值,并与测量值进行比较,通过下面公式算出此时各个测量量的误差最大绝对值:(3) Use the formula in step (1) to obtain the zero values of the six positions measured in step (2), and compare them with the measured values, and use the following formula to calculate the maximum error of each measurement at this time Absolute value:&eta;&eta;ff==maxmaxii==1166||Ffnnoii--Ffnnocc||,,((nno==xx,,ythe y,,zz))&eta;&eta;mm==maxmaxii==1166||Mmnnoii--Mmnnocc||,,((nno==xx,,ythe y,,zz))式中Fni、Mni表示传感器测量的量,Fnc、Mnc表示相应通道计算出来的补偿量;各通道误差的最大绝对值分别记为ηfx、ηfy、ηfz、ηmx、ηmy、ηmzIn the formula, Fni and Mni represent the amount measured by the sensor, Fnc and Mnc represent the compensation amount calculated by the corresponding channel; the maximum absolute value of each channel error is recorded as ηfx , ηfy , ηfz , ηmx , ηmy , ηmz定义稳定系数εfx、εfy、εfz、εmx、εmy、εmz,均大于1,以保证各通道误差区间大于各通道误差的最大绝对值,然后定义力/力矩传感器各通道当前零位稳定区间大小为δfx、δfy、δfz、δmx、δmy、δmz,求得力/力矩传感器的当前零位稳定区间为:Define the stability coefficients εfx , εfy , εfz , εmx , εmy , εmz , all greater than 1, to ensure that the error interval of each channel is greater than the maximum absolute value of each channel error, and then define the current zero of each channel of the force/torque sensor The size of the position stability interval is δfx , δfy , δfz , δmx , δmy , δmz , and the current zero position stability interval of the force/torque sensor is obtained as:&delta;&delta;ffxx==&eta;&eta;ffxx&epsiv;&epsiv;ffxx&delta;&delta;ffythe y==&eta;&eta;ffythe y&epsiv;&epsiv;ffythe y&delta;&delta;ffzz==&eta;&eta;ffzz&epsiv;&epsiv;ffzz&delta;&delta;mmxx==&eta;&eta;mmxx&epsiv;&epsiv;mmxx&delta;&delta;mmythe y==&eta;&eta;mmythe y&epsiv;&epsiv;mmythe y&delta;&delta;mmzz==&eta;&eta;mmzz&epsiv;&epsiv;mmzz则力/力矩传感器的力端零位稳定区间分别为力矩端的零位稳定区间分别为[Mxcmx,Mxcmx]、[Mzcmz,Mzcmz]Then the zero stability range of the force end of the force/torque sensor is The zero stable intervals at the torque end are [Mxcmx ,Mxcmx ], [Mzcmz ,Mzcmz ]通过上述方法获得对力/力矩传感器当前姿态下的力和力矩数值稳定区间进行设置;Obtain and set the stable range of force and moment values under the current attitude of the force/torque sensor through the above method;(4)根据步骤(1)、(2)和(3)设计得到力跟随的控制方法力端为:(4) According to the steps (1), (2) and (3), the force end of the force following control method is:uuff==kkffcc((Ffmm--Ffcc++&delta;&delta;))Ffmm<<Ffcc--&delta;&delta;00Ffcc--&delta;&delta;<<Ffmm<<Ffcc++&delta;&delta;kkffcc((Ffmm--Ffcc--&delta;&delta;))Ffmm>>Ffcc++&delta;&delta;式中,uf为力/力矩传感器受力时某个力方向上力的输出值,kfc为力/力矩传感器上对应力方向测量值与实际力值之间的比例,Fm表示在某个力方向上施加力后的测量值,Fc表示在该方向上对力的补偿量,δ表示该方向上的稳定区间;In the formula, uf is the output value of the force in a certain force direction when the force/torque sensor is stressed, kfc is the ratio between the measured value of the force/torque sensor in the direction of the force and the actual force value, and Fm represents the force in a certain direction The measured value after applying force on a force direction,Fc represents the compensation amount to force in this direction, and δ represents the stable interval in this direction;同理,力矩端的控制方法为:Similarly, the control method of the torque end is:uumm==kkmmcc((Mmmm--Mmcc++&delta;&delta;))Mmmm<<Mmcc--&delta;&delta;00Mmcc--&delta;&delta;<<Mmmm<<Mmcc++&delta;&delta;kkmmcc((Mmmm--Mmcc--&delta;&delta;))Mmmm>>Mmcc++&delta;&delta;式中,um为力/力矩传感器受力时某个力矩方向上力矩的输出值,kmc为力/力矩传感器上对应力矩方向测量值与实际力矩值之间的比例,Mm表示在某个力矩方向上施加力后的测量值,Mc表示在该方向上对力的补偿量,δ表示该方向上的稳定区间;In the formula, um is the output value of torque in a certain torque direction when the force/torque sensor is stressed, kmc is the ratio between the measured value of the corresponding force torque direction on the force/torque sensor and the actual torque value, and Mm represents The measured value after exerting force on a torque direction, Mc represents the compensation amount to force in this direction, and δ represents the stable interval in this direction;控制值将反馈到机器人上进行力跟随控制,并通过以下公式进行:The control value will be fed back to the robot for force-following control, and is performed by the following formula:qq&CenterDot;&CenterDot;==JJ--11uu其中J为机器人当前的雅可比矩阵,u为力和力矩的控制输入,表示为Where J is the current Jacobian matrix of the robot, u is the control input of force and torque, expressed asuu==uuffuumm==uuffxxuuffythe yuuffzzuummxxuummythe yuummzz其中uf表示力控制输入,由ufx、ufy、ufz组成;um表示力矩控制输入,由umx、umy、umz组成;为机器人各关节的速度,算出各关节的速度后,利用该速度对机器人各关节进行控制,使其作力跟随运动,每当机器人姿态发生改变,都需要使用步骤(2)中的方法对传感器的零位值重新标定。Among them, uf represents force control input, composed of ufx , ufy , ufz ; um represents torque control input, composed of umx , umy , umz ; is the speed of each joint of the robot. After calculating the speed of each joint, use the speed to control each joint of the robot so that its force follows the movement. Whenever the posture of the robot changes, it is necessary to use the method in step (2) to adjust the sensor The zero value of the recalibration.
CN201310200246.9A2013-05-242013-05-24Based on the Robot Force accompany movement control method of six-dimensional force/torque sensorExpired - Fee RelatedCN103279037B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201310200246.9ACN103279037B (en)2013-05-242013-05-24Based on the Robot Force accompany movement control method of six-dimensional force/torque sensor

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201310200246.9ACN103279037B (en)2013-05-242013-05-24Based on the Robot Force accompany movement control method of six-dimensional force/torque sensor

Publications (2)

Publication NumberPublication Date
CN103279037A CN103279037A (en)2013-09-04
CN103279037Btrue CN103279037B (en)2015-10-28

Family

ID=49061601

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201310200246.9AExpired - Fee RelatedCN103279037B (en)2013-05-242013-05-24Based on the Robot Force accompany movement control method of six-dimensional force/torque sensor

Country Status (1)

CountryLink
CN (1)CN103279037B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN106742088B (en)*2016-11-162020-02-21南京航空航天大学 Passive multi-dimensional force-torque servo loading platform control system and control method
CN106644259A (en)*2016-12-262017-05-10哈尔滨工业大学Posture influenced compensation method for cantilever beam type sensor
CN106647529B (en)*2017-01-182018-12-18北京工业大学A kind of intelligent teaching system towards the accurate tracing control in six-shaft industrial robot track
CN107028663B (en)*2017-04-182019-04-12中国科学院重庆绿色智能技术研究院A kind of master-slave mode operating robot control method
CN107433590B (en)*2017-07-312020-08-18上海宇航系统工程研究所Gravity compensation method based on mechanical arm load mass and sensor null shift online identification
CN108284456A (en)*2018-01-312018-07-17哈尔滨工业大学Gravitational compensation method in sensor load external force measurement based on dimensionality reduction parsing
CN110244791B (en)*2019-07-112020-05-15北京理工大学 A biped robot foot force and torque following control method
CN110977990A (en)*2019-12-302020-04-10苏州艾利特机器人有限公司Mechanical arm dragging teaching method based on terminal six-dimensional force sensor
CN111230879B (en)*2020-02-202023-07-11佛山科学技术学院 A force sensor-based method and system for contact force compensation at the end of a robot
CN111639749A (en)*2020-05-252020-09-08上海智殷自动化科技有限公司Industrial robot friction force identification method based on deep learning

Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5880956A (en)*1994-08-121999-03-09Minnesota Mining And Manufacturing CompanyLead-through robot programming system
CN101320251A (en)*2008-07-152008-12-10华南理工大学 Robot Walking Control Method Based on Deterministic Learning Theory
CN101865655A (en)*2010-05-262010-10-20哈尔滨工业大学 Measurement method of six-dimensional pose accuracy of space manipulator based on air flotation system
CN102122172A (en)*2010-12-312011-07-13中国科学院计算技术研究所Image pickup system and control method thereof for machine motion control
CN102672719A (en)*2012-05-102012-09-19浙江大学Dynamic stability control method for operation of humanoid robot arm
CN103019096A (en)*2012-11-232013-04-03北京理工大学Humanoid robot inverse dynamics controller based on acceleration optimization

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5880956A (en)*1994-08-121999-03-09Minnesota Mining And Manufacturing CompanyLead-through robot programming system
CN101320251A (en)*2008-07-152008-12-10华南理工大学 Robot Walking Control Method Based on Deterministic Learning Theory
CN101865655A (en)*2010-05-262010-10-20哈尔滨工业大学 Measurement method of six-dimensional pose accuracy of space manipulator based on air flotation system
CN102122172A (en)*2010-12-312011-07-13中国科学院计算技术研究所Image pickup system and control method thereof for machine motion control
CN102672719A (en)*2012-05-102012-09-19浙江大学Dynamic stability control method for operation of humanoid robot arm
CN103019096A (en)*2012-11-232013-04-03北京理工大学Humanoid robot inverse dynamics controller based on acceleration optimization

Also Published As

Publication numberPublication date
CN103279037A (en)2013-09-04

Similar Documents

PublicationPublication DateTitle
CN103279037B (en)Based on the Robot Force accompany movement control method of six-dimensional force/torque sensor
CN103600354B (en)Spacecraft mechanical arm flexible follow-up control gravity compensation
CN107433590B (en)Gravity compensation method based on mechanical arm load mass and sensor null shift online identification
CN107421442B (en) An Online Compensation Method for Robot Positioning Error Aided by External Measurement
CN106647281B (en) A Finite Time Compensation Method for Telecontrol System Interference Based on Terminal Sliding Mode
CN106313044B (en)A kind of industrial robot feedforward torque compensation method
CN102230783B (en)Three-dimensional grid precision compensation method for industrial robot
CN106994687B (en) Installation posture calibration method of six-dimensional force sensor at the end of industrial robot
CN104048791B (en) A low-dimensional intercoupling double-cross beam six-dimensional force and moment sensor
Kuroki et al.Cr-N alloy thin-film based torque sensors and joint torque servo systems for compliant robot control
CN104972465B (en)Robot controller and robot system for moving robot in response to force
CN104339351A (en)Robot control device
CN102955477A (en)Attitude control system and control method of four-rotor aircraft
CN104699108A (en)Multi-rotor craft control allocation method
Yao et al.A 3-D printed redundant six-component force sensor with eight parallel limbs
CN102243501B (en)Method for controlling positioning of actuator comprising wave gear device
CN102168991A (en)Calibration and compensation method for mounting errors between triaxial vector sensor and mounting carrier
CN104614984A (en)High-precision control method of motor position servo system
CN108204879A (en)The measuring method and system of a kind of rotary inertia
CN118404591B (en)Adaptive identification method for nonlinear dynamic parameters of speed reducer
CN115091455A (en)Industrial robot positioning error compensation method
CN105043774B (en)A kind of method using interpolation calculation steering wheel power consumption
CN117621064A (en) Design method of robot joint spatial variable impedance controller based on reinforcement learning
CN110000788B (en) A finite-time fault-tolerant control method for remote operating systems
CN105674971B (en)Two-dimentional spacecraft angular rate measurement method based on gyroscope flywheel system

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20151028

Termination date:20210524

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp