




技术领域technical field
本发明属于光学领域,涉及一种基于光谱编码与正交分光的并行OCT探测方法及系统。The invention belongs to the field of optics and relates to a parallel OCT detection method and system based on spectral coding and orthogonal light splitting.
背景技术Background technique
光学相干层析成像(Optical Coherence Tomography,OCT)能够实施活体内部组织结构与生理功能的非接触、无损伤、高分辨率在体成像,在生物医学成像领域有着广泛的应用。Optical coherence tomography (OCT) can perform non-contact, non-invasive, high-resolution in vivo imaging of internal tissue structure and physiological functions in vivo, and has a wide range of applications in the field of biomedical imaging.
目前的谱域OCT系统通过高速线阵CCD(或线阵CMOS)来采集干涉信号的光谱分量,无需轴向扫描就可以得到样品的深度信息,具有快速和高灵敏度的特点,但是由于需要横向扫描,因而成像速度仍受到限制,不适合测量需要极短成像时间的运动样品。因此,谱域OCT有必要采用并行探测的方法,在无需轴向扫描和横向扫描的情况下进行二维图像成像。The current spectral domain OCT system uses a high-speed linear array CCD (or linear array CMOS) to collect the spectral components of the interference signal, and can obtain the depth information of the sample without axial scanning, which has the characteristics of fast and high sensitivity. , so the imaging speed is still limited, and it is not suitable for measuring moving samples that require extremely short imaging times. Therefore, it is necessary for spectral domain OCT to adopt a parallel detection method to perform two-dimensional image imaging without axial scanning and transverse scanning.
国外很多科研机构都开展了这方面的研究,如荷兰阿姆斯特丹自由大学的S. Witte小组构建了基于808nm中心波长,带宽60nm的飞秒激光器的并行谱域OCT系统,1392×1040像素的二维图像成像时间为0.2ms,轴向分辨率为5um;日本筑波大学的Yoshiaki Yasuno小组,构建了基于840nm中心波长,带宽50nm的飞秒激光器的并行谱域OCT系统,同时结合横向扫描,实现了视网膜的三维成像,轴向分辨率为7.4um。以上所述的并行谱域OCT系统,是在样品臂中使用圆柱透镜获得线照明探测光。由于使用相干光源,线照明光中不同位置的光点之间具有较高的相干性,从而散射光将引入相干串扰,导致探测信噪比下降,继而系统横向分辨率下降,最终降低了成像质量。另外,传统的并行谱域OCT系统,样品上不同位置的探测光仅在空间方向上得到分离,因此无法使用光纤系统,而只能使用自由空间系统,这大大增加了系统的体积和复杂度。Many foreign scientific research institutions have carried out research in this area. For example, the S. Witte group of the Vrije University Amsterdam in the Netherlands has constructed a parallel spectral domain OCT system based on a femtosecond laser with a center wavelength of 808nm and a bandwidth of 60nm, and a two-dimensional image of 1392×1040 pixels The imaging time is 0.2ms, and the axial resolution is 5um; Yoshiaki Yasuno's group at the University of Tsukuba, Japan, constructed a parallel spectral domain OCT system based on a femtosecond laser with a central wavelength of 840nm and a bandwidth of 50nm, and combined with lateral scanning, realized retinal imaging. Three-dimensional imaging with an axial resolution of 7.4um. The parallel spectral domain OCT system described above uses a cylindrical lens in the sample arm to obtain line illumination probe light. Due to the use of coherent light sources, the light points at different positions in the line illumination light have high coherence, so the scattered light will introduce coherent crosstalk, resulting in a decrease in the detection signal-to-noise ratio, and then a decrease in the lateral resolution of the system, ultimately reducing the imaging quality . In addition, in the traditional parallel spectral domain OCT system, the probe light at different positions on the sample is only separated in the spatial direction, so the fiber optic system cannot be used, but the free space system can only be used, which greatly increases the volume and complexity of the system.
为消除相干光源带来的相干串扰,奥地利维也纳医学院的Branislav Grajciar小组使用热光源进行测试,结果表明光源的光功率不足以进行生物组织的成像,而且宽谱光源的成像深度十分有限。In order to eliminate the coherent crosstalk caused by coherent light sources, Branislav Grajciar's group at Vienna Medical School used a thermal light source for testing. The results showed that the light power of the light source was not enough for imaging biological tissues, and the imaging depth of the wide-spectrum light source was very limited.
日本长冈大学的Tatsutoshi Shioda小组在参考臂中使用了虚像相控阵列分光,避免了相干串扰,但由于探测光没有进行分光,导致了相干对比度的下降,而且同样无法使用光纤系统。The Tatsutoshi Shioda group of Nagaoka University in Japan used a virtual image phased array to split light in the reference arm to avoid coherent crosstalk, but because the probe light was not split, the coherent contrast decreased, and the fiber optic system was also unable to be used.
哈佛医学院的D.Yelin小组提出光谱编码的内窥镜,实现单根光纤的并行成像技术,但由于探测光经光栅分光后光谱带宽变窄,导致了轴向分辨率的下降。The D. Yelin group of Harvard Medical School proposed a spectrally coded endoscope to realize parallel imaging of a single optical fiber, but the axial resolution decreased due to the narrowing of the spectral bandwidth after the detection light was split by a grating.
因此,如何在保证成像分辨率的情况下完成轴向和横向的完全并行测量是并行谱域OCT系统研制的一大技术难点。Therefore, it is a major technical difficulty in the development of a parallel spectral domain OCT system how to complete the complete parallel measurement of the axial and lateral directions under the condition of ensuring the imaging resolution.
发明内容Contents of the invention
为了克服上述现有技术的不足,本发明提供了一种基于光谱编码与正交分光的并行OCT探测方法及系统,在高分辨率并行谱域OCT系统的样品臂部分,采用虚像相控阵列(Virtual Imaged Phased Array , VIPA)分光,在高分辨率并行谱域OCT系统的探测臂部分,采用基于虚像相控阵列和光栅的正交分光光谱仪来实现高光谱分辨率的并行光谱探测。In order to overcome the shortcomings of the above-mentioned prior art, the present invention provides a parallel OCT detection method and system based on spectral encoding and orthogonal spectroscopic splitting. In the sample arm part of the high-resolution parallel spectral domain OCT system, a virtual image phased array ( Virtual Imaged Phased Array, VIPA) spectroscopy, in the detection arm part of the high-resolution parallel spectral domain OCT system, the orthogonal spectrometer based on the virtual image phased array and grating is used to achieve parallel spectral detection with high spectral resolution.
本发明的目的是通过如下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一种基于光谱编码与正交分光的并行OCT探测方法,在样品臂中,对探测光束采用空间域的光谱编码方法;在探测臂中,对干涉光束采用空间域两级正交分光的光谱解码和光谱探测方法。结合两种方法能够实现谱域OCT的并行高分辨率探测。其具体步骤如下:A parallel OCT detection method based on spectral coding and orthogonal light splitting. In the sample arm, the spectral coding method in the spatial domain is used for the detection beam; and spectral detection methods. Combining the two methods enables parallel high-resolution detection of spectral-domain OCT. The specific steps are as follows:
步骤一:在并行谱域OCT系统的样品臂中,采用自由光谱范围小、光谱分辨率高的空间域分光器件虚像相控阵列对探测光束进行色散分光,输出一系列频率互不交叠的等间隔光学频率梳,每个光学频率梳的总体带宽都接近于光源的带宽,分光后的探测光束在样品表面形成线照明,不同频率的光学频率梳照射样品表面的不同横向位置,因而反射回来的光信号中,不同频率的光学频率梳将携带不同横向位置的样品内部结构信息,从而实现对样品横向信息的光谱编码;Step 1: In the sample arm of the parallel spectral domain OCT system, a virtual image phased array of spatial domain spectroscopic devices with a small free spectral range and high spectral resolution is used to disperse and split the probe beam, and output a series of non-overlapping, etc. Spaced optical frequency combs, the overall bandwidth of each optical frequency comb is close to the bandwidth of the light source, the split probe beam forms a line illumination on the sample surface, and the optical frequency combs of different frequencies irradiate different lateral positions on the sample surface, so the reflected In the optical signal, optical frequency combs of different frequencies will carry the internal structure information of the sample at different lateral positions, thereby realizing the spectral encoding of the lateral information of the sample;
步骤二:在并行谱域OCT系统的探测臂中,选用与样品臂中相一致的虚像相控阵列作为光谱解码单元,该单元将样品反射回来的宽带干涉光在空间上分成与探测光相对应的一系列光学频率梳输出,通过对干涉光的光谱解码还原样品的横向位置信息;Step 2: In the detection arm of the parallel spectral domain OCT system, the virtual image phased array consistent with the sample arm is selected as the spectral decoding unit, which spatially divides the broadband interference light reflected by the sample into corresponding detection light A series of optical frequency comb output, restore the lateral position information of the sample by decoding the spectrum of the interference light;
步骤三:在并行谱域OCT系统的探测臂中,通过光谱解码单元实施光谱解码后得到的一系列光学频率梳,再由光谱分辨率较低、自由光谱范围较宽的空间域分光器件光栅在正交方向上实施二次分光,将带有干涉信息的宽带光学频率梳分解为干涉光谱,光栅的光谱分辨率小于虚像相控阵列的自由光谱范围;Step 3: In the detection arm of the parallel spectral domain OCT system, a series of optical frequency combs obtained after spectral decoding are implemented by the spectral decoding unit, and then the grating of the spatial domain spectroscopic device with low spectral resolution and wide free spectral range is placed in the Secondary light splitting is implemented in the orthogonal direction, and the broadband optical frequency comb with interference information is decomposed into interference spectra. The spectral resolution of the grating is smaller than the free spectral range of the virtual image phased array;
步骤四:在并行谱域OCT系统的探测臂中,正交分光后的干涉光谱通过由聚焦透镜和高速面阵CCD或高速面阵CMOS组成的光谱成像系统实施干涉光谱信号的并行探测。Step 4: In the detection arm of the parallel spectral domain OCT system, the interference spectrum after orthogonal spectroscopy is detected in parallel by a spectral imaging system composed of a focusing lens and a high-speed array CCD or a high-speed array CMOS.
一种基于光谱编码与正交分光的并行OCT探测系统,包括宽带光源、光环行器、宽带光纤耦合器、第一光纤准直透镜、第二光纤准直透镜、第三光纤准直透镜、第一柱面聚焦透镜、第二柱面聚焦透镜、第一聚焦透镜、第二聚焦透镜、第一虚像相控阵列、第二虚像相控阵列、光栅、样品、平面反射镜、高速面阵CCD或高速面阵CMOS。A parallel OCT detection system based on spectral encoding and orthogonal light splitting, including a broadband light source, an optical circulator, a broadband fiber coupler, a first fiber collimator lens, a second fiber collimator lens, a third fiber collimator lens, and a A cylindrical focusing lens, a second cylindrical focusing lens, a first focusing lens, a second focusing lens, a first virtual image phased array, a second virtual image phased array, a grating, a sample, a plane mirror, a high-speed area array CCD or High-speed area array CMOS.
从宽带光源出来的低相干光,经光环行器入射到宽带光纤耦合器,经分光后一路光进入样品臂;所述样品臂:经宽带光纤耦合器分光后的光经第一光纤准直透镜入射到第一柱面聚焦透镜的柱面,从第一柱面聚焦透镜的平面出射,出射的光汇聚到第一虚像相控阵列前表面的入射窗,从第一虚像相控阵列的后表面出射,经第一聚焦透镜后照射到样品,从样品反射回来的光经由原路返回至宽带光纤耦合器。The low-coherence light from the broadband light source is incident on the broadband fiber coupler through the optical circulator, and all the light enters the sample arm after being split; the sample arm: the light split by the broadband fiber coupler passes through the first fiber collimator lens Incident to the cylindrical surface of the first cylindrical focusing lens, exiting from the plane of the first cylindrical focusing lens, the outgoing light converges to the entrance window on the front surface of the first virtual image phased array, and passes through the rear surface of the first virtual image phased array After exiting, the first focusing lens irradiates the sample, and the light reflected from the sample returns to the broadband fiber coupler through the original path.
经宽带光纤耦合器分光后的另一路光进入参考臂。所述参考臂:经宽带光纤耦合器分光后的光经第二光纤准直透镜照射到平面反射镜,从平面反射镜反射回来的光经由原路返回至宽带光纤耦合器。Another path of light split by the broadband fiber coupler enters the reference arm. The reference arm: the light split by the broadband fiber coupler is irradiated to the plane mirror through the second fiber collimating lens, and the light reflected from the plane mirror is returned to the broadband fiber coupler through the original path.
从样品臂和参考臂返回的两路光在宽带光纤耦合器中干涉后形成干涉光,经光环行器进入探测臂,由探测臂将干涉光分解为干涉光谱信号。所述探测臂:干涉光经第三光纤准直透镜,入射到第二柱面聚焦透镜的柱面,从第二柱面聚焦透镜的平面出射,出射的光汇聚到第二虚像相控阵列前表面的入射窗,从第二虚像相控阵列的后表面出射,进行空间域上的第一级分光,再入射到光栅,在正交空间方向上进行第二级分光,经第二聚焦透镜成像,采用高速面阵CCD或高速面阵CMOS进行并行探测。最后这些光谱信号转变为电信号传入计算机,并在计算机中实施傅立叶变换等算法处理重建样品图像。The two paths of light returning from the sample arm and the reference arm interfere in the broadband fiber coupler to form interference light, which enters the detection arm through the optical circulator, and the detection arm decomposes the interference light into interference spectrum signals. The detection arm: the interference light is incident on the cylindrical surface of the second cylindrical focusing lens through the third optical fiber collimating lens, and emerges from the plane of the second cylindrical focusing lens, and the outgoing light converges to the front of the second virtual image phased array The incident window on the surface exits from the rear surface of the second virtual image phased array, performs the first stage of light splitting in the spatial domain, and then enters the grating, performs the second stage of light splitting in the orthogonal space direction, and forms an image through the second focusing lens , using high-speed area array CCD or high-speed area array CMOS for parallel detection. Finally, these spectral signals are converted into electrical signals and transmitted to the computer, and algorithms such as Fourier transform are implemented in the computer to process and reconstruct the sample image.
与背景技术相比,本发明具有的有益效果是:Compared with background technology, the beneficial effect that the present invention has is:
1.通过在样品臂上使用虚像相控阵列对探测光束实施色散分光,实现对样品横向位置的光谱编码,又通过在探测臂上使用相同的虚像相控阵列进行相应的光谱解码,还原样品的横向信息。相比传统的并行OCT系统,样品上不同横向位置的反射光在光谱上互不交叠,因而不同位置的反射光之间相干性差,可以较为彻底地消除相干串扰的现象,从而显著提高并行OCT探测的横向分辨率。在样品臂上,传统的光谱编码普遍采用光谱分辨率低,自由光谱范围宽的光栅进行分光,造成线照明探测光的每个光点的光谱带宽变窄,从而导致轴向分辨率的下降。本发明在样品臂上使用的虚像相控阵列,具有光谱分辨率高,自由光谱范围窄的特点,因而线照明探测光的每个光点的光谱都是光学频率梳,并且这些光学频率梳的总体带宽都接近于光源的带宽,从而可以避免轴向分辨的下降。2.由于在样品臂中对样品的横向位置信息进行了光谱编码,不同频率的光学频率梳照射样品表面的不同横向位置,反射回来的光信号中,不同频率的光学频率梳携带不同横向位置的样品内部结构信息,因而可以用光纤系统代替自由空间系统,整个光谱探测系统更容易实现小型化和集成化。1. By using the virtual image phased array on the sample arm to disperse and split the detection beam, the spectral encoding of the lateral position of the sample is realized, and by using the same virtual image phased array on the detection arm to perform corresponding spectral decoding, restore the sample's Horizontal information. Compared with the traditional parallel OCT system, the reflected light at different lateral positions on the sample does not overlap each other in the spectrum, so the coherence between the reflected light at different positions is poor, which can completely eliminate the phenomenon of coherent crosstalk, thereby significantly improving the performance of parallel OCT. The lateral resolution of the probe. On the sample arm, the traditional spectral encoding generally uses a grating with low spectral resolution and a wide free spectral range for light splitting, which narrows the spectral bandwidth of each light point of the line illumination probe light, resulting in a decrease in axial resolution. The virtual image phased array used on the sample arm of the present invention has the characteristics of high spectral resolution and narrow free spectral range, so the spectrum of each light point of the line illumination detection light is an optical frequency comb, and the frequency combs of these optical frequency combs The overall bandwidth is close to the bandwidth of the light source, so that the decline of axial resolution can be avoided. 2. Since the lateral position information of the sample is spectrally encoded in the sample arm, the optical frequency combs of different frequencies irradiate different lateral positions on the sample surface, and in the reflected optical signals, the optical frequency combs of different frequencies carry the The internal structure information of the sample, so the free space system can be replaced by the optical fiber system, and the whole spectral detection system is easier to realize miniaturization and integration.
附图说明Description of drawings
图1是本发明的系统结构原理示意图;Fig. 1 is a schematic diagram of the system structure principle of the present invention;
图2是本发明样品臂的三维视图及其光谱编码原理示意图;Fig. 2 is a three-dimensional view of the sample arm of the present invention and a schematic diagram of its spectral encoding principle;
图3是本发明探测臂的三维视图;Fig. 3 is a three-dimensional view of the detection arm of the present invention;
图4是本发明探测臂的虚像相控阵列分光示意图;Fig. 4 is the schematic diagram of the virtual phased array spectroscopic analysis of the detection arm of the present invention;
图5是本发明探测臂的光栅分光示意图;Fig. 5 is the grating spectroscopic diagram of detection arm of the present invention;
图6是本发明光谱解码和并行探测的原理示意图。Fig. 6 is a schematic diagram of the principle of spectrum decoding and parallel detection in the present invention.
图中:1、宽带光源,2、光环行器,3、宽带光纤耦合器,4、准直透镜,5、柱面透镜,6、虚像相控阵列,7、聚焦透镜,8、样品,9、准直透镜,10、平面反射镜,11、准直透镜,12、柱面透镜,13、虚像相控阵列,14、光栅,15、聚焦透镜,16、高速面阵CCD或高速面阵CMOS,17、样品臂,18、参考臂,19、探测臂。In the figure: 1. Broadband light source, 2. Optical circulator, 3. Broadband fiber coupler, 4. Collimating lens, 5. Cylindrical lens, 6. Virtual image phased array, 7. Focusing lens, 8. Sample, 9 , collimating lens, 10, plane mirror, 11, collimating lens, 12, cylindrical lens, 13, virtual image phased array, 14, grating, 15, focusing lens, 16, high-speed area array CCD or high-speed area array CMOS , 17, sample arm, 18, reference arm, 19, detection arm.
具体实施方式Detailed ways
下面结合附图和实施示例对本发明作进一步的说明:Below in conjunction with accompanying drawing and embodiment example, the present invention will be further described:
一种基于光谱编码与正交分光的并行OCT探测方法,在样品臂中,对探测光束采用空间域的光谱编码方法;在探测臂中,对干涉光束采用空间域两级正交分光的光谱解码和光谱探测方法。结合两种方法能够实现谱域OCT的并行高分辨率探测。其具体步骤如下:A parallel OCT detection method based on spectral coding and orthogonal light splitting. In the sample arm, the spectral coding method in the spatial domain is used for the detection beam; and spectral detection methods. Combining the two methods enables parallel high-resolution detection of spectral-domain OCT. The specific steps are as follows:
步骤一:在并行谱域OCT系统的样品臂中,采用自由光谱范围小、光谱分辨率高的空间域分光器件虚像相控阵列对探测光束进行色散分光,输出一系列频率互不交叠的等间隔光学频率梳,每个光学频率梳的总体带宽都接近于光源的带宽,分光后的探测光束在样品表面形成线照明,不同频率的光学频率梳照射样品表面的不同横向位置,因而反射回来的光信号中,不同频率的光学频率梳将携带不同横向位置的样品内部结构信息,从而实现对样品横向信息的光谱编码;Step 1: In the sample arm of the parallel spectral domain OCT system, a virtual image phased array of spatial domain spectroscopic devices with a small free spectral range and high spectral resolution is used to disperse and split the probe beam, and output a series of non-overlapping, etc. Spaced optical frequency combs, the overall bandwidth of each optical frequency comb is close to the bandwidth of the light source, the split probe beam forms a line illumination on the sample surface, and the optical frequency combs of different frequencies irradiate different lateral positions on the sample surface, so the reflected In the optical signal, optical frequency combs of different frequencies will carry the internal structure information of the sample at different lateral positions, thereby realizing the spectral encoding of the lateral information of the sample;
步骤二:在并行谱域OCT系统的探测臂中,选用与样品臂中相一致的虚像相控阵列作为光谱解码单元,该单元将样品反射回来的宽带干涉光在空间上分成与探测光相对应的一系列光学频率梳输出,通过对干涉光的光谱解码还原样品的横向位置信息;Step 2: In the detection arm of the parallel spectral domain OCT system, the virtual image phased array consistent with the sample arm is selected as the spectral decoding unit, which spatially divides the broadband interference light reflected by the sample into corresponding detection light A series of optical frequency comb output, restore the lateral position information of the sample by decoding the spectrum of the interference light;
步骤三:在并行谱域OCT系统的探测臂中,通过光谱解码单元实施光谱解码后得到的一系列光学频率梳,再由光谱分辨率较低、自由光谱范围较宽的空间域分光器件光栅在正交方向上实施二次分光,将带有干涉信息的宽带光学频率梳分解为干涉光谱,光栅的光谱分辨率小于虚像相控阵列的自由光谱范围;Step 3: In the detection arm of the parallel spectral domain OCT system, a series of optical frequency combs obtained after spectral decoding are implemented by the spectral decoding unit, and then the grating of the spatial domain spectroscopic device with low spectral resolution and wide free spectral range is placed in the Secondary light splitting is implemented in the orthogonal direction, and the broadband optical frequency comb with interference information is decomposed into interference spectra. The spectral resolution of the grating is smaller than the free spectral range of the virtual image phased array;
步骤四:在并行谱域OCT系统的探测臂中,正交分光后的干涉光谱通过由聚焦透镜和高速面阵CCD组成的光谱成像系统实施干涉光谱信号的并行探测。Step 4: In the detection arm of the parallel spectral domain OCT system, the interference spectrum after orthogonal spectrometry is used for parallel detection of interference spectrum signals through a spectral imaging system composed of a focusing lens and a high-speed area array CCD.
如图1所示,一种基于光谱编码与正交分光的并行OCT探测系统,包括宽带光源1、光环行器2、宽带光纤耦合器3、第一光纤准直透镜4、第二光纤准直透镜9、第三光纤准直透镜11、第一柱面聚焦透镜5、第二柱面聚焦透镜12、第一聚焦透镜7、第二聚焦透镜15、第一虚像相控阵列6、第二虚像相控阵列13、光栅14、样品8、平面反射镜10、高速面阵CCD或高速面阵CMOS16。As shown in Figure 1, a parallel OCT detection system based on spectral encoding and orthogonal light splitting includes a broadband light source 1, an optical circulator 2, a broadband fiber coupler 3, a first
从宽带光源1出来的低相干光,经光环行器2入射到宽带光纤耦合器3,经分光后一路进入样品臂17;所述样品臂17:经宽带光纤耦合器分光后的光经第一光纤准直透镜4入射到第一柱面聚焦透镜5的柱面,从第一柱面聚焦透镜5的平面出射,出射的光汇聚到第一虚像相控阵列6前表面的入射窗,从第一虚像相控阵列6的后表面出射,经第一聚焦透镜7后照射到样品8,从样品8反射回来的光经由原路返回至宽带光纤耦合器3。The low-coherent light from the broadband light source 1 enters the broadband fiber coupler 3 through the optical circulator 2, and enters the sample arm 17 all the way after being split; the sample arm 17: the light split by the broadband fiber coupler passes through the first The
经宽带光纤耦合器3分光后的另一路进入参考臂18。所述参考臂18:经宽带光纤耦合器分光后的光经第二光纤准直透镜9照射到平面反射镜10,从平面反射镜10反射回来的光经由原路返回至宽带光纤耦合器3。The other path after being split by the broadband fiber coupler 3 enters the reference arm 18 . The reference arm 18: the light split by the broadband fiber coupler is irradiated to the plane mirror 10 through the second fiber collimator lens 9, and the light reflected from the plane mirror 10 returns to the broadband fiber coupler 3 via the original path.
从样品臂17和参考臂18返回的两路光在宽带光纤耦合器3中干涉后形成干涉光,进入探测臂19,由探测臂19将干涉光分解为干涉光谱信号。所述探测臂19:干涉光经第三光纤准直透镜11,入射到第二柱面聚焦透镜12的柱面,从第二柱面聚焦透镜12的平面出射,出射的光汇聚到第二虚像相控阵列13前表面的入射窗,从第二虚像相控阵列13的后表面出射,进行空间域上的第一级分光,再入射到光栅14,在正交空间方向上进行第二级分光,经第二聚焦透镜15成像,采用高速面阵CCD或高速面阵CMOS16进行并行探测。最后这些光谱信号转变为电信号传入计算机,并在计算机中实施傅立叶变换等算法处理重建样品8的图像。The two paths of light returning from the sample arm 17 and the reference arm 18 interfere in the broadband fiber coupler 3 to form interference light, which enters the detection arm 19, and the detection arm 19 decomposes the interference light into interference spectrum signals. The detection arm 19: the interference light passes through the third
如图2所示,进入样品臂17的探测光经由第一准直透镜4和第一柱面聚焦透镜5后,汇聚在第一虚像相控阵列6的后表面上形成一条直线。除了入射窗口之外,第一虚像相控阵列6的前表面镀有反射率为100%的全反射膜,因而经由后表面反射回来的光束将全部反射回后表面,后表面则镀有高反射膜,前后表面的多次反射形成了一系列由第一柱面透镜5所聚焦的平行光汇聚而成的直线的虚像,即虚像阵列。这些虚像之间互相干涉产生了空间分光的作用,分光光束经第一聚焦透镜7聚焦后照射到样品8,在样品8上形成线照明探测光。样品8上的每个探测光点的光谱都是一个光学频率梳,并且这些光学频率梳互不交叠,因而反射回来的光信号中,不同探测单元的信息被记录在不同频率的光学频率梳中,从而样品8的横向空间信息以光谱的形式记录和传输,实现了光谱编码。例如,样品8上的探测光点A对应光谱为A1、A2、A3、A4、……,探测光点B对应光谱为B1、B2、B3、B4、……。每个探测光点的光谱保持宽带光源的原始带宽,因此系统可以实现高的轴向分辨率;来自样品8上不同横向位置的反射光在光谱上互不交叠,相干性差,可以较为彻底地消除相干串扰的现象,从而显著提高并行OCT探测的横向分辨率。As shown in FIG. 2 , the probe light entering the sample arm 17 passes through the
如图3所示,在探测臂19中,干涉光经第三准直透镜11和第二柱面聚焦透镜12,入射到第二虚像相控阵列13,在y方向上进行第一级分光,再入射到光栅14,在x方向上进行第二级分光,x方向和y方向为空间上的正交方向。经前后两级分光器件分光后的光谱,经第二聚焦透镜15成像,采用高速面阵CCD或高速面阵CMOS16进行并行探测。As shown in FIG. 3 , in the detection arm 19, the interference light is incident on the second virtual image phased
如图4、5所示,第二虚像相控阵列13分光后的光谱在高速面阵CCD或高速面阵CMOS16上沿y方向分布,实现光谱解码;光栅14分光后的光谱在高速面阵CCD或高速面阵CMOS16上沿x方向分布,记录了样品8的干涉光谱信息。下面结合图6对光谱解码和并行探测的原理作进一步说明。As shown in Figures 4 and 5, the spectrum after the second virtual image phased
如图6所示,高速面阵CCD或高速面阵CMOS16探测到正交分光光谱。第二虚像相控阵列13的光谱分辨率高、自由光谱范围窄,因此在高速面阵CCD16上沿y方向分布的是连续光谱;光栅14的光谱分辨率小于第二虚像相控阵列13的自由光谱范围,因此沿x方向分布的是梳状光谱,并且相邻的两列连续光谱是首尾相接的。由于第二虚像相控阵列13与第一虚像相控阵列6具有相对应的光谱分辨率和自由光谱范围,因此经第二虚像相控阵列13分光后的光谱与样品臂17中经第一虚像相控阵列6分光后的光谱是相对应的,从而沿y轴上不同的行对应于样品8上不同的探测单元,还原了样品8的横向信息,实现了光谱解码;而在x轴分布的一行梳状光谱对应于样品8上的一个探测单元的干涉光谱,携带了该探测单元的轴向信息。例如A1、A2、A3、A4、A5构成的光谱对应于探测单元A,而B1、B2、B3、B4、B5构成的光谱对应于探测单元B。通过高速面阵CCD或高速面阵CMOS16对多行梳状光谱的同时成像,实现了并行的干涉光谱探测。As shown in Figure 6, the high-speed area array CCD or high-speed area array CMOS16 detects the orthogonal spectral spectrum. The spectral resolution of the second virtual image phased
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310187354.7ACN103271721B (en) | 2013-05-17 | 2013-05-17 | Method and system for detecting parallel OCT based on spectrum coding and orthogonal light splitting |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310187354.7ACN103271721B (en) | 2013-05-17 | 2013-05-17 | Method and system for detecting parallel OCT based on spectrum coding and orthogonal light splitting |
| Publication Number | Publication Date |
|---|---|
| CN103271721Atrue CN103271721A (en) | 2013-09-04 |
| CN103271721B CN103271721B (en) | 2014-11-05 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310187354.7AActiveCN103271721B (en) | 2013-05-17 | 2013-05-17 | Method and system for detecting parallel OCT based on spectrum coding and orthogonal light splitting |
| Country | Link |
|---|---|
| CN (1) | CN103271721B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105466358A (en)* | 2015-12-04 | 2016-04-06 | 西安交通大学 | Chromatography microscopic measurement method for parallel optical lines |
| CN104655032B (en)* | 2015-02-06 | 2017-05-17 | 浙江大学 | High-precision distance measurement system and method based on orthogonal chromatic dispersion spectral domain interferometer |
| CN107692969A (en)* | 2017-10-11 | 2018-02-16 | 深圳英美达医疗技术有限公司 | Type optical coherence tomography probe and its imaging system are peeped in one kind |
| CN108375774A (en)* | 2018-02-28 | 2018-08-07 | 中国科学技术大学 | A kind of single photon image detecting laser radar of no-raster |
| CN109692071A (en)* | 2018-12-29 | 2019-04-30 | 佛山科学技术学院 | Vision correction instrument and the method for carrying out myoporthosis using it |
| CN110998295A (en)* | 2017-08-09 | 2020-04-10 | 国立研究开发法人科学技术振兴机构 | Measuring device and irradiation device |
| CN112493969A (en)* | 2020-10-30 | 2021-03-16 | 浙江大学 | Fine spectrum coding parallel imaging probe based on virtual image phased array |
| CN113827180A (en)* | 2021-08-12 | 2021-12-24 | 天津市索维电子技术有限公司 | Multipoint parallel acquisition anterior segment analysis device |
| CN114442117A (en)* | 2021-12-29 | 2022-05-06 | 上海交通大学 | High-resolution flash lidar imaging system |
| CN115060189A (en)* | 2022-05-07 | 2022-09-16 | 西安空间无线电技术研究所 | A three-dimensional topography measurement system of antenna based on optical fiber image beam |
| CN115356844A (en)* | 2022-07-05 | 2022-11-18 | 电子科技大学 | A spectrally encoded multimode fiber optic endoscope imaging system |
| CN115639198A (en)* | 2022-11-15 | 2023-01-24 | 南京理工大学 | Full-field optical space-time coherent coding dynamic volume imaging device and method |
| CN115880310A (en)* | 2023-03-03 | 2023-03-31 | 北京心联光电科技有限公司 | A retinal OCT slice segmentation method, device and equipment |
| CN117297555A (en)* | 2023-11-29 | 2023-12-29 | 北京理工大学 | Spectrum processing system based on parallel light calculation and application of spectrum processing system in OCT |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020114090A1 (en)* | 1999-12-14 | 2002-08-22 | Fujitsu Limited | Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion |
| CN101617935A (en)* | 2009-08-06 | 2010-01-06 | 浙江大学 | Method and system for wide-spectrum and high-resolution detection based on space-time light splitting in OCT |
| CN203280368U (en)* | 2013-05-17 | 2013-11-13 | 浙江大学 | Parallel OCT detection system based on spectral coding and orthogonal light splitting |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020114090A1 (en)* | 1999-12-14 | 2002-08-22 | Fujitsu Limited | Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion |
| CN101617935A (en)* | 2009-08-06 | 2010-01-06 | 浙江大学 | Method and system for wide-spectrum and high-resolution detection based on space-time light splitting in OCT |
| CN203280368U (en)* | 2013-05-17 | 2013-11-13 | 浙江大学 | Parallel OCT detection system based on spectral coding and orthogonal light splitting |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104655032B (en)* | 2015-02-06 | 2017-05-17 | 浙江大学 | High-precision distance measurement system and method based on orthogonal chromatic dispersion spectral domain interferometer |
| CN105466358A (en)* | 2015-12-04 | 2016-04-06 | 西安交通大学 | Chromatography microscopic measurement method for parallel optical lines |
| CN110998295A (en)* | 2017-08-09 | 2020-04-10 | 国立研究开发法人科学技术振兴机构 | Measuring device and irradiation device |
| CN110998295B (en)* | 2017-08-09 | 2022-09-16 | 国立研究开发法人科学技术振兴机构 | Measuring device and irradiation device |
| CN107692969A (en)* | 2017-10-11 | 2018-02-16 | 深圳英美达医疗技术有限公司 | Type optical coherence tomography probe and its imaging system are peeped in one kind |
| CN108375774A (en)* | 2018-02-28 | 2018-08-07 | 中国科学技术大学 | A kind of single photon image detecting laser radar of no-raster |
| CN109692071A (en)* | 2018-12-29 | 2019-04-30 | 佛山科学技术学院 | Vision correction instrument and the method for carrying out myoporthosis using it |
| CN112493969A (en)* | 2020-10-30 | 2021-03-16 | 浙江大学 | Fine spectrum coding parallel imaging probe based on virtual image phased array |
| CN112493969B (en)* | 2020-10-30 | 2022-03-11 | 浙江大学 | Fine spectrum coding parallel imaging probe based on virtual image phased array |
| CN113827180A (en)* | 2021-08-12 | 2021-12-24 | 天津市索维电子技术有限公司 | Multipoint parallel acquisition anterior segment analysis device |
| CN113827180B (en)* | 2021-08-12 | 2024-04-09 | 天津市索维电子技术有限公司 | Multi-point parallel acquisition anterior ocular segment analysis device |
| CN114442117A (en)* | 2021-12-29 | 2022-05-06 | 上海交通大学 | High-resolution flash lidar imaging system |
| CN114442117B (en)* | 2021-12-29 | 2025-03-07 | 上海交通大学 | High-resolution flash lidar imaging system |
| CN115060189A (en)* | 2022-05-07 | 2022-09-16 | 西安空间无线电技术研究所 | A three-dimensional topography measurement system of antenna based on optical fiber image beam |
| CN115356844A (en)* | 2022-07-05 | 2022-11-18 | 电子科技大学 | A spectrally encoded multimode fiber optic endoscope imaging system |
| CN115639198A (en)* | 2022-11-15 | 2023-01-24 | 南京理工大学 | Full-field optical space-time coherent coding dynamic volume imaging device and method |
| CN115639198B (en)* | 2022-11-15 | 2024-05-07 | 南京理工大学 | Full-field optical space-time coherent coding dynamic imaging device and method |
| CN115880310A (en)* | 2023-03-03 | 2023-03-31 | 北京心联光电科技有限公司 | A retinal OCT slice segmentation method, device and equipment |
| CN117297555A (en)* | 2023-11-29 | 2023-12-29 | 北京理工大学 | Spectrum processing system based on parallel light calculation and application of spectrum processing system in OCT |
| CN117297555B (en)* | 2023-11-29 | 2024-02-09 | 北京理工大学 | Spectrum processing system based on parallel light calculation and application of spectrum processing system in OCT |
| Publication number | Publication date |
|---|---|
| CN103271721B (en) | 2014-11-05 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103271721B (en) | Method and system for detecting parallel OCT based on spectrum coding and orthogonal light splitting | |
| CN101617935B (en) | Method and system for wide-spectrum and high-resolution detection based on space-time light splitting in OCT | |
| CN103565405B (en) | Based on the spectral coverage OCT detection method of segmentation spectrum path encoding | |
| Stremplewski et al. | In vivo volumetric imaging by crosstalk-free full-field OCT | |
| CN108514404B (en) | Optical coherence tomography system | |
| US7859679B2 (en) | System, method and arrangement which can use spectral encoding heterodyne interferometry techniques for imaging | |
| JP5680826B2 (en) | Data generation system using endoscopic technology for encoding one or more spectra | |
| CN101214145B (en) | Frequency domain optical coherence tomography method and system with large detection depth | |
| CN100455253C (en) | Spectral domain OCT endoscopic imaging system for in vivo optical biopsy | |
| CN102028454B (en) | Mirror-image separation method and system based on group delay wavenumber carrier frequency | |
| WO2019183838A1 (en) | Optical coherence tomography system | |
| CN110160440B (en) | Three-dimensional color dynamic imaging device and method based on frequency domain OCT technology | |
| CN201139554Y (en) | Frequency domain optical coherence tomography device with large detection depth | |
| CN107862661B (en) | A kind of optical coherence tomography system method for correcting image | |
| CN203280368U (en) | Parallel OCT detection system based on spectral coding and orthogonal light splitting | |
| CN105996999B (en) | Method and system for measuring sample depth-resolved attenuation coefficient based on OCT | |
| CN101732035B (en) | Method for optical super resolution based on optical path encoding and coherent synthesis | |
| CN109596529B (en) | Optical coherence tomography system and method based on optical fiber array parallel detection | |
| CN101711667B (en) | Quick detecting method and system for acousto-optic gated spectra of spectral domain OCT | |
| CN210036591U (en) | A three-dimensional color dynamic imaging device based on frequency domain OCT technology | |
| CN106308744A (en) | Handheld human body any surface position skin frequency sweeping optical coherence tomography imaging apparatus | |
| KR20200087750A (en) | Interference imaging device and its application | |
| CN214284900U (en) | Blood flow imaging device based on optical clearing agent | |
| CN201542612U (en) | A fast detection system of acousto-optic gating spectroscopy for spectral domain OCT | |
| CN206063128U (en) | A kind of compound speckle noise reduction system of angle of full tunnel modulating-coding |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20200402 Address after:315300 room 2011, Shanglin Yingcai entrepreneurial park, Hushan cultural business district, Cixi City, Ningbo City, Zhejiang Province Patentee after:Ningbo Core Photoelectric Technology Co.,Ltd. Address before:310027 Hangzhou, Zhejiang Province, Xihu District, Zhejiang Road, No. 38, No. Patentee before:ZHEJIANG University |