技术领域technical field
本技术属于航天测试技术,涉及地面测试时,星敏感器模型的建立,保证星敏模型与真实产品的一致性。This technology belongs to aerospace testing technology, and involves the establishment of star sensor model when ground testing is involved, so as to ensure the consistency between the star sensor model and the real product.
背景技术Background technique
近年来高精度的星敏感器在卫星控制分系统中大量使用,为了完成卫星控制分系统高精度和高保真度的系统测试,采用静态星敏模拟器无法完成系统闭环,只能进行星敏开环测试;采用动态星敏模拟器,可有效地进行系统闭环测试,但是,由于受动态星敏模拟器安装难度大及整星无法安装等因素的影响,动态星敏模拟器只适用于短时间内在系统测试中采用,通常为2-3天,对于长达1000多个小时的系统测试和整星测试而言,是远远不够的,为此,需要设计一种高保真度的数字星敏模拟器,用于在系统闭环测试,为控制分系统提供星敏数据的模拟。另一方面,随着国内星敏感器研制技术的发展,星敏的功能日益强大,星敏软件由在轨固化形式向在轨可注入修改形式逐步发展,并在多颗卫星中采用,而这一功能的实现,需要由整星的星务计算机、控制计算机、星敏三个环节共同来完成,由于注入方案和步骤复杂、难度大,各个环节的验证工作需要分开进行,为了对控制分系统应用软件的星敏注入功能进行充分验证,需要采用一种带注入功能的数字星敏模拟器,用于替代真正星敏感器。In recent years, high-precision star sensors have been widely used in the satellite control subsystem. In order to complete the high-precision and high-fidelity system test of the satellite control subsystem, the static star sensor simulator cannot complete the system closed loop, and only the star sensor can be opened. Ring test; the use of dynamic star-sensing simulator can effectively conduct system closed-loop test, but due to the difficulty of installing the dynamic star-sensing simulator and the inability to install the whole star, the dynamic star-sensing simulator is only suitable for a short period of time It is usually used in the internal system test, usually 2-3 days, for the system test and the whole star test of more than 1000 hours, it is far from enough, so it is necessary to design a high-fidelity digital star sensor The simulator is used for closed-loop testing of the system and provides simulation of star-sensitive data for the control subsystem. On the other hand, with the development of domestic star sensor research and development technology, the functions of star sensors are becoming more and more powerful. The star sensor software has gradually developed from an in-orbit solidified form to an in-orbit injectable modification form, and has been adopted in many satellites. The realization of a function needs to be completed by the three links of the star computer, the control computer, and the star. Due to the complexity and difficulty of the injection scheme and steps, the verification work of each link needs to be carried out separately. In order to control the sub-system To fully verify the star sensor injection function of the application software, it is necessary to use a digital star sensor simulator with injection function to replace the real star sensor.
目前,控制分系统验证中使用的数字星敏模拟器,一般将卫星动力学模型输出的实时星敏数据通过串口发送给星载控制计算机,用于系统闭环和整星的测试。而真实的星敏感器,由于受星敏处理器、单机本身等限制,不能输出实时的星敏数据,均具有时延特点,而目前的数字星敏模拟器则不带有时延特点或注入功能。At present, the digital star-sensing simulator used in the verification of the control subsystem generally sends the real-time star-sensing data output by the satellite dynamic model to the on-board control computer through the serial port for system closed-loop and whole-satellite testing. The real star sensor, due to the limitations of the star sensor processor and the stand-alone itself, cannot output real-time star sensor data, and all have delay characteristics, while the current digital star sensor simulator does not have delay characteristics or injection functions. .
发明内容Contents of the invention
本发明解决的技术问题是:克服现有技术的不足,提供一种带有注入和时延特点的多功能星敏模拟器,实现真实星敏感器的高保真度模拟,用于卫星控制分系统和整星的系统闭环测试。The technical problem solved by the present invention is: to overcome the deficiencies of the prior art, to provide a multifunctional star sensor simulator with injection and delay characteristics, to realize the high-fidelity simulation of the real star sensor, and to be used in the satellite control subsystem And the system closed-loop test of the whole star.
本发明的技术方案是:一种多功能星敏模拟器,包括接收指令处理模块、状态设置模块、程序注入模块和数据回复模块;The technical solution of the present invention is: a multifunctional star-sensitive simulator, including a receiving instruction processing module, a state setting module, a program injection module and a data reply module;
接收指令处理模块接收外部的星载控制计算机发出的数据指令,将星载控制计算机的数据指令按其类型分为状态设置类指令、注入程序类指令和数据回复类指令,并分别对应送至状态设置模块、程序注入模块和数据回复模块;同时接收指令处理模块接收测试序列设置的星敏时延参数Td,并将星敏时延参数Td发送至数据回复模块;所述的测试序列为卫星闭环测试时按时间先后顺序设置的测试条件;The receiving instruction processing module receives the data instructions sent by the external onboard control computer, divides the data instructions of the onboard control computer into status setting instructions, injection program instructions and data reply instructions according to their types, and sends them to the state respectively. Setting module, program injection module and data reply module; Simultaneously receive instruction processing module to receive the star sensitive time delay parameter Td that test sequence is set, and send star sensitive time delay parameter Td to data reply module; Described test sequence is a satellite closed loop Test conditions set in chronological order during the test;
状态设置模块根据真实星敏感器状态设置逻辑以及输入进来的状态设置类指令,完成对星敏的状态设置模拟和模式转换模拟,并将模拟后的结果输送至数据回复模块;The state setting module completes the state setting simulation and mode conversion simulation of the star sensor according to the real star sensor state setting logic and the input state setting instructions, and sends the simulated results to the data recovery module;
程序注入模块对输入进来的注入程序类指令进行动态存储;定义一个N×(L+1)字节的内存空间,其中N为可存储的最大数据块块数,L为注入程序类指令中一个数据块的字节数;每一个数据块内包含地面上行的已经分好块的注入程序类指令;将小于等于N个数据块的注入程序类指令直接在定义的N×(L+1)字节的内存空间中按照从第一块数据块到第N块数据块的顺序依次进行存储并显示;对于大于N个数据块的注入程序类指令,将前N个数据块的注入程序类指令直接在定义的N×(L+1)字节的内存空间中按照从第一块数据块到第N块数据块的顺序依次进行存储并显示,超过N个数据块的注入程序类指令,则在定义的N×(L+1)字节的内存空间中按照从第一块数据块到第N块数据块的顺序依次进行循环覆盖存储并显示;每接收一个数据块经星敏模拟器判断正确后,发送一个正确标志给数据回复模块;The program injection module dynamically stores the input injection program instructions; defines a memory space of N×(L+1) bytes, where N is the maximum number of data blocks that can be stored, and L is one of the injection program instructions. The number of bytes of the data block; each data block contains injection program instructions that have been divided into blocks on the ground; the injection program instructions that are less than or equal to N data blocks are directly in the defined N×(L+1) word In the memory space of each section, it is stored and displayed sequentially from the first data block to the Nth data block; for injection program instructions larger than N data blocks, the injection program instructions of the first N data blocks are directly In the defined memory space of N×(L+1) bytes, it is stored and displayed sequentially from the first data block to the Nth data block, and the injected program instructions exceeding N data blocks are displayed in the In the defined memory space of N×(L+1) bytes, cyclic overlay storage and display are performed in sequence from the first data block to the Nth data block; every time a data block is received, it is judged to be correct by the Xingmin simulator After that, send a correct flag to the data reply module;
数据回复模块根据状态设置模块输送过来的模拟结果以及程序注入模块发送的正确标志,将状态设置模块的模拟结果以及程序注入模块发送的正确标志及时反馈给指令处理模块,并按真实星敏感器通讯协议的要求,及时响应星载控制计算机发出的数据指令;定义一个Lnum×(Tb/Tp)字节的星敏姿态数据数组,其中Lnum为星敏姿态数据包的长度,Tb为设定的最大时延,Tp为卫星动力学仿真周期;所述的星敏姿态数据数组对外部卫星模拟器中星敏模型输出的(Tb/Tp)组星敏姿态数据包进行实时存储和更新;每组星敏姿态数据包包括动力学仿真时间以及当前时刻对应的星敏姿态数据;从所述星敏姿态数据数组中,选取第(Td/Tp)组星敏姿态数据包作为当前输出;读取星敏模拟器最近一次记录的同步时刻并与取出的第(Td/Tp)组星敏姿态数据包中的动力学仿真时间项作差,得到星敏输出数据的相对时间,记作第(Td/Tp)组星敏数据包中的星敏时间,结合输出的第(Td/Tp)组星敏姿态数据包并按照星敏通信协议组包得到时延为Td的星敏姿态数据包,经过指令处理模块发送给星载控制计算机;同时,星敏模拟器每周期对(Tb/Tp)组星敏姿态数据包进行动态更新,形成一个最大时延为Tb的星敏数据动态数据流;所述的同步时刻指的是星敏模拟器接收到星载计算机的同步信号时,对应的星敏模拟器时刻。The data reply module feeds back the simulation results of the state setting module and the correct flag sent by the program injection module to the instruction processing module in time according to the simulation results sent by the state setting module and the correct flag sent by the program injection module, and communicates with the real star sensor Respond to the data command issued by the on-board control computer in a timely manner according to the requirements of the protocol; define a star-sensitive attitude data array of Lnum×(Tb/Tp) bytes, where Lnum is the length of the star-sensitive attitude data packet, and Tb is the set maximum Time delay, Tp is the satellite dynamics simulation cycle; the star-sensitive attitude data array is stored and updated in real time to the (Tb/Tp) group of star-sensitive attitude data packets output by the star-sensitive model in the external satellite simulator; The sensitive attitude data packet includes the dynamic simulation time and the star sensitive attitude data corresponding to the current moment; from the star sensitive attitude data array, select the (Td/Tp) group star sensitive attitude data packet as the current output; read the star sensitive attitude The latest synchronization time recorded by the simulator and the dynamic simulation time item in the extracted (Td/Tp)th group of star-sensitive attitude data packets are compared to obtain the relative time of the star-sensitive output data, which is recorded as the first (Td/Tp ) group of star-sensitive data packets, combined with the output (Td/Tp) group of star-sensitive attitude data packets and packaged according to the star-sensitive communication protocol to obtain a star-sensitive attitude data packet with a delay of Td, after instruction processing The module is sent to the on-board control computer; at the same time, the star-sensing simulator dynamically updates (Tb/Tp) groups of star-sensing attitude data packets every cycle to form a dynamic data stream of star-sensing data with a maximum delay of Tb; Synchronization time refers to the time when the star-sensing simulator receives the synchronization signal from the on-board computer, and the corresponding time of the star-sensing simulator.
本发明与现有技术相比的优点在于:针对目前星敏模拟器没有注入功能和时延特性的不足,设计了一种带注入功能和时延特点的星敏模拟器,比较真实的模拟了真实星敏在轨的工作特点,从2009年开始,本发明已经成功应用于多个采用星敏定姿的遥感卫星控制分系统闭环测试和整星测试,为整星和分系统闭环测试提供了有效星敏数据动态模拟,取得了良好的效果。Compared with the prior art, the present invention has the advantages of: aiming at the lack of injection function and delay characteristics of the current star-sensitive simulator, a star-sensitive simulator with injection function and delay characteristics is designed, which simulates more realistically The working characteristics of the real star-sensitive on-orbit, since 2009, the present invention has been successfully applied to a number of remote sensing satellite control subsystem closed-loop tests and whole-star tests that use star-sensitive attitude determination, providing a solid foundation for the whole star and subsystem closed-loop tests The dynamic simulation of effective star-sensitive data has achieved good results.
附图说明Description of drawings
图1为本发明星敏模拟器实现原理框图;Fig. 1 is the realization principle block diagram of star sensitive simulator of the present invention;
图2为时延特性实现原理框图。Figure 2 is a block diagram of the implementation of the delay characteristics.
具体实施方式Detailed ways
实施流程如图1和图2所示,具体描述如下:The implementation process is shown in Figure 1 and Figure 2, and the specific description is as follows:
一种多功能星敏模拟器,包括接收指令处理模块、状态设置模块、程序注入模块和数据回复模块;A multifunctional star-sensitive simulator, including a receiving command processing module, a state setting module, a program injection module and a data reply module;
指令处理模块负责与星载控制计算机进行通讯,负责接收和响应星载计算机指令。接收指令处理模块接收外部的星载控制计算机发出的数据指令,将星载控制计算机的数据指令按其类型分为状态设置类指令、注入程序类指令和数据回复类指令,并分别对应送至状态设置模块、程序注入模块和数据回复模块;同时接收指令处理模块接收测试序列设置的星敏时延参数Td,并将星敏时延参数Td发送至数据回复模块;所述的测试序列为卫星闭环测试时按时间先后顺序设置的测试条件;The instruction processing module is responsible for communicating with the onboard control computer, and receiving and responding to the instructions of the onboard computer. The receiving instruction processing module receives the data instructions sent by the external onboard control computer, divides the data instructions of the onboard control computer into status setting instructions, injection program instructions and data reply instructions according to their types, and sends them to the state respectively. Setting module, program injection module and data reply module; Simultaneously receive instruction processing module to receive the star sensitive time delay parameter Td that test sequence is set, and send star sensitive time delay parameter Td to data reply module; Described test sequence is a satellite closed loop Test conditions set in chronological order during the test;
状态设置模块根据真实星敏感器状态设置逻辑以及输入进来的状态设置类指令,如模式字、模式转换开关、写开关、复位指令等,完成对星敏的状态设置模拟和模式转换模拟,并将模拟后的结果输送至数据回复模块;The state setting module completes the state setting simulation and mode conversion simulation of the star sensor according to the real star sensor state setting logic and the input state setting instructions, such as mode word, mode conversion switch, write switch, reset command, etc. The simulated results are sent to the data recovery module;
程序注入模块将注入程序类指令写入指定内存空间,并在上位机进行显示,并将正确标志发送给数据回复模块;定义一个N×(L+1)字节的内存空间,其中N为可存储的最大数据块块数,L为注入程序类指令中一个数据块的字节数;每一个数据块内包含地面上行的已经分好块的注入程序类指令;将小于等于N个数据块的注入程序类指令直接在定义的N×(L+1)字节的内存空间中按照从第一块数据块到第N块数据块的顺序依次进行存储并显示;对于大于N个数据块的注入程序类指令,将前N个数据块的注入程序类指令直接在定义的N×(L+1)字节的内存空间中按照从第一块数据块到第N块数据块的顺序依次进行存储并显示,超过N个数据块的注入程序类指令,则在定义的N×(L+1)字节的内存空间中按照从第一块数据块到第N块数据块的顺序依次进行循环覆盖存储并显示;所述的循环覆盖存储方式为第N+1块数据块覆盖第1块数据块、第N+2块覆盖第2块数据块……第N+N块覆盖第N块数据块的方式进行动态存储;每接收一个数据块经星敏模拟器判断正确后,发送一个正确标志给数据回复模块;The program injection module writes the injected program instruction into the specified memory space, displays it on the host computer, and sends the correct flag to the data reply module; defines a memory space of N×(L+1) bytes, where N is the available The maximum number of data blocks stored, L is the number of bytes of a data block in the injection program instruction; each data block contains injection program instructions that have been divided into blocks on the ground; the number of data blocks that are less than or equal to N data blocks Injection program instructions are directly stored and displayed in the defined memory space of N×(L+1) bytes in order from the first data block to the Nth data block; for injections with more than N data blocks Program instructions, the program instructions of the first N data blocks are directly stored in the defined memory space of N×(L+1) bytes in sequence from the first data block to the Nth data block And it shows that the injected program instructions with more than N data blocks will be cyclically covered in the order from the first data block to the Nth data block in the defined memory space of N×(L+1) bytes Store and display; the cyclic overlay storage method is that the N+1th data block covers the first data block, the N+2th data block covers the second data block...the N+Nth data block covers the Nth data block The way of dynamic storage; every time a data block is received and judged to be correct by the Xingmin simulator, a correct flag is sent to the data reply module;
数据回复模块根据状态设置模块输送过来的模拟结果以及程序注入模块发送的正确标志,将状态设置模块的模拟结果以及程序注入模块发送的正确标志及时反馈给指令处理模块,并按真实星敏感器通讯协议的要求,及时响应星载控制计算机发出的数据指令;定义一个Lnum×(Tb/Tp)字节的星敏姿态数据数组,其中Lnum为星敏姿态数据包的长度,Tb为设定的最大时延,Tp为卫星动力学仿真周期;所述的星敏姿态数据数组对外部卫星模拟器中星敏模型输出的(Tb/Tp)组星敏姿态数据包进行实时存储和更新;每组星敏姿态数据包包括动力学仿真时间以及当前时刻对应的星敏姿态数据;从所述星敏姿态数据数组中,选取第(Td/Tp)组星敏姿态数据包作为当前输出;读取星敏模拟器最近一次记录的同步时刻并与取出的第(Td/Tp)组星敏姿态数据包中的动力学仿真时间项作差,得到星敏输出数据的相对时间,记作第(Td/Tp)组星敏数据包中的星敏时间,结合输出的第(Td/Tp)组星敏姿态数据包并按照星敏通信协议组包得到时延为Td的星敏姿态数据包,经过指令处理模块发送给星载控制计算机,用于分系统闭环测试;同时,星敏模拟器每周期对(Tb/Tp)组星敏姿态数据包进行动态更新,采用先进先出的方式,形成一个最大时延为Tb的星敏数据动态数据流,便于下一控制周期星敏姿态数据包的正确生成;所述的同步时刻指的是星敏模拟器接收到星载计算机的同步信号时,对应的星敏模拟器时刻。The data reply module feeds back the simulation results of the state setting module and the correct flag sent by the program injection module to the instruction processing module in time according to the simulation results sent by the state setting module and the correct flag sent by the program injection module, and communicates with the real star sensor Respond to the data command issued by the on-board control computer in a timely manner according to the requirements of the protocol; define a star-sensitive attitude data array of Lnum×(Tb/Tp) bytes, where Lnum is the length of the star-sensitive attitude data packet, and Tb is the set maximum Time delay, Tp is the satellite dynamics simulation cycle; the star-sensitive attitude data array is stored and updated in real time to the (Tb/Tp) group of star-sensitive attitude data packets output by the star-sensitive model in the external satellite simulator; The sensitive attitude data packet includes the dynamic simulation time and the star sensitive attitude data corresponding to the current moment; from the star sensitive attitude data array, select the (Td/Tp) group star sensitive attitude data packet as the current output; read the star sensitive attitude The latest synchronization time recorded by the simulator and the dynamic simulation time item in the extracted (Td/Tp)th group of star-sensitive attitude data packets are compared to obtain the relative time of the star-sensitive output data, which is recorded as the first (Td/Tp ) group of star-sensitive data packets, combined with the output (Td/Tp) group of star-sensitive attitude data packets and packaged according to the star-sensitive communication protocol to obtain a star-sensitive attitude data packet with a delay of Td, after instruction processing The module is sent to the on-board control computer for the closed-loop test of the sub-system; at the same time, the star-sensing simulator dynamically updates the (Tb/Tp) group of star-sensing attitude data packets every cycle, and adopts the first-in-first-out method to form a maximum time The dynamic data flow of the star-sensitive data extended to Tb is convenient for the correct generation of the star-sensitive attitude data packet in the next control cycle; the synchronization moment refers to the corresponding star-sensitive simulator receiving the synchronization signal of the on-board computer. Min simulator moment.
本发明未详细说明部分属本领域技术人员公知常识。Parts not described in detail in the present invention belong to the common knowledge of those skilled in the art.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310121562.7ACN103235516B (en) | 2013-04-09 | 2013-04-09 | Multifunctional satellite-sensitive simulator |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201310121562.7ACN103235516B (en) | 2013-04-09 | 2013-04-09 | Multifunctional satellite-sensitive simulator |
| Publication Number | Publication Date |
|---|---|
| CN103235516A CN103235516A (en) | 2013-08-07 |
| CN103235516Btrue CN103235516B (en) | 2015-07-08 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201310121562.7AActiveCN103235516B (en) | 2013-04-09 | 2013-04-09 | Multifunctional satellite-sensitive simulator |
| Country | Link |
|---|---|
| CN (1) | CN103235516B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4508297A (en)* | 1982-03-02 | 1985-04-02 | Centre National D'etudes Spatiales | Satellite on an equatorial orbit with improved solar means |
| US4658431A (en)* | 1983-07-26 | 1987-04-14 | Nec Corporation | Star sensor using CCD |
| US6012000A (en)* | 1998-01-14 | 2000-01-04 | Space Systems/Loral, Inc. | Simplified onboard attitude control based on star sensing |
| CN101226113A (en)* | 2008-01-30 | 2008-07-23 | 北京航空航天大学 | Star sensor function test method and device based on electric injection star map |
| CN101726319A (en)* | 2009-12-17 | 2010-06-09 | 哈尔滨工业大学 | Star Sensor Simulation Method with Parameter Injection Function |
| CN102541608A (en)* | 2011-12-29 | 2012-07-04 | 北京控制工程研究所 | Data storage and injection module and method for star sensor |
| CN103017761A (en)* | 2012-11-30 | 2013-04-03 | 北京控制工程研究所 | Spacecraft multi-star sensor data acquirer and acquisition method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4508297A (en)* | 1982-03-02 | 1985-04-02 | Centre National D'etudes Spatiales | Satellite on an equatorial orbit with improved solar means |
| US4658431A (en)* | 1983-07-26 | 1987-04-14 | Nec Corporation | Star sensor using CCD |
| US6012000A (en)* | 1998-01-14 | 2000-01-04 | Space Systems/Loral, Inc. | Simplified onboard attitude control based on star sensing |
| CN101226113A (en)* | 2008-01-30 | 2008-07-23 | 北京航空航天大学 | Star sensor function test method and device based on electric injection star map |
| CN101726319A (en)* | 2009-12-17 | 2010-06-09 | 哈尔滨工业大学 | Star Sensor Simulation Method with Parameter Injection Function |
| CN102541608A (en)* | 2011-12-29 | 2012-07-04 | 北京控制工程研究所 | Data storage and injection module and method for star sensor |
| CN103017761A (en)* | 2012-11-30 | 2013-04-03 | 北京控制工程研究所 | Spacecraft multi-star sensor data acquirer and acquisition method |
| Title |
|---|
| WANG Haiyong等.Image Smearing Modeling and Verification for Strapdown Star Sensor.《Chinese Journal of Aeronautics》.2012,第25卷(第1期),第115-123页.* |
| ZHAO Shu-fang等.Space luminous environment adaptability of missile-borne star sensor.《Journal of Central South University》.2012,第19卷(第12期),第3435-3443页.* |
| 一种基于CCSDS标准的数据注入策略;吕良庆;《航天器工程》;20050331;第14卷(第1期);第11-17页* |
| 一种实用的嵌入式控制系统应用软件需求分析方法;郭明姝等;《火力与指挥控制》;20100831;第35卷;第179-182页* |
| Publication number | Publication date |
|---|---|
| CN103235516A (en) | 2013-08-07 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103970031B (en) | A kind of satellite simulator Integrated simulation system and emulation mode | |
| CN101814107A (en) | Satellite dynamics simulation system and method based on satellite dynamics model library | |
| CN105911880A (en) | Satellite attitude orbit control software digital closed-loop test system and method | |
| CN103777526A (en) | Simulation testing system of integrated electronic system of satellite | |
| CN106844822A (en) | A kind of carrier rocket Hardware In The Loop Simulation Method for supporting rapid virtual-to-physical to exchange | |
| CN101995825A (en) | Satellite dynamic and control distributed simulation platform | |
| CN107942722A (en) | A kind of moonlet Surface power drive emulation test method and system | |
| CN105357070A (en) | FPGA-based ARINC818 bus analysis and test apparatus | |
| CN101739031A (en) | Small satellite attitude control ground simulating device and method | |
| CN102520619A (en) | General-purpose satellite remote sensing simulator | |
| WO2024244210A1 (en) | Attitude control simulation method and system for launch vehicle | |
| CN105223831A (en) | The quick configuration system of semi-physical simulation | |
| CN105867350A (en) | Satellite ground closed-loop simulator based on PXI architecture | |
| CN103760898A (en) | Method for rapidly building mini-satellite control test systems | |
| CN102495552A (en) | Real-time simulation system oriented to space-borne electronic system | |
| CN111367257B (en) | Dual ultra-real-time rapid simulation test system and method applied to control system | |
| CN105511444A (en) | Space camera external field simulation test apparatus | |
| CN102831872A (en) | Field programmable gate array-based (FPGA-based) realization method for converting liquid crystal display (LCD) signal to video graphics array (VGA) signal | |
| CN110674579B (en) | Satellite peripheral interface simulation system and method | |
| CN103235516B (en) | Multifunctional satellite-sensitive simulator | |
| CN103487051B (en) | The Method of Satellite Control System Obtaining the Generation Time of Star Sensor Data | |
| CN104570741A (en) | PD boundary control simulation method for transverse vibration of flexible mechanical arm | |
| CN102880442A (en) | First in-first out (FIFO) device and first in-first out method used for clock tree transformation | |
| CN103116546B (en) | The ground automated verification system of a kind of satellite extensive modification of program in-orbit | |
| CN109782782A (en) | Multi-rotor unmanned aerial vehicle attitude flight control system |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |