


技术领域technical field
本发明属于复合智能荧光材料领域,特别涉及一种温敏性荧光碳纳米复合材料及其制备方法。The invention belongs to the field of composite intelligent fluorescent materials, in particular to a temperature-sensitive fluorescent carbon nanocomposite material and a preparation method thereof.
背景技术Background technique
近年来,智能材料是一种新兴的高技术尖端材料,是一类对环境感知而产生响应并具有功能执行能力的新型材料。智能材料中的温敏性智能材料因其能够感知外界环境温度的微小变化或刺激而被人们所重视。1984年Tanaka报道了聚N-异丙基丙烯酰胺(PNIPAM)水凝胶具有温敏特性特征,其侧链中同时含有清水性基团和疏水性基团,而该亲水性和疏水性基团之间收到温度的影响存在亲水/疏水平衡,PNIPAM水凝胶在32℃左右有一较低的临界溶解温度(LCST)。当温度低于其LCST时,PNIPAM水凝胶在水中吸水高度溶胀,而当温度高于LCST时,PNIPAM水凝胶剧烈收缩失水,发生相分离。由于该敏感水凝胶表现出的智能特性,使其在药物释放、蛋白质的分离提纯、记忆元件开关等方面有着广阔的应用前景,但是该水凝胶本身力学强度差,尤其是被水溶胀后基本丧失了自身支持能力,所以限制了它的应用。In recent years, smart materials are emerging high-tech cutting-edge materials, which are a new type of materials that respond to environmental perception and have functional execution capabilities. Temperature-sensitive smart materials in smart materials have been paid attention to because they can sense small changes or stimuli in the external environment temperature. In 1984, Tanaka reported that poly N-isopropylacrylamide (PNIPAM) hydrogel has temperature-sensitive characteristics, and its side chain contains both clear water groups and hydrophobic groups, while the hydrophilic and hydrophobic groups There is a hydrophilic/hydrophobic balance between the groups under the influence of temperature, and PNIPAM hydrogel has a lower critical solution temperature (LCST) at about 32°C. When the temperature is lower than its LCST, the PNIPAM hydrogel is highly swellable in water, while when the temperature is higher than the LCST, the PNIPAM hydrogel shrinks violently and loses water, and phase separation occurs. Due to the intelligent properties of the sensitive hydrogel, it has broad application prospects in drug release, protein separation and purification, memory element switching, etc., but the hydrogel itself has poor mechanical strength, especially after being swollen by water. It has basically lost its own support ability, so its application is limited.
随着光学检测技术在生物传感器方面的进一步研究,人们对具有光学标签和温度响应的温敏荧光材料,引起越来越多人的关注,这种复合材料的荧光强度与环境温度之间存在着一定的关联性,并具有可逆循环特性,在这种材料中,荧光特性一般由荧光量子点来提供。但是,目前主要采用的荧光量子点存在一些不容忽视的缺点,如半导体量子点(CdSe、CdTe、CdS等)一般含有毒金属离子,对环境和人体健康造成潜在威胁并限制了其在生物医药和食品安全等领域的应用。而碳量子点是美国克莱蒙森大学的科学家首次制造出的一种新型的碳纳米材料,与各种金属量子点类似,具有优越的发光性能,碳量子点在光照的情况下可以发出明亮的光。相对金属量子点而言,碳量子点无毒害作用,对环境的危害很小,制备成本低廉;与半导体量子点相比,碳量子点发光更稳定、易于功能化和工业化、无毒、制备简单廉价,预期将给发光材料、绿色环保、生物医学等领域带来新的发展空间。With the further research of optical detection technology in biosensors, more and more people pay attention to temperature-sensitive fluorescent materials with optical labels and temperature response. There is a relationship between the fluorescence intensity of this composite material and the ambient temperature. A certain correlation, and has reversible cycle characteristics, in this material, the fluorescence characteristics are generally provided by fluorescent quantum dots. However, the fluorescent quantum dots mainly used at present have some shortcomings that cannot be ignored. For example, semiconductor quantum dots (CdSe, CdTe, CdS, etc.) generally contain toxic metal ions, which pose a potential threat to the environment and human health and limit their applications in biomedicine and Applications in food safety and other fields. Carbon quantum dots are a new type of carbon nanomaterials produced for the first time by scientists at Clemson University in the United States. Similar to various metal quantum dots, they have superior luminescent properties. Carbon quantum dots can emit bright light when illuminated. of light. Compared with metal quantum dots, carbon quantum dots have no toxic effect, little harm to the environment, and low preparation cost; compared with semiconductor quantum dots, carbon quantum dots have more stable light emission, easy functionalization and industrialization, non-toxic, and simple preparation It is cheap and is expected to bring new development space to fields such as luminescent materials, green environmental protection, and biomedicine.
发明内容Contents of the invention
本发明的目的是提供一种温敏性荧光碳纳米复合材料,该复合材料具有荧光性和温敏性的双重响应性,而且稳定、无毒、安全。The purpose of the present invention is to provide a temperature-sensitive fluorescent carbon nanocomposite material, which has dual responsiveness of fluorescence and temperature sensitivity, and is stable, non-toxic and safe.
本发明的另一个目的是提供一种制备上述温敏性荧光碳纳米复合材料的方法,该方法合成工艺简单、反应条件温和、操作安全、绿色环保。Another object of the present invention is to provide a method for preparing the above-mentioned temperature-sensitive fluorescent carbon nanocomposite material, which has simple synthesis process, mild reaction conditions, safe operation, and environmental protection.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种温敏性荧光碳纳米复合材料的制备方法,其步骤包括:在丙烯酰胺水溶液中加入N,N-亚甲基双丙烯酰胺,混合;在混合液中加入0.3-3wt%的碳量子点溶液、0.5-2.5wt%的聚N-异丙基丙烯酰胺水溶液和四乙基乙二胺,待溶解后加入引发剂,静置3-8小时即可。优选的,所述碳量子点溶液的浓度为0.9-2wt%,所述聚N-异丙基丙烯酰胺水溶液的浓度为0.6-1.5wt%。A method for preparing a temperature-sensitive fluorescent carbon nanocomposite material, the steps comprising: adding N,N-methylenebisacrylamide to an aqueous solution of acrylamide and mixing; adding 0.3-3wt% carbon quantum dots to the mixed solution Solution, 0.5-2.5wt% poly-N-isopropylacrylamide aqueous solution and tetraethylethylenediamine, add initiator after dissolving, and let stand for 3-8 hours. Preferably, the concentration of the carbon quantum dot solution is 0.9-2wt%, and the concentration of the poly-N-isopropylacrylamide aqueous solution is 0.6-1.5wt%.
所述引发剂为硫代硫酸盐或过硫酸盐中的一种。The initiator is one of thiosulfate or persulfate.
所述丙烯酰胺与N,N-亚甲基双丙烯酰胺的重量比为2-30:1;所述丙烯酰胺水溶液的浓度为0.01-1.5g/mL。优选的,所述丙烯酰胺与N,N-亚甲基双丙烯酰胺的重量比为3-15:1。The weight ratio of the acrylamide to N,N-methylenebisacrylamide is 2-30:1; the concentration of the acrylamide aqueous solution is 0.01-1.5g/mL. Preferably, the weight ratio of acrylamide to N,N-methylenebisacrylamide is 3-15:1.
所述N,N-亚甲基双丙烯酰胺、碳量子点、聚N-异丙基丙烯酰胺、四乙基乙二胺的重量比为1-6:1:50-200:0.1-2。The weight ratio of N,N-methylenebisacrylamide, carbon quantum dots, poly-N-isopropylacrylamide and tetraethylethylenediamine is 1-6:1:50-200:0.1-2.
所述碳量子点与引发剂中的硫元素的用量比为1g:2-10mmol。The amount ratio of the carbon quantum dots to the sulfur element in the initiator is 1g:2-10mmol.
所述碳量子点溶液的制备方法为,The preparation method of described carbon quantum dot solution is,
将鸡蛋清或鸡蛋黄中的一种,在氮气气氛下升温至220℃-280℃并保温1-3小时,冷却后将产物溶于溶剂中,搅拌0.1-1小时、离心分离后取上清液过滤即可;所述溶剂为去离子水,无水乙醇,丙酮,二甲基甲酰胺或氯仿中的一种。Heat egg white or egg yolk to 220°C-280°C under a nitrogen atmosphere and keep it warm for 1-3 hours. After cooling, dissolve the product in a solvent, stir for 0.1-1 hour, and take the supernatant after centrifugation The solvent can be filtered; the solvent is one of deionized water, absolute ethanol, acetone, dimethylformamide or chloroform.
所述聚N-异丙基丙烯酰胺的制备方法为,The preparation method of the poly-N-isopropylacrylamide is as follows:
将N-异丙基丙烯酰胺单体、N,N-亚甲基双丙烯酰胺溶于去离子水中,通入氮气并搅拌,加入过硫酸盐溶液后加热至60-80℃并保温3-5小时,冷却,将反应液离心分离,取沉淀物干燥即可。Dissolve N-isopropylacrylamide monomer and N,N-methylenebisacrylamide in deionized water, blow in nitrogen and stir, add persulfate solution, heat to 60-80°C and keep warm for 3-5 hours, cooled, centrifuged the reaction solution, and dried the precipitate.
所述N-异丙基丙烯酰胺单体、N,N-亚甲基双丙烯酰胺和过硫酸盐的重量比为1:0.005-0.03:0.01-0.07。The weight ratio of the N-isopropylacrylamide monomer, N,N-methylenebisacrylamide and persulfate is 1:0.005-0.03:0.01-0.07.
通过上述制备方法可以得到温敏性荧光碳纳米复合材料。The temperature-sensitive fluorescent carbon nanocomposite material can be obtained through the above preparation method.
本发明是在丙烯酰胺水溶液中,加入混有碳量子点的聚N-异丙基丙烯酰胺(PNIPAM)分散液,以N,N-亚甲基双丙烯酰胺为交联剂,以四甲基乙二胺为加速剂,以硫代硫酸盐或过硫酸盐为引发剂,在室温下形成半互穿网络结构的复合凝胶。碳量子点使凝胶具有荧光性,PNIPAM的引入使凝胶具有温敏性,加入丙烯酰胺后增加了半互穿网络结构的机械强度。The present invention is to add poly N-isopropylacrylamide (PNIPAM) dispersion liquid mixed with carbon quantum dots into the acrylamide aqueous solution, use N,N-methylenebisacrylamide as crosslinking agent, and use tetramethyl Ethylenediamine is used as an accelerator, and thiosulfate or persulfate is used as an initiator to form a composite gel with a semi-interpenetrating network structure at room temperature. The carbon quantum dots made the gel fluorescent, the introduction of PNIPAM made the gel thermosensitive, and the addition of acrylamide increased the mechanical strength of the semi-interpenetrating network structure.
与现有技术相比,本发明的有益效果在于:Compared with prior art, the beneficial effect of the present invention is:
(1)所述温敏性荧光碳纳米复合材料,采用碳量子点作为荧光源,具有良好的荧光和温敏双重响应性能,而且无毒、环保、稳定性好。(1) The temperature-sensitive fluorescent carbon nanocomposite material uses carbon quantum dots as a fluorescent source, has good dual response performance of fluorescence and temperature sensitivity, and is non-toxic, environmentally friendly and stable.
(2)所述温敏性荧光碳纳米复合材料为兼具荧光性和温敏性的半互穿网络结构的复合凝胶,而且加入了丙烯酰胺,使得水凝胶的机械强度明显增加,而且涂覆性比较好,可通过涂覆或印刷成膜,可用于纺织、化学反应控制、药物释放控制体系等,适用范围较广。(2) The temperature-sensitive fluorescent carbon nanocomposite material is a composite gel with a semi-interpenetrating network structure having both fluorescence and temperature sensitivity, and acrylamide is added to significantly increase the mechanical strength of the hydrogel, and The coating property is relatively good, and it can be formed into a film by coating or printing. It can be used in textile, chemical reaction control, drug release control system, etc., and has a wide range of applications.
(3)所述温敏性荧光碳纳米复合材料的制备工艺简单,原料价格便宜,合成过程无毒、无污染。(3) The preparation process of the temperature-sensitive fluorescent carbon nanocomposite material is simple, the raw material is cheap, and the synthesis process is non-toxic and pollution-free.
附图说明Description of drawings
图1是实施例1中制得的温敏性荧光碳纳米复合材料的荧光强度随温度的变化图。FIG. 1 is a diagram showing the variation of the fluorescence intensity of the temperature-sensitive fluorescent carbon nanocomposite material prepared in Example 1 with temperature.
图2是实施例1中制得的温敏性荧光碳纳米复合材料涂覆在石英衬底上的对比图,其中图2a为在20℃的日光照射下的图片,图2b为在紫外光照射下的图片。Figure 2 is a comparison diagram of the temperature-sensitive fluorescent carbon nanocomposite prepared in Example 1 coated on a quartz substrate, wherein Figure 2a is a picture under sunlight irradiation at 20°C, and Figure 2b is a picture under ultraviolet light irradiation picture below.
具体实施方式Detailed ways
下面结合实施例,对本发明作进一步说明:Below in conjunction with embodiment, the present invention will be further described:
实施例1Example 1
1、碳量子点溶液的制备:1. Preparation of carbon quantum dot solution:
取1g鸡蛋清在氮气气氛下以10℃/min的升温速度升温至250℃,并保温2小时,自然冷却至室温,得到黑色粉末。将0.1g黑色粉末溶于10g的去离子水,磁力搅拌30min后10000rpm离心20min,取离心上清液用200nm超滤膜过滤三次,浓度为1wt%的碳量子点溶液,备用。Take 1g of egg white and raise the temperature to 250°C at a rate of 10°C/min under a nitrogen atmosphere, keep it warm for 2 hours, and cool it down to room temperature naturally to obtain a black powder. Dissolve 0.1 g of the black powder in 10 g of deionized water, stir magnetically for 30 min, and then centrifuge at 10,000 rpm for 20 min. Take the centrifuged supernatant and filter it three times with a 200 nm ultrafiltration membrane. The carbon quantum dot solution with a concentration of 1 wt % is set aside.
2、聚N-异丙基丙烯酰胺(PNIPAM)溶液的制备:2. Preparation of poly N-isopropylacrylamide (PNIPAM) solution:
取1.5g PNIPAM单体和0.0225g MBA溶于150ml去离子水,然后通入氮气,室温下搅拌30min。将K2S2O8溶液(0.068g K2S2O8溶于30ml去离子水)加入以上溶液,氮气气氛下升温至70℃并保温4小时。将聚合后溶液冷却至室温,18000rpm离心后分散在去离子水,重复三次。将得到的聚合产物配成0.98wt%的PNIPAM溶液,备用。Dissolve 1.5g of PNIPAM monomer and 0.0225g of MBA in 150ml of deionized water, then blow in nitrogen gas, and stir at room temperature for 30min. K2 S2 O8 solution (0.068 g K2 S2 O8 dissolved in 30 ml deionized water) was added to the above solution, and the temperature was raised to 70° C. under a nitrogen atmosphere and kept for 4 hours. The polymerized solution was cooled to room temperature, centrifuged at 18,000 rpm and dispersed in deionized water, and repeated three times. The polymer product that obtains is made into the PNIPAM solution of 0.98wt%, standby.
3、温敏性荧光碳纳米复合材料的制备:3. Preparation of temperature-sensitive fluorescent carbon nanocomposites:
取0.76g丙烯酰胺(AAm)溶于30mL的去离子水,加入138mg的N,N-亚甲基双丙烯酰胺(MBA),混合均匀后加入浓度为1wt%碳量子点溶液3mL和浓度为0.98wt%的聚异丙基丙烯酰胺溶液3mL,然后滴加13mg的四乙基乙二胺(TEMED),待完全溶解后,最后加入28mmol/L的硫代硫酸钠溶液4mL,室温条件下静置7小时,即可得到温敏性荧光碳纳米复合材料。Dissolve 0.76g of acrylamide (AAm) in 30mL of deionized water, add 138mg of N,N-methylenebisacrylamide (MBA), mix well, add 3mL of carbon quantum dot solution with a concentration of 1wt% and a concentration of 0.98 Add 3mL of wt% polyisopropylacrylamide solution, then dropwise add 13mg of tetraethylethylenediamine (TEMED), after it is completely dissolved, finally add 4mL of 28mmol/L sodium thiosulfate solution, and let it stand at room temperature After 7 hours, the temperature-sensitive fluorescent carbon nanocomposite material can be obtained.
将本实施例中的温敏性荧光碳纳米复合材料,在20℃日光下呈均匀透明状,置于紫外灯下,发出较强的蓝色荧光;将其水浴加热至40℃时,呈乳白色,置于紫外灯下,所发出的蓝色荧光明显减弱,说明复合材料具有良好的温敏荧光特性。The temperature-sensitive fluorescent carbon nanocomposite material in this example is uniform and transparent under sunlight at 20°C, and placed under an ultraviolet lamp, it emits strong blue fluorescence; when heated to 40°C in a water bath, it becomes milky white , placed under ultraviolet light, the emitted blue fluorescence is obviously weakened, indicating that the composite material has good temperature-sensitive fluorescence properties.
图1为本实施例中制得的温敏性荧光碳纳米复合材料的荧光强度随温度的变化图,从图中可看出,制得的复合材料具有荧光性,而且随着温度的升高,复合材料的荧光强度逐渐降低,说明制得的复合材料对温度具有响应性。Fig. 1 is the change diagram of the fluorescence intensity of the temperature-sensitive fluorescent carbon nanocomposite material obtained in the present embodiment with temperature, as can be seen from the figure, the composite material obtained has fluorescence, and with the rising of temperature , the fluorescence intensity of the composite material decreased gradually, indicating that the prepared composite material was responsive to temperature.
图2为将本实施例中制得的温敏性荧光碳纳米复合材料涂覆在石英衬底上,分别在20℃的日光(具体见图2a)及紫外光(具体见图2b)下的对比图,从图中可看出,日光下,复合材料呈透明状,在紫外光的照射下,发出荧光,而且能很好地涂覆在石英衬底上,说明制得的复合材料具有可涂覆性。Figure 2 is the temperature-sensitive fluorescent carbon nanocomposite prepared in this example coated on a quartz substrate, under sunlight (see Figure 2a for details) and ultraviolet light (see Figure 2b for details) at 20°C respectively. Comparing the figure, it can be seen from the figure that the composite material is transparent under sunlight, and fluoresces under the irradiation of ultraviolet light, and can be well coated on the quartz substrate, indicating that the prepared composite material has good Coatability.
测试本实施例中制得的温敏性荧光碳纳米复合材料的粘度,其粘度值为380cP,既具有一定的机械强度,有具有很好的涂覆性。The viscosity of the temperature-sensitive fluorescent carbon nanocomposite material prepared in this example was tested, and the viscosity value was 380 cP, which not only has a certain mechanical strength, but also has good coating properties.
实施例2Example 2
1、碳量子点溶液的制备:1. Preparation of carbon quantum dot solution:
取1g鸡蛋黄在氮气气氛下以10℃/min的升温速度升温至250℃,并保温2小时,自然冷却至室温,得到黑色粉末。将0.1g黑色粉末溶于10g的无水乙醇中,磁力搅拌30min后10000rpm离心20min,取离心上清液用200nm超滤膜过滤三次,浓度为1wt%的碳量子点溶液,备用。Take 1g of egg yolk and heat it up to 250°C at a heating rate of 10°C/min under a nitrogen atmosphere, keep it warm for 2 hours, and cool it down to room temperature naturally to obtain a black powder. Dissolve 0.1 g of the black powder in 10 g of absolute ethanol, centrifuge at 10,000 rpm for 20 min after magnetic stirring for 30 min, take the centrifuged supernatant and filter it three times with a 200 nm ultrafiltration membrane, and use a carbon quantum dot solution with a concentration of 1 wt % for future use.
2、聚N-异丙基丙烯酰胺(PNIPAM)溶液的制备方法同实施例1。2. The preparation method of poly-N-isopropylacrylamide (PNIPAM) solution is the same as in Example 1.
3、温敏性荧光碳纳米复合材料的制备:3. Preparation of temperature-sensitive fluorescent carbon nanocomposites:
取0.89g丙烯酰胺(AAm)溶于30mL的去离子水,加入138mg的N,N-亚甲基双丙烯酰胺(MBA),混合均匀后加入浓度为1wt%碳量子点溶液3mL和浓度为0.98wt%的聚异丙基丙烯酰胺溶液3mL,然后滴加12mg的四乙基乙二胺(TEMED),待完全溶解后,最后加入28mmol/L的硫代硫酸钠溶液4mL,室温条件下静置7小时,即可得到温敏性荧光碳纳米复合材料。Dissolve 0.89g of acrylamide (AAm) in 30mL of deionized water, add 138mg of N,N-methylenebisacrylamide (MBA), mix well and add 3mL of carbon quantum dot solution with a concentration of 1wt% and a concentration of 0.98 Add 3mL of wt% polyisopropylacrylamide solution, then dropwise add 12mg of tetraethylethylenediamine (TEMED), after it is completely dissolved, finally add 4mL of 28mmol/L sodium thiosulfate solution, and let it stand at room temperature After 7 hours, the temperature-sensitive fluorescent carbon nanocomposite material can be obtained.
实施例3Example 3
1、碳量子点溶液的制备方法同实施例1:1, the preparation method of carbon quantum dot solution is the same as embodiment 1:
2、聚N-异丙基丙烯酰胺(PNIPAM)溶液的制备方法同实施例1。2. The preparation method of poly-N-isopropylacrylamide (PNIPAM) solution is the same as in Example 1.
3、温敏性荧光碳纳米复合材料的制备:3. Preparation of temperature-sensitive fluorescent carbon nanocomposites:
取0.94g丙烯酰胺(AAm)溶于30mL的去离子水,加入138mg的N,N-亚甲基双丙烯酰胺(MBA),混合均匀后加入浓度为1wt%碳量子点溶液5mL和浓度为0.98wt%的聚异丙基丙烯酰胺溶液3mL,然后滴加13mg的四乙基乙二胺(TEMED),待完全溶解后,最后加入28mmol/L的硫代硫酸钾溶液4mL,室温条件下静置6小时,即可得到温敏性荧光碳纳米复合材料。Dissolve 0.94g of acrylamide (AAm) in 30mL of deionized water, add 138mg of N,N-methylenebisacrylamide (MBA), mix well and add 5mL of carbon quantum dot solution with a concentration of 1wt% and a concentration of 0.98 Add 3mL of wt% polyisopropylacrylamide solution, then dropwise add 13mg of tetraethylethylenediamine (TEMED), after it is completely dissolved, finally add 4mL of 28mmol/L potassium thiosulfate solution, and let it stand at room temperature After 6 hours, the temperature-sensitive fluorescent carbon nanocomposite material can be obtained.
实施例4Example 4
1、碳量子点溶液的制备方法同实施例1:1, the preparation method of carbon quantum dot solution is the same as embodiment 1:
2、聚N-异丙基丙烯酰胺(PNIPAM)溶液的制备方法同实施例1。2. The preparation method of poly-N-isopropylacrylamide (PNIPAM) solution is the same as in Example 1.
3、温敏性荧光碳纳米复合材料的制备:3. Preparation of temperature-sensitive fluorescent carbon nanocomposites:
取0.42g丙烯酰胺(AAm)溶于30mL的去离子水,加入138mg的N,N-亚甲基双丙烯酰胺(MBA),混合均匀后加入浓度为1wt%碳量子点溶液5mL和浓度为0.98wt%的聚异丙基丙烯酰胺溶液3mL,然后滴加13mg的四乙基乙二胺(TEMED),待完全溶解后,最后加入28mmol/L的过硫酸铵溶液4mL,室温条件下静置7小时,即可得到温敏性荧光碳纳米复合材料。Dissolve 0.42g of acrylamide (AAm) in 30mL of deionized water, add 138mg of N,N-methylenebisacrylamide (MBA), mix well and add 5mL of carbon quantum dot solution with a concentration of 1wt% and a concentration of 0.98 3mL of wt% polyisopropylacrylamide solution, then dropwise added 13mg of tetraethylethylenediamine (TEMED), after it was completely dissolved, finally added 4mL of 28mmol/L ammonium persulfate solution, and left it at room temperature for 7 Hours, the temperature-sensitive fluorescent carbon nanocomposite material can be obtained.
以上所述为本发明的较佳实施例而已,但本发明不应该局限于该实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。The above description is only a preferred embodiment of the present invention, but the present invention should not be limited to the content disclosed in this embodiment. Therefore, all equivalents or modifications that do not deviate from the spirit disclosed in the present invention fall within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013101412057ACN103204972A (en) | 2013-04-23 | 2013-04-23 | Thermo-sensitive fluorescent carbon nano composite material and preparation method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2013101412057ACN103204972A (en) | 2013-04-23 | 2013-04-23 | Thermo-sensitive fluorescent carbon nano composite material and preparation method thereof |
| Publication Number | Publication Date |
|---|---|
| CN103204972Atrue CN103204972A (en) | 2013-07-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2013101412057APendingCN103204972A (en) | 2013-04-23 | 2013-04-23 | Thermo-sensitive fluorescent carbon nano composite material and preparation method thereof |
| Country | Link |
|---|---|
| CN (1) | CN103204972A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104804734A (en)* | 2015-04-01 | 2015-07-29 | 河南师范大学 | Synthesis method for sulfur-nitrogen-doped fluorescent carbon dots according to one-step microwave method |
| CN105131207A (en)* | 2015-07-16 | 2015-12-09 | 复旦大学 | Core halo/core-shell halo structure fluorescent microgel having double responsiveness and preparation method thereof |
| CN105381466A (en)* | 2015-11-18 | 2016-03-09 | 吉林师范大学 | Photo-magnetic and temperature-sensitive nano-composite drug carrier and preparation method thereof |
| WO2017101130A1 (en)* | 2015-12-15 | 2017-06-22 | 苏州大学张家港工业技术研究院 | New type of three-dimensional gel dosimetry material, and method for preparation thereof |
| CN107141422A (en)* | 2017-05-24 | 2017-09-08 | 复旦大学 | Fluorescence microgel with adjustable linear temperature response and preparation method thereof |
| CN107501458A (en)* | 2017-09-13 | 2017-12-22 | 中国科学院理化技术研究所 | Fluorescence ratio nanocapsule thermometer and preparation method thereof |
| CN108383949A (en)* | 2018-04-01 | 2018-08-10 | 中鸿纳米纤维技术丹阳有限公司 | A kind of silica aerogel insulation quilt surface modifier of environment-friendly and green |
| CN110628416A (en)* | 2019-09-26 | 2019-12-31 | 中南民族大学 | Preparation method and application of methacrylic anhydride modified multi-amino functional carbon quantum dot capable of being immobilized |
| CN110982519A (en)* | 2019-11-20 | 2020-04-10 | 中国科学院长春光学精密机械与物理研究所 | Carbon nano-dot composite fluorescent powder and preparation method and application thereof |
| CN112920421A (en)* | 2021-01-29 | 2021-06-08 | 华中科技大学 | Temperature-responsive polymer grafted gold nanoparticle composite quantum dot fluorescent probe and preparation method and application thereof |
| CN114907842A (en)* | 2022-05-17 | 2022-08-16 | 中国科学院宁波材料技术与工程研究所 | Fluorescent carbon quantum dot gel, preparation method thereof and information circulating storage method |
| CN116478327A (en)* | 2023-04-20 | 2023-07-25 | 桂林理工大学 | Composite hydrogel material containing carbon quantum dots, and preparation method and application thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101045777A (en)* | 2007-04-06 | 2007-10-03 | 华侨大学 | Preparation method of interpenetration network hydrogel |
| CN102675565A (en)* | 2012-05-09 | 2012-09-19 | 天津大学 | Carbon quantum dot-poly N-isopropylacrylamide composite material and preparation method thereof |
| CN102944538A (en)* | 2012-08-06 | 2013-02-27 | 中国科学院新疆理化技术研究所 | Preparation method and use of fluorescent carbon quantum dot/polyacrylonitrile nanofiber membrane |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101045777A (en)* | 2007-04-06 | 2007-10-03 | 华侨大学 | Preparation method of interpenetration network hydrogel |
| CN102675565A (en)* | 2012-05-09 | 2012-09-19 | 天津大学 | Carbon quantum dot-poly N-isopropylacrylamide composite material and preparation method thereof |
| CN102944538A (en)* | 2012-08-06 | 2013-02-27 | 中国科学院新疆理化技术研究所 | Preparation method and use of fluorescent carbon quantum dot/polyacrylonitrile nanofiber membrane |
| Title |
|---|
| E.C.MUNIZ ET AL.: "Influence of Temperature On The Permeability of Polyacrylamide Hydrogels and Semi-IPNs with Poly(N-isopropylacrylamide)", 《JOURNAL OF MEMBRANE SCIENCE》* |
| JING WANG,ET AL.: "Amphiphilic Egg-Derived Carbon Dots: Rapid Plasma Fabrication, Pyrolysis Process, and Multicolor Printing Patterns.", 《ANGEWANDTE CHEMIE INTERNATIONAL EDITION》* |
| LI ZHOU ET AL: "Thermo-sensitive and photoluminescent hydrogels: synthesis, characterization and their drug-release property", 《MATERIALS SCIENCE AND ENGINEERING C》* |
| LI ZHOU ET AL: "Thermo-sensitive and photoluminescent hydrogels: synthesis, characterization and their drug-release property", 《MATERIALS SCIENCE AND ENGINEERING C》, vol. 31, no. 7, 10 October 2011 (2011-10-10), pages 1429 - 1435, XP028272949, DOI: doi:10.1016/j.msec.2011.05.010* |
| 北京大学化学系高分子教研室: "《高分子实验与专论》", 31 December 1990* |
| 杨永珍著: "《碳微球表面化学》", 30 April 2012, 北京:化学工业出版社* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104804734B (en)* | 2015-04-01 | 2017-04-19 | 河南师范大学 | Synthesis method for sulfur-nitrogen-doped fluorescent carbon dots according to one-step microwave method |
| CN104804734A (en)* | 2015-04-01 | 2015-07-29 | 河南师范大学 | Synthesis method for sulfur-nitrogen-doped fluorescent carbon dots according to one-step microwave method |
| CN105131207A (en)* | 2015-07-16 | 2015-12-09 | 复旦大学 | Core halo/core-shell halo structure fluorescent microgel having double responsiveness and preparation method thereof |
| CN105131207B (en)* | 2015-07-16 | 2017-10-10 | 复旦大学 | A kind of core with dual responsiveness is dizzy/the fluorescence microgel of nucleocapsid dizzy structure and preparation method thereof |
| CN105381466A (en)* | 2015-11-18 | 2016-03-09 | 吉林师范大学 | Photo-magnetic and temperature-sensitive nano-composite drug carrier and preparation method thereof |
| CN105381466B (en)* | 2015-11-18 | 2019-04-09 | 吉林师范大学 | Photomagnetic thermosensitive nanocomposite drug carrier and preparation method thereof |
| WO2017101130A1 (en)* | 2015-12-15 | 2017-06-22 | 苏州大学张家港工业技术研究院 | New type of three-dimensional gel dosimetry material, and method for preparation thereof |
| CN107141422A (en)* | 2017-05-24 | 2017-09-08 | 复旦大学 | Fluorescence microgel with adjustable linear temperature response and preparation method thereof |
| CN107501458B (en)* | 2017-09-13 | 2019-08-23 | 中国科学院理化技术研究所 | A fluorescent ratio nanocapsule thermometer and its preparation method |
| CN107501458A (en)* | 2017-09-13 | 2017-12-22 | 中国科学院理化技术研究所 | Fluorescence ratio nanocapsule thermometer and preparation method thereof |
| CN108383949A (en)* | 2018-04-01 | 2018-08-10 | 中鸿纳米纤维技术丹阳有限公司 | A kind of silica aerogel insulation quilt surface modifier of environment-friendly and green |
| CN110628416A (en)* | 2019-09-26 | 2019-12-31 | 中南民族大学 | Preparation method and application of methacrylic anhydride modified multi-amino functional carbon quantum dot capable of being immobilized |
| CN110628416B (en)* | 2019-09-26 | 2022-12-13 | 中南民族大学 | Preparation method and application of methacrylic anhydride modified multi-amino functional carbon quantum dot capable of being immobilized |
| CN110982519A (en)* | 2019-11-20 | 2020-04-10 | 中国科学院长春光学精密机械与物理研究所 | Carbon nano-dot composite fluorescent powder and preparation method and application thereof |
| CN112920421A (en)* | 2021-01-29 | 2021-06-08 | 华中科技大学 | Temperature-responsive polymer grafted gold nanoparticle composite quantum dot fluorescent probe and preparation method and application thereof |
| CN112920421B (en)* | 2021-01-29 | 2022-03-29 | 华中科技大学 | A temperature-responsive polymer-grafted gold nanoparticle composite quantum dot fluorescent probe and its preparation method and application |
| CN114907842A (en)* | 2022-05-17 | 2022-08-16 | 中国科学院宁波材料技术与工程研究所 | Fluorescent carbon quantum dot gel, preparation method thereof and information circulating storage method |
| CN114907842B (en)* | 2022-05-17 | 2023-12-22 | 中国科学院宁波材料技术与工程研究所 | Fluorescent carbon quantum dot gel, preparation method thereof and information circulating storage method |
| CN116478327A (en)* | 2023-04-20 | 2023-07-25 | 桂林理工大学 | Composite hydrogel material containing carbon quantum dots, and preparation method and application thereof |
| Publication | Publication Date | Title |
|---|---|---|
| CN103204972A (en) | Thermo-sensitive fluorescent carbon nano composite material and preparation method thereof | |
| Wang et al. | In situ fabrication of flexible, thermally stable, large-area, strongly luminescent copper nanocluster/polymer composite films | |
| Kuang et al. | Fabrication of multicolor‐encoded microspheres by tagging semiconductor nanocrystals to hydrogel spheres | |
| CN104017129B (en) | The fluorescent functional polymer nano-microspheres of a kind of temperature and pH double-response, preparation method and application | |
| Wang et al. | Multiple-stimuli-responsive multicolor luminescent self-healing hydrogel and application in information encryption and bioinspired camouflage | |
| CN102115570B (en) | Method for preparing nano fluorescence thermometer | |
| CN105085999A (en) | Biocompatible quantum dot light-emitting film and preparation method thereof | |
| CN104177540B (en) | The preparation method of the fluorescent type temperature intelligent response sensor based on gold nanoclusters | |
| CN104926981A (en) | Preparation method for fluorescence sensing material based on molecular imprinting and carbon dots | |
| CN103834727A (en) | Preparation method of fluorescence probe and applications of the fluorescence probe | |
| Li et al. | Printable temperature-responsive hybrid hydrogels with photoluminescent carbon nanodots | |
| CN105199114B (en) | A kind of synthetic method of photoluminescent europium-containing polymer hydrogel material | |
| CN101962450A (en) | Aqueous phase preparation method for chitosan-quantum dot fluorescent probe | |
| CN105651774B (en) | A kind of fluorescence nano gold cluster gel and preparation method thereof | |
| CN104209506B (en) | Platinum nanoparticle-bovine serum albumin core-shell structure and preparation method thereof | |
| CN107880201B (en) | A kind of preparation and application of the compound photoswitch nanoparticle being adjustable to stable white light | |
| CN105601955A (en) | Electric-stimulation fluorescence-response aquagel | |
| CN114044924B (en) | Temperature-sensitive color-changing hydrogel and preparation method thereof | |
| CN112768113B (en) | Preparation method of responsive nanocomposite polymer conductive film | |
| CN103275701A (en) | Dendritic molecule-modified fluorescent quantum dots, and preparation method and application thereof | |
| CN103145916B (en) | Preparation method of POSS (Polyhedral Oligomeric Silsesquioxane) hybrid hydrogel capable of being degraded in acid and responding to temperature | |
| CN101955597B (en) | Chitosan/quantum dot nanocomposite film and preparation method and application thereof | |
| CN103739774B (en) | A kind of Thermo-sensitive non-ionic copolymer nano-hydrogel and preparation method thereof | |
| CN117209692A (en) | Preparation method of gelatin-based thermochromic hydrogel material | |
| CN105801853B (en) | A kind of preparation method based on polyethyleneimine synthesis fluorescent polymer nanoparticle |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C12 | Rejection of a patent application after its publication | ||
| RJ01 | Rejection of invention patent application after publication | Application publication date:20130717 |