




技术领域technical field
本发明涉及用于制造电介质薄膜,例如PZT(锆钛酸铅)薄膜等的薄膜制造方法以及薄膜制造装置。The present invention relates to a thin film manufacturing method and a thin film manufacturing apparatus for manufacturing a dielectric thin film, such as a PZT (lead zirconate titanate) thin film.
背景技术Background technique
以往,作为用于铁电体存储器(Ferroelectric Random Access Memory,FeRAM)等的铁电体薄膜,具有钙钛矿结构的锆钛酸铅(Pb(Zr,Ti)03,PZT)等的薄膜被广泛熟知。这种电介质薄膜,例如通过有机金属化学气相沉积(MetalOrganic Chemical Vapor Deposition,MOCVD)法制造。Conventionally, thin films of lead zirconate titanate (Pb(Zr,Ti)03 , PZT) having a perovskite structure have been used as ferroelectric thin films for ferroelectric random access memory (FeRAM) and the like. Widely known. Such a dielectric thin film is produced, for example, by MetalOrganic Chemical Vapor Deposition (MOCVD) method.
MOCVD法是通过使有机金属原料气体和氧化气体在高温中反应,制造电介质薄膜的方法。为了制造高品质的电介质薄膜,利用即使改变原料气体的流量,薄膜的组成比例几乎也不发生变化的自对准区域。The MOCVD method is a method of producing a dielectric thin film by reacting an organic metal raw material gas and an oxidizing gas at high temperature. In order to manufacture a high-quality dielectric thin film, a self-aligned region in which the composition ratio of the thin film hardly changes even if the flow rate of the source gas is changed is used.
专利文献1中记载了一种将有机金属原料气体、氧化气体以及稀释气体的混合气体供给到加热的基板上的MOCVD法。专利文献1所记载的MOCVD法中,将混合气体供给到基板时,同时供给高燃烧性的燃烧性气体。因此,在成膜过程中,基板表面的过量的氧燃烧排除,所以能够制造高品质的薄膜(参照专利文献1的段落[0011]、[0025]等)。
专利文献1:特开2004-273787号公报Patent Document 1: JP-A-2004-273787
在上述电介质薄膜的制造中,期望所制造的电介质薄膜的表面粗糙度小。电介质薄膜的表面粗糙度大,则可能会在例如制造具有电介质薄膜的铁电体存储器时的制造过程中产生问题。另外,也担心例如电介质薄膜的电气特性不能充分发挥。In the production of the above-mentioned dielectric thin film, it is desirable that the surface roughness of the produced dielectric thin film is small. A large surface roughness of the dielectric thin film may cause problems in the manufacturing process, for example, when manufacturing a ferroelectric memory having the dielectric thin film. In addition, there is also a concern that, for example, the electrical characteristics of the dielectric thin film cannot be fully exhibited.
发明内容Contents of the invention
有鉴于此,本发明的目的是提供能够制造表面粗糙度小的电介质薄膜的薄膜制造方法以及薄膜制造装置。In view of this, an object of the present invention is to provide a thin film manufacturing method and a thin film manufacturing apparatus capable of manufacturing a dielectric thin film with a small surface roughness.
为了达到上述目的,本发明的一实施方式所涉及的薄膜制造方法包括:将混合气体供给到腔室内的加热的基板,所述混合气体包括作为具有钙钛矿型结晶的电介质薄膜的原料的金属原料气体和与所述金属原料气体反应的氧化气体;In order to achieve the above object, a thin film manufacturing method according to an embodiment of the present invention includes supplying a mixed gas including a metal as a raw material of a dielectric thin film having a perovskite crystal to a heated substrate in a chamber. a feedstock gas and an oxidizing gas that reacts with said metal feedstock gas;
停止向所述基板供给所述金属原料气体;stopping supply of the metal feedstock gas to the substrate;
所述金属原料气体的供给停止后,限制向所述基板供给所述氧化气体。After the supply of the metal raw material gas is stopped, the supply of the oxidizing gas to the substrate is restricted.
本发明的一实施方式所涉及的薄膜制造装置包括:腔室、供给机构、气体供给控制部。A thin film manufacturing apparatus according to an embodiment of the present invention includes a chamber, a supply mechanism, and a gas supply control unit.
所述腔室中,配置有加热的基板。In the chamber, a heated substrate is arranged.
所述供给机构,用于将混合气体供给到所述腔室内的所述加热的基板,所述混合气体包括作为具有钙钛矿型结晶的电介质薄膜的原料的金属原料气体和与所述金属原料气体反应的氧化气体。The supply mechanism is for supplying a mixed gas including a metal raw material gas as a raw material of a dielectric thin film having a perovskite type crystal and the metal raw material to the heated substrate in the chamber. Oxidizing gas for gas reactions.
所述气体供给控制部,停止向所述基板供给所述金属原料气体,之后限制向所述基板供给所述氧化气体。The gas supply control unit stops supply of the metal raw material gas to the substrate, and then restricts supply of the oxidizing gas to the substrate.
附图说明Description of drawings
图1是表示本发明一实施方式所涉及的薄膜制造装置的结构例的示意图;FIG. 1 is a schematic diagram showing a structural example of a thin film manufacturing apparatus according to an embodiment of the present invention;
图2是表示具有图1所示薄膜制造装置的多室型成膜装置的结构例的示意图;FIG. 2 is a schematic diagram showing a structural example of a multi-chamber film forming apparatus having the thin film manufacturing apparatus shown in FIG. 1;
图3是相对于供给给基板的Pb原料气体的流量比,表示制造的PZT薄膜中的Pb组成比例以及Zr组成比例的曲线图;3 is a graph showing the composition ratio of Pb and the composition ratio of Zr in the produced PZT thin film with respect to the flow rate ratio of the Pb source gas supplied to the substrate;
图4是表示图1所示的薄膜制造装置所制造的PZT薄膜和比较例所涉及的制造方法所制造的PZT薄膜的各表面层的相片,以及表面层所涉及的各测量值的示意图;Fig. 4 is the photograph that represents each surface layer of the PZT thin film manufactured by the thin film manufacturing apparatus shown in Fig. 1 and the manufacturing method involved in the comparative example, and the schematic diagram of each measured value involved in the surface layer;
图5是表示图1所示的薄膜制造装置的变形例的示意图。FIG. 5 is a schematic diagram showing a modified example of the thin film manufacturing apparatus shown in FIG. 1 .
具体实施方式Detailed ways
本发明的一实施方式所涉及的薄膜制造方法包括:将混合气体供给到腔室内的加热的基板,所述混合气体包括作为具有钙钛矿型结晶的电介质薄膜的原料的金属原料气体和与所述金属原料气体反应的氧化气体;A thin film manufacturing method according to an embodiment of the present invention includes: supplying a mixed gas including a metal raw material gas as a raw material of a dielectric thin film having a perovskite crystal and the mixed gas to the heated substrate in the chamber. The oxidizing gas reacted with the metal raw material gas;
停止向所述基板供给所述金属原料气体;stopping supply of the metal feedstock gas to the substrate;
所述金属原料气体的供给停止后,限制向所述基板供给所述氧化气体。After the supply of the metal raw material gas is stopped, the supply of the oxidizing gas to the substrate is restricted.
本薄膜制造方法中,停止向基板供给金属原料气体后,能够对没有构成钙钛矿型结晶的剩余的原子与氧化气体的反应进行抑制。因此,剩余的原子不会以例如氧化物引入到电介质薄膜的表面层,能够制造出表面粗糙度小的电介质薄膜。In this thin film manufacturing method, after the supply of the metal raw material gas to the substrate is stopped, the reaction of the remaining atoms not constituting the perovskite-type crystals with the oxidizing gas can be suppressed. Therefore, the remaining atoms are not introduced into the surface layer of the dielectric thin film as, for example, an oxide, and a dielectric thin film with a small surface roughness can be produced.
所述限制工序,可以停止或减少所述氧化气体的供给。这种情况下,所述薄膜制造方法进一步可以根据所述氧化气体供给的停止或减少,将惰性气体供给到所述腔室内。In the restricting step, the supply of the oxidizing gas may be stopped or reduced. In this case, the thin film manufacturing method may further supply an inert gas into the chamber according to the stop or decrease of the supply of the oxidizing gas.
本薄膜制造方法中,根据氧化气体供给的停止或减少,将惰性气体供给到腔室内。例如,利用该惰性气体能够进行腔室内的压力调节等。因此,在多个基板上按顺序形成电介质薄膜的情况下,能够有效地促进成膜过程。In this thin film manufacturing method, an inert gas is supplied into the chamber according to the stop or reduction of the supply of the oxidizing gas. For example, pressure adjustment in the chamber and the like can be performed using the inert gas. Therefore, in the case where dielectric thin films are sequentially formed on a plurality of substrates, the film formation process can be effectively accelerated.
供给所述混合气体的工序,可以供给包含惰性气体的所述混合气体。这种情况下,根据所述氧化气体供给的停止或减少供给惰性气体的工序,可以供给包含在所述混合气体中的所述惰性气体。In the step of supplying the mixed gas, the mixed gas containing an inert gas may be supplied. In this case, the inert gas contained in the mixed gas may be supplied by stopping the supply of the oxidizing gas or reducing the supply of the inert gas.
本薄膜制造方法中,用于制造电介质薄膜的混合气体中包含惰性气体。该惰性气体,根据氧化气体供给以及停止供给到腔室内。因此,不需要用于供给惰性气体的新机构,能够容易地供给惰性气体。In this thin film manufacturing method, an inert gas is contained in the mixed gas used for manufacturing the dielectric thin film. The inert gas is supplied into the chamber according to supply and stop of the oxidizing gas. Therefore, the inert gas can be easily supplied without requiring a new mechanism for supplying the inert gas.
供给所述混合气体的工序可以通过连接混合所述金属原料气体、所述氧化气体以及所述惰性气体的混合器与所述腔室的供给流路,供给所述混合气体。这种情况下,供给所述惰性气体的工序可以通过所述混合气体通过的所述供给流路,供给所述惰性气体。In the step of supplying the mixed gas, the mixed gas may be supplied by connecting a mixer for mixing the metal raw material gas, the oxidizing gas, and the inert gas to a supply channel of the chamber. In this case, in the step of supplying the inert gas, the inert gas may be supplied through the supply channel through which the mixed gas passes.
本薄膜制造方法中,通过混合气体通过的所述供给流路,将惰性气体供给到腔室内。因此,能够防止混合气体集聚在供给流路。由此,能够稳定地在基板上形成电介质薄膜。In the thin film manufacturing method, the inert gas is supplied into the chamber through the supply channel through which the mixed gas passes. Therefore, it is possible to prevent the mixed gas from accumulating in the supply channel. Thus, the dielectric thin film can be stably formed on the substrate.
所述电介质薄膜可以是PZT(Pb(Zr,Ti)O3)。这种情况下,所述金属原料可以包含部分具有Pb(dpm)2、Pb(dibm)2,或Pb(dpm)2和Pb(dibm)2中至少一种的材料。The dielectric thin film may be PZT (Pb(Zr,Ti)O3 ). In this case, the metal raw material may partially include a material having Pb(dpm)2 , Pb(dibm)2 , or at least one of Pb(dpm)2 and Pb(dibm)2 .
所述基板可以加热到600℃以上。The substrate can be heated above 600°C.
本发明的一实施方式所涉及的薄膜制造装置包括:腔室、供给机构、气体供给控制部。A thin film manufacturing apparatus according to an embodiment of the present invention includes a chamber, a supply mechanism, and a gas supply control unit.
所述腔室中,配置有加热的基板。In the chamber, a heated substrate is disposed.
所述供给机构,用于将混合气体供给到腔室内的加热的基板,所述混合气体包括作为具有钙钛矿型结晶的电介质薄膜的原料的金属原料气体和与所述金属原料气体反应的氧化气体。The supply mechanism is for supplying a mixed gas including a metal raw material gas as a raw material of a dielectric thin film having a perovskite type crystal and an oxidizing gas reacted with the metal raw material gas to the heated substrate in the chamber. gas.
所述气体供给控制部,用于停止向所述基板供给所述金属原料气体,之后限制向所述基板供给所述氧化气体。The gas supply control unit stops supply of the metal raw material gas to the substrate, and then restricts supply of the oxidizing gas to the substrate.
以下,结合附图对本发明的实施方式进行说明。Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[薄膜制造装置][Film Manufacturing Equipment]
图1是表示本发明一实施方式所涉及的薄膜制造装置的结构例的示意图。通过本实施方式的薄膜制造装置,能够进行利用MOCVD法的铁电体PZT的薄膜制造。FIG. 1 is a schematic diagram showing a configuration example of a thin film manufacturing apparatus according to an embodiment of the present invention. With the thin film manufacturing apparatus of this embodiment, it is possible to manufacture a ferroelectric PZT thin film by MOCVD.
薄膜制造装置100具有供给有机金属的有机溶剂溶液的原料供给部10、使其溶液汽化生成原料气体的汽化器20。另外,薄膜制造装置100还具有使原料气体、与原料气体反应的氧化气体以及惰性气体混合生成混合气体的混合器30、与混合器30通过作为供给流路的供给管路33相连接的成膜室50。本实施方式中,由原料供给部10、汽化器20、混合器30、以及设置在其上的各管路及各阀门,构成供给机构。The thin
原料供给部10具有填充有机金属的原料溶液以及溶剂的罐A、B、C及D,和供给到各罐A~D的He(氦)的供给管路11。另外,原料供给部10具有用于输送由供给到各罐A~D的He的压力挤压出的金属原料溶液以及溶剂的载气的供给管路12。本实施方式中,作为载气可以使用N2(氮),但不限于此,也可以使用其他惰性气体。同样,供给到各罐A~D的气体也不限于He,也可以使用其他惰性气体。The raw
本实施方式中,罐A~D中,分别填充了Pb的原料溶液,Zr的原料溶液,Ti的原料溶液,以及有机类溶剂。作为Pb、Zr以及Ti的原料溶液,使用在乙酸正丁酯溶液中,各金属原料以0.25mol/L的浓度溶解的溶液。In the present embodiment, tanks A to D are filled with a raw material solution of Pb, a raw material solution of Zr, a raw material solution of Ti, and an organic solvent, respectively. As the raw material solutions of Pb, Zr, and Ti, a solution in which each metal raw material was dissolved in a concentration of 0.25 mol/L in an n-butyl acetate solution was used.
作为Pb原料,使用Pb(dpm)2(双二新戊酰基甲烷)铅,作为Zr原料,使用Zr(dmhd)4(四(2,6)二甲基(3,5)庚二酸)锆。另外,作为Ti原料,使用Ti(iPrO)2(dpm)2((二异丙醇)(双二新戊酰基甲烷))钛。填充到罐D的溶剂使用乙酸正丁酯。需要说明的是,Pb(dpm)2也叫做Pb(thd)2(双(2,2,6,6-四甲基-3,5-庚二酸))铅。As the Pb raw material, Pb(dpm)2 (bisdipivaloylmethane)lead was used, and as the Zr raw material, Zr(dmhd)4 (tetrakis(2,6)dimethyl(3,5)pimelate) zirconium . In addition, as a Ti raw material, Ti(iPrO)2 (dpm)2 ((diisopropanol)(bisdipivaloylmethane))titanium was used. As a solvent filled in tank D, n-butyl acetate was used. In addition, Pb(dpm)2 is also called Pb(thd)2 (bis(2,2,6,6-tetramethyl-3,5-pimelic acid)) lead.
溶解在溶剂中的各金属原料,并不限于上述的原料。例如,作为Pb原料,也可以使用Pb(dibm)2(双二异丁酰基甲烷)铅等,或部分具有Pb(dpm)2以及Pb(dibm)2中的两者或者至少一种的材料。另外作为Zr原料,也可以使用Zr(thd)4(四(2,2,6,6)四甲基(3,5)庚二酸)锆等,或部分具有这些的材料。并且,作为Ti的原料,也可使用Ti(MMP)4(四(1)甲氧基(2)甲基(2)丙氧基)钛等,或部分具有这些的材料。The respective metal raw materials dissolved in the solvent are not limited to the above-mentioned raw materials. For example, as the Pb raw material, Pb(dibm)2 (bisdiisobutyrylmethane) lead or the like, or a material partially containing both or at least one of Pb(dpm)2 and Pb(dibm)2 may be used. In addition, Zr(thd)4 (tetrakis(2,2,6,6)tetramethyl(3,5)pimelate) zirconium, etc., or a material partially containing these may be used as the Zr raw material. Furthermore, Ti(MMP)4 (tetra(1)methoxy(2)methyl(2)propoxy)titanium, etc., or a material partially containing these may be used as a raw material of Ti.
溶解各金属原料的溶剂以及填充到罐D的溶剂也可以使用例如甲苯、四氢呋喃(THF)、环己烷、乙基环己烷或甲基环己烷等代替上述的乙酸正丁酯。The solvent for dissolving each metal raw material and the solvent filled in the tank D may be, for example, toluene, tetrahydrofuran (THF), cyclohexane, ethylcyclohexane, or methylcyclohexane, etc. instead of the above-mentioned n-butyl acetate.
汽化器20是通过供给管路12连接到原料供给部10,从原料供给部10向汽化器20输送金属原料溶液以及溶剂的液滴。汽化器20具有未图示的加热部,通过加热使输送的金属原料溶液以及溶剂汽化。因此,生成金属原料气体。另外,为了提高汽化效率,可以同时使用将气体或超声波等适用到金属原料溶液以及溶剂的液滴的方法,或通过细小喷嘴导入事先细微化的液滴的方法等。The
如图1所示,汽化器20中设置了连接到混合器30的运行(Run)管路21,和连接到真空排气系统40的通风(Vent)管路22。运行管路21中设置了阀门V1,通风管路22中设置了阀门V2。As shown in FIG. 1 , a run (Run)
混合器30是用于生成汽化器20生成的金属原料气体、氧化气体以及惰性气体的混合气体。因此,混合器30中连接有氧化气体供给部31以及惰性气体供给部32。本实施方式中,由氧化气体供给部31供给O2(氧),由惰性气体供给部32供给N2。然而,作为氧化气体,例如,也可以供给一氧化二氮或臭氧等。另外,作为惰性气体,也可以供给氩气等。The
成膜室50具有与供给管路33连接的腔室51,和腔室51内配置的平台52。腔室51的顶面设置有喷头53,该喷头53连接有供给管路33。平台52以及喷头53分别被配置在相对的位置。另外,腔室51内配置有未图示的洗净状态的如防粘板等零件。The
如图1所示,在平台52上,载置有形成PZT薄膜的基板S。平台52具有例如加热器等的未图示的加热装置,能够加热载置的基板S。本实施方式中,作为平台52上载置的基板S,使用在形成100nm的SiO2氧化膜的8英寸的Si基板上以溅射法形成Ir为70nm的基板。然而,对基板的大小或材料等不进行限定。As shown in FIG. 1 , a substrate S on which a PZT thin film is formed is placed on a
腔室51通过压力调节阀门41连接到具备如干式泵或涡轮分子泵等的真空排气系统40。通过压力调节阀门41适当设定腔室51内的压力,能够容易地对应各种成膜压力条件。The
包括从汽化器20到成膜室50的各管路、各阀门以及混合器30等的各装置由未图示的加热装置保持在例如200℃以上的高温状态,以便汽化的金属原料气体不会液化。Each device including each pipeline from the
本实施方式所涉及的薄膜制造装置100具有作为控制上述说明的各阀门或各装置的气体供给控制部的未图示的控制单元。控制单元具有如CPU(CentralProcessing Unit)或ROM(Read Only Memory)或者RAM(Random Access Memory)等组成的主存储器等。从控制部到各装置等,通过如有线或者无线输出控制信号,来控制薄膜制造装置100的操作。The thin
[多室型(多腔室型)成膜装置][Multi-chamber (multi-chamber) film forming device]
图2是表示具有图1所示薄膜制造装置的多室型成膜装置的结构例的示意图。多室型成膜装置200具有,设置有能够输送基板S的未图示的输送机械手的输送室201、分别能够搭载1批25枚基板的2个储存室202。另外,多室型成膜装置200具有2个上述薄膜制造装置100,在输送室201的周围分别配置2个上述成膜室50。成膜室50以及储存室202,通过闸阀203分别连接到输送室201。需要说明的是,储存室202的个数不限于2个,也可以在输送室201的周围配置更多的或1个储存室。FIG. 2 is a schematic diagram showing a configuration example of a multi-chamber film forming apparatus including the thin film manufacturing apparatus shown in FIG. 1 . The multi-chamber
与分别将真空排气系统40连接到成膜室50同样,将真空排气系统204分别连接到输送室201以及储存室202。这样,各室能够独立地将内部抽空成真空气氛。然而,也可以例如并用1个真空排气系统,对输送室201、成膜室50以及储存室202的内部进行抽空。这种情况下,该真空排气系统具有图1所示的真空排气系统40的功能。The
另外,输送室201连接有气体源205,由从该气体源205导入的惰性气体等调压气体,将输送室201内调节到规定的压力。输送室201的内部压力调节由设置在输送室201的未图示的自动压力调节阀门进行。In addition, a gas source 205 is connected to the
如图2所示,储存室202通过闸阀203连接到大气基板输送系统206。在大气基板输送系统206中,在多个晶片盒207和储存室202间设置有输送未成膜处理或者已经成膜处理的基板S的未图示的输送机械手。As shown in FIG. 2 , the
成膜工序开始时,通过设置在空气基板输送系统206的输送机械手从放入25枚基板的晶片盒207将指定枚数的基板S输送到储存室202。搬入基板S的储存室202内抽空成真空。When the film forming process starts, a specified number of substrates S are transported to the
打开位于抽空成真空的储存室202与输送室201之间的闸阀203,使输送室201以及储存室202都处于抽空成真空的状态。由气体源205向输送室201供给N2等调节气体例如1200sccm,调节输送室201的内部压力。Open the
本实施方式中,作为成膜压力条件,将成膜室50的内部压力设定为约2Torr。相应地,输送室201的内部压力调节成与成膜室50的内部压力大约相等的压力,或者比其高出5%左右的压力。需要说明的是,成膜室50内的内部压力,由图1所示的惰性气体供给部32所供给的N2进行调节。另外,可以适当设定上述的成膜压力条件。输送室201的压力调节几乎结束时,储存室202的第一枚基板S通过输送室201被送到成膜室50。In the present embodiment, the internal pressure of the
本实施方式所涉及的多室型成膜装置200中,由于配置了2个储存室202,所以若将基板S全部放入一个储存室202,则能够将基板S搭载到另一个储存室202。将基板S搭载到第二室的储存室202时,若搭载到第一室的储存室202的基板S的成膜过程结束,则将第二室的储存室202抽空成真空,再将基板S送到成膜室50。In the multi-chamber
[薄膜制造装置的操作][Operation of film manufacturing equipment]
从图1所示的He的供给管路11向各罐A~D供给He,则各罐A~D的内部压力上升,各罐A~D填充的有机金属的原料溶液以及溶剂被挤压出到载气(N2)的供给管路12。被挤压出的金属原料溶液以及溶剂的液滴的各自流量由液体流量控制器等控制,通过载气运送到汽化器20。When He is supplied to each tank A to D from the
汽化器20中,成膜工序开始时,通过由从罐D被挤压出的载气运送的溶剂开始汽化器20的喷嘴闪喷,约3分钟变成能够汽化金属原料溶液以及溶剂的状态。此时,打开通风管路22的阀门V2,溶剂的汽化气体以及载气被排弃到通风管路22。In the
第1枚基板S被送到成膜室50载置在平台52上时,由设置在平台52的加热部对基板S进行加热。基板的温度在3分钟左右稳定在规定的温度内。本实施方式中,加热基板S使基板S的温度在600℃以上。所加热的基板S的温度可以适当的设定。When the first substrate S is sent to the
在基板S的温度集中的2分钟前,汽化器20的汽化从溶剂的汽化切换到由成膜的流量控制的金属原料溶液主体的汽化(通风管路22保持打开状态)。Two minutes before the temperature concentration of the substrate S, the vaporization of the
成膜室50中的基板S或喷头53等零件的温度在规定的温度饱和时,则关闭通风管路22的阀门V2,打开运行管路21的阀门V1。并且由汽化器20汽化的金属原料溶液主体的汽化气体被供给到混合器30。When the temperature of parts such as the substrate S or the
混合器30中以规定的混合比(摩尔比)混合汽化器20供给的汽化气体、作为氧化气体的O2以及作为惰性气体的N2。为了使例如成膜的PZT薄膜的结晶取向为预期的取向,适当地设定混合比。The vaporized gas supplied from the
由混合器30生成的混合气体通过供给管路33供给到成膜室50的腔室51内。并且,向加热的基板S供给混合气体,将具有钙钛矿型结晶的PZT薄膜形成在基板S上。本实施方式中,以约15nm/min的成膜速率形成约70nm的PZT薄膜。因此,成膜所消耗的时间约300秒。然而,对成膜的PZT薄膜的厚度、成膜速率以及成膜所消耗的时间并不限于这些。The mixed gas generated by the
成膜结束后,关闭运行管路21的阀门V1,打开通风管路22的阀门V2。因此,停止向腔室51内的基板S供给金属原料溶液的汽化气体,汽化气体被排弃到通风管路22。After the film formation is completed, the valve V1 of the
本实施方式中,停止向基板S供给金属原料气体后,限制连接到混合器30的氧化气体供给部31的O2的供给。对于这里所说的限制,本实施方式中是指停止向基板S供给O2。并且,从惰性气体供给部32供给规定量的N2,通过混合气体通过的供给管路33,将N2供给到腔室51内。此时的N2的量,可以维持在氧化气体供给部31的O2的供给停止前的流量,也可以在O2的供给停止后适当限制。或者,N2的量也可以设定成腔室51内的内部压力满足成膜压力条件的压力(约2Torr)。In the present embodiment, after the supply of the metal raw material gas to the substrate S is stopped, the supply of O2 to the oxidizing gas supply unit 31 connected to the
停止向腔室51内供给金属原料溶液的汽化气体,从规定量的N2供给到腔室51内经过一定时间后,打开成膜室50以及输送室201之间的闸阀203,卸载成膜处理的基板S。本实施方式中,经过约60秒后,卸载基板S,但不限于此。例如,也可以经过30秒~120秒后卸载基板S。到基板S被卸载的时间,可基于如成膜处理的处理时间或基板的变质等可能性进行适当设定。Stop supplying the vaporized gas of the metal raw material solution into the
这样成膜后,因为供给N2后经过一定时间后卸载基板S,所以例如能够充分排出残留在成膜室50的混合气体后卸载基板S。因此,能够防止例如在卸载基板S时,残留的混合气体流入输送室201,可防止颗粒等产生。After film formation in this way, since the substrate S is unloaded after a certain time has elapsed after N2 is supplied, for example, the mixed gas remaining in the
图3是相对于供给给基板的Pb原料气体的流量比气体(Pb/(Zr+Ti)),表示制造的PZT薄膜中的Pb组成比例膜(Pb/(Zr+Ti))以及Zr组成比例膜(Zr/(Zr+Ti))的曲线图。Fig. 3 shows the Pb composition ratio film (Pb/(Zr+Ti)) and the Zr composition ratio in the produced PZT thin film relative to the flow ratio gas (Pb/(Zr+Ti)) of the Pb raw material gas supplied to the substrate Graph of film (Zr/(Zr+Ti)).
图3的曲线图中,图示了关于本实施方式中的薄膜制造装置100制造的PZT薄膜的曲线图和关于以比较例列举的薄膜制造方法制造的PZT薄膜的曲线图。本实施方式所涉及的PZT薄膜在成膜后,也就是说停止向成膜室50供给金属原料气体后,向腔室51内供给N2所制造的薄膜。另一方面,作为比较例列举的PZT薄膜在停止向成膜室50供给金属原料气体后,向腔室51内供给O2所制造的薄膜。3 shows a graph for the PZT thin film manufactured by the thin
在制造具有钙钛矿型结晶的电介质薄膜的PZT薄膜时,从Pb原料气体的流量少的一方,依次出现非晶区域、自对准区域以及PbO析出区域。非晶区域是Pb组成在化学计量比以下,得不到结晶性的PZT薄膜的区域,自对准区域是即使使Pb原料气体的流量变化,薄膜中的Pb组成比例的变化也很小的区域。PbO析出区域是PbO结晶析出,薄膜中的Pb组成急剧增加的区域。图3所示的曲线图中,图示了上述三个区域中的自对准区域内的测量结果。When a PZT thin film having a perovskite-type crystal dielectric thin film is produced, an amorphous region, a self-aligned region, and a PbO-deposited region appear in order from the flow rate of the Pb source gas. The amorphous region is a region where the Pb composition is below the stoichiometric ratio, and a crystalline PZT thin film cannot be obtained, and the self-aligned region is a region where the change in the Pb composition ratio in the thin film is small even if the flow rate of the Pb raw material gas is changed. . The PbO precipitation region is a region where PbO crystals precipitate and the Pb composition in the thin film increases rapidly. In the graph shown in FIG. 3 , the measurement results in the self-alignment region among the above-mentioned three regions are illustrated.
需要说明的是,图3中,Pb流量比的值为约1.15~1.5的区域作为自对准区域内的区域。然而,自对准区域基于例如成膜室50中的内部压力或温度等各成膜条件进行变动。因此,在制造PZT薄膜时,基于各成膜条件,适当设定自对准区域内所包含的Pb流量比。It should be noted that, in FIG. 3 , the region where the Pb flow rate ratio is about 1.15˜1.5 is defined as the region within the self-alignment region. However, the self-alignment region varies based on various film forming conditions such as internal pressure or temperature in the
如图3所示,所制造的PZT薄膜的Zr组成比例在本实施方式所涉及的PZT薄膜和比较例所涉及的PZT薄膜中几乎没有差别。也就是说,在成膜后供给到腔室51内的气体,可以是N2也可以是O2,PZT薄膜的Zr组成比例几乎看不出变化。需要说明的是,PZT薄膜的Zr组成比例,能够基于图1所示原料供给部10中的Zr流量比进行适当设定。Zr组成比例也可以设定成所制造PZT薄膜具有所期望的特性。As shown in FIG. 3 , there is almost no difference in the Zr composition ratio of the produced PZT thin film between the PZT thin film according to the present embodiment and the PZT thin film according to the comparative example. That is, the gas supplied to the
另一方面,从所制造的PZT薄膜的Pb组成比例来看,对比本实施方式所涉及的PZT薄膜,比较例所涉及的PZT薄膜的值大。也就是说,在成膜后所供给的气体是N2的本实施方式所涉及的制造方法,相比在成膜后供给O2的比较例的制造方法,能够抑制自对准区域中Pb组成的增加。On the other hand, in terms of the Pb composition ratio of the produced PZT thin film, the value of the PZT thin film according to the comparative example is larger than that of the PZT thin film according to the present embodiment. That is, the manufacturing method according to the present embodiment in which the gas supplied after film formation is N2 can suppress the composition of Pb in the self-alignment region compared to the production method of the comparative example in which O2 is supplied after film formation. increase.
通过自对准区域的机制,理想地得到PZT结晶,且未组成钙钛矿型结晶的多余的原子被排除。然而,实际上,多余的Pb原子会例如残留在PZT薄膜的晶界或表面。另外,也有Pb附着在腔室51内的零件等的情况。Through the mechanism of the self-aligned region, the PZT crystal is ideally obtained, and the redundant atoms that do not constitute the perovskite crystal are excluded. In practice, however, excess Pb atoms may remain, for example, on the grain boundaries or surfaces of the PZT thin film. In addition, Pb may adhere to components and the like in the
考虑到这种状态下在成膜后供给O2时,例如PZT薄膜中残留的多余的Pb原子或从PZT薄膜挥发出的Pb原子与O2在加热到600℃以上的基板上结合容易生成PbO。另外,也要考虑到由附着在腔室51内的零件上的Pb挥发的气相中的Pb原子与O2相结合的情况。认为生成的PbO引入PZT薄膜的晶界或表面层,因此成为图3的曲线图所示的结果。Considering that whenO2 is supplied after film formation in this state, for example, excess Pb atoms remaining in the PZT thin film or Pb atoms volatilized from the PZT thin film combine withO2 to easily form PbO on the substrate heated to 600°C or higher. . In addition, it is also considered that Pb atoms in the gas phase volatilized from Pb adhering to components in the
图4是表示本实施方式中的薄膜制造装置100所制造的PZT薄膜、比较例中的制造方法所制造的PZT薄膜的各表面层的相片,以及表面层的各测量值的图。图4(A)是本实施方式所涉及的PZT薄膜,图4(B)是比较例所涉及的PZT薄膜。各相片由原子力显微镜拍摄。4 is a graph showing photographs of each surface layer of the PZT thin film manufactured by the thin
图4(A)以及(B)所示的各PZT薄膜是在Pb原料气体的流量比为1.15的情况下制造的薄膜。测量值Ra是平均表面粗糙度,测量值Rms是均方根粗糙度。测量值P-V是峰对谷。Each of the PZT thin films shown in FIGS. 4(A) and (B) was produced when the flow rate ratio of the Pb source gas was 1.15. The measured value Ra is the average surface roughness, and the measured value Rms is the root mean square roughness. Measurements P-V are peak-to-valley.
如这些测量值所示,可以得知本实施方式所涉及的薄膜制造装置100所制造的PZT薄膜与比较例所涉及的制造方法所制造的PZT薄膜相比,表面粗糙度要小。如上所述,本实施方式所涉及的薄膜制造方法中,能够防止未构成钙钛矿型结晶的多余的Pb原子在成膜后作为PbO引入PZT薄膜的表面层。因此,认为本实施方式所涉及的PZT薄膜的表面粗糙度较小。As shown by these measured values, it can be seen that the PZT thin film manufactured by the thin
以上,本实施方式所涉及的薄膜制造装置100,以及通过该装置100进行的薄膜制造方法中,停止向基板S供给金属原料气体后,停止向基板S供给O2。因此,能够抑制成膜后未构成钙钛矿型结晶的多余的Pb原子与O2发生反应。因此,多余的Pb原子不会例如以氧化物PbO引入PZT薄膜的表面层,能够制造出表面粗糙度小的PZT薄膜。As described above, in the thin
另外,本实施方式所涉及的薄膜制造方法中,根据成膜后停止供给O2,向腔室51内供给惰性气体N2,能够将例如腔室51内的内部压力调节到满足成膜压力条件的压力。因此,如在300枚左右的多个基板S上按顺序形成PZT薄膜时,能够有效地促进成膜过程。In addition, in the thin film manufacturing method according to this embodiment, by stopping the supply of O2 after film formation and supplying inert gas N2 into the
另外,如图1所示,本实施方式所涉及的薄膜制造方法中,混合器30连接有惰性气体供给部32,用于制造PZT薄膜的混合气体中包含作为惰性气体的N2。并且,该N2根据O2的供给停止供给到腔室51内。因此成膜后,不需要用于将惰性气体供给到腔室51内的新机构,能够在成膜后容易地供给惰性气体。In addition, as shown in FIG. 1 , in the thin film manufacturing method according to the present embodiment, the
进一步,本实施方式所涉及的薄膜制造方法中,通过连接混合器30和腔室51的供给管路33供给混合气体,成膜后通过混合气体通过的供给管路33供给N2。因此,金属原料气体的供给停止后,向腔室51内供给N2,以便挤压出包含金属原料气体的混合气体。因此,能够防止金属原料气体积聚在供给管路33中。此结果能够防止例如在成膜后的N2的供给中,供给管路中积聚的金属原料气体(混合气体)被供给到腔室51内,能够稳定的在基板S上形成PZT薄膜。Furthermore, in the thin film manufacturing method according to this embodiment, the mixed gas is supplied through the supply line 33 connecting the
本发明并不只限定于上述的实施方式,在不脱离本发明主旨的范围内可以进行各种变更。The present invention is not limited to the above-described embodiments, and various changes can be made without departing from the gist of the present invention.
例如,图5是表示图1所示的薄膜制造装置100的变形例的示意图。该薄膜制造装置300中,惰性气体供给部332没有连接到混合器330,而是单独连接到腔室351的喷头353。通过混合器330将金属原料气体和氧化气体进行混合,将其混合气体供给到基板S。因此,在基板S上形成PZT薄膜。成膜后,来自混合器330的混合气体(金属原料气体以及氧化气体)的供给停止,从惰性气体供给部332将惰性气体供给到腔室内。这样,惰性气体供给部332也可以连接到与混合器330不同的腔室351。For example, FIG. 5 is a schematic diagram showing a modified example of the thin
停止向基板供给金属原料气体后,也可以不进行惰性气体的供给。即使这种情况,如果在金属原料气体的供给停止后停止氧化气体的供给,也能够防止成膜后不需要的Pb原子和氧化气体反应,其氧化物PbO引入在PZT薄膜的表面层。成膜后不进行惰性气体的供给时,成膜后,成膜室内部一度处于打开的状态,在此状态下从输送室输送基板。After the supply of the metal raw material gas to the substrate is stopped, the supply of the inert gas may not be performed. Even in this case, if the supply of the oxidizing gas is stopped after the supply of the metal material gas is stopped, it is possible to prevent unnecessary Pb atoms from reacting with the oxidizing gas after film formation, and its oxide PbO is introduced into the surface layer of the PZT thin film. When the inert gas is not supplied after film formation, the inside of the film formation chamber is once opened after film formation, and the substrate is transported from the transport chamber in this state.
另外,也可以不设置混合器,金属原料气体、氧化气体供给部以及惰性气体供给部分别单独地连接到腔室。这种情况下,将会在腔室内生成金属原料气体、氧化气体以及惰性气体的混合气体。成膜后,像上述所说明的那样,能够控制氧化气体以及惰性气体的供给。In addition, the mixer may not be provided, and the metal raw material gas, the oxidizing gas supply unit, and the inert gas supply unit may be separately connected to the chamber. In this case, a mixed gas of metal raw material gas, oxidizing gas, and inert gas will be generated in the chamber. After film formation, the supply of the oxidizing gas and the inert gas can be controlled as described above.
上述实施方式中,停止向基板供给金属原料气体后,停止氧化气体的供给。然而,也可以在成膜后减少氧化气体的供给。也就是说,氧化气体的供给限制,可以包含氧化气体的供给停止和减少两个方面。通过成膜后减少氧化气体的供给,能够抑制成膜后的多余的Pb原子和氧化气体的反应。In the above-described embodiment, after the supply of the metal raw material gas to the substrate is stopped, the supply of the oxidizing gas is stopped. However, it is also possible to reduce the supply of the oxidizing gas after film formation. That is, the supply restriction of the oxidizing gas may include two aspects of stopping and reducing the supply of the oxidizing gas. By reducing the supply of the oxidizing gas after the film formation, the reaction between the excess Pb atoms after the film formation and the oxidizing gas can be suppressed.
上述实施方式中,由薄膜制造装置100制造PZT薄膜。然而,即使在制造作为具有钙钛矿型结晶的电介质薄膜的PZT薄膜以外的薄膜的情况下,本发明也能够适用。作为那样的电介质薄膜,例如,有锆钛酸铅镧((Pb,La)(Zr,Ti)O3,PLZT)或钽酸锶铋(SrBi2,Ta2,O9,SBT)等。In the above-described embodiment, the PZT thin film was manufactured by the thin
如图2所示,上述中作为包含本发明的实施方式所涉及的薄膜制造装置100的装置,示例出多室型成膜装置200。然而,也可以在例如具有蚀刻处理装置或洗净处理装置等的多个处理装置的基板处理装置上,设置本实施方式的薄膜制造装置100。作为这种基板处理装置,例如有集群式或连续式的基板处理装置。As shown in FIG. 2 , the multi-chamber
符号说明Symbol Description
S...基板S...Substrate
10...原料供给部10...Raw material supply department
11、12、33...供给管路11, 12, 33... supply lines
12...供给管路12...Supply line
20...汽化器20...Carburetor
21...运行管路21...Run pipeline
22...通风管路22...ventilation line
30、330...混合器30, 330... mixer
31...氧化气体供给部31...Oxidation gas supply unit
32、332...惰性气体供给部32, 332... Inert gas supply unit
51、351...腔室51, 351... chambers
100、300...薄膜制造装置。100, 300... Thin film manufacturing apparatus.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010-210752 | 2010-09-21 | ||
| JP2010210752 | 2010-09-21 | ||
| PCT/JP2011/005134WO2012039107A1 (en) | 2010-09-21 | 2011-09-13 | Thin film production process and thin film production device |
| Publication Number | Publication Date |
|---|---|
| CN103119696Atrue CN103119696A (en) | 2013-05-22 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2011800450686APendingCN103119696A (en) | 2010-09-21 | 2011-09-13 | Film manufacturing method and film manufacturing apparatus |
| Country | Link |
|---|---|
| US (1) | US20130216710A1 (en) |
| EP (1) | EP2620975A4 (en) |
| JP (1) | JP5719849B2 (en) |
| KR (1) | KR101408431B1 (en) |
| CN (1) | CN103119696A (en) |
| TW (1) | TWI561666B (en) |
| WO (1) | WO2012039107A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108728824A (en)* | 2017-04-17 | 2018-11-02 | Asm Ip控股有限公司 | The method for carrying out plasmaassisted cyclic deposition using the reaction gas of oblique deascension flow |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
| US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
| JP2014150191A (en)* | 2013-02-01 | 2014-08-21 | Ulvac Japan Ltd | Pzt film manufacturing method and deposition apparatus |
| JP2015065277A (en)* | 2013-09-25 | 2015-04-09 | 株式会社アルバック | Method for manufacturing pzt thin film |
| US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
| US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
| US10014196B2 (en)* | 2015-10-20 | 2018-07-03 | Lam Research Corporation | Wafer transport assembly with integrated buffers |
| US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
| US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
| US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
| US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
| US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
| US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
| US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
| US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
| US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
| KR102546317B1 (en) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Gas supply unit and substrate processing apparatus including the same |
| US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
| US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
| US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
| US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
| US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
| US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
| US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
| KR20190009245A (en) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Methods for forming a semiconductor device structure and related semiconductor device structures |
| US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
| US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
| TWI815813B (en) | 2017-08-04 | 2023-09-21 | 荷蘭商Asm智慧財產控股公司 | Showerhead assembly for distributing a gas within a reaction chamber |
| US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
| US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
| US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
| US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
| US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
| US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
| US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
| US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
| WO2019103613A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | A storage device for storing wafer cassettes for use with a batch furnace |
| CN111344522B (en) | 2017-11-27 | 2022-04-12 | 阿斯莫Ip控股公司 | Including clean mini-environment device |
| KR20190068717A (en) | 2017-12-10 | 2019-06-19 | 김선오 | add USB port to smartphone's case |
| US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
| KR102695659B1 (en) | 2018-01-19 | 2024-08-14 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing a gap filling layer by plasma assisted deposition |
| TWI799494B (en) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | Deposition method |
| US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
| US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
| WO2019158960A1 (en) | 2018-02-14 | 2019-08-22 | Asm Ip Holding B.V. | A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
| US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
| KR102636427B1 (en) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing method and apparatus |
| US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
| US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
| KR102646467B1 (en) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electrode on a substrate and a semiconductor device structure including an electrode |
| KR102600229B1 (en) | 2018-04-09 | 2023-11-10 | 에이에스엠 아이피 홀딩 비.브이. | Substrate supporting device, substrate processing apparatus including the same and substrate processing method |
| US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
| US12272527B2 (en) | 2018-05-09 | 2025-04-08 | Asm Ip Holding B.V. | Apparatus for use with hydrogen radicals and method of using same |
| KR102596988B1 (en) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | Method of processing a substrate and a device manufactured by the same |
| US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
| KR102568797B1 (en) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing system |
| US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
| TWI873894B (en) | 2018-06-27 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
| KR102854019B1 (en) | 2018-06-27 | 2025-09-02 | 에이에스엠 아이피 홀딩 비.브이. | Periodic deposition method for forming a metal-containing material and films and structures comprising the metal-containing material |
| US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
| US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
| US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
| KR102707956B1 (en) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | Method for deposition of a thin film |
| US11024523B2 (en) | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| CN110970344B (en) | 2018-10-01 | 2024-10-25 | Asmip控股有限公司 | Substrate holding apparatus, system comprising the same and method of using the same |
| KR102592699B1 (en) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same |
| KR102546322B1 (en) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus and substrate processing method |
| US12378665B2 (en) | 2018-10-26 | 2025-08-05 | Asm Ip Holding B.V. | High temperature coatings for a preclean and etch apparatus and related methods |
| US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
| KR102748291B1 (en) | 2018-11-02 | 2024-12-31 | 에이에스엠 아이피 홀딩 비.브이. | Substrate support unit and substrate processing apparatus including the same |
| US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
| US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
| US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
| KR102636428B1 (en) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | A method for cleaning a substrate processing apparatus |
| US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
| TWI874340B (en) | 2018-12-14 | 2025-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming device structure, structure formed by the method and system for performing the method |
| TWI866480B (en) | 2019-01-17 | 2024-12-11 | 荷蘭商Asm Ip 私人控股有限公司 | Methods of forming a transition metal containing film on a substrate by a cyclical deposition process |
| TWI845607B (en) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Cyclical deposition method and apparatus for filling a recess formed within a substrate surface |
| TWI838458B (en) | 2019-02-20 | 2024-04-11 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for plug fill deposition in 3-d nand applications |
| TWI873122B (en) | 2019-02-20 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | Method of filling a recess formed within a surface of a substrate, semiconductor structure formed according to the method, and semiconductor processing apparatus |
| TWI842826B (en) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing apparatus and method for processing substrate |
| KR102858005B1 (en) | 2019-03-08 | 2025-09-09 | 에이에스엠 아이피 홀딩 비.브이. | Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer |
| US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
| JP2020167398A (en) | 2019-03-28 | 2020-10-08 | エーエスエム・アイピー・ホールディング・ベー・フェー | Door openers and substrate processing equipment provided with door openers |
| KR102809999B1 (en) | 2019-04-01 | 2025-05-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of manufacturing semiconductor device |
| KR20200123380A (en) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | Layer forming method and apparatus |
| KR20200125453A (en) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Gas-phase reactor system and method of using same |
| JP7262287B2 (en)* | 2019-04-25 | 2023-04-21 | 株式会社アルバック | Deposition method |
| KR20200130121A (en) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | Chemical source vessel with dip tube |
| KR20200130652A (en) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing material onto a surface and structure formed according to the method |
| JP7612342B2 (en) | 2019-05-16 | 2025-01-14 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
| JP7598201B2 (en) | 2019-05-16 | 2024-12-11 | エーエスエム・アイピー・ホールディング・ベー・フェー | Wafer boat handling apparatus, vertical batch furnace and method |
| USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
| USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
| KR20200141002A (en) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of using a gas-phase reactor system including analyzing exhausted gas |
| KR20200141931A (en) | 2019-06-10 | 2020-12-21 | 에이에스엠 아이피 홀딩 비.브이. | Method for cleaning quartz epitaxial chambers |
| KR20200143254A (en) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method |
| KR20210005515A (en) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Temperature control assembly for substrate processing apparatus and method of using same |
| JP7499079B2 (en) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | Plasma device using coaxial waveguide and substrate processing method |
| CN112216646A (en) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | Substrate supporting assembly and substrate processing device comprising same |
| KR20210010307A (en) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
| KR102860110B1 (en) | 2019-07-17 | 2025-09-16 | 에이에스엠 아이피 홀딩 비.브이. | Methods of forming silicon germanium structures |
| KR20210010816A (en) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Radical assist ignition plasma system and method |
| US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
| KR20210010817A (en) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of Forming Topology-Controlled Amorphous Carbon Polymer Film |
| TWI851767B (en) | 2019-07-29 | 2024-08-11 | 荷蘭商Asm Ip私人控股有限公司 | Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation |
| US12169361B2 (en) | 2019-07-30 | 2024-12-17 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
| CN112309900A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
| CN112309899A (en) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
| US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
| CN112323048B (en) | 2019-08-05 | 2024-02-09 | Asm Ip私人控股有限公司 | Liquid level sensor for chemical source container |
| CN112342526A (en) | 2019-08-09 | 2021-02-09 | Asm Ip私人控股有限公司 | Heater assembly including cooling device and method of using same |
| USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
| USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
| JP2021031769A (en) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | Production apparatus of mixed gas of film deposition raw material and film deposition apparatus |
| KR20210024423A (en) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for forming a structure with a hole |
| USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
| US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
| KR20210024420A (en) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane |
| KR102806450B1 (en) | 2019-09-04 | 2025-05-12 | 에이에스엠 아이피 홀딩 비.브이. | Methods for selective deposition using a sacrificial capping layer |
| KR102733104B1 (en) | 2019-09-05 | 2024-11-22 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
| US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
| CN112593212B (en) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process |
| TWI846953B (en) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
| KR20210042810A (en) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | Reactor system including a gas distribution assembly for use with activated species and method of using same |
| TW202128273A (en) | 2019-10-08 | 2021-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Gas injection system, reactor system, and method of depositing material on surface of substratewithin reaction chamber |
| TWI846966B (en) | 2019-10-10 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a photoresist underlayer and structure including same |
| US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
| TWI834919B (en) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Method of topology-selective film formation of silicon oxide |
| US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
| KR102845724B1 (en) | 2019-10-21 | 2025-08-13 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for selectively etching films |
| KR20210050453A (en) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
| US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
| KR20210054983A (en) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | Structures with doped semiconductor layers and methods and systems for forming same |
| US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
| KR102861314B1 (en) | 2019-11-20 | 2025-09-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure |
| CN112951697B (en) | 2019-11-26 | 2025-07-29 | Asmip私人控股有限公司 | Substrate processing apparatus |
| US11450529B2 (en) | 2019-11-26 | 2022-09-20 | Asm Ip Holding B.V. | Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface |
| CN112885692B (en) | 2019-11-29 | 2025-08-15 | Asmip私人控股有限公司 | Substrate processing apparatus |
| CN120432376A (en) | 2019-11-29 | 2025-08-05 | Asm Ip私人控股有限公司 | Substrate processing apparatus |
| JP7527928B2 (en) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing apparatus and substrate processing method |
| KR20210070898A (en) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
| KR20210078405A (en) | 2019-12-17 | 2021-06-28 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming vanadium nitride layer and structure including the vanadium nitride layer |
| KR20210080214A (en) | 2019-12-19 | 2021-06-30 | 에이에스엠 아이피 홀딩 비.브이. | Methods for filling a gap feature on a substrate and related semiconductor structures |
| JP7730637B2 (en) | 2020-01-06 | 2025-08-28 | エーエスエム・アイピー・ホールディング・ベー・フェー | Gas delivery assembly, components thereof, and reactor system including same |
| JP7636892B2 (en) | 2020-01-06 | 2025-02-27 | エーエスエム・アイピー・ホールディング・ベー・フェー | Channeled Lift Pins |
| US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
| KR20210093163A (en) | 2020-01-16 | 2021-07-27 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming high aspect ratio features |
| KR102675856B1 (en) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming thin film and method of modifying surface of thin film |
| TWI889744B (en) | 2020-01-29 | 2025-07-11 | 荷蘭商Asm Ip私人控股有限公司 | Contaminant trap system, and baffle plate stack |
| TW202513845A (en) | 2020-02-03 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor structures and methods for forming the same |
| KR20210100010A (en) | 2020-02-04 | 2021-08-13 | 에이에스엠 아이피 홀딩 비.브이. | Method and apparatus for transmittance measurements of large articles |
| US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
| KR20210103956A (en) | 2020-02-13 | 2021-08-24 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus including light receiving device and calibration method of light receiving device |
| TW202146691A (en) | 2020-02-13 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Gas distribution assembly, shower plate assembly, and method of adjusting conductance of gas to reaction chamber |
| TWI855223B (en) | 2020-02-17 | 2024-09-11 | 荷蘭商Asm Ip私人控股有限公司 | Method for growing phosphorous-doped silicon layer |
| CN113410160A (en) | 2020-02-28 | 2021-09-17 | Asm Ip私人控股有限公司 | System specially used for cleaning parts |
| KR20210113043A (en) | 2020-03-04 | 2021-09-15 | 에이에스엠 아이피 홀딩 비.브이. | Alignment fixture for a reactor system |
| KR20210116240A (en) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | Substrate handling device with adjustable joints |
| US11876356B2 (en) | 2020-03-11 | 2024-01-16 | Asm Ip Holding B.V. | Lockout tagout assembly and system and method of using same |
| KR102775390B1 (en) | 2020-03-12 | 2025-02-28 | 에이에스엠 아이피 홀딩 비.브이. | Method for Fabricating Layer Structure Having Target Topological Profile |
| US12173404B2 (en) | 2020-03-17 | 2024-12-24 | Asm Ip Holding B.V. | Method of depositing epitaxial material, structure formed using the method, and system for performing the method |
| KR102755229B1 (en) | 2020-04-02 | 2025-01-14 | 에이에스엠 아이피 홀딩 비.브이. | Thin film forming method |
| TWI887376B (en) | 2020-04-03 | 2025-06-21 | 荷蘭商Asm Ip私人控股有限公司 | Method for manufacturing semiconductor device |
| TWI888525B (en) | 2020-04-08 | 2025-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus and methods for selectively etching silcon oxide films |
| KR20210127620A (en) | 2020-04-13 | 2021-10-22 | 에이에스엠 아이피 홀딩 비.브이. | method of forming a nitrogen-containing carbon film and system for performing the method |
| KR20210128343A (en) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | Method of forming chromium nitride layer and structure including the chromium nitride layer |
| US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
| US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
| KR20210130646A (en) | 2020-04-21 | 2021-11-01 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
| KR20210132612A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and apparatus for stabilizing vanadium compounds |
| CN113555279A (en) | 2020-04-24 | 2021-10-26 | Asm Ip私人控股有限公司 | Methods of forming vanadium nitride-containing layers and structures comprising the same |
| TW202208671A (en) | 2020-04-24 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Methods of forming structures including vanadium boride and vanadium phosphide layers |
| KR20210132600A (en) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element |
| KR102866804B1 (en) | 2020-04-24 | 2025-09-30 | 에이에스엠 아이피 홀딩 비.브이. | Vertical batch furnace assembly comprising a cooling gas supply |
| KR102783898B1 (en) | 2020-04-29 | 2025-03-18 | 에이에스엠 아이피 홀딩 비.브이. | Solid source precursor vessel |
| KR20210134869A (en) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Fast FOUP swapping with a FOUP handler |
| JP7726664B2 (en) | 2020-05-04 | 2025-08-20 | エーエスエム・アイピー・ホールディング・ベー・フェー | Substrate processing system for processing a substrate |
| KR20210137395A (en) | 2020-05-07 | 2021-11-17 | 에이에스엠 아이피 홀딩 비.브이. | Apparatus and methods for performing an in-situ etch of reaction chambers with fluorine-based radicals |
| KR102788543B1 (en) | 2020-05-13 | 2025-03-27 | 에이에스엠 아이피 홀딩 비.브이. | Laser alignment fixture for a reactor system |
| TW202146699A (en) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming a silicon germanium layer, semiconductor structure, semiconductor device, method of forming a deposition layer, and deposition system |
| KR20210143653A (en) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | Substrate processing apparatus |
| KR20210145079A (en) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | Flange and apparatus for processing substrates |
| KR102795476B1 (en) | 2020-05-21 | 2025-04-11 | 에이에스엠 아이피 홀딩 비.브이. | Structures including multiple carbon layers and methods of forming and using same |
| TWI873343B (en) | 2020-05-22 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | Reaction system for forming thin film on substrate |
| KR20210146802A (en) | 2020-05-26 | 2021-12-06 | 에이에스엠 아이피 홀딩 비.브이. | Method for depositing boron and gallium containing silicon germanium layers |
| TWI876048B (en) | 2020-05-29 | 2025-03-11 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing device |
| TW202212620A (en) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Apparatus for processing substrate, method of forming film, and method of controlling apparatus for processing substrate |
| TW202208659A (en) | 2020-06-16 | 2022-03-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for depositing boron containing silicon germanium layers |
| TW202218133A (en) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming a layer provided with silicon |
| TWI873359B (en) | 2020-06-30 | 2025-02-21 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
| TW202202649A (en) | 2020-07-08 | 2022-01-16 | 荷蘭商Asm Ip私人控股有限公司 | Substrate processing method |
| KR20220010438A (en) | 2020-07-17 | 2022-01-25 | 에이에스엠 아이피 홀딩 비.브이. | Structures and methods for use in photolithography |
| TWI878570B (en) | 2020-07-20 | 2025-04-01 | 荷蘭商Asm Ip私人控股有限公司 | Method and system for depositing molybdenum layers |
| KR20220011092A (en) | 2020-07-20 | 2022-01-27 | 에이에스엠 아이피 홀딩 비.브이. | Method and system for forming structures including transition metal layers |
| US12322591B2 (en) | 2020-07-27 | 2025-06-03 | Asm Ip Holding B.V. | Thin film deposition process |
| KR20220021863A (en) | 2020-08-14 | 2022-02-22 | 에이에스엠 아이피 홀딩 비.브이. | Method for processing a substrate |
| US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
| TW202228863A (en) | 2020-08-25 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method for cleaning a substrate, method for selectively depositing, and reaction system |
| US11725280B2 (en) | 2020-08-26 | 2023-08-15 | Asm Ip Holding B.V. | Method for forming metal silicon oxide and metal silicon oxynitride layers |
| TW202229601A (en) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming patterned structures, method of manipulating mechanical property, device structure, and substrate processing system |
| USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
| KR20220036866A (en) | 2020-09-16 | 2022-03-23 | 에이에스엠 아이피 홀딩 비.브이. | Silicon oxide deposition method |
| USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
| TWI889903B (en) | 2020-09-25 | 2025-07-11 | 荷蘭商Asm Ip私人控股有限公司 | Semiconductor processing method |
| US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
| KR20220045900A (en) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | Deposition method and an apparatus for depositing a silicon-containing material |
| CN114293174A (en) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | Gas supply unit and substrate processing apparatus including the same |
| TW202229613A (en) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing material on stepped structure |
| TW202232565A (en) | 2020-10-15 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Method of manufacturing semiconductor device, and substrate treatment apparatus using ether-cat |
| TW202217037A (en) | 2020-10-22 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of depositing vanadium metal, structure, device and a deposition assembly |
| TW202223136A (en) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | Method for forming layer on substrate, and semiconductor processing system |
| TW202229620A (en) | 2020-11-12 | 2022-08-01 | 特文特大學 | Deposition system, method for controlling reaction condition, method for depositing |
| TW202229795A (en) | 2020-11-23 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | A substrate processing apparatus with an injector |
| TW202235649A (en) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Methods for filling a gap and related systems and devices |
| TW202235675A (en) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | Injector, and substrate processing apparatus |
| US12255053B2 (en) | 2020-12-10 | 2025-03-18 | Asm Ip Holding B.V. | Methods and systems for depositing a layer |
| TW202233884A (en) | 2020-12-14 | 2022-09-01 | 荷蘭商Asm Ip私人控股有限公司 | Method of forming structures for threshold voltage control |
| US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
| TW202232639A (en) | 2020-12-18 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Wafer processing apparatus with a rotatable table |
| TW202226899A (en) | 2020-12-22 | 2022-07-01 | 荷蘭商Asm Ip私人控股有限公司 | Plasma treatment device having matching box |
| TW202231903A (en) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate |
| TW202242184A (en) | 2020-12-22 | 2022-11-01 | 荷蘭商Asm Ip私人控股有限公司 | Precursor capsule, precursor vessel, vapor deposition assembly, and method of loading solid precursor into precursor vessel |
| USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
| USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
| USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
| USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
| USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
| USD1060598S1 (en) | 2021-12-03 | 2025-02-04 | Asm Ip Holding B.V. | Split showerhead cover |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010004533A1 (en)* | 1999-12-16 | 2001-06-21 | Ichiro Yamamoto | Process for fabricating capacitor having dielectric layer with perovskite structure and apparatus for fabricating the same |
| CN1488166A (en)* | 2001-01-18 | 2004-04-07 | ��ʽ����ɱ����� | Ferroelectric thin film, metal thin film or oxide thin film, manufacturing method and manufacturing device thereof, and electronic or electric device using thin film |
| CN1668776A (en)* | 2002-07-22 | 2005-09-14 | 工程吸气公司 | Zirconium complex useful in a CVD method and a thin film preparation method using the complex |
| JP3756462B2 (en)* | 2002-04-26 | 2006-03-15 | 富士通株式会社 | Deposition method |
| US20080248595A1 (en)* | 2005-06-16 | 2008-10-09 | Tokyo Electron Limited | Method for Manufacturing Semiconductor Device and Computer Storage Medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3210794B2 (en)* | 1993-12-28 | 2001-09-17 | 大阪瓦斯株式会社 | CVD thin film forming method |
| US6699530B2 (en)* | 1995-07-06 | 2004-03-02 | Applied Materials, Inc. | Method for constructing a film on a semiconductor wafer |
| JP3469420B2 (en)* | 1996-12-20 | 2003-11-25 | 東京エレクトロン株式会社 | CVD film forming method |
| US6534809B2 (en)* | 1999-12-22 | 2003-03-18 | Agilent Technologies, Inc. | Hardmask designs for dry etching FeRAM capacitor stacks |
| WO2001050510A2 (en)* | 2000-01-06 | 2001-07-12 | Applied Materials, Inc. | Low thermal budget metal oxide deposition for capacitor structures |
| JP3863073B2 (en)* | 2002-06-20 | 2006-12-27 | 富士通株式会社 | Film forming apparatus and film forming method |
| JP4153333B2 (en) | 2003-03-10 | 2008-09-24 | 株式会社アルバック | Method for producing oxide thin film |
| US7132355B2 (en)* | 2004-09-01 | 2006-11-07 | Micron Technology, Inc. | Method of forming a layer comprising epitaxial silicon and a field effect transistor |
| JP2006222136A (en)* | 2005-02-08 | 2006-08-24 | Tokyo Electron Ltd | Capacitor element manufacturing method, semiconductor device manufacturing method, and semiconductor manufacturing apparatus |
| WO2008016047A1 (en)* | 2006-08-02 | 2008-02-07 | Ulvac, Inc. | Film-forming method and film-forming apparatus |
| JP2009158539A (en)* | 2007-12-25 | 2009-07-16 | Fujitsu Ltd | Manufacturing method of semiconductor device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010004533A1 (en)* | 1999-12-16 | 2001-06-21 | Ichiro Yamamoto | Process for fabricating capacitor having dielectric layer with perovskite structure and apparatus for fabricating the same |
| CN1488166A (en)* | 2001-01-18 | 2004-04-07 | ��ʽ����ɱ����� | Ferroelectric thin film, metal thin film or oxide thin film, manufacturing method and manufacturing device thereof, and electronic or electric device using thin film |
| JP3756462B2 (en)* | 2002-04-26 | 2006-03-15 | 富士通株式会社 | Deposition method |
| CN1668776A (en)* | 2002-07-22 | 2005-09-14 | 工程吸气公司 | Zirconium complex useful in a CVD method and a thin film preparation method using the complex |
| US20080248595A1 (en)* | 2005-06-16 | 2008-10-09 | Tokyo Electron Limited | Method for Manufacturing Semiconductor Device and Computer Storage Medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108728824A (en)* | 2017-04-17 | 2018-11-02 | Asm Ip控股有限公司 | The method for carrying out plasmaassisted cyclic deposition using the reaction gas of oblique deascension flow |
| CN108728824B (en)* | 2017-04-17 | 2022-01-11 | Asm Ip控股有限公司 | Method for plasma-assisted cyclic deposition using ramp-down flow of reactant gas |
| TWI782003B (en)* | 2017-04-17 | 2022-11-01 | 荷蘭商Asm智慧財產控股公司 | Method of plasma-assisted cyclic deposition using ramp-down flow of reactant gas |
| Publication number | Publication date |
|---|---|
| JPWO2012039107A1 (en) | 2014-02-03 |
| JP5719849B2 (en) | 2015-05-20 |
| US20130216710A1 (en) | 2013-08-22 |
| EP2620975A4 (en) | 2014-07-23 |
| EP2620975A1 (en) | 2013-07-31 |
| KR101408431B1 (en) | 2014-06-17 |
| WO2012039107A1 (en) | 2012-03-29 |
| KR20130032914A (en) | 2013-04-02 |
| TWI561666B (en) | 2016-12-11 |
| TW201213593A (en) | 2012-04-01 |
| Publication | Publication Date | Title |
|---|---|---|
| CN103119696A (en) | Film manufacturing method and film manufacturing apparatus | |
| WO2011070945A1 (en) | Thin film manufacturing apparatus, thin film manufacturing method, and method for manufacturing semiconductor device | |
| US8193083B2 (en) | Method of manufacturing semiconductor device and substrate processing apparatus | |
| WO2007102333A1 (en) | Methods of depositing ruthenium film and memory medium readable by computer | |
| JP5560344B2 (en) | Thin film manufacturing method | |
| US20090311417A1 (en) | Film forming method and film forming apparatus | |
| US7629183B2 (en) | Method for manufacturing semiconductor device and computer storage medium | |
| US6841489B2 (en) | Method of manufacturing a semiconductor device and method of forming a film | |
| KR101179098B1 (en) | Process for producing oxide thin film and production apparatus therefor | |
| JP3886921B2 (en) | Chemical vapor deposition method | |
| JP2005166965A (en) | Method for manufacturing thin film | |
| JP4536607B2 (en) | Film forming method and computer storage medium | |
| WO2004066388A1 (en) | Ferroelectric capacitor and method for fabricating the same | |
| CN119465066A (en) | A silicon-doped hafnium dioxide film and preparation method thereof | |
| JP2013105832A (en) | Thin-film manufacturing method and thin-film manufacturing apparatus | |
| JP2014150191A (en) | Pzt film manufacturing method and deposition apparatus |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20130522 |