Movatterモバイル変換


[0]ホーム

URL:


CN103026066A - Systems and methods for measuring pressure applied by a piezoelectric pump - Google Patents

Systems and methods for measuring pressure applied by a piezoelectric pump
Download PDF

Info

Publication number
CN103026066A
CN103026066ACN2011800358374ACN201180035837ACN103026066ACN 103026066 ACN103026066 ACN 103026066ACN 2011800358374 ACN2011800358374 ACN 2011800358374ACN 201180035837 ACN201180035837 ACN 201180035837ACN 103026066 ACN103026066 ACN 103026066A
Authority
CN
China
Prior art keywords
pump
actuator
chamber
pressure
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011800358374A
Other languages
Chinese (zh)
Inventor
艾丹·马库斯·陶特
克里斯托佛·布赖恩·洛克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KCI Licensing Inc
Original Assignee
KCI Licensing Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KCI Licensing IncfiledCriticalKCI Licensing Inc
Publication of CN103026066ApublicationCriticalpatent/CN103026066A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

A system and method for measuring pressure provided by a disc pump is disclosed. The disc pump includes an actuator mounted on a flexible baffle within the disc pump that allows the actuator to oscillate to generate airflow through the cavity of the pump and allows the actuator to be displaced by an increase in pressure at a load. Depending on the direction of fluid flow through the cavity, the actuator moves from a rest position when air begins to flow through the cavity to a biased position when the load is fully pressurized or depressurized. The pump further includes a sensor that measures displacement of the actuator at any position between the rest position and the biased position as fluid begins to flow through the cavity to pressurize or depressurize the load. The pressure delivered by the disc pump is determined as a function of the displacement of the actuator.

Description

Translated fromChinese
用于测量由压电泵施加的压力的系统以及方法Systems and methods for measuring pressure applied by a piezoelectric pump

相关申请的交叉引用Cross References to Related Applications

本申请要求于2010年8月9日提交的美国临时申请号61/371,954的权益,并且该临时申请通过引用结合在此。This application claims the benefit of US Provisional Application No. 61/371,954, filed August 9, 2010 and incorporated herein by reference.

背景技术Background technique

1.发明领域1. Field of invention

本发明的说明性实施方案总体上涉及一个用于流体的泵,并且更确切地说涉及一个泵,其中泵送腔在形状上大致是椭圆形,具有多个端壁和一个侧壁以及置于这些端壁之间的一个致动器。本发明的说明性实施方案更确切地说涉及一种圆盘式泵,该圆盘式泵具有安装在该致动器中的一个阀和/或安装在这些端壁之一中的一个另外的阀。Illustrative embodiments of the present invention relate generally to a pump for fluids, and more particularly to a pump in which the pumping chamber is generally elliptical in shape, has end walls and a side wall and is positioned An actuator between these end walls. The illustrative embodiment of the invention relates more specifically to a disc pump having a valve mounted in the actuator and/or an additional valve mounted in one of the end walls. valve.

2.相关技术说明2. Related technical description

封闭腔中高幅度压力振荡的产生在热声学以及泵型压缩器领域中已受到了显著的关注。非线性声学的最新发展已允许产生具有比先前预想可行幅度更高的幅度的压力波。The generation of high-amplitude pressure oscillations in closed cavities has received significant attention in the fields of thermoacoustics and pump compressors. Recent developments in nonlinear acoustics have allowed the generation of pressure waves with higher amplitudes than previously thought feasible.

使用声共振来实现从多个限定的入口和出口进行流体泵送是已知的。这可以使用在一端设有声学驱动器的椭圆形腔来实现,该声学驱动器对声驻波进行驱动。在这种椭圆形腔中,声压波具有受限的幅度。已使用多个变截面腔如圆锥体、角锥体、球状物来实现高幅度压力振荡,由此显著增加泵送效果。在这些高幅度波中,带有能量耗散的非线性机制受到抑制。然而,尚未将高幅度声共振采用于其中直到最近才激发出径向压力振荡的圆盘形腔中。公开为WO2006/111775的国际专利申请号PCT/GB2006/001487披露了一种具有大体上圆盘形腔的泵,该腔具有高纵横比,即,该腔的半径与该腔的高度的比率。The use of acoustic resonance to achieve fluid pumping from multiple defined inlets and outlets is known. This can be achieved using an elliptical cavity with an acoustic driver at one end that drives the acoustic standing wave. In such an elliptical cavity, the sound pressure waves have a limited amplitude. Multiple chambers of variable cross-section such as cones, pyramids, spheres have been used to achieve high amplitude pressure oscillations, thereby significantly increasing the pumping effect. In these high-amplitude waves, nonlinear mechanisms with energy dissipation are suppressed. However, high-amplitude acoustic resonance has not been exploited in disk-shaped cavities where radial pressure oscillations were not excited until recently. International Patent Application No. PCT/GB2006/001487, published as WO2006/111775, discloses a pump having a generally disc-shaped cavity with a high aspect ratio, ie the ratio of the radius of the cavity to the height of the cavity.

这种泵具有一个大体上椭圆形的腔,该腔包括在每端处被多个端壁封闭的一个侧壁。该泵还包括一个致动器,该致动器驱动这些端壁中的任一个以便使其在大致上垂直于该受驱动的端壁的表面的一个方向上振荡。该受驱动的端壁的运动空间轮廓被描述成与腔内流体压力振荡的空间轮廓相匹配,在此描述成模态匹配的一个状态。在该泵是模态匹配时,在受驱动的端壁表面范围内,该致动器在腔内流体上所做的功建设性地增加,由此增强该腔内压力振荡的幅度并且传递高的泵效率。一个模态匹配泵的效率依赖于在受驱动的端壁与侧壁之间的接合面。希望的是通过构造该接合面来维持这种泵的效率,这样使得该接合面不会减少或抑制该受驱动的端壁的运动,由此减轻腔内流体压力振荡的幅度的任何减小。The pump has a generally elliptical cavity including a side wall closed at each end by end walls. The pump also includes an actuator that drives either of the end walls to oscillate in a direction substantially perpendicular to the surface of the driven end wall. The motion spatial profile of the driven end wall is described as matching the spatial profile of fluid pressure oscillation in the chamber, which is described as a state of mode matching. When the pump is mode matched, the work done by the actuator on the fluid in the chamber within the range of the driven end wall surface constructively increases, thereby enhancing the magnitude of the chamber pressure oscillations and delivering high pump efficiency. The efficiency of a mode matched pump depends on the interface between the driven end wall and the side wall. It is desirable to maintain the efficiency of such a pump by configuring the interface such that the interface does not reduce or dampen the motion of the driven end wall, thereby mitigating any reduction in the magnitude of intracavity fluid pressure oscillations.

上述泵的致动器使得该受驱动的端壁在大体上垂直于该端壁或大体上平行于椭圆形腔的纵轴线的一个方向上进行振荡运动(“位移振荡”),在下文中称作受驱动的端壁在腔内的“轴向振荡”。该受驱动的端壁的轴向振荡在腔内产生流体的大体上成比例的“压力振荡”,从而形成近似于第一类贝塞尔函数的分布的径向压力分布,如通过引用结合在此的国际专利申请号PCT/GB2006/001487中所描述,此类振荡在下文中称作流体压力在腔内的“径向振荡”。位于该致动器与该侧壁之间的受驱动的端壁的一部分提供了与泵的侧壁的一个接合面,该接合面减小位移振荡的阻尼,以减轻腔内的压力振荡的任何减小,该部分在下文中称作一个(an)“挡板”或一个(a)“挡板”,如在美国专利申请号12/477,594中更确切描述,该专利申请通过引用结合在此。该挡板的说明性实施方案以可操作方式与该受驱动的端壁的外围部分相关联,以便减小位移振荡的阻尼。The actuator of the pump described above causes the driven end wall to undergo an oscillatory motion ("displacement oscillation") in a direction generally perpendicular to the end wall or generally parallel to the longitudinal axis of the elliptical cavity, hereinafter referred to as "Axial oscillation" of the driven end wall within the cavity. Axial oscillations of this driven end wall generate substantially proportional "pressure oscillations" of the fluid within the cavity, resulting in a radial pressure distribution that approximates that of a Bessel function of the first kind, as incorporated by reference in Such oscillations are hereinafter referred to as "radial oscillations" of fluid pressure within the cavity, as described in International Patent Application No. PCT/GB2006/001487 herein. A portion of the driven end wall between the actuator and the side wall provides an interface with the side wall of the pump that reduces damping of displacement oscillations to mitigate any pressure oscillations within the chamber. Reduced, this portion is hereinafter referred to as an (an) "baffle" or a (a) "baffle", as more precisely described in US Patent Application No. 12/477,594, which is hereby incorporated by reference. An illustrative embodiment of the baffle is operatively associated with a peripheral portion of the driven end wall to reduce damping of displacement oscillations.

这类泵还要求用于控制通过泵的流体流动的一个或多个阀,并且更确切地说要求能够以高频率工作的多个阀。对于多种应用而言,常规阀典型地以低于500Hz的较低频率工作。例如,许多常规压缩器典型地以50或60Hz工作。现有技术中已知的线性共振压缩器在150与350Hz之间工作。然而,包括医疗装置的许多便携式电子装置要求用于传递正或负压力的泵,这些泵在尺寸上相对较小并且在工作期间相对安静以便于提供分离的治疗。为了实现这些目的,这类泵必须以非常高的频率工作,从而要求阀能够以约20kHz以及更高的频率工作。为了以这些高频率工作,阀必须对一个高频率振荡压力进行响应,该高频率振荡压力可以被调整以便形成通过该泵的流体的一个净流。Such pumps also require one or more valves for controlling fluid flow through the pump, and more specifically multiple valves capable of operating at high frequencies. Conventional valves typically operate at relatively low frequencies below 500 Hz for many applications. For example, many conventional compressors typically operate at 50 or 60 Hz. Linear resonant compressors known in the prior art operate between 150 and 350 Hz. However, many portable electronic devices, including medical devices, require pumps for delivering positive or negative pressure that are relatively small in size and relatively quiet during operation in order to provide discrete therapy. To achieve these objectives, such pumps must operate at very high frequencies, requiring valves capable of operating at frequencies of about 20 kHz and higher. In order to operate at these high frequencies, the valve must respond to a high frequency oscillating pressure that can be adjusted to create a net flow of fluid through the pump.

这种阀被更确切地描述于国际专利申请号PCT/GB2009/050614中,该专利申请通过引用结合在此。阀可以被置于第一孔或第二孔,或两个孔中,以用于控制通过该泵的流体的流动。每个阀包括一个第一阀板和一个第二阀板,该第一阀板具有总体上垂直地延伸而贯穿其的多个孔,该第二阀板也具有总体上垂直地延伸而贯穿其的多个孔,其中该第二阀板的这些孔基本上与该第一阀板的这些孔偏移。该阀进一步包括一个侧壁,该侧壁被置于该第一阀板与该第二阀板之间,其中该侧壁围绕该第一阀板和该第二阀板的周长被封闭以便在该第一阀板与该第二阀板之间形成与该第一阀板和该第二阀板的这些孔流体连通的一个腔。这种阀进一步包括一个阀瓣,该阀瓣被置于该第一阀板与该第二阀板之间并且在这两者之间是可移动的,其中该阀瓣具有基本上与该第一阀板的这些孔偏移并且基本上与该第二阀板的这些孔对齐的多个孔。响应于穿过该阀的流体的压差的方向上的一个改变,该阀瓣在该第一阀板与该第二阀板之间被推动。Such a valve is more precisely described in International Patent Application No. PCT/GB2009/050614, which is hereby incorporated by reference. A valve may be placed in the first or second bore, or both, for controlling the flow of fluid through the pump. Each valve includes a first valve plate having a plurality of holes extending generally vertically therethrough and a second valve plate having a plurality of holes extending generally vertically therethrough. holes of the second valve plate, wherein the holes of the second valve plate are substantially offset from the holes of the first valve plate. The valve further includes a side wall disposed between the first valve plate and the second valve plate, wherein the side wall is closed around the perimeter of the first valve plate and the second valve plate so that A cavity is formed between the first valve plate and the second valve plate in fluid communication with the apertures of the first valve plate and the second valve plate. The valve further includes a valve flap disposed between and movable between the first valve plate and the second valve plate, wherein the valve flap has a The holes of a valve plate are offset and substantially aligned with the holes of the second valve plate. The valve flap is urged between the first valve plate and the second valve plate in response to a change in direction of a differential pressure of fluid across the valve.

发明简述Brief description of the invention

为了解决可能包括一个圆盘式泵或微泵的组织治疗系统的测量和控制问题,可以利用本发明的原理来测量由该圆盘式泵产生的压力以便更有效地并且经济地控制该圆盘式泵的工作。该圆盘式泵包括一个致动器,该致动器在一个腔内振动,以便产生一个径向压力波从而提供一个减压,以用于施加到如上文所述的一个负载或组织部位上。可以使用一个或多个传感器来测量该致动器的位移。响应于该致动器的测量出的位移,可以测定用于该组织部位的由该圆盘式泵所产生的压力。可以调节该致动器的驱动信号来控制工作并且,因而控制该致动器的位移以便在该组织部位处达到一个所希望的压力。To address measurement and control problems for tissue therapy systems that may include a disc pump or micropump, the principles of the present invention can be utilized to measure the pressure generated by the disc pump to more efficiently and economically control the disc pump work. The disc pump includes an actuator vibrating within a chamber to generate a radial pressure wave to provide a reduced pressure for application to a load or tissue site as described above . One or more sensors may be used to measure the displacement of the actuator. In response to the measured displacement of the actuator, a pressure for the tissue site generated by the disc pump can be determined. The actuator drive signal can be adjusted to control the operation and, thus, the displacement of the actuator to achieve a desired pressure at the tissue site.

圆盘式泵的一个实施方案包括一个圆盘式泵的外壳、挡板、致动器、传感器以及电子电路。该挡板被固定到该圆盘式泵的外壳上以便支撑该致动器,并且可以是足够柔性以允许该致动器振动的任何材料。该致动器和该挡板面向一个相对的底板以便在该圆盘式泵内形成其中产生径向压力波的一个腔。该致动器可以具有一个第一表面以及一个第二表面并且直接地或间接地被连接至该挡板上。该传感器可以被安放在该腔之外以便感测该致动器相对于该圆盘式泵的外壳的一个位置,该位置对应于所提供的压力。一个电子电路可以与该传感器进行通信并且被配置成按照该致动器被激活时该致动器相对于该圆盘式泵的外壳的位置的一个函数来计算该圆盘式泵所提供的压力。One embodiment of a disc pump includes a disc pump housing, baffle, actuator, sensor, and electronic circuitry. The baffle is fixed to the housing of the disc pump to support the actuator and can be of any material that is flexible enough to allow the actuator to vibrate. The actuator and the baffle face an opposing base plate to form a cavity within the disc pump in which radial pressure waves are generated. The actuator may have a first surface and a second surface and be directly or indirectly connected to the baffle. The sensor may be positioned outside the cavity to sense a position of the actuator relative to the disc pump housing, the position corresponding to the supplied pressure. an electronic circuit may be in communication with the sensor and configured to calculate the pressure provided by the disc pump as a function of the position of the actuator relative to the housing of the disc pump when the actuator is activated .

在另一个实施方案中,一个泵体包括一个大体上椭圆形形状的侧壁,该侧壁在一端被一个底壁封闭并且在另一端被一对内板封闭以便在所述泵体内形成用于含有流体的一个腔,其中这些内板中与该腔相邻的一个第一内板包括一个中心部分以及一个外围部分。该泵进一步包括由这些端板形成的一个致动器,其中这些内板中的一个第二内板以可操作方式与该第一内板的中心部分相关联以便响应于被施加到使用中的所述致动器上的一个驱动信号而引起一个振荡位移运动,由此在该腔内产生流体的多个径向压力振荡。该泵还包括一个挡板,该挡板柔性地连接在该侧壁与该第一内板的外围部分之间以便促进这种振荡位移运动。该泵还包括一个第一孔以及一个第二孔,该第一孔延伸穿过所述致动器以使流体能够流过该腔,该第二孔延伸穿过底壁以使流体能够流过该腔。阀被置于所述第一孔与所述第二孔中的至少一个中,并且被适配成在流体开始流过该腔时允许流体在大体一个方向上流过该腔以便为一个负载加压或减压,从而使得所述致动器因压力的增加以及挡板的挠曲而移向该底壁,即从一个静止位置移动到一个偏置位置。该泵进一步包括安装在该腔之外的一个传感器,该传感器相对于所述泵体处于一个固定位置,以用于测量在流体开始流过该腔以便为负载加压或减压时所述致动器在该静止位置与该偏置位置之间的任何位置处的位移。In another embodiment, a pump body includes a generally elliptical shaped side wall closed at one end by a bottom wall and at the other end by a pair of inner panels to form a A chamber containing fluid, wherein a first of the inner plates adjacent to the chamber includes a central portion and a peripheral portion. The pump further includes an actuator formed by the end plates, wherein a second of the inner plates is operatively associated with the central portion of the first inner plate so as to respond to A drive signal on the actuator induces an oscillatory displacement motion, thereby producing radial pressure oscillations of the fluid within the cavity. The pump also includes a baffle flexibly connected between the side wall and the peripheral portion of the first inner plate to facilitate the oscillatory displacement motion. The pump also includes a first bore extending through the actuator to enable fluid to flow through the cavity, and a second bore extending through the bottom wall to enable fluid to flow through the chamber the cavity. A valve is disposed in at least one of said first orifice and said second orifice and is adapted to allow fluid to flow through the chamber in substantially one direction to pressurize a load when fluid begins to flow through the chamber or depressurization, thereby causing the actuator to move towards the bottom wall, ie from a rest position to a biased position, due to the increase in pressure and deflection of the baffle. The pump further includes a sensor mounted outside the chamber in a fixed position relative to the pump body for measuring the pressure when fluid begins to flow through the chamber to pressurize or depressurize a load. displacement of the actuator at any position between the rest position and the biased position.

一种用于控制圆盘式泵的方法包括使用一个驱动信号来驱动在一个圆盘式泵的一个外壳内的一个致动器。该致动器通过这种柔性的挡板而被安装在该圆盘式泵之内。由于该致动器响应于驱动信号而振动,所以负载中形成的压力增加,而气流从自由流动状态减为失速状态。在压力迫使该致动器离开静止位置时,由于该挡板随着该致动器一起从该致动器的固定位置朝向偏置位置挠曲,所以可以通过一个传感器按照致动器从处于自由流动状态的一个静止位置至处于失速状态的一个偏置位置的位移的一个函数来测量通过该圆盘式泵而在负载中逐渐形成的压力。由于该致动器在该圆盘式泵的腔内产生多个径向压力波,所以这种传感器优选被安放在该圆盘式泵的腔之外,这样使得该传感器不会干扰到该圆盘式泵自身的工作。A method for controlling a disc pump includes using a drive signal to drive an actuator within a housing of a disc pump. The actuator is mounted within the disc pump by the flexible baffle. As the actuator vibrates in response to the drive signal, the pressure developed in the load increases and the airflow decreases from a free flow condition to a stall condition. As the shutter flexes with the actuator from its fixed position toward the biased position when the pressure forces the actuator out of its rest position, the actuator can be moved from a free position by a sensor. The pressure developed in the load by the disc pump was measured as a function of displacement from a rest position in flow regime to a biased position in stall condition. Since the actuator generates radial pressure waves within the cavity of the disc pump, the sensor is preferably placed outside the cavity of the disc pump so that the sensor does not interfere with the disc pump. The work of the disc pump itself.

在此披露说明性实施方案的其他目的、特征和优点,并且这些其他目的、特征和优点通过参阅以下附图和详细说明将变得明显。Other objects, features and advantages of the illustrative embodiments are disclosed herein and will become apparent by reference to the following drawings and detailed description.

附图简要说明Brief description of the drawings

下文参阅附图详细描述了本发明的说明性实施方案,这些附图通过引用结合在此并且其中:Illustrative embodiments of the invention are described in detail hereinafter with reference to the accompanying drawings, which are incorporated herein by reference and in which:

图1A是根据第一说明性实施方案的具有展示为处于一个静止位置的一个致动器的一个第一圆盘式泵的示意性截面图;1A is a schematic cross-sectional view of a first disc pump with an actuator shown in a rest position, according to the first illustrative embodiment;

图1B是根据第一说明性实施方案的展示致动器处于一个偏置位置的第一圆盘式泵的示意性截面图;1B is a schematic cross-sectional view of the first disc pump showing the actuator in a biased position, according to the first illustrative embodiment;

图2A是针对该第一圆盘式泵的致动器的基础弯曲模态的轴向位移振荡的图;2A is a graph of axial displacement oscillations for the fundamental bending mode of the actuator of the first disc pump;

图2B是响应于图2A中所示的弯曲模态,在该第一圆盘式泵的腔内的流体的压力振荡的图;Figure 2B is a graph of the pressure oscillations of the fluid within the cavity of the first disc pump in response to the bending modes shown in Figure 2A;

图3是根据第一说明性实施方案的用于测量该第一圆盘式泵的致动器的位移的第一传感器的放大视图;3 is an enlarged view of a first sensor for measuring displacement of an actuator of the first disc pump according to the first illustrative embodiment;

图4是该第一传感器的说明性接收器的示意图,指示了在该致动器处于静止位置和偏置位置时的位置;Figure 4 is a schematic diagram of an illustrative receiver of the first sensor, indicating the position of the actuator when it is in a rest position and a biased position;

图5是具有展示为处于偏置位置的致动器的圆盘式泵的示意性截面图,该图包括根据第二说明性实施方案的用于测量该致动器的位移的第二传感器的放大视图;5 is a schematic cross-sectional view of a disc pump with an actuator shown in a biased position including a second sensor for measuring displacement of the actuator according to a second illustrative embodiment; magnified view;

图6是包括一个衍射光栅的用于测量圆盘式泵中致动器的位移的一个第三说明性传感器;6 is a third illustrative sensor for measuring displacement of an actuator in a disc pump including a diffraction grating;

图7是包括一个磁性元件的用于测量圆盘式泵中致动器的位移的一个第四说明性传感器;7 is a fourth illustrative sensor for measuring displacement of an actuator in a disc pump including a magnetic element;

图8是一个圆盘式泵的用于测量和控制由该圆盘式泵产生的一个减压的一个说明性电路的框图;并且8 is a block diagram of an illustrative circuit of a disc pump for measuring and controlling a reduced pressure produced by the disc pump; and

图9是用于控制由一个圆盘式泵产生的压力的一个说明性方法的流程图。9 is a flowchart of an illustrative method for controlling pressure generated by a disc pump.

优选实施方案的详细说明Detailed Description of the Preferred Embodiment

图1A和1B是根据说明性实施方案的一个说明性圆盘式泵100的截面图的说明。如图所示,该圆盘式泵100可以包括一个泵外壳102,该泵外壳具有一个大体椭圆形的形状,该椭圆形形状包括在一端被一个底壁103封闭并且在另一端通过支腿105安装的一个椭圆形壁101,这些支腿被附接到一个电路板108或其他基板上以便支撑泵外壳102。椭圆形壁101、支腿105以及底壁103一起形成泵外壳102。泵100进一步包括由附接到泵体的椭圆形壁101上的一个环形挡板130支撑在泵100内的一对圆盘形内板114、115。椭圆形壁101、底壁103、内板114以及环形挡板130的内表面在泵100内形成一个腔116。腔116的这些内表面包括为椭圆形壁101的内表面的一个第一部分的一个侧壁118,该侧壁在一端被端壁120封闭,其中端壁120是端板103的内表面并且端壁122包括内板114的内表面以及挡板130的一个第一侧面。因此,端壁122包括对应于内板114的内表面的一个中心部分,以及对应于环形挡板130的内表面的一个外围部分。1A and 1B are illustrations of cross-sectional views of anillustrative disc pump 100, according to an illustrative embodiment. As shown, thedisc pump 100 may include apump housing 102 having a generally elliptical shape including abottom wall 103 closed at one end and supported bylegs 105 at the other end. Mounting anoval wall 101 , the legs are attached to acircuit board 108 or other substrate to support thepump housing 102 . Theoval wall 101 ,legs 105 andbottom wall 103 together form thepump housing 102 . Thepump 100 further includes a pair of disc-shapedinner plates 114, 115 supported within thepump 100 by anannular baffle 130 attached to theoval wall 101 of the pump body. The inner surfaces of theoval wall 101 ,bottom wall 103 ,inner plate 114 andannular baffle 130 form acavity 116 within thepump 100 . The inner surfaces ofcavity 116 include aside wall 118 which is a first portion of the inner surface ofelliptical wall 101, which is closed at one end byend wall 120, whereinend wall 120 is the inner surface ofend plate 103 and theend wall 122 includes the inner surface of theinner panel 114 and a first side of thebaffle 130 . Thus, theend wall 122 includes a central portion corresponding to the inner surface of theinner panel 114 , and a peripheral portion corresponding to the inner surface of theannular baffle 130 .

虽然泵100以及其部件在形状上大体上是椭圆形,但在此披露的具体实施方案是一个圆形、椭圆形形状。在图1A和1B中所示的实施方案中,端壁120被展示为是一个截头圆锥表面,但也可以大体上是平面的并且与端壁122相平行。该泵体的底壁103和椭圆形壁101可由任意合适的刚性材料形成,该刚性材料包括但不限于金属、陶瓷、玻璃或塑料,该塑料包括但不限于注塑成型的塑料。While thepump 100 and its components are generally elliptical in shape, the specific embodiments disclosed herein are a circular, elliptical shape. In the embodiment shown in FIGS. 1A and 1B ,end wall 120 is shown as a frustoconical surface, but may also be generally planar and parallel to endwall 122 . Thebottom wall 103 andelliptical wall 101 of the pump body may be formed from any suitable rigid material including but not limited to metal, ceramic, glass or plastic including but not limited to injection molded plastic.

泵100的内板114、115一起形成一个致动器140,该致动器以可操作方式与为腔116的这些内表面之一的端壁122的中心部分相关联。内板114、115中之一必须是由一种压电材料形成的,该压电材料可以包括响应于一个施加的电信号而展示出应力的任何电活性材料,例如像一种电致伸缩或磁致伸缩材料。在一个优选实施方案中,例如,内板115是由响应于一个施加的电信号而展示出应力的压电材料形成的,即,活性内板。内板114、115中另一个内板优选地拥有与该活性内板类似的一个弯曲刚度,并且可以由一种压电材料或一种电惰性材料如一种金属或陶瓷形成。在这个优选实施方案中,内板114拥有与该活性内板115类似的一个弯曲刚度,并且是由一种电惰性材料如一种金属或陶瓷形成的,即,惰性内板。当该活性内板115被电流激发时,该活性内板115在相对于腔116的纵轴线的一个径向方向扩展并收缩,从而使得内板114、115弯曲,由此使它们对应的端壁122在大体上垂直于端壁12的方向上轴向偏转(参阅图2A)。Theinner plates 114 , 115 of thepump 100 together form anactuator 140 operatively associated with a central portion of theend wall 122 which is one of the inner surfaces of thechamber 116 . One of theinner plates 114, 115 must be formed from a piezoelectric material, which may include any electroactive material that exhibits stress in response to an applied electrical signal, such as, for example, an electrostrictive or magnetostrictive material. In a preferred embodiment, for example, theinner plate 115 is formed of piezoelectric material that exhibits stress in response to an applied electrical signal, ie, the active inner plate. The other of theinner plates 114, 115 preferably possesses a similar bending stiffness as the active inner plate and may be formed from a piezoelectric material or an electrically inert material such as a metal or ceramic. In the preferred embodiment,inner plate 114 possesses a similar bending stiffness as the activeinner plate 115 and is formed from an electrically inert material such as a metal or ceramic, ie, inert inner plate. When the activeinner plate 115 is excited by an electric current, the activeinner plate 115 expands and contracts in a radial direction relative to the longitudinal axis of thecavity 116, causing theinner plates 114, 115 to flex, thereby causing theircorresponding end walls 122 deflects axially in a direction generally perpendicular to end wall 12 (see FIG. 2A ).

在未示出的其他实施方案中,取决于泵100的具体设计以及定向,挡板130可以从顶部或底部表面支撑内板114、115中的任一个(无论是活性还是惰性内板)。在另一个实施方案中,致动器140可由与内板114、115中仅之一具有传力关系的一个装置所替代,例如像,机械装置、磁性装置或静电装置,其中该内板可以被形成为一个电惰性或电被动材料层,该材料层由此类装置(未示出)以与上述方式相同的方式驱动进入振荡状态。In other embodiments not shown, thebaffle 130 may support either of theinner plates 114, 115 (whether active or inert) from the top or bottom surface, depending on the specific design and orientation of thepump 100 . In another embodiment, theactuator 140 may be replaced by a device in a force-transmitting relationship with only one of theinner plates 114, 115, such as, for example, a mechanical, magnetic or electrostatic device, wherein the inner plate may be Formed as a layer of electrically inactive or passive material driven into oscillation by such means (not shown) in the same manner as described above.

泵100进一步包括从腔116延伸到泵100外部的至少两个孔,其中这些孔中的至少一个孔含有阀以控制穿过该孔的流体的流动。尽管这些孔可位于腔116中的任何位置处,如下文更为详细地描述,在该位置处,致动器140产生一个压差,但是泵100的一个优选实施方案包括位于底壁103的近似中心处并且延伸穿过该底壁的孔126。该孔126含有至少一个端阀。在一个优选实施方案中,该孔126含有调节流体在如箭头所指示的一个方向上的流动的一个阀128。因此,对于这个实施方案来说,阀128用作泵的一个进给阀。Pump 100 further includes at least two holes extending fromchamber 116 to the exterior ofpump 100, wherein at least one of the holes contains a valve to control the flow of fluid through the hole. A preferred embodiment of thepump 100 includes aproximate A hole 126 is centrally located and extends through the bottom wall. Thebore 126 contains at least one end valve. In a preferred embodiment, thebore 126 contains avalve 128 that regulates the flow of fluid in one direction as indicated by the arrow. Thus, for this embodiment,valve 128 acts as an inlet valve to the pump.

泵100进一步包括从腔116穿过致动器140的至少一个孔,其中这些孔中的至少一个含有阀以控制穿过该孔的流体的流动。尽管这些孔可以位于来自腔116的致动器140上的任何位置处,如下文更为详细地描述,在该位置处,致动器140产生一个压差,但是泵100的一个实施方案包括位于内板114、115的近似中心处并且延伸穿过这些内板的一个单一的孔131。孔131含有一个致动器阀132,该致动器阀调节流体在如箭头所指示的自腔116的一个方向上的流动,这样使得该致动器阀132用作自腔116的一个排出阀。致动器阀132通过补充进给阀128的工作来增强泵100的输出,如下文更为详细地描述。Thepump 100 further includes at least one aperture from thechamber 116 through theactuator 140, wherein at least one of the apertures contains a valve to control the flow of fluid through the aperture. While the holes may be located anywhere on the actuator 140 fromchamber 116 at which theactuator 140 creates a pressure differential, as described in more detail below, one embodiment of thepump 100 includes At approximately the center of and extending through theinner plates 114, 115 is asingle aperture 131 of the inner plates. Bore 131 contains anactuator valve 132 that regulates the flow of fluid in one direction fromchamber 116 as indicated by the arrow such that thisactuator valve 132 acts as a discharge valve fromchamber 116 .Actuator valve 132 enhances the output ofpump 100 by supplementing the operation ofinlet valve 128, as described in more detail below.

在此描述的腔116的尺寸应优选地满足相对于腔116的高度(h)与半径(r)之间的关系来说的某些不等式,该半径r为腔116的纵轴线至侧壁118的距离。这些不等式如下:The dimensions of thecavity 116 described herein should preferably satisfy certain inequalities with respect to the relationship between the height (h) of thecavity 116 and the radius (r), which is the longitudinal axis of thecavity 116 to theside wall 118 distance. These inequalities are as follows:

r/h>1.2;并且r/h>1.2; and

h2/r>4×10-10米。h2 /r>4×10−10 meters.

在本发明的一个实施方案中,在腔116内的流体是一种气体时,腔半径与腔高度之比(r/h)是在约10与约50之间。在这个实例中,腔116的体积可以小于约10ml。此外,在工作流体是与一种液体截然相反的一种气体的情况下,h2/r之比优选地在约10-6与约10-7米之间的一个范围内。In one embodiment of the invention, the ratio of cavity radius to cavity height (r/h) is between about 10 and about 50 when the fluid withincavity 116 is a gas. In this example, the volume ofcavity 116 may be less than about 10 ml. Furthermore, where the working fluid is a gas as opposed to a liquid, the ratio h2 /r is preferably in a range between about 10−6 and about 10−7 meters.

此外,在此披露的腔116应优选地满足与腔半径(r)和工作频率(f)相关的以下不等式,该工作频率是致动器140振动以便产生端壁122的轴向位移的频率。该不等式公式如下:Furthermore, thecavity 116 disclosed herein should preferably satisfy the following inequalities related to the cavity radius (r) and the operating frequency (f), which is the frequency at which theactuator 140 vibrates to generate axial displacement of theend wall 122 . The inequality formula is as follows:

kk00((ccsthe s))22πfπf≤≤rr≤≤kk00((ccff))22πfπf

[公式1][Formula 1]

其中腔116内工作流体的声速(c)可以是在一个约115m/s的低速(cs)与一个等于约1,970m/s的快速(cf)之间的范围,如上述等式所表达,并且k0是一个常数(k0=3.83)。致动器140的振荡运动的频率优选地约等于腔116内径向压力振荡的最低共振频率,但可以在该值的20%之内。腔116内径向压力振荡的最低共振频率优选地大于约500Hz。wherein the velocity of sound (c) of the working fluid inchamber 116 may range between a low velocity (cs ) of about 115 m/s and a fast velocity (cf ) equal to about 1,970 m/s, as expressed by the above equation , and k0 is a constant (k0 =3.83). The frequency of the oscillatory motion of theactuator 140 is preferably approximately equal to the lowest resonant frequency of radial pressure oscillations within thecavity 116, but may be within 20% of this value. The lowest resonant frequency of radial pressure oscillations withincavity 116 is preferably greater than about 500 Hz.

虽然优选的是在此披露的腔116应分别地满足上文确定的这些不等式,但腔116的相对尺寸不应限于具有相同高度和半径的腔。例如,腔116可以具有要求形成不同频率响应的不同半径或高度的一个略微不同的形状,这样使得腔116以一种希望的方式共振以便产生自泵100的最佳输出。While it is preferred that thecavities 116 disclosed herein should individually satisfy these inequalities identified above, the relative dimensions of thecavities 116 should not be limited to cavities having the same height and radius. For example,cavity 116 may have a slightly different shape with a different radius or height required to create a different frequency response so thatcavity 116 resonates in a desired manner to produce an optimal output frompump 100 .

在工作中,泵100可以用作与排出阀132相邻的一个正压源以为一个负载(未示出)加压或用作与进给阀128相邻的一个负压或减压源以为一个负载150减压,如由箭头所图解。所示的泵100的入口与负载150流体连通,这样使得泵100用作与进给阀128相邻的一个负压或减压源。负载150可以是利用负压来进行治疗的一个组织治疗系统。在此使用的术语“减压”通常指小于泵100所处位置的环境压力的一个压力。尽管术语“真空”和“负压”可以用于描述减压,但是实际的压力减少可能会显著地小于通常与绝对真空相关联的压力减少。就压力为表压而言,该压力是“负值”,即,该压力被降低到环境大气压之下。除非另外说明,否则在此陈述的压力值是表压力。关于增加减压典型地是指绝对压力的减小,而降低减压典型地是指绝对压力的增加。In operation, pump 100 may be used as a positive pressure sourceadjacent discharge valve 132 to pressurize a load (not shown) or as a negative or reduced pressure sourceadjacent inlet valve 128 to pressurize a load (not shown). Theload 150 is depressurized, as illustrated by the arrow. The inlet ofpump 100 is shown in fluid communication withload 150 such that pump 100 acts as a source of negative or reduced pressureadjacent inlet valve 128 .Load 150 may be a tissue treatment system utilizing negative pressure for treatment. As used herein, the term "reduced pressure" generally refers to a pressure that is less than the ambient pressure at which thepump 100 is located. Although the terms "vacuum" and "negative pressure" may be used to describe reduced pressure, the actual pressure reduction may be significantly smaller than that typically associated with absolute vacuum. Insofar as the pressure is gauge, the pressure is "negative", ie, the pressure is reduced below ambient atmospheric pressure. Unless otherwise stated, pressure values stated herein are gauge pressures. References to increasing reduced pressure typically refer to a decrease in absolute pressure, while decreasing reduced pressure typically refers to an increase in absolute pressure.

图2A示出了对腔116的受驱动的端壁122的轴向振荡进行说明的一种可能的位移轮廓。实曲线和箭头表示在一个时间点上,受驱动的端壁122的位移,且虚曲线表示在半个循环之后,受驱动的端壁122的位移。该图和其他各图中所示的位移均已被放大。由于致动器140并未被刚性地安装在自己的圆周上,而是通过环形挡板130悬挂,因此致动器140能够自由地以其基础模态围绕自己的质量中心振荡。在这种基础模态中,致动器140的位移振荡幅度在一个环形位移波节42处大体上为零,该环形位移波节位于受驱动的端壁122的中心与侧壁118之间。在端壁122上的其他各点处,这些位移振荡的幅度大于零,如竖直箭头所示。一个中心位移波腹43存在于致动器140的中心附近,并且一个外围位移波腹43'存在于致动器140的圆周附近。在半个循环之后,中心位移波腹43由虚曲线表示。FIG. 2A shows one possible displacement profile illustrating axial oscillation of the drivenend wall 122 of thecavity 116 . The solid curve and arrow represent the displacement of theactuated end wall 122 at one point in time, and the dashed curve represents the displacement of theactuated end wall 122 after half a cycle. The displacements shown in this and other figures have been exaggerated. Since theactuator 140 is not rigidly mounted on its circumference, but suspended by theannular baffle 130, theactuator 140 is free to oscillate in its fundamental mode around its own center of mass. In this fundamental mode, the displacement oscillation amplitude of theactuator 140 is substantially zero at an annular displacement node 42 located between the center of the drivenend wall 122 and theside wall 118 . At various other points on theend wall 122, the magnitude of these displacement oscillations is greater than zero, as indicated by the vertical arrows. A central displacement antinode 43 exists near the center of theactuator 140 and a peripheral displacement antinode 43 ′ exists near the circumference of theactuator 140 . After half a cycle, the center displacement antinode 43 is represented by the dashed curve.

图2B示出了一种可能的压力振荡轮廓,该轮廓说明了因图2A中所示的轴向位移振荡而在腔116内引起的压力振荡。实曲线和箭头表示在一个时间点上的压力。在这种模态和更高阶模态中,这些压力振荡的幅度在腔116的中心附近具有一个正中心压力波腹45并且在腔116的侧壁118附近具有一个外围压力波腹45'。在中心压力波腹45与外围压力波腹45'之间的环形压力波节44处,这些压力振荡的幅度大体上为零。同时,由虚线表示的压力振荡的幅度在腔116的中心附近具有一个负中心压力波腹47以及一个外围压力波腹47’,并且具有相同的环形压力波节44。对于一个椭圆形腔而言,腔116中压力振荡的幅度的径向相关性可以近似第一类贝赛尔函数。上述压力振荡起因于腔116中的流体的径向移动,且因此将被称为腔116内的流体的“径向压力振荡”,以便区别于致动器140的轴向位移振荡。FIG. 2B shows one possible pressure oscillation profile illustrating pressure oscillations withincavity 116 due to the axial displacement oscillations shown in FIG. 2A. Solid curves and arrows represent pressure at one point in time. In this and higher order modes, the magnitude of the pressure oscillations has a positivecentral pressure antinode 45 near the center of thecavity 116 and a peripheral pressure antinode 45' near thesidewall 118 of thecavity 116 . The amplitude of these pressure oscillations is substantially zero at theannular pressure node 44 between thecentral pressure antinode 45 and the peripheral pressure antinode 45'. At the same time, the amplitude of the pressure oscillations represented by the dashed lines has a negativecentral pressure antinode 47 and a peripheral pressure antinode 47' For an elliptical cavity, the radial dependence of the amplitude of the pressure oscillations incavity 116 can approximate a Bessel function of the first kind. The pressure oscillations described above result from radial movement of the fluid incavity 116 and will therefore be referred to as “radial pressure oscillations” of the fluid withincavity 116 to distinguish them from axial displacement oscillations ofactuator 140 .

进一步参阅图2A和图2B可以看出,致动器140的轴向位移振荡幅度的径向依赖(致动器140的“模态振型”)近似第一类贝塞尔函数,从而与腔116内的所希望压力的振荡幅度的径向依赖(压力振荡的“模态振型”)更紧密匹配。也可以使用其他对称和不对称函数来产生腔116内的压力振荡。在任何情况下,通过不将致动器140刚性地安装在自己的圆周处并且允许该致动器更自由地围绕自己的质量中心振动,位移振荡的模态振型大体上与腔116中的压力振荡的模态振型相匹配,从而实现模态振型匹配,或者,更简单地说,模态匹配。尽管就这方面而言,模态匹配可能并非总是完美的,但致动器140的轴向位移振荡以及腔116内相对应的压力振荡跨致动器140的整个表面具有大体上相同的相对相位,其中腔116内的压力振荡的环形压力波节44的径向位置与致动器140的轴向位移振荡的环形位移波节42的径向位置大体上相符。With further reference to Figures 2A and 2B it can be seen that the radial dependence of the amplitude of the oscillation of the axial displacement of the actuator 140 (the "mode shape" of the actuator 140) approximates a Bessel function of the first kind, thus matching the cavity The radial dependence of the oscillation amplitude of the desired pressure within 116 (the "mode shape" of the pressure oscillation) is more closely matched. Other symmetric and asymmetric functions may also be used to generate pressure oscillations withincavity 116 . In any case, by not mounting theactuator 140 rigidly at its own circumference and allowing the actuator to vibrate more freely about its own center of mass, the mode shapes of the displacement oscillations are substantially the same as those in thecavity 116. The mode shapes of the pressure oscillations are matched to achieve mode shape matching, or, more simply, mode matching. Although the mode matching may not always be perfect in this regard, the axial displacement oscillations of theactuator 140 and the corresponding pressure oscillations within thecavity 116 have substantially the same relative relative across the entire surface of theactuator 140. Phase, wherein the radial position of theannular pressure node 44 of the pressure oscillation within thecavity 116 substantially coincides with the radial position of the annular displacement node 42 of the axial displacement oscillation of theactuator 140 .

随着致动器140围绕自己的质量中心振动,当致动器140以图2A中所图解的基础弯曲模态振动时,环形位移波节42的径向位置将必然地位于致动器140的半径之内。因此,为了确保环形位移波节42与环形压力波节44相符,致动器的半径(ract)应优选地大于环形压力波节44的半径,从而对模态匹配进行优化。再次假定腔116中的压力振荡近似于第一类贝塞尔函数,则环形压力波节44的半径将会是从端壁122的中心到侧壁118的半径,即,腔116的半径(“r”)的大约0.63倍。因此,致动器140的半径(ract)应优选地满足以下不等式:ract≥0.63r。As theactuator 140 vibrates about its own center of mass, the radial position of the annular displacement nodes 42 will necessarily lie at the within the radius. Therefore, to ensure that the annular displacement node 42 coincides with theannular pressure node 44 , the radius of the actuator (ract ) should preferably be larger than the radius of theannular pressure node 44 to optimize mode matching. Assuming again that the pressure oscillations incavity 116 approximate a Bessel function of the first kind, the radius ofannular pressure node 44 will be the radius from the center ofend wall 122 toside wall 118, i.e., the radius of cavity 116 ("r") about 0.63 times. Therefore, the radius (ract ) of theactuator 140 should preferably satisfy the following inequality: ract ≧0.63r.

环形挡板130可以是一种柔性膜,该柔性膜使致动器140的边缘能够通过响应于致动器140的振动而弯曲并且伸展来如上所述更自由地移动,如外围位移波腹43'处的位移所示。该柔性膜通过以下方法克服了侧壁118对致动器140的潜在阻尼效果:在致动器140与泵100的椭圆形壁101之间提供低机械阻抗支撑,由此减小致动器140的外围位移波腹43'处的轴向振荡的阻尼。基本上,该柔性膜使从致动器140传递到侧壁118上的能量最小化,其中该柔性膜的外围边缘大体上保持静止。因此,环形位移波节42将保持大体上与环形压力波节44对齐,从而保持泵100的模态匹配状态。因此,受驱动的端壁122的轴向位移振荡持续在腔116内有效地产生从中心压力波腹45、47到侧壁118处的外围压力波腹45'、47'的压力振荡,如图2B所示。Annular baffle 130 may be a flexible membrane that enables the edge ofactuator 140 to move more freely as described above by flexing and stretching in response to vibrations ofactuator 140, such as peripheral displacement antinodes 43 ' is shown in the displacement. The flexible membrane overcomes the potential damping effect of theside walls 118 on theactuator 140 by providing low mechanical impedance support between the actuator 140 and theelliptical wall 101 of thepump 100, thereby reducing the size of theactuator 140. Damping of the axial oscillation at the peripheral displacement antinode 43'. Essentially, the flexible membrane minimizes the transfer of energy from theactuator 140 to theside wall 118, wherein the peripheral edge of the flexible membrane remains substantially stationary. Thus, the annular displacement nodes 42 will remain generally aligned with theannular pressure nodes 44, thereby maintaining the mode-matched condition of thepump 100. Accordingly, the axial displacement oscillations of the drivenend wall 122 continue to effectively generate pressure oscillations within thecavity 116 from thecentral pressure antinodes 45, 47 to theperipheral pressure antinodes 45', 47' at theside walls 118, as shown in FIG. 2B.

由于致动器140响应于驱动信号而振动,所以气流从自由流动状态减为失速状态时负载150中形成的压力增加,。在压力迫使致动器140离开静止位置时,由于挡板130随着致动器140一起从侧壁101处的该致动器的固定位置挠曲至偏置位置138,所以可以通过一个传感器按照致动器140从如图1A中所示的处于自由流动状态的一个静止位置136至如图1B中所示的处于失速状态的一个偏置位置138的位移(δy)的一个函数来测量通过圆盘式泵100而在负载150中逐渐形成的压力。由于致动器140在圆盘式泵100的腔116内产生多个径向压力波,所以这种传感器优选地被安放在圆盘式泵100的腔116之外,这样使得该传感器不会干扰到圆盘式泵100的工作。As theactuator 140 vibrates in response to the drive signal, the pressure developed in theload 150 increases as the gas flow decreases from a free-flow condition to a stall condition. As the pressure forces theactuator 140 out of the rest position, since theflap 130 flexes along with the actuator 140 from its fixed position at theside wall 101 to thebiased position 138, it can be controlled by a sensor according to Measured as a function of the displacement (δy) of the actuator 140 from arest position 136 in a free-flow condition as shown in FIG. 1A to abiased position 138 in a stall condition as shown in FIG. 1B through acircle Disc pump 100 to build up pressure inload 150 . Since theactuator 140 generates multiple radial pressure waves within thecavity 116 of thedisc pump 100, such a sensor is preferably placed outside thecavity 116 of thedisc pump 100 so that the sensor does not interfere with the to the work of thedisc pump 100.

图3是安装在电路板108上以面向致动器140并且测量圆盘式泵100的致动器140的位移的一个传感器331的放大视图。传感器331包括在测量致动器140的位移130的过程中使用的一个光学发射器332以及光学接收器334。光学发射器332传播可以是可见光谱或不可见光谱中的光波的一个光学信号335。光学信号335从致动器140的内板115的表面被反射,这样使得被反射的信号由光学接收器334接收,而不管如图4中所示的致动器140的位移(δy)。在致动器140处于静止位置136中时,第一被反射的信号340在图3和图4中所示的位置处冲击光学接收器334。在致动器140从静止位置136被移位到偏置位置138时,第一被反射的信号340取决于致动器140的位移(δy)而被相应地移位一个相应的被反射的位移(δx)成为第二被反射的信号342。基本上,冲击光学接收器334的被反射的信号的映射遵循从静止位置136至完全偏置位置138的路线,如图4中所示。被反射的位移(δx)与致动器140的位移(δy)成比例,该致动器的位移是由圆盘式泵100提供的压力的一个函数,如上文所述。3 is an enlarged view of onesensor 331 mounted on thecircuit board 108 to face theactuator 140 and measuring the displacement of theactuator 140 of thedisc pump 100 . Thesensor 331 includes anoptical transmitter 332 andoptical receiver 334 used in measuring thedisplacement 130 of theactuator 140 .Optical transmitter 332 propagates anoptical signal 335 which may be light waves in the visible or invisible spectrum. Theoptical signal 335 is reflected from the surface of theinner plate 115 of theactuator 140 such that the reflected signal is received by theoptical receiver 334 regardless of the displacement (δy) of theactuator 140 as shown in FIG. 4 . When theactuator 140 is in therest position 136 , the first reflectedsignal 340 strikes theoptical receiver 334 at the position shown in FIGS. 3 and 4 . As theactuator 140 is displaced from therest position 136 to thebiased position 138, the first reflectedsignal 340 is correspondingly displaced by a corresponding reflected displacement depending on the displacement (δy) of the actuator 140 (δx) becomes the second reflectedsignal 342 . Basically, the mapping of the reflected signal impinging on theoptical receiver 334 follows a route from therest position 136 to the fullybiased position 138 as shown in FIG. 4 . The reflected displacement (δx) is proportional to theactuator 140 displacement (δy), which is a function of the pressure provided by thedisc pump 100, as described above.

在一个实施方案中,光学发射器332可以是激光器、发光二极管(LED)、竖直腔表面发射激光器(VCSEL)或发光元件。可以将光学发射器332安放在电路板108上并且对该光学发射器进行定向以便使光学信号335从致动器140的内板115的任一点反射,只要第一被反射的信号340和第二被反射的信号342仍被光学传感器334接收和测量即可。然而,在致动器140以基础模态振荡而产生如图2A中所述和所示的气流时,致动器140的位移振荡的幅度在所产生的任何环形位移波节42处可大体上是零。因此,沿着致动器140的其他各点处的位移振荡的幅度均大于零,同样如所述。因此,光学发射器332应被安放并定向成使得光学信号335是从靠近环形位移波节42的一个位置被反射,以便最小化致动器140的高频率振荡的效果,并且在致动器140更为缓慢地从静止位置136移动至偏置位置138时,更为准确地测量该致动器的位移(δy)。In one embodiment, theoptical emitter 332 may be a laser, a light emitting diode (LED), a vertical cavity surface emitting laser (VCSEL), or a light emitting element. Theoptical transmitter 332 may be placed on thecircuit board 108 and oriented so that theoptical signal 335 is reflected from any point on theinner plate 115 of theactuator 140 as long as the first reflectedsignal 340 and the second It is sufficient that the reflectedsignal 342 is still received and measured by theoptical sensor 334 . However, when theactuator 140 oscillates in the fundamental mode to generate airflow as described and shown in FIG. is zero. Consequently, the magnitude of the displacement oscillations at every other point along theactuator 140 is greater than zero, as also described. Therefore, theoptical transmitter 332 should be placed and oriented so that theoptical signal 335 is reflected from a location close to the annular displacement node 42, so as to minimize the effect of high frequency oscillations of theactuator 140, and to minimize the effect on theactuator 140. The displacement (δy) of the actuator is more accurately measured when moving more slowly from therest position 136 to thebiased position 138 .

在一个实施方案中,光学传感器334可以包括形成传感器阵列的多个像素。光学传感器334可以被配置成感测处于一种或多种波长的一个或多个被反射光束的位置。因此,光学接收器334可以被配置成感测在第一被反射的信号340与第二被反射的信号342之间的被反射的位移(δx)。光学接收器334可以被配置成通过光学接收器334的这些对应的像素将光学接收器334感测到的被反射的信号340和342转化成电信号。可以实时测量或计算被反射的位移(δx)或者利用一个特定的采样频率来测定致动器140相对于泵外壳102的位置。在一个实施方案中,致动器140的位置被计算成在一个给定时期内的一个平均或均值位置。可以确定光学接收器334的像素大小以便提供另外的敏感性来检测致动器140的相对较小的位移(δy),从而更好地监测圆盘式泵100所提供的压力,这样使得该压力可以得到实时控制。In one embodiment,optical sensor 334 may include a plurality of pixels forming a sensor array.Optical sensor 334 may be configured to sense the position of one or more reflected light beams at one or more wavelengths. Accordingly, theoptical receiver 334 may be configured to sense the reflected displacement (δx) between the first reflectedsignal 340 and the second reflectedsignal 342 . Theoptical receiver 334 may be configured to convert the reflectedsignals 340 and 342 sensed by theoptical receiver 334 into electrical signals through the corresponding pixels of theoptical receiver 334 . The reflected displacement (δx) can be measured or calculated in real time or a specific sampling frequency can be used to determine the position of theactuator 140 relative to thepump housing 102 . In one embodiment, the position of theactuator 140 is calculated as an average or mean position over a given period of time. The pixel size of theoptical receiver 334 may be sized to provide additional sensitivity to detect relatively small displacements (δy) of theactuator 140 to better monitor the pressure provided by thedisc pump 100 such that the pressure can be controlled in real time.

可以根据本发明的原理可以利用计算致动器140的位移的多种替代方法。应理解的是,可以相对于泵外壳102中的任何其他固定位置的元件来完成致动器140的位移测定。虽然通常大体上成比例,但被反射的位移(δx)可以等于致动器140的位移(δy)乘以一个比例因子,其中该比例因子可以是基于圆盘式泵100的泵外壳102的配置的预定值或多个其他对齐因子。因此,可以通过感测致动器140的位移(δy)来测定圆盘式泵100的腔116内的减压,而不需要多个压力传感器,这些压力传感器直接测量提供到负载上的压力,但在例如一个减压系统中,对于测量由圆盘式泵100提供的压力来说过于笨重和昂贵。这些说明性实施方案在不会干扰到圆盘式泵100的腔116内产生的压力振荡的情况下优化了泵外壳102内的空间利用。Various alternative methods of calculating the displacement ofactuator 140 may be utilized in accordance with the principles of the present invention. It should be understood that displacement measurement of theactuator 140 may be accomplished relative to any other fixed position element in thepump housing 102 . Although generally roughly proportional, the reflected displacement (δx) may be equal to theactuator 140 displacement (δy) multiplied by a scaling factor, where the scaling factor may be based on the configuration of thepump housing 102 of thedisc pump 100 or multiple other alignment factors. Thus, the reduced pressure within thechamber 116 of thedisc pump 100 can be determined by sensing the displacement (δy) of theactuator 140 without the need for multiple pressure sensors that directly measure the pressure supplied to the load, But it is too cumbersome and expensive to measure the pressure provided by thedisc pump 100 in eg a pressure reducing system. These illustrative embodiments optimize space utilization withinpump housing 102 without interfering with the pressure oscillations generated withincavity 116 ofdisc pump 100 .

图5是展示处于偏置位置138的致动器140的圆盘式泵100的另一个示意性截面图,该图包括根据另一个说明性实施方案的用于测量致动器140的位移的另一个传感器的放大视图。该传感器是一个超声波收发器546,该超声波收发器发射超声波548以便基于由致动器140反射并且由超声波收发器546接收的超声波548来测定致动器140的位置。为简明起见,未示出回音回到超声波收发器546的超声波。该超声波收发器546可以将关于致动器140的位移(δy)的原始测量结果或处理过的数据发送到一个或多个电子装置,这些电子装置包括例如一个处理器以测定由该泵100产生的减压以及其他工作特征。5 is another schematic cross-sectional view of thedisc pump 100 showing theactuator 140 in thebiased position 138, which includes another sensor for measuring the displacement of theactuator 140 according to another illustrative embodiment. A zoomed-in view of a sensor. The sensor is anultrasonic transceiver 546 that transmitsultrasonic waves 548 to determine the position of theactuator 140 based on theultrasonic waves 548 reflected by theactuator 140 and received by theultrasonic transceiver 546 . For simplicity, the ultrasound waves echoing back to theultrasound transceiver 546 are not shown. Theultrasonic transceiver 546 can send raw measurements or processed data about the displacement (δy) of theactuator 140 to one or more electronic devices including, for example, a processor to determine the displacement produced by thepump 100. decompression and other work characteristics.

关于图6,示出了用于测量圆盘式泵100中致动器140的位移(δy)的一个衍射光栅602。衍射光栅602可以被附接到致动器140上或被与该致动器相集成。例如,衍射光栅602可以是在圆盘式泵的制造过程中用粘合剂或其他紧固手段附接到致动器140上的一个反射性光学元件。如图所示,一个发射器607将一个多光谱光学信号608发射到衍射光栅602上。衍射光栅602将该多光谱光学信号608衍射成具有不同波长的若干光束λ1、λ2、λ3以及λ4。通过一个传感器阵列610检测光束λ1、λ2、λ3以及λ4的波长。在一个实施方案中,该传感器阵列610可以包括多个像素612、614、616以及618。传感器阵列610的这些像素612、614、616以及618也可以被称为一个像素阵列。可替代地,传感器阵列610可以是一个单一的传感器或像素元件如像素614。可以将发射器607和传感器阵列610连接至电路板108或泵外壳102的任何其他固定位置的元件以便确保工作期间的稳定性。Referring to FIG. 6 , adiffraction grating 602 for measuring the displacement (δy) of theactuator 140 in thedisc pump 100 is shown.Diffraction grating 602 may be attached to or integrated withactuator 140 . For example,diffraction grating 602 may be a reflective optical element attached to actuator 140 with adhesive or other fastening means during manufacture of the disc pump. As shown, atransmitter 607 transmits a multispectraloptical signal 608 onto thediffraction grating 602 .Diffraction grating 602 diffracts the multispectraloptical signal 608 into several beams λ1 , λ2 , λ3 and λ4 having different wavelengths. The wavelengths of the light beams λ1 , λ2 , λ3 and λ4 are detected by asensor array 610 . In one embodiment, thesensor array 610 may include a plurality ofpixels 612 , 614 , 616 and 618 . Thepixels 612, 614, 616, and 618 of thesensor array 610 may also be referred to as a pixel array. Alternatively,sensor array 610 may be a single sensor or pixel element such aspixel 614 .Emitter 607 andsensor array 610 may be connected tocircuit board 108 or any other fixed location component ofpump housing 102 to ensure stability during operation.

在工作中,发射器607可以是一个发光电路或元件,该发光电路或元件将多光谱光学信号形式的多光谱光学信号608发射到该衍射光栅上。衍射光栅602可以是常规模式的一个光学部件,该光学部件将多光谱光学信号608的光衍射成若干光束λ1、λ2、λ3以及λ4并且在不同的方向上反射这些光束,如图6中所示。如本领域中所知,衍射光栅602可以包括衍射光栅的光栅内的凹槽或刻线,这些凹槽或刻线被配置成在正常工作以及致动器140的位移期间使λ1、λ2、λ3以及λ4散播在传感器阵列610上。In operation, thetransmitter 607 may be a lighting circuit or element that emits a multispectraloptical signal 608 in the form of a multispectral optical signal onto the diffraction grating.Diffraction grating 602 may be an optical component of conventional mode that diffracts the light of multispectraloptical signal 608 into several beams λ1, λ2, λ3, and λ4 and reflects these beams in different directions, as shown in FIG. 6 . As is known in the art, thediffraction grating 602 may include grooves or lines in the grating of the diffraction grating configured to make λ1, λ2, λ3 during normal operation and displacement of theactuator 140. And λ4 is spread over thesensor array 610 .

传感器阵列610基于这些像素612、614、616以及618中的一个或多个接收到的一种或多种波长来测定致动器140的位移。例如,如图6中所示,波长λ1、λ2、λ3以及λ4在这些像素612、614、616以及618上的分散可以对应于在致动器140与电路板108之间的一个最大位移。在致动器140移向壳体(即,移入腔中)时,像素612至618可以检测到波长λ1、λ2、λ3以及λ4中的一个或多个。在一个实施方案中,来自传感器阵列610的测量结果可以指示致动器140的位移。例如,如果像素618检测到λ3和λ4二者,则位移可以是2mm,这指示了用于在减压传递系统的腔中产生一个所希望的压力的最佳位移。这些像素612、614、616以及618各自检测到的波长λ1、λ2、λ3以及λ4可以指示精确位移或可以提供用于计算该位移的数据。在一个替代实施方案中,一个传感器可以是一个单一的像素,该像素被配置成感测多光谱光学信号608中的光学波长,这样使得在致动器140移动时,该传感器感测到的波长指示该致动器相对于该外壳的位置。在又另一个实施方案中,可以将设有具有已知尺寸的一个单电池的一个光学传感器安放在具有由该光学传感器感测的特定光谱(或完全是任何光)的一个最佳位置处,并且如果感测到,那么可以做出测定,即可以做出该泵正产生在一个特定公差范围内的一个压力的测定。Sensor array 610 determines displacement ofactuator 140 based on one or more wavelengths received by one or more of thesepixels 612 , 614 , 616 , and 618 . For example, as shown in FIG. 6 , the dispersion of wavelengths λ1 , λ2 , λ3 , and λ4 over thepixels 612 , 614 , 616 , and 618 may correspond to a maximum displacement between the actuator 140 and thecircuit board 108 . As theactuator 140 moves toward the housing (ie, into the cavity), the pixels 612-618 may detect one or more of the wavelengths λ1, λ2, λ3, and λ4. In one embodiment, measurements fromsensor array 610 may be indicative ofactuator 140 displacement. For example, ifpixel 618 detects both λ3 and λ4, the displacement may be 2mm, which indicates the optimum displacement for generating a desired pressure in the cavity of the reduced pressure delivery system. The wavelengths λ1 , λ2 , λ3 , and λ4 detected by thesepixels 612 , 614 , 616 , and 618 , respectively, may indicate the precise displacement or may provide data for calculating the displacement. In an alternative embodiment, a sensor may be a single pixel configured to sense optical wavelengths in the multispectraloptical signal 608 such that when theactuator 140 is moved, the wavelengths sensed by the sensor Indicates the position of the actuator relative to the housing. In yet another embodiment, an optical sensor with a single cell of known dimensions can be placed at an optimal location with the particular spectrum (or any light at all) sensed by the optical sensor, And if sensed, a determination can be made that the pump is producing a pressure within a certain tolerance range.

关于图7,示出了用于测量圆盘式泵100中的致动器140的位移(δy)的一个磁性传感器702。将可以是一个霍尔效应(Hall Effect)传感器或类似的传感器的磁性传感器702安装到电路板108或泵外壳102上。可以将一个导体706安装到一个致动器140上。导体706可以是金属的、磁性的或能够通过磁性传感器702来提供磁感应的其他导体。磁性传感器702测量在磁性传感器702与导体706之间的一个磁场710。磁性传感器702可以被校准或被配置成测量形成磁场710的变化着的电场以便测定在磁性传感器702与导体706之间的位移。Referring to FIG. 7 , onemagnetic sensor 702 for measuring the displacement (δy) of theactuator 140 in thedisc pump 100 is shown.Magnetic sensor 702, which may be a Hall Effect sensor or similar, is mounted tocircuit board 108 or pumphousing 102. Aconductor 706 may be mounted to anactuator 140 .Conductor 706 may be metallic, magnetic, or other conductor capable of providing magnetic induction throughmagnetic sensor 702 .Magnetic sensor 702 measures amagnetic field 710 betweenmagnetic sensor 702 andconductor 706 .Magnetic sensor 702 may be calibrated or configured to measure a changing electric field formingmagnetic field 710 in order to determine displacement betweenmagnetic sensor 702 andconductor 706 .

参阅图8,示出了一个说明性圆盘式泵系统800的框图,该系统包括一个圆盘式泵如上文所述的圆盘式泵100以及用于测量和控制由圆盘式泵100产生的一个压力的一个传感器如光学传感器331,该光学传感器包括光学发射器332以及光学接收器334。应理解的是,如上文所述的其他传感器也可以用作圆盘式泵系统800的部分。圆盘式泵系统800还包括用于为圆盘式泵系统800供电的一个电池802。圆盘式泵系统800的这些元件是互连的并且通过导线、路径、轨迹、导程以及其他导电元件进行通信。圆盘式泵系统800还可以包括一个处理器804以及一个驱动器808,其中处理器804被适配成与驱动器808通信,包括将一个控制信号806传达给驱动器808。驱动器808产生激发圆盘式泵100中的一个致动器如上文所述的致动器140的一个驱动信号810。致动器140可以包括一个压电部件,该压电部件在被激发时在圆盘式泵100的腔内产生流体的径向压力振荡,从而引起流体流动穿过该腔以便如上文所述为负载加压或减压。处理器804可以被配置成将照明信号812提供给光学发射器332,以用于通过一个光束如光束335照亮致动器140,该光束被致动器140反射到光学接收器334上,如通过上文也描述了的被反射的信号340、342所说明。在这些被反射的信号340、342冲击光学接收器334时,光学接收器334将对应于致动器140的位移(δy)的一个位移信号814提供给处理器804。处理器804被配置成按照由位移信号814表示的致动器140的位移(δy)的一个函数来计算该负载处通过泵100而产生的压力。在一个实施方案中,处理器804可以被配置成均分多个被反射的信号340、342以便测定致动器130随着时间推移的平均位移。在又另一个实施方案中,处理器804可以将位移信号814用作反馈以便调节控制信号806和相应的驱动信号810,以用于调节在该负载处的压力。Referring to FIG. 8 , a block diagram of an illustrative disc pump system 800 is shown that includes a disc pump such asdisc pump 100 as described above and methods for measuring and controlling the A pressure sensor such as anoptical sensor 331 , the optical sensor includes anoptical transmitter 332 and anoptical receiver 334 . It should be understood that other sensors as described above may also be used as part of the disc pump system 800 . Disc pump system 800 also includes a battery 802 for powering disc pump system 800 . These elements of the disc pump system 800 are interconnected and communicate through wires, paths, traces, leads, and other conductive elements. The disc pump system 800 can also include a processor 804 and a driver 808 , wherein the processor 804 is adapted to communicate with the driver 808 , including communicating a control signal 806 to the driver 808 . Driver 808 generates a drive signal 810 that excites an actuator indisc pump 100 , such asactuator 140 described above.Actuator 140 may include a piezoelectric component that, when excited, produces radial pressure oscillations of the fluid within the chamber ofdisc pump 100, thereby causing fluid to flow through the chamber so as to be Load pressurization or decompression. Processor 804 may be configured to provide illumination signal 812 tooptical transmitter 332 for illuminatingactuator 140 with a light beam, such aslight beam 335, which is reflected byactuator 140 ontooptical receiver 334, as This is illustrated by the reflected signals 340, 342 also described above. As the reflected signals 340 , 342 strike theoptical receiver 334 , theoptical receiver 334 provides a displacement signal 814 corresponding to the displacement (δy) of theactuator 140 to the processor 804 . Processor 804 is configured to calculate the pressure developed bypump 100 at the load as a function of the displacement (δy) ofactuator 140 represented by displacement signal 814 . In one embodiment, the processor 804 may be configured to average the plurality of reflectedsignals 340, 342 in order to determine the average displacement of theactuator 130 over time. In yet another embodiment, the processor 804 can use the displacement signal 814 as feedback to adjust the control signal 806 and corresponding drive signal 810 for adjusting the pressure at the load.

处理器804、驱动器808以及圆盘式泵系统800的其他控制电路可以被称为一个电子电路。处理器804可以是被赋予能够控制圆盘式泵100的功能性的电路或逻辑。处理器804可以用作或包括微处理器、数字信号处理器、专用集成电路(ASIC)、中央处理单元、数字逻辑或适于控制电子装置、转化并处理信号和信息以及执行其他相关任务的其他装置,该电子装置包括一个或多个硬件和软件元件、执行软件、指令、程序以及应用。处理器804可以是一个单一芯片或被与其他计算或通讯元件相集成。在一个实施方案中,处理器804可以包括一个存储器或与一个存储器进行通信。该存储器可以是被配置成存储数据以用于随后的检索或稍后的存取的一个硬件元件、装置或记录媒体。该存储器可以是随机存取存储器、缓存或适于存储数据、指令以及信息的其他小型化的存储媒体形式的静态或动态存储器。在一个替代实施方案中,该电子电路可以是模拟电路,该模拟电路被配置成执行相同的或类似的功能性用于测量压力并且控制圆盘式泵100的腔内致动器140的位移,如上文所述。Processor 804, driver 808, and other control circuits of disc pump system 800 may be referred to as an electronic circuit. Processor 804 may be circuitry or logic endowed with functionality capable of controllingdisc pump 100 . Processor 804 may be used as or include a microprocessor, digital signal processor, application specific integrated circuit (ASIC), central processing unit, digital logic, or other processor suitable for controlling electronic devices, converting and processing signals and information, and performing other related tasks. An electronic device that includes one or more hardware and software elements, software for execution, instructions, programs, and applications. Processor 804 may be a single chip or be integrated with other computing or communication elements. In one embodiment, processor 804 may include or be in communication with a memory. The memory may be a hardware element, device or recording medium configured to store data for subsequent retrieval or later access. The memory may be static or dynamic memory in the form of random access memory, cache, or other miniaturized storage media suitable for storing data, instructions, and information. In an alternative embodiment, the electronic circuit may be an analog circuit configured to perform the same or similar functionality for measuring pressure and controlling the displacement of theintracavity actuator 140 of thedisc pump 100, As mentioned above.

圆盘式泵系统800还可以包括一个RF收发器820,该RF收发器用于经由RF收发器820所发射并接收的无线信号822和824传达与圆盘式泵系统800的性能有关的信息和数据,包括例如当前的压力测量结果、致动器140的实际位移(δy)以及电池802的当前使用寿命。RF收发器820可以是一个通信接口,该通信接口利用无线电、红外线或其他有线或无线信号来与一个或多个外部装置进行通信。RF收发器820可以利用蓝牙、WiFi、WiMAX或多种其他通信标准或专有通信系统。关于更为具体的使用,RF收发器820可以将这些信号822发送到一个计算装置,该计算装置存储了一个压力读数的数据库以供医学专业人士参阅。该计算装置可以是可以执行本地处理或另外将信息传达给用于处理信息和数据的一个中央或远程计算机的一个计算机、移动装置或医疗设备装置。类似地,RF收发器820可以接收信号824以便基于致动器140的运动来外部调节由圆盘式泵100在负载处产生的压力。The disc pump system 800 may also include an RF transceiver 820 for communicating information and data related to the performance of the disc pump system 800 via wireless signals 822 and 824 transmitted and received by the RF transceiver 820 , including, for example, the current pressure measurement, the actual displacement (δy) of theactuator 140 , and the current service life of the battery 802 . RF transceiver 820 may be a communication interface that utilizes radio, infrared, or other wired or wireless signals to communicate with one or more external devices. RF transceiver 820 may utilize Bluetooth, WiFi, WiMAX, or various other communication standards or proprietary communication systems. For more specific use, the RF transceiver 820 can transmit these signals 822 to a computing device that stores a database of pressure readings for reference by a medical professional. The computing device may be a computer, mobile device or medical equipment device that may perform local processing or otherwise communicate information to a central or remote computer for processing information and data. Similarly, the RF transceiver 820 may receive a signal 824 to externally adjust the pressure generated by thedisc pump 100 at the load based on the movement of theactuator 140 .

驱动器808是激发和控制致动器140的一个电路。例如,驱动器808可以是用于产生作为驱动信号810的部分的具体波形的一个大功率晶体管、放大器、桥和/或过滤器。这种波形可以通过处理器804和驱动器806进行配置以便提供一个驱动信号810,该驱动信号使致动器140以频率(f)进行振荡运动形式的振动,如上文更为详细地描述。响应于这个驱动信号810,致动器140的振荡位移运动在泵100的腔内产生流体的径向压力振荡,从而在负载处产生压力。Driver 808 is an electrical circuit that activates and controlsactuator 140 . For example, driver 808 may be a high power transistor, amplifier, bridge and/or filter used to generate specific waveforms as part of drive signal 810 . This waveform may be configured by processor 804 and driver 806 to provide a drive signal 810 that causes actuator 140 to vibrate in an oscillatory motion at frequency (f), as described in more detail above. In response to this drive signal 810, the oscillatory displacement motion of theactuator 140 produces radial pressure oscillations of the fluid within the cavity of thepump 100, thereby generating pressure at the load.

在另一个实施方案中,圆盘式泵系统800可以包括用于向用户显示信息的一个用户界面。该用户界面可以包括用于向用户提供信息、数据或信号的一个显示器、音频界面或触觉式界面。例如,一个小型LED屏幕可以显示由圆盘式泵100施加的压力。该用户界面还可以包括按钮、调控盘、旋钮或用于调节圆盘式泵的性能并且特别是所产生的减压的其他电子或机械界面。例如,可以通过调节旋钮或作为用户界面部分的其他控制元件来增加或减小压力。In another embodiment, the disc pump system 800 may include a user interface for displaying information to the user. The user interface may include a display, audio interface or tactile interface for providing information, data or signals to the user. For example, a small LED screen can display the pressure being applied by thedisc pump 100 . The user interface may also include buttons, dials, knobs or other electronic or mechanical interfaces for adjusting the performance of the disc pump and in particular the reduced pressure produced. For example, pressure may be increased or decreased by adjusting a knob or other control element as part of the user interface.

在此还披露了一种用于测量由泵对负载产生的压力的方法。该泵包括安装在该泵内的一个柔性挡板上的一个致动器,该柔性挡板在该泵内形成一个腔。该柔性挡板允许该致动器振荡以便产生穿过该泵的腔的气流并且允许该致动器因对负载的压力增加而发生位移。该方法包括电驱动该致动器以引起致动器在泵内的一个振荡位移运动,从而在该腔内产生流体的径向压力振荡。该方法进一步包括在流体开始流过该腔使得致动器因负载处的压力增加而从一个静止位置移动到一个偏置位置时测量该致动器的位移,其中该负载处的压力增加在挡板的柔性接受范围内。该方法还包括基于该致动器的位移来计算该负载处的压力。Also disclosed herein is a method for measuring the pressure generated by a pump against a load. The pump includes an actuator mounted within the pump on a flexible baffle that defines a chamber within the pump. The flexible baffle allows the actuator to oscillate to generate gas flow through the chamber of the pump and to allow displacement of the actuator due to increased pressure on the load. The method includes electrically driving the actuator to induce an oscillatory displacement movement of the actuator within the pump, thereby producing radial pressure oscillations of the fluid within the chamber. The method further includes measuring the displacement of the actuator when fluid begins to flow through the chamber such that the actuator moves from a rest position to a biased position due to an increase in pressure at the load, wherein the pressure increase at the load is at the stop within the acceptable range of board flexibility. The method also includes calculating a pressure at the load based on the displacement of the actuator.

更确切地参阅图9,示出了用于测量和控制由圆盘式泵所产生的压力的一个说明性方法900的流程图。方法900起始于步骤902,其中圆盘式泵的外壳内的一个致动器可以由一个驱动信号驱动。该致动器可以由一个压电致动器或装置来驱动。可以驱动该致动器来产生用于应用于一个组织部位处的减压。例如,该圆盘式泵可以直接或间接地与由敷巾覆盖的一个组织部位连通,如本领域中所理解。在步骤904,可以在致动器因负载内的压力增加而从一个静止位置移动到一个偏置位置时感测该致动器的位移。在一个实施方案中,在该圆盘式泵被停用或断电时出现该静止位置,而在负载内的压力处于最大值时达到该偏置位置。致动器的位移与负载处的相应的压力在这两个位置之间变化。驱动信号可以通过处理器、驱动器或该圆盘式泵的控制逻辑来配置、成形或以其他方式产生,以用于控制该致动器的工作以及被施加到该负载上的相应的压力。Referring more specifically to FIG. 9 , a flowchart of oneillustrative method 900 for measuring and controlling pressure generated by a disc pump is shown.Method 900 begins atstep 902, where an actuator within a housing of a disc pump can be driven by a drive signal. The actuator may be driven by a piezoelectric actuator or device. The actuator can be actuated to generate reduced pressure for application at a tissue site. For example, the disc pump may be in direct or indirect communication with a tissue site covered by the dressing, as understood in the art. Atstep 904, displacement of the actuator may be sensed as the actuator moves from a rest position to a biased position due to an increase in pressure within the load. In one embodiment, the rest position occurs when the disc pump is deactivated or de-energized, and the bias position is reached when the pressure within the load is at a maximum. The displacement of the actuator and the corresponding pressure at the load vary between these two positions. Drive signals may be configured, shaped, or otherwise generated by a processor, driver, or control logic of the disc pump for controlling the operation of the actuator and the corresponding pressure applied to the load.

在步骤906,可以按照感测到的致动器位移的一个函数来测定由该圆盘式泵产生的压力。在一个实施方案中,可以通过该圆盘式泵的外壳与该致动器之间的一个光学信号的反射或折射来测定该位移。类似地,可以利用超声波、射频、磁性或其他光学传感器或发射器以及接收器组合来测定该致动器的位移。该致动器的位移可以指示该圆盘式泵对负载所产生的压力。可以基于负载(如包括该圆盘式泵作为部件的一个组织治疗系统)的已知的差值、系数、损耗以及其他特征,利用数字和/或模拟电子学来测定施加在组织部位处的压力。这些电子学可以利用任何数目的静态或动态算法、函数或传感测量结果来测定该压力。在步骤908,响应于测定由该圆盘式泵传递的压力,调节驱动信号以便控制致动器的位移。响应于从测量该致动器位移的一个或多个传感器接收到的反馈信号的测量结果,可以产生该驱动信号。在一个实施方案中,可以增加该驱动信号的幅度以便增加由圆盘式泵所产生并且相对应地传达到组织部位的减压。类似地,可以修改该驱动信号的幅度或形状以便驱动该圆盘式泵的致动器减小或维持负载处的压力。Atstep 906, the pressure generated by the disc pump may be determined as a function of sensed actuator displacement. In one embodiment, the displacement can be measured by reflection or refraction of an optical signal between the housing of the disc pump and the actuator. Similarly, ultrasonic, radio frequency, magnetic or other optical sensors or transmitter and receiver combinations may be used to measure the displacement of the actuator. Displacement of the actuator can indicate the pressure exerted by the disc pump on the load. The pressure applied at the tissue site can be determined using digital and/or analog electronics based on known differences, factors, losses, and other characteristics of a load such as a tissue treatment system that includes the disc pump as a component . The electronics may utilize any number of static or dynamic algorithms, functions or sensory measurements to determine the pressure. Atstep 908, in response to determining the pressure delivered by the disc pump, the drive signal is adjusted to control displacement of the actuator. The drive signal may be generated in response to measurements of feedback signals received from one or more sensors that measure displacement of the actuator. In one embodiment, the magnitude of the drive signal can be increased to increase the reduced pressure produced by the disc pump and correspondingly communicated to the tissue site. Similarly, the magnitude or shape of the drive signal can be modified to drive the disc pump's actuators to reduce or maintain pressure at the load.

这些说明性实施方案提供了用于通过解读由一个圆盘式泵中的一个传感器提供的数据来间接监测该圆盘式泵所产生的压力的一个低成本系统,该传感器在一个致动器从一个静止位置移动到一个偏置位置时测量该致动器相对于该圆盘式泵内多个固定位置的部件的位移。应理解的是,该传感器或其任何部件(如光学传感器的光学发射器)可以被直接连接至该致动器上以用于通过泵外壳或该圆盘式泵上的任何其他固定位置反射光学信号来测量该位移。这些说明性实施方案减少了监测由该圆盘式泵所产生的压力的设备、空间以及成本,除此之外可以利用直接感测泵在负载处所产生的压力的传统的压力传感器以及监测器。The illustrative embodiments provide a low-cost system for indirectly monitoring the pressure produced by a disc pump by interpreting data provided by a sensor in the Displacement of the actuator relative to fixed position components within the disc pump is measured when a rest position is moved to a biased position. It should be understood that the sensor or any component thereof (such as the optical emitter of an optical sensor) may be directly coupled to the actuator for reflecting optical light from the pump housing or any other fixed location on the disc pump. signal to measure the displacement. The illustrative embodiments reduce the equipment, space, and cost of monitoring the pressure produced by the disc pump, but can utilize conventional pressure sensors and monitors that directly sense the pressure produced by the pump at the load.

前文详细说明是用于实施本发明的少数实施方案中的一个,并且不意图在范围上受到限制。本领域技术人员将立即想到在其他领域而非上文详细描述的那些领域中用于实施本发明的方法和变体。以下权利要求为以更大特殊性披露的本发明的许多实施方案而设。The foregoing detailed description is of one of a small number of embodiments for practicing the invention, and is not intended to be limiting in scope. Methods and variations for practicing the invention in other fields than those detailed above will immediately occur to those skilled in the art. The following claims set forth for many embodiments of the invention disclosed with greater particularity.

Claims (43)

CN2011800358374A2010-08-092011-08-05 Systems and methods for measuring pressure applied by a piezoelectric pumpPendingCN103026066A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US37195410P2010-08-092010-08-09
US61/371,9542010-08-09
PCT/US2011/046815WO2012021412A1 (en)2010-08-092011-08-05System and method for measuring pressure applied by a piezo-electric pump

Publications (1)

Publication NumberPublication Date
CN103026066Atrue CN103026066A (en)2013-04-03

Family

ID=44651931

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN2011800358374APendingCN103026066A (en)2010-08-092011-08-05 Systems and methods for measuring pressure applied by a piezoelectric pump

Country Status (8)

CountryLink
US (1)US20120034109A1 (en)
EP (1)EP2603699A1 (en)
JP (1)JP2013536358A (en)
CN (1)CN103026066A (en)
AU (1)AU2011289658A1 (en)
CA (1)CA2805102A1 (en)
TW (1)TW201217647A (en)
WO (1)WO2012021412A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103967759A (en)*2014-05-182014-08-06辽宁工程技术大学Ultrasonic water pump with built-in piezoelectric plate
CN105240252A (en)*2015-10-082016-01-13广东奥迪威传感科技股份有限公司Piezoelectric micro air pump structure
CN109424519A (en)*2017-08-312019-03-05研能科技股份有限公司Micro-electromechanical fluid control device
CN109590032A (en)*2017-09-302019-04-09研能科技股份有限公司The control method of fluid means
US10883487B2 (en)2017-08-312021-01-05Microjet Technology Co., Ltd.Micro-electromechanical fluid control device
CN114060256A (en)*2020-07-302022-02-18费斯托股份两合公司Fluid device
US11359618B2 (en)2017-09-302022-06-14Microjet Technology Co., Ltd.Control method of fluid device
CN117189554A (en)*2023-09-132023-12-08深圳白边精密科技有限公司Acoustic pressure pump, working method and application equipment

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CA2619925A1 (en)2005-09-072007-03-15Tyco Healthcare Group LpWound dressing with vacuum reservoir
CA3045572C (en)2005-09-072023-01-31Smith & Nephew, Inc.Self contained wound dressing apparatus
US7779625B2 (en)2006-05-112010-08-24Kalypto Medical, Inc.Device and method for wound therapy
EP1905465B2 (en)2006-09-282013-11-27Smith & Nephew, Inc.Portable wound therapy system
ES2715605T3 (en)2007-11-212019-06-05Smith & Nephew Wound dressing
GB201015656D0 (en)2010-09-202010-10-27Smith & NephewPressure control apparatus
US9084845B2 (en)2011-11-022015-07-21Smith & Nephew PlcReduced pressure therapy apparatuses and methods of using same
JP2015513027A (en)*2012-02-102015-04-30ケーシーアイ ライセンシング インコーポレイテッド System and method for monitoring a disk pump system using RFID
JP2015510072A (en)*2012-02-102015-04-02ケーシーアイ ライセンシング インコーポレイテッド System and method for monitoring the reduced pressure provided by a disk pump system
CN104136777A (en)2012-02-102014-11-05凯希特许有限公司Systems and methods for regulating the temperature of a disc pump system
CN104321531A (en)2012-02-102015-01-28凯希特许有限公司Systems and methods for electrochemical detection in a disc pump
WO2013130255A1 (en)*2012-02-292013-09-06Kci Licensing, Inc.Systems and methods for supplying reduced pressure and measuring flow using a disc pump system
JP6250571B2 (en)2012-03-122017-12-20スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Pressure reducing apparatus and method
US9427505B2 (en)2012-05-152016-08-30Smith & Nephew PlcNegative pressure wound therapy apparatus
WO2014008348A2 (en)*2012-07-052014-01-09Kci Licensing, Inc.Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation
EP3237032B1 (en)2014-12-222024-08-07Smith & Nephew plcNegative pressure wound therapy apparatus
DK3288508T3 (en)2015-04-272020-03-09Smith & Nephew REDUCED PRESSURE DEVICES
US10132706B2 (en)*2015-09-282018-11-20Apple Inc.Waterproof barometric sensor in an electronic device
US10466047B2 (en)*2015-09-302019-11-05Apple Inc.Barometric sensor integration in a water resistant electronic device
EP3426206B1 (en)2016-03-072023-05-10Smith & Nephew plcWound treatment apparatuses and methods with negative pressure source integrated into wound dressing
CA3022184A1 (en)2016-04-262017-11-02Smith & Nephew PlcWound dressings and methods of use with integrated negative pressure source having a fluid ingress inhibition component
US11096831B2 (en)2016-05-032021-08-24Smith & Nephew PlcNegative pressure wound therapy device activation and control
CA3038206A1 (en)2016-05-032017-11-09Smith & Nephew PlcOptimizing power transfer to negative pressure sources in negative pressure therapy systems
WO2017191158A1 (en)2016-05-032017-11-09Smith & Nephew PlcSystems and methods for driving negative pressure sources in negative pressure therapy systems
WO2018037075A1 (en)2016-08-252018-03-01Smith & Nephew PlcAbsorbent negative pressure wound therapy dressing
EP3519001B1 (en)2016-09-302025-05-21Smith & Nephew plcNegative pressure wound treatment apparatuses and methods with integrated electronics
EP3551244A1 (en)2016-12-122019-10-16Smith & Nephew PLCPressure wound therapy status indication via external device
EP3592312B1 (en)2017-03-082024-01-10Smith & Nephew plcNegative pressure wound therapy device control in presence of fault condition
JP7121050B2 (en)2017-05-092022-08-17スミス アンド ネフュー ピーエルシー Redundant control of negative pressure wound therapy systems
CA3074780A1 (en)2017-09-132019-03-21Smith & Nephew PlcNegative pressure wound treatment apparatuses and methods with integrated electronics
GB201718070D0 (en)2017-11-012017-12-13Smith & NephewNegative pressure wound treatment apparatuses and methods with integrated electronics
GB201718054D0 (en)2017-11-012017-12-13Smith & NephewSterilization of integrated negative pressure wound treatment apparatuses and sterilization methods
GB201718072D0 (en)2017-11-012017-12-13Smith & NephewNegative pressure wound treatment apparatuses and methods with integrated electronics
US11497653B2 (en)2017-11-012022-11-15Smith & Nephew PlcNegative pressure wound treatment apparatuses and methods with integrated electronics
TWI681120B (en)2018-05-212020-01-01研能科技股份有限公司Micro gas driving apparatus
EP3604876B2 (en)2018-08-032024-04-03SISTO Armaturen S.A.Membrane diagnosis via air interface
USD898925S1 (en)2018-09-132020-10-13Smith & Nephew PlcMedical dressing
GB201903774D0 (en)2019-03-202019-05-01Smith & NephewNegative pressure wound treatment apparatuses and methods with integrated electronics
GB201907716D0 (en)2019-05-312019-07-17Smith & NephewSystems and methods for extending operational time of negative pressure wound treatment apparatuses
JP7278548B2 (en)*2020-03-052023-05-22新東工業株式会社 gas measuring instrument
DE102020209594B3 (en)2020-07-302021-12-30Festo Se & Co. Kg Fluid device
US11956611B2 (en)*2020-09-242024-04-09Apple Inc.Barometric vent stack-up design to improve water performance

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20030143122A1 (en)*2002-01-262003-07-31Dietmar SanderPiezoelectrically controllable microfluid actor system
CN1474749A (en)*2000-09-182004-02-11�����ι�˾ A piezoelectric actuator and a pump using the piezoelectric actuator
CN1573102A (en)*2003-06-172005-02-02精工爱普生株式会社Pump
US20090087323A1 (en)*2005-04-222009-04-02David Mark BlakeyPump
CN101469692A (en)*2007-12-272009-07-01索尼株式会社Piezoelectric pump, cooling device, and electronic apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE69919029T2 (en)*1998-12-242005-09-08Biosafe S.A. DEVICE FOR BLOOD SEPARATION, ESPECIALLY FOR CONCENTRATING HEMATOPOIETIC STEM CELLS
JP4241177B2 (en)*2003-05-092009-03-18セイコーエプソン株式会社 Liquid ejector
JP2005112155A (en)*2003-10-082005-04-28Hitachi Ltd Suspension device
WO2005046443A2 (en)*2003-11-072005-05-26Georgia Tech Research CorporationCombination catheter devices, methods, and systems
US7435942B2 (en)*2004-12-022008-10-14Cypress Semiconductor CorporationSignal processing method for optical sensors
US20070267940A1 (en)*2006-05-152007-11-22Par Technologies, Llc.Compressor and compression using motion amplification
US7797757B2 (en)*2006-08-152010-09-14Georgia Tech Research CorporationCantilevers with integrated actuators for probe microscopy
US20090153629A1 (en)*2007-12-182009-06-18Seiko Epson CorporationLiquid supplying device and liquid ejecting apparatus
SE532405C2 (en)*2008-05-022010-01-12Johan Stenberg Pump system and method for determining a pressure value
US7938797B2 (en)*2008-05-052011-05-10Asante Solutions, Inc.Infusion pump system
US8821134B2 (en)*2009-06-032014-09-02The Technology Partnership PlcFluid disc pump
US8371829B2 (en)*2010-02-032013-02-12Kci Licensing, Inc.Fluid disc pump with square-wave driver

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1474749A (en)*2000-09-182004-02-11�����ι�˾ A piezoelectric actuator and a pump using the piezoelectric actuator
US20030143122A1 (en)*2002-01-262003-07-31Dietmar SanderPiezoelectrically controllable microfluid actor system
CN1573102A (en)*2003-06-172005-02-02精工爱普生株式会社Pump
US20090087323A1 (en)*2005-04-222009-04-02David Mark BlakeyPump
CN101469692A (en)*2007-12-272009-07-01索尼株式会社Piezoelectric pump, cooling device, and electronic apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103967759A (en)*2014-05-182014-08-06辽宁工程技术大学Ultrasonic water pump with built-in piezoelectric plate
CN105240252A (en)*2015-10-082016-01-13广东奥迪威传感科技股份有限公司Piezoelectric micro air pump structure
CN109424519A (en)*2017-08-312019-03-05研能科技股份有限公司Micro-electromechanical fluid control device
US10883487B2 (en)2017-08-312021-01-05Microjet Technology Co., Ltd.Micro-electromechanical fluid control device
CN109590032A (en)*2017-09-302019-04-09研能科技股份有限公司The control method of fluid means
CN109590032B (en)*2017-09-302021-09-07研能科技股份有限公司 Control method of fluid device
US11359618B2 (en)2017-09-302022-06-14Microjet Technology Co., Ltd.Control method of fluid device
CN114060256A (en)*2020-07-302022-02-18费斯托股份两合公司Fluid device
CN117189554A (en)*2023-09-132023-12-08深圳白边精密科技有限公司Acoustic pressure pump, working method and application equipment
CN117189554B (en)*2023-09-132024-05-28深圳白边精密科技有限公司Acoustic pressure pump, working method and application equipment

Also Published As

Publication numberPublication date
CA2805102A1 (en)2012-02-16
WO2012021412A1 (en)2012-02-16
EP2603699A1 (en)2013-06-19
AU2011289658A1 (en)2013-01-10
JP2013536358A (en)2013-09-19
US20120034109A1 (en)2012-02-09
TW201217647A (en)2012-05-01

Similar Documents

PublicationPublication DateTitle
CN103026066A (en) Systems and methods for measuring pressure applied by a piezoelectric pump
AU2016273958B2 (en)Systems and methods for supplying reduced pressure and measuring flow using a disc pump system
US9234518B2 (en)Systems and methods for monitoring reduced pressure supplied by a disc pump system
US10502199B2 (en)Systems and methods for supplying reduced pressure using a disc pump with electrostatic actuation
US9422934B2 (en)Systems and methods for monitoring a disc pump system using RFID
US9051931B2 (en)Systems and methods for regulating the temperature of a disc pump system
CN104541055A (en)Systems and methods for regulating the resonant frequency of a disc pump cavity

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C02Deemed withdrawal of patent application after publication (patent law 2001)
WD01Invention patent application deemed withdrawn after publication

Application publication date:20130403


[8]ページ先頭

©2009-2025 Movatter.jp