技术领域technical field
本发明涉及液晶显示领域,尤其涉及一种液晶显示面板及其制作方法、显示装置。The invention relates to the field of liquid crystal display, in particular to a liquid crystal display panel, a manufacturing method thereof, and a display device.
背景技术Background technique
半透半反液晶显示器具有功耗低、环境光适应性强等优点,是目前比较活跃的平板显示技术,被广泛应用于手机、掌上电脑(PersonalDigitalAssistant,简称PDA)等移动显示设备。半透半反液晶显示器可以单独或同时采用透射模式和反射模式来显示图像,所以半透半反液晶显示器可以在任何环境光下使用。半透半反液晶显示器的基本结构是将每个红、绿、蓝子像素单元分成透射区和反射区两部分,使透射区的液晶工作于透射模式,反射区的液晶工作于反射模式。其工作原理是:当环境较暗时,打开背光源,光线透过透射区,器件工作于透射模式,而在明亮的环境下,外界的光照强度比背光源的光照强度大,半透半反式液晶显示器工作于反射模式,利用反射来自外界的光线来显示图像。Transflective liquid crystal display has the advantages of low power consumption and strong adaptability to ambient light. It is currently a relatively active flat panel display technology and is widely used in mobile display devices such as mobile phones and PDAs (Personal Digital Assistant, PDA for short). Transflective LCDs can display images in both transmissive and reflective modes individually or simultaneously, so transflective LCDs can be used in any ambient light. The basic structure of the transflective liquid crystal display is to divide each red, green, and blue sub-pixel unit into two parts, the transmission area and the reflection area, so that the liquid crystal in the transmission area works in the transmission mode, and the liquid crystal in the reflection area works in the reflection mode. Its working principle is: when the environment is dark, the backlight is turned on, the light passes through the transmission area, and the device works in the transmission mode, while in a bright environment, the external light intensity is greater than the light intensity of the backlight, and the semi-transparent and semi-reflective The type liquid crystal display works in the reflective mode, and displays images by reflecting light from the outside world.
发明人在实现本发明的过程中发现,由于透射区出射的光线只经过一次液晶分子层,而反射区出射的光线经过了两次液晶分子层,当反射区的液晶分子层的厚度和排布与透射区的一致时,反射区的光程为透射区光程的两倍,由于透射区和反射区存在光程差,经透射区与反射区出射的光线相位延迟量不匹配,从而严重影响显示效果。故而,为保证透射区和反射区的相位延迟量一致,现有的透反式液晶显示器通常采用双盒厚的结构,通过改变光线通过透射区或反射区的光程实现透射区和反射区的相位延迟量一致,但双盒厚的结构通常会提高透反式液晶显示器的制作工艺的难度,进而提高了透反式液晶显示器的制作成本,降低了良品率。The inventor found in the process of realizing the present invention that since the light emitted from the transmissive region passes through the liquid crystal molecular layer only once, while the light emitted from the reflective region passes through the liquid crystal molecular layer twice, when the thickness and arrangement of the liquid crystal molecular layer in the reflective region When it is consistent with that of the transmission area, the optical path of the reflection area is twice the optical path of the transmission area. Due to the optical path difference between the transmission area and the reflection area, the phase delay of the light emitted through the transmission area and the reflection area does not match, which seriously affects display effect. Therefore, in order to ensure that the phase retardation of the transmission area and the reflection area are consistent, the existing transflective liquid crystal display usually adopts a double-cell thick structure, and realizes the difference between the transmission area and the reflection area by changing the optical path of the light passing through the transmission area or the reflection area. The phase retardation is the same, but the double-cell thick structure usually increases the difficulty of the manufacturing process of the transflective liquid crystal display, thereby increasing the manufacturing cost of the transflective liquid crystal display and reducing the yield rate.
发明内容Contents of the invention
本发明所要解决的技术问题在于提供一种液晶显示面板及其制作方法、显示装置,该液晶显示面板可在单盒厚结构的基础上保证透射区和反射区的相位延迟量一致,降低了透反式液晶显示面板的制作工艺的难度。The technical problem to be solved by the present invention is to provide a liquid crystal display panel and its manufacturing method, and a display device. The liquid crystal display panel can ensure that the phase retardation of the transmission area and the reflection area are consistent on the basis of a single-cell thick structure, reducing the transmission rate. The difficulty of the manufacturing process of the trans-type liquid crystal display panel.
为解决上述技术问题,本发明的实施例采用如下技术方案:In order to solve the above technical problems, embodiments of the present invention adopt the following technical solutions:
本发明实施例的第一方面,提供了一种液晶显示面板,所述液晶显示面板为单盒厚结构,包括相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设置有液晶分子层,所述第一基板包括由横纵交叉的栅线和数据线划分出的数个子像素区域,每个所述子像素区域包括透射区和反射区,所述透射区的液晶分子层中的液晶分子与水平面呈第一预倾角,所述反射区的液晶分子层中的液晶分子与水平面呈第二预倾角,所述第一预倾角小于所述第二预倾角。According to the first aspect of the embodiments of the present invention, a liquid crystal display panel is provided. The liquid crystal display panel is a single-cell thick structure, including a first substrate and a second substrate oppositely arranged, and the first substrate and the second substrate are A layer of liquid crystal molecules is arranged between the substrates, and the first substrate includes several sub-pixel regions divided by gate lines and data lines crossing horizontally and vertically, and each sub-pixel region includes a transmissive area and a reflective area, and the transmissive The liquid crystal molecules in the liquid crystal molecule layer in the reflection area form a first pretilt angle with the horizontal plane, the liquid crystal molecules in the liquid crystal molecule layer in the reflective area form a second pretilt angle with the horizontal plane, and the first pretilt angle is smaller than the second pretilt angle .
所述透射区的液晶分子层中的液晶分子相互平行,所述反射区的液晶分子层中的液晶分子相互平行。The liquid crystal molecules in the liquid crystal molecule layer in the transmission area are parallel to each other, and the liquid crystal molecules in the liquid crystal molecule layer in the reflection area are parallel to each other.
所述第一基板自下而上依次包括第一偏光片、第一透明基板、钝化层、像素电极层和第一取向层,在所述反射区内,所述钝化层内设置有反射层。The first substrate sequentially includes a first polarizer, a first transparent substrate, a passivation layer, a pixel electrode layer and a first alignment layer from bottom to top, and in the reflection area, a reflection layer.
所述反射层的表面为凹凸结构。The surface of the reflective layer has a concave-convex structure.
所述像素电极层包括位于透射区的第一像素电极和位于反射区的第二像素电极。The pixel electrode layer includes a first pixel electrode located in the transmissive area and a second pixel electrode located in the reflective area.
所述第一预倾角为5°至35°,所述第二预倾角为20°至50°,所述液晶分子层的厚度为2微米至8微米。The first pretilt angle is 5° to 35°, the second pretilt angle is 20° to 50°, and the thickness of the liquid crystal molecular layer is 2 microns to 8 microns.
在本发明实施例的技术方案中,所述透射区的液晶分子层中的液晶分子与水平面呈第一预倾角,所述反射区的液晶分子层中的液晶分子与水平面呈第二预倾角,所述第一预倾角小于所述第二预倾角,使得经透射区出射的透射光的相位延迟量与经反射区出射的反射光的相位延迟量匹配。并且,由于本发明中所采用的液晶显示面板为单盒厚的结构,从而大大简化了透反式液晶显示面板制作工艺的难度。In the technical solution of the embodiment of the present invention, the liquid crystal molecules in the liquid crystal molecular layer in the transmissive area form a first pretilt angle with the horizontal plane, and the liquid crystal molecules in the liquid crystal molecular layer in the reflective area form a second pretilt angle with the horizontal plane, The first pre-tilt angle is smaller than the second pre-tilt angle, so that the phase delay of the transmitted light exiting through the transmission area matches the phase delay of the reflected light exiting through the reflection area. Moreover, since the liquid crystal display panel adopted in the present invention has a single cell thick structure, the difficulty of manufacturing the transflective liquid crystal display panel is greatly simplified.
本发明实施例的第二方面,提供了一种液晶显示面板的制作方法,包括:The second aspect of the embodiments of the present invention provides a method for manufacturing a liquid crystal display panel, including:
分别遮盖所述液晶显示面板的反射区的第一取向层和第二取向层;respectively covering the first alignment layer and the second alignment layer of the reflection area of the liquid crystal display panel;
以与水平面呈第一角度的紫外光分别照射所述液晶显示面板的透射区的第一取向层和第二取向层;respectively irradiating the first alignment layer and the second alignment layer of the transmissive area of the liquid crystal display panel with ultraviolet light at a first angle to the horizontal plane;
分别遮盖所述液晶显示面板的透射区的第一取向层和第二取向层;respectively covering the first alignment layer and the second alignment layer of the transmissive area of the liquid crystal display panel;
以与水平面呈第二角度的紫外光分别照射所述液晶显示面板的反射区的第一取向层和第二取向层。The first alignment layer and the second alignment layer of the reflection area of the liquid crystal display panel are respectively irradiated with ultraviolet light at a second angle to the horizontal plane.
所述第一取向层和所述第二取向层的材质为感光性聚酰亚胺。The material of the first alignment layer and the second alignment layer is photosensitive polyimide.
在本发明实施例的技术方案中,提供了一种液晶显示面板的制作方法,该种液晶显示面板的制作方法对制作工艺要求不高,简便易行,提高了液晶显示面板的制作良品率,降低了液晶显示面板的制作成本。In the technical solution of the embodiment of the present invention, a method for manufacturing a liquid crystal display panel is provided. The method for manufacturing a liquid crystal display panel does not have high requirements on the manufacturing process, is simple and easy to implement, and improves the production yield of the liquid crystal display panel. The manufacturing cost of the liquid crystal display panel is reduced.
本发明实施例的第三方面,提供一种显示装置,包括上述的液晶显示面板。A third aspect of the embodiments of the present invention provides a display device, including the above-mentioned liquid crystal display panel.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following will briefly introduce the accompanying drawings that need to be used in the description of the embodiments. Obviously, the accompanying drawings in the following description are only of the present invention. For some embodiments, those of ordinary skill in the art can also obtain other drawings based on these drawings without any creative effort.
图1为本发明实施例中液晶显示面板的结构示意图一;FIG. 1 is a schematic structural diagram of a liquid crystal display panel in an embodiment of the present invention;
图2为本发明实施例中液晶显示面板的结构示意图二;FIG. 2 is a second structural schematic diagram of a liquid crystal display panel in an embodiment of the present invention;
图3为本发明实施例中液晶显示面板的制作方法的流程图。FIG. 3 is a flowchart of a manufacturing method of a liquid crystal display panel in an embodiment of the present invention.
附图标记说明:Explanation of reference signs:
1—第一基板;11—第一偏光片;12—第一透明基板;1—the first substrate; 11—the first polarizer; 12—the first transparent substrate;
13—钝化层;14—像素电极层;15—第一取向层;13—passivation layer; 14—pixel electrode layer; 15—first alignment layer;
16—反射层;2—第二基板;3—液晶层;16—reflective layer; 2—second substrate; 3—liquid crystal layer;
31—液晶分子。31—Liquid crystal molecules.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
实施例一Embodiment one
本发明实施例提供一种液晶显示面板,所述液晶显示面板为单盒厚结构,如图1所示,包括相对设置的第一基板1和第二基板2,所述第一基板1和所述第二基板2之间设置有液晶分子层3,所述第一基板1包括由横纵交叉的栅线和数据线划分出的数个子像素区域,每个所述子像素区域包括透射区和反射区。An embodiment of the present invention provides a liquid crystal display panel. The liquid crystal display panel is a single-cell thick structure, as shown in FIG. A liquid crystal molecule layer 3 is arranged between the second substrate 2, and the first substrate 1 includes several sub-pixel regions divided by gate lines and data lines crossing horizontally and vertically, and each sub-pixel region includes a transmissive area and a reflective area.
其中,所述透射区的液晶分子层3中的液晶分子31与水平面呈第一预倾角α,所述反射区的液晶分子层3中的液晶分子31与水平面呈第二预倾角β,所述第一预倾角α小于所述第二预倾角β。Wherein, the liquid crystal molecules 31 in the liquid crystal molecule layer 3 in the transmissive area form a first pretilt angle α with the horizontal plane, and the liquid crystal molecules 31 in the liquid crystal molecular layer 3 in the reflective area form a second pretilt angle β with the horizontal plane. The first pretilt angle α is smaller than the second pretilt angle β.
由于透射区的液晶分子31与水平面呈第一预倾角α,而反射区的液晶分子31与水平面呈第二预倾角β,且第一预倾角α小于第二预倾角β,这意味着透射区的液晶分子31在水平面上的水平分量大于反射区的液晶分子31在水平面上的水平分量,则同一束光线分别穿过相同厚度的透射区和反射区的液晶分子层3时,光线在透射区的液晶分子层3内所产生的水平相位延迟量△n1大于反射区的液晶分子层3内所产生的水平相位延迟量△n2。Since the liquid crystal molecules 31 in the transmissive area form a first pre-tilt angle α with the horizontal plane, and the liquid crystal molecules 31 in the reflective area form a second pre-tilt angle β with the horizontal plane, and the first pre-tilt angle α is smaller than the second pre-tilt angle β, which means that the transmissive area The horizontal component of the liquid crystal molecules 31 in the horizontal plane is greater than the horizontal component of the liquid crystal molecules 31 in the reflection area, then when the same beam of light passes through the liquid crystal molecule layer 3 in the transmission area and the reflection area of the same thickness respectively, the light is in the transmission area. The horizontal phase retardation Δn1 generated in the liquid crystal molecule layer 3 in the reflective area is greater than the horizontal phase retardation Δn2 generated in the liquid crystal molecular layer 3 in the reflection area.
进一步的,由于本发明中的液晶显示面板为单盒厚结构,即透射区的液晶分子层3的厚度与反射区的液晶分子层3的厚度相同,而由于透射区出射的光线只需经过一次液晶分子层3,反射区出射的光线需经过两次液晶分子层3,即d反射区=2*d透射区,则通过对透射区的液晶分子层3内的液晶分子31的第一预倾角α或反射区的液晶分子31的第二预倾角β的优化,可使得△n1=2*△n2,综上,可以得到透射区(△n*d)=反射区(△n*d),从而实现了透射区和反射区的相位延迟量的匹配,并最终达到半透半反的显示效果。Further, since the liquid crystal display panel in the present invention is a single cell thick structure, the thickness of the liquid crystal molecular layer 3 in the transmissive area is the same as the thickness of the liquid crystal molecular layer 3 in the reflective area, and the light emitted from the transmissive area only needs to pass through once. In the liquid crystal molecular layer 3, the light emitted from the reflective area needs to pass through the liquid crystal molecular layer 3 twice, that is, d reflective area=2*d transmissive area, then pass through the first pretilt angle of the liquid crystal molecules 31 in the liquid crystal molecular layer 3 in the transmissive area α or the optimization of the second pretilt angle β of the liquid crystal molecules 31 in the reflective region can make Δn1 =2*Δn2 , in summary, the transmissive region (△n*d)=reflective region (△n*d ), so as to realize the matching of the phase retardation of the transmissive area and the reflective area, and finally achieve a semi-transparent and semi-reflective display effect.
在本实施例的技术方案中,所述透射区的液晶分子层中的液晶分子与水平面呈第一预倾角,所述反射区的液晶分子层中的液晶分子与水平面呈第二预倾角,所述第一预倾角小于所述第二预倾角,使得经透射区出射的透射光的相位延迟量与经反射区出射的反射光的相位延迟量匹配。并且,由于本发明中所采用的液晶显示面板为单盒厚的结构,从而大大简化了透反式液晶显示面板制作工艺的难度。In the technical solution of this embodiment, the liquid crystal molecules in the liquid crystal molecular layer in the transmissive area form a first pretilt angle with the horizontal plane, and the liquid crystal molecules in the liquid crystal molecular layer in the reflective area form a second pretilt angle with the horizontal plane, so The first pre-tilt angle is smaller than the second pre-tilt angle, so that the phase delay of the transmitted light exiting through the transmission area matches the phase delay of the reflected light exiting through the reflection area. Moreover, since the liquid crystal display panel adopted in the present invention has a single cell thick structure, the difficulty of manufacturing the transflective liquid crystal display panel is greatly simplified.
实施例二Embodiment two
本发明实施例提供一种液晶显示面板,在实施例一的基础上,出于降低制作工艺的难度的考虑,所述透射区的液晶分子层3中的液晶分子31可以相互平行,所述反射区的液晶分子层3中的液晶分子31可以相互平行。An embodiment of the present invention provides a liquid crystal display panel. On the basis of Embodiment 1, in order to reduce the difficulty of the manufacturing process, the liquid crystal molecules 31 in the liquid crystal molecule layer 3 in the transmission region can be parallel to each other, and the reflection The liquid crystal molecules 31 in the liquid crystal molecule layer 3 of the region may be parallel to each other.
进一步的,所述第一基板1自下而上依次包括第一偏光片11、第一透明基板12、钝化层13、像素电极层14和第一取向层15,在所述反射区内,所述钝化层13内设置有反射层16。Further, the first substrate 1 sequentially includes a first polarizer 11, a first transparent substrate 12, a passivation layer 13, a pixel electrode layer 14 and a first alignment layer 15 from bottom to top, and in the reflection area, A reflective layer 16 is disposed in the passivation layer 13 .
其中,所述反射层16用于将反射区内的光线反射到外界。Wherein, the reflective layer 16 is used to reflect the light in the reflective area to the outside.
由于所述反射层16设置于所述钝化层13内,且位于透射区的钝化层13的厚度大于反射区内的钝化层13的厚度,以使得该钝化层13的表面相平。这样一来,通过设置厚度不均的钝化层,可以保证第一基板1表面的平整性。Since the reflective layer 16 is arranged in the passivation layer 13, and the thickness of the passivation layer 13 in the transmission area is greater than the thickness of the passivation layer 13 in the reflection area, so that the surface of the passivation layer 13 is flat . In this way, the flatness of the surface of the first substrate 1 can be ensured by providing the passivation layer with uneven thickness.
进一步的,所述反射层16的表面为凹凸结构。凹凸结构表面的反光层16能够使外部光线发生漫反射,将光线反射到各个方向。相比于平面反光镜的单方向反射,凹凸结构表面的反光层16能够更充分的利用光源,使光源的覆盖面更宽,光线也更加均匀。优选的,反光层16由铝制成。Further, the surface of the reflective layer 16 has a concave-convex structure. The reflective layer 16 on the surface of the concave-convex structure can diffusely reflect external light and reflect light to various directions. Compared with the unidirectional reflection of a flat mirror, the reflective layer 16 on the surface of the concave-convex structure can make full use of the light source, so that the coverage of the light source is wider and the light is more uniform. Preferably, the reflective layer 16 is made of aluminum.
进一步的,所述像素电极层14包括位于透射区的第一像素电极和位于反射区的第二像素电极。Further, the pixel electrode layer 14 includes a first pixel electrode located in the transmissive area and a second pixel electrode located in the reflective area.
由于透射区的液晶分子31的第一预倾角α与反射区的液晶分子31的第二预倾角β不同,而在像素电极层14通电时,需要将透射区和反射区的液晶分子31的排布改变为如图2所示的竖直排布的形态,则透射区的液晶分子31需要的驱动电压与反射区的液晶分子需要加载的驱动电压不同,故而通常采用相互绝缘的第一像素电极和第二像素电极来分别驱动透射区的液晶分子31和反射区的液晶分子31。第一像素电极通过第一数据线进行供电,第二像素电极通过第二数据线进行供电。这样一来,通过改变第一像素电极与第二像素的驱动电压即可以有效控制透射区和反射区所产生的相位延迟量,从而大大增加了液晶显示面板控制的灵活性。Since the first pretilt angle α of the liquid crystal molecules 31 in the transmissive area is different from the second pretilt angle β of the liquid crystal molecules 31 in the reflective area, when the pixel electrode layer 14 is energized, it is necessary to align the liquid crystal molecules 31 in the transmissive area and the reflective area. If the layout is changed to the vertically arranged form as shown in Figure 2, the driving voltage required by the liquid crystal molecules 31 in the transmissive area and the liquid crystal molecules in the reflective area will be different, so the first pixel electrodes that are insulated from each other are usually used. and the second pixel electrode to respectively drive the liquid crystal molecules 31 in the transmissive area and the liquid crystal molecules 31 in the reflective area. The first pixel electrode is powered by the first data line, and the second pixel electrode is powered by the second data line. In this way, by changing the driving voltages of the first pixel electrode and the second pixel, the phase delay generated by the transmissive area and the reflective area can be effectively controlled, thereby greatly increasing the flexibility of the control of the liquid crystal display panel.
另外,所述第一像素电极与所述第二像素电极也可相连接甚至一体成型,为同一数据线进行供电,只要保证该像素电极层所提供的驱动电压大于透射区或反射区需要的驱动电压的最大值即可。In addition, the first pixel electrode and the second pixel electrode can also be connected or even integrally formed to supply power to the same data line, as long as the driving voltage provided by the pixel electrode layer is greater than the driving voltage required by the transmissive area or the reflective area. The maximum voltage is sufficient.
进一步的,经过一系列实验验证,所述第一预倾角α的可选范围为5°至35°,所述第二预倾角β的可选范围为20°至50°,但必须保证第一预倾角α的取值小于第二预倾角β的取值,并且所述液晶分子层3的厚度为2微米至8微米。通过对透射区的液晶分子层3内的液晶分子31的第一预倾角α或反射区的液晶分子31的第二预倾角β的优化,最终可确定第一预倾角α与第二预倾角β满足透射区(△n*d)=反射区(△n*d)这一式子时的各自的取值,例如,第一预倾角α优选为12.5°,此时第二预倾角β优选为32.5°,所述液晶分子层3的厚度为4.4微米。Further, after a series of experimental verifications, the optional range of the first pretilt angle α is 5° to 35°, and the optional range of the second pretilt angle β is 20° to 50°, but the first The value of the pretilt angle α is smaller than the value of the second pretilt angle β, and the thickness of the liquid crystal molecule layer 3 is 2 microns to 8 microns. By optimizing the first pretilt angle α of the liquid crystal molecules 31 in the liquid crystal molecule layer 3 in the transmissive area or the second pretilt angle β of the liquid crystal molecules 31 in the reflective area, the first pretilt angle α and the second pretilt angle β can be finally determined The respective values when the formula of transmission area (△n*d)=reflection area (△n*d) is satisfied, for example, the first pre-tilt angle α is preferably 12.5°, and the second pre-tilt angle β is preferably 32.5 °, the thickness of the liquid crystal molecule layer 3 is 4.4 microns.
本发明实施例还提供了一种包括上述液晶显示面板的显示装置。An embodiment of the present invention also provides a display device including the above-mentioned liquid crystal display panel.
实施例三Embodiment three
本发明实施例提供一种液晶显示面板的制作方法,如图3所示,该方法包括:An embodiment of the present invention provides a method for manufacturing a liquid crystal display panel, as shown in FIG. 3 , the method includes:
步骤S101、分别遮盖所述液晶显示面板的反射区的第一取向层和第二取向层;Step S101, respectively covering the first alignment layer and the second alignment layer of the reflection area of the liquid crystal display panel;
步骤S102、以与水平面呈第一角度的紫外光分别照射所述液晶显示面板的透射区第一取向层和第二取向层;Step S102, respectively irradiating the first alignment layer and the second alignment layer in the transmissive region of the liquid crystal display panel with ultraviolet light at a first angle to the horizontal plane;
步骤S103、分别遮盖所述液晶显示面板的透射区的第一取向层和第二取向层;Step S103, respectively covering the first alignment layer and the second alignment layer of the transmissive area of the liquid crystal display panel;
步骤S104、以与水平面呈第二角度的紫外光分别照射所述液晶显示面板的反射区第一取向层和第二取向层。Step S104 , respectively irradiating the first alignment layer and the second alignment layer in the reflection area of the liquid crystal display panel with ultraviolet light at a second angle to the horizontal plane.
由此,所制得的液晶显示面板的透射区的液晶分子的第一预倾角为第一角度,反射区的液晶分子的第二预倾角为第二角度。Thus, the first pretilt angle of the liquid crystal molecules in the transmissive area of the obtained liquid crystal display panel is the first angle, and the second pretilt angle of the liquid crystal molecules in the reflective area is the second angle.
其中,所述步骤101、步骤102和步骤103、步骤104可对调。Wherein, the step 101, step 102, step 103, step 104 can be reversed.
为了采用该方法制得半透半反液晶显示面板,所述第一取向层和所述第二取向层的材质应当为感光性聚酰亚胺。感光性聚酰亚胺在紫外光的照射下,会发生选择性光降解或光交联反应,因而引发表面各向异性,导致液晶分子的取向排列。In order to use this method to manufacture a transflective liquid crystal display panel, the material of the first alignment layer and the second alignment layer should be photosensitive polyimide. Under the irradiation of ultraviolet light, photosensitive polyimide will undergo selective photodegradation or photocrosslinking reaction, thus causing surface anisotropy and resulting in the alignment of liquid crystal molecules.
在本实施例的技术方案中,提供了一种液晶显示面板的制作方法,该种液晶显示面板的制作方法对制作工艺要求不高,简便易行,提高了液晶显示面板的制作良品率,降低了液晶显示面板的制作成本。In the technical solution of this embodiment, a method for manufacturing a liquid crystal display panel is provided. The method for manufacturing a liquid crystal display panel does not have high requirements on the manufacturing process, is simple and easy to implement, improves the production yield of the liquid crystal display panel, and reduces The production cost of the liquid crystal display panel is reduced.
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Anyone skilled in the art can easily think of changes or substitutions within the technical scope disclosed in the present invention. Should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210477366.9ACN102981300B (en) | 2012-11-21 | 2012-11-21 | Display panels and preparation method thereof, display device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210477366.9ACN102981300B (en) | 2012-11-21 | 2012-11-21 | Display panels and preparation method thereof, display device |
| Publication Number | Publication Date |
|---|---|
| CN102981300A CN102981300A (en) | 2013-03-20 |
| CN102981300Btrue CN102981300B (en) | 2015-11-25 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210477366.9AActiveCN102981300B (en) | 2012-11-21 | 2012-11-21 | Display panels and preparation method thereof, display device |
| Country | Link |
|---|---|
| CN (1) | CN102981300B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103293770B (en)* | 2013-05-31 | 2015-12-23 | 京东方科技集团股份有限公司 | Display base plate and manufacture method and display panels |
| CN103792721B (en) | 2014-01-22 | 2016-06-29 | 京东方科技集团股份有限公司 | A kind of semitransparent semi-inverse liquid crystal display panel and preparation method thereof, display device |
| CN104503143B (en)* | 2014-12-17 | 2017-09-26 | 深圳市华星光电技术有限公司 | A kind of transflective liquid crystal display and its manufacture method |
| CN106773334B (en)* | 2016-12-28 | 2020-02-07 | 深圳市华星光电技术有限公司 | Method for preparing display panel and prepared display panel |
| CN114236915B (en)* | 2021-12-30 | 2024-01-26 | Tcl华星光电技术有限公司 | Liquid crystal alignment method of display panel |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1392964A (en)* | 2000-09-27 | 2003-01-22 | 松下电器产业株式会社 | Transreflective liquid crystal display |
| TW200411292A (en)* | 2002-12-17 | 2004-07-01 | Ind Tech Res Inst | Transflective display with different pre-inclination architectures and its manufacturing method |
| CN102087443A (en)* | 2011-03-23 | 2011-06-08 | 四川大学 | Single cell-gap transflective liquid crystal display (LCD) with matched transmissive and reflective electro-optical characteristics |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040075791A1 (en)* | 2002-10-16 | 2004-04-22 | Hong-Da Liu | Wide view angle ultra minimal transflective-type vertically aligned liquid crystal display |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1392964A (en)* | 2000-09-27 | 2003-01-22 | 松下电器产业株式会社 | Transreflective liquid crystal display |
| TW200411292A (en)* | 2002-12-17 | 2004-07-01 | Ind Tech Res Inst | Transflective display with different pre-inclination architectures and its manufacturing method |
| CN102087443A (en)* | 2011-03-23 | 2011-06-08 | 四川大学 | Single cell-gap transflective liquid crystal display (LCD) with matched transmissive and reflective electro-optical characteristics |
| Publication number | Publication date |
|---|---|
| CN102981300A (en) | 2013-03-20 |
| Publication | Publication Date | Title |
|---|---|---|
| US10690983B2 (en) | Reflective display and preparation method thereof | |
| CN103838043B (en) | A kind of array base palte and preparation method thereof, display panels | |
| CN103809335B (en) | Transflective display device, electronic apparatus, and method of driving transflective display device | |
| CN102955304B (en) | A kind of display panels and display device | |
| CN102981300B (en) | Display panels and preparation method thereof, display device | |
| CN107945760B (en) | Liquid crystal display panel, driving method thereof and display device | |
| US20180031915A1 (en) | Liquid crystal display device and reflective display module of the same | |
| CN103176307B (en) | Semi-transmissive semi-reflective liquid crystal display (LCD) panel and LCD device | |
| CN102937761B (en) | Liquid crystal display panel and display device | |
| CN103293770B (en) | Display base plate and manufacture method and display panels | |
| CN105917271A (en) | Liquid crystal display | |
| CN102591063A (en) | Liquid crystal display switchable between transmission and reflection | |
| CN102830540B (en) | Blue phase liquid crystal panel and liquid crystal display applying same | |
| CN102879957B (en) | Liquid crystal display panel and display device | |
| CN104297997A (en) | Liquid crystal display panel, and display method and display device thereof | |
| CN102654680B (en) | Transflective liquid crystal display | |
| CN104360516A (en) | Liquid crystal display device and liquid crystal display panel for same | |
| CN103353682A (en) | Display panel and transparent display device | |
| CN104020616B (en) | Transmitting/reflecting LCD and driving method thereof | |
| CN102937762B (en) | Transflective liquid crystal display device | |
| CN102981325A (en) | Semi-transparent and semi-reflective liquid-crystal display panel and liquid-crystal display device | |
| CN105204246A (en) | Transflective liquid crystal display panel | |
| CN103197475A (en) | Transflective liquid crystal display panel and liquid crystal display device | |
| CN203287662U (en) | Blue phase liquid crystal display device capable of achieving view angle controllable display and transflective display | |
| CN102944957B (en) | Semitransparent and semi-reflecting liquid crystal display device |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |