






技术领域technical field
本发明涉及一种二氧化碳远程无线实时监测系统,尤其涉及一种温室环境远程无线实时监测系统及方法。 The invention relates to a carbon dioxide remote wireless real-time monitoring system, in particular to a greenhouse environment remote wireless real-time monitoring system and method. the
背景技术Background technique
目前,温室环境监测方式主要有四种方式:(1)现场监测:监测人员随身携带温度计、湿度计、二氧化碳浓度计等仪器,进行被动的温室环境现场监测记录,人工成本巨大;(2)自动监测:将温度、湿度、光照、二氧化碳等传感器整合于同一监测设备,并安置在温室环境中进行自动采集,操作人员定期拷贝数据存储卡中的监测数据,难以实现数据的远程采集且实时性差;(3)远程监测:将温室环境监测设备通过有线方式与附近的电脑相连,通过有线网络远程传输采集数据,监测设备安置后不可移动且布线成本较高;(4)无线监测:借助ZigBee/GPRS/3G等无线网络实现采集数据的远程实时无线传输,布点灵活且无需布线,是较理想的监测方案。 At present, there are four main ways to monitor the greenhouse environment: (1) On-site monitoring: monitoring personnel carry thermometers, hygrometers, carbon dioxide concentration meters and other instruments with them to conduct passive on-site monitoring and recording of the greenhouse environment, and the labor cost is huge; (2) Automatic monitoring Monitoring: Integrate temperature, humidity, light, carbon dioxide and other sensors into the same monitoring equipment, and place them in the greenhouse environment for automatic collection. Operators regularly copy the monitoring data in the data storage card, which is difficult to achieve remote data collection and poor real-time performance; (3) Remote monitoring: connect the greenhouse environment monitoring equipment to a nearby computer through a wired method, and remotely transmit and collect data through a wired network. After the monitoring equipment is installed, it cannot be moved and the wiring cost is high; (4) Wireless monitoring: use ZigBee/GPRS /3G and other wireless networks to realize remote real-time wireless transmission of collected data, flexible layout and no need for wiring, it is an ideal monitoring solution. the
与本发明最为相近的已有技术有: The closest prior art with the present invention has:
专利号为200810031646.0公开了基于无线传感器网络的温室精细作物生产环境监测系统及方法,包括无线传感器网络、无线网关和控制台,发现异常监测数据时发送报警短信。然而,该方法采用短信猫作为收发装置,通信费用较高且实时性差。Patent No. 200810031646.0 discloses a wireless sensor network-based greenhouse fine crop production environment monitoring system and method, including a wireless sensor network, a wireless gateway and a console, and sends an alarm message when abnormal monitoring data is found. However, this method uses SMS Modem as the transceiver device, and the communication cost is high and the real-time performance is poor.
专利号为200920034767.0公开了无线传感器网络温室环境自动监测系统,该系统将大气温度、大气湿度、土壤温度、土壤湿度、二氧化碳和光照强度等六种传感器节点组网后,将采集数据打包上传至数据采集设备,再接入Internet网与通信服务器相连。然而,该系统没有整合六种传感器设计数据采集发送终端,使得每个温室环境小范围内均须同时布设六种传感器节点并组网。 Patent No. 200920034767.0 discloses a wireless sensor network greenhouse environment automatic monitoring system. After the system connects six sensor nodes such as atmospheric temperature, atmospheric humidity, soil temperature, soil moisture, carbon dioxide and light intensity, the collected data is packaged and uploaded to the data The collection equipment is connected to the Internet and connected to the communication server. However, the system does not integrate six kinds of sensors to design data collection and sending terminals, so that six kinds of sensor nodes must be deployed and networked in a small area of each greenhouse environment at the same time. the
专利号为201020636459.8公开了一种用于温室大棚的无线环境监测装置,该装置采用ZigBee技术组建无线传感网络。然而,ZigBee技术仅适合实现短距离的无线传输,实现协议复杂且费用高,难以满足温室环境大范围离散分布的监测需要。 Patent No. 201020636459.8 discloses a wireless environment monitoring device for greenhouses, which uses ZigBee technology to form a wireless sensor network. However, ZigBee technology is only suitable for short-distance wireless transmission, and the implementation protocol is complex and expensive, and it is difficult to meet the monitoring needs of large-scale discrete distribution in the greenhouse environment. the
专利号为201110431315.8公开了基于GSM短消息的无线温室环境监测系统,该系统实时监测温度、湿度、光照强度、二氧化碳浓度等数据,定时以GSM短消息的方式发送到手机和远程监控中心实现报警。然而,其没有实现GPRS无线网络通讯,不能进行温室环境监测数据的连续传输,难以满足对温室环境动态连续监测的需要。 Patent No. 201110431315.8 discloses a wireless greenhouse environment monitoring system based on GSM short messages. The system monitors data such as temperature, humidity, light intensity, and carbon dioxide concentration in real time, and regularly sends GSM short messages to mobile phones and remote monitoring centers to realize alarms. However, it does not realize GPRS wireless network communication, and cannot continuously transmit greenhouse environment monitoring data, so it is difficult to meet the needs of dynamic and continuous monitoring of greenhouse environment. the
上述方法或采用短信猫作为收发装置,或没有整合多种传感器节点,或采用ZigBee技术组建无线传感网络,或基于GSM短消息进行异常报警,却忽略了温室环境往往具有大范围离散和小范围密集的分布特征,若纯粹采用ZigBee等短距离无线射频传输方式,则难以满足大范围离散分布的监测需要,若纯粹采用GPRS/3G等无线网络传输数据,则使得小范围密集分布的监测成本过高。因此,急需一种能够兼顾考虑温室环境大范围离散和小范围密集分布的监测需求,具有结构简单、布点灵活、远程监测、无线传输、实时显示、成本低廉和低功耗等特点的监测方案。 The above methods either use SMS Modem as the transceiver device, or do not integrate multiple sensor nodes, or use ZigBee technology to build a wireless sensor network, or use GSM short messages for abnormal alarms, but ignore the fact that the greenhouse environment often has large-scale discrete and small-scale Due to the dense distribution characteristics, if short-distance radio frequency transmission methods such as ZigBee are used purely, it is difficult to meet the monitoring needs of large-scale discrete distribution. high. Therefore, there is an urgent need for a monitoring solution that can take into account both large-scale discrete and small-scale dense distribution of greenhouse environments, and has the characteristics of simple structure, flexible layout, remote monitoring, wireless transmission, real-time display, low cost, and low power consumption. the
发明内容Contents of the invention
技术问题:本发明的目的是克服现有监测方案的不足,提供一种可操作性强的一种温室环境远程无线实时监测系统及方法。 Technical problem: The purpose of this invention is to overcome the shortcomings of the existing monitoring schemes and provide a remote wireless real-time monitoring system and method for the greenhouse environment with strong operability. the
技术方案:实现本发明目的的一种温室环境远程无线实时监测系统,包括监测服务器、GPRS无线通信网络、远程数据转发器和温室环境监测仪器;监测服务器通过GPRS无线通信网络连接多个远程数据转发器;每一个远程数据转发器均连接有多个温室环境监测仪器,以各个远程数据转发器为中心呈星型局域网结构无线互连有多个温室环境监测仪器。 Technical solution: a remote wireless real-time monitoring system for a greenhouse environment that realizes the object of the present invention, including a monitoring server, a GPRS wireless communication network, a remote data transponder and a greenhouse environment monitoring instrument; the monitoring server is connected to multiple remote data forwarders through a GPRS wireless communication network Each remote data transponder is connected with a plurality of greenhouse environment monitoring instruments, and each remote data transponder is a center of a star-shaped local area network wirelessly interconnected with a plurality of greenhouse environment monitoring instruments. the
所述的监测服务器是运行数据监测服务的计算机,监测服务器部署在互联网的任意节点位置,通过GPRS无线通信网络与远程数据转发器建立双向无线连接,获取温室环境监测仪器的监测数据,同时温室环境监测仪器通过GPRS无线通信网络和远程数据转发器获取监测服务器反馈的控制信息,温室环境监测仪器为多个,分别安置各个温室环境中。 The monitoring server is a computer running data monitoring services. The monitoring server is deployed at any node position on the Internet, establishes a two-way wireless connection with the remote data transponder through the GPRS wireless communication network, and obtains the monitoring data of the greenhouse environment monitoring instrument. At the same time, the greenhouse environment The monitoring instrument obtains the control information fed back by the monitoring server through the GPRS wireless communication network and the remote data transponder. There are multiple greenhouse environment monitoring instruments, which are respectively placed in each greenhouse environment. the
所述的远程数据转发器包括:电源模块、微控制器、短距离数据接收模块、SD存储模块、LCD显示模块和GPRS无线传输模块;所述的短距离数据接收模块、SD存储模块、LCD显示模块和GPRS无线传输模块分别与微控制器的端口相连接;其中:电源模块为远程数据转发器提供电能;短距离无线接受模块接受多个温室环境监测仪器发送来的监测数据;SD存储模块自动存储温室环境监测仪器的监测数据;LCD显示模块实时显示当前的监测数据、无线网络连接状态及电源状态信息;GPRS无线传输模块将温室环境监测仪器的监测数据无线连续传输到监测服务器。 Described remote data transponder comprises: power supply module, microcontroller, short-distance data receiving module, SD storage module, LCD display module and GPRS wireless transmission module; Described short-distance data receiving module, SD storage module, LCD display The module and the GPRS wireless transmission module are respectively connected to the ports of the microcontroller; among them: the power supply module provides electric energy for the remote data transponder; the short-distance wireless receiving module accepts the monitoring data sent by multiple greenhouse environment monitoring instruments; the SD storage module automatically Store the monitoring data of the greenhouse environment monitoring instrument; the LCD display module displays the current monitoring data, wireless network connection status and power status information in real time; the GPRS wireless transmission module wirelessly and continuously transmits the monitoring data of the greenhouse environment monitoring instrument to the monitoring server. the
所述的温室环境监测仪器包括电源模块、微控制器、温室环境传感器组、GPS接收模块和短距离无线发射模块;温室环境传感器组、GPS接收模块和短距离无线发射模块分别与微控制器的端口相连接;电源模块为温室环境监测仪器提供电能;所述的温室环境传感器组包括气体温度传感器、气体湿度传感器、光照强度传感器、二氧化碳传感器、土壤温度传感器和土壤湿度传感器,该传感器组监测并采集温室环境的气体和土壤状况数据;GPS接收模块远程接收温室环境的定位信息和授时信息,定时信息包括经度、纬度和高程,授时信息以格林尼治时间表示;短距离无线发射模块将监测数据发送给远程数据转发器的短距离无线接收模块。 The greenhouse environment monitoring instrument comprises a power supply module, a microcontroller, a greenhouse environment sensor group, a GPS receiving module and a short-distance wireless transmitting module; the greenhouse environment sensor group, the GPS receiving module and the short-distance wireless transmitting module are connected to the The ports are connected; the power module provides electric energy for the greenhouse environment monitoring instrument; the greenhouse environment sensor group includes a gas temperature sensor, a gas humidity sensor, a light intensity sensor, a carbon dioxide sensor, a soil temperature sensor and a soil humidity sensor, and the sensor group monitors and Collect the gas and soil status data of the greenhouse environment; the GPS receiving module remotely receives the positioning information and timing information of the greenhouse environment, the timing information includes longitude, latitude and elevation, and the timing information is represented by GMT; the short-distance wireless transmission module sends the monitoring data to Short-range wireless receiver module for long-range data transponders. the
实现无线实时监测的方法包括:温室环境的远程无线实时监测方法、温室环境监测仪器实时监测温室环境的状态变化过程和远程数据转发器进行监测数据GPRS无线通信网络传输过程; The methods for realizing wireless real-time monitoring include: the remote wireless real-time monitoring method of the greenhouse environment, the real-time monitoring of the state change process of the greenhouse environment by the greenhouse environment monitoring instrument, and the remote data transponder for the transmission process of the monitoring data through the GPRS wireless communication network;
(1)、所述的温室环境的远程无线实时监测方法包括以下步骤:(1), the remote wireless real-time monitoring method of the greenhouse environment includes the following steps:
a.每个温室环境中安置一个温室环境监测仪器,多个温室环境周围安置多个远程数据转发器,并以远程数据转发器为中心,将多个温室环境监测仪器以星型局域网拓扑结构进行无线互连组网;a. One greenhouse environment monitoring instrument is placed in each greenhouse environment, and multiple remote data transponders are placed around multiple greenhouse environments. With the remote data transponder as the center, multiple greenhouse environment monitoring instruments are wirelessly interconnected in a star LAN topology. Connected network;
b.每个温室环境监测仪器实时监测温室环境的气体、土壤、GPS定位和授时数据;b. Each greenhouse environment monitoring instrument monitors the gas, soil, GPS positioning and timing data of the greenhouse environment in real time;
c.在监测到温室环境的气体和土壤状况发生变化时,温室环境监测仪器的短距离无线发射模块将监测数据无线发射给远程数据转发器的短距离无线接收模块;c. When changes in the gas and soil conditions of the greenhouse environment are detected, the short-distance wireless transmitting module of the greenhouse environment monitoring instrument wirelessly transmits the monitoring data to the short-distance wireless receiving module of the remote data transponder;
d.每个远程数据转发器接受到来自于多个温室环境监测仪器的监测数据后,由GPRS无线传输模块将监测数据通过GPRS无线通信网络连续传输到监测服务器;d. After each remote data transponder receives monitoring data from multiple greenhouse environment monitoring instruments, the GPRS wireless transmission module continuously transmits the monitoring data to the monitoring server through the GPRS wireless communication network;
e.监测服务器可部署在互联网的任意节点位置,从GPRS无线通信网络接收监测数据,同时提供客户的互联网访问;e. The monitoring server can be deployed at any node of the Internet, receive monitoring data from the GPRS wireless communication network, and provide customers with Internet access;
(2)、所述的温室环境监测仪器实时监测温室环境的状态变化过程,包括如下步骤:(2) The real-time monitoring of the state change process of the greenhouse environment by the greenhouse environment monitoring instrument includes the following steps:
2a.每个温室环境监测仪器接通电源后,微处理器对温室环境传感器组、GPS定位模块和短距离无线发射模块进行初始化,实时监测并控制各模块的运行状态;2a. After each greenhouse environment monitoring instrument is powered on, the microprocessor initializes the greenhouse environment sensor group, GPS positioning module and short-distance wireless transmission module, and monitors and controls the operating status of each module in real time;
2b.温室环境传感器组包括:气体温度传感器、气体湿度传感器、光照强度传感器、二氧化碳传感器、土壤温度传感器和土壤湿度传感器,实时监测温室环境的气体和土壤状态变化,并将监测数据传递给微控制器;2b. The greenhouse environment sensor group includes: gas temperature sensor, gas humidity sensor, light intensity sensor, carbon dioxide sensor, soil temperature sensor and soil moisture sensor, real-time monitoring of gas and soil state changes in the greenhouse environment, and transmit the monitoring data to the microcontroller;
2c.GPS接收模块实时获取当前温室环境的定位和授时信息,定时信息包括经度、纬度和高程,授时信息以格林尼治时间表示,并将GPS接收数据传递给微控制器;2c. The GPS receiving module obtains the positioning and timing information of the current greenhouse environment in real time. The timing information includes longitude, latitude and elevation. The timing information is represented by Greenwich Mean Time, and transmits the GPS received data to the microcontroller;
2d.微控制器实时对接收到的温室环境的气体、土壤和GPS监测数据进行对比分析;2d. The micro-controller compares and analyzes the received greenhouse gas, soil and GPS monitoring data in real time;
2e.判断温室环境的监测数据是否发生变化, 2e. Determine whether the monitoring data of the greenhouse environment has changed,
当微控制器分析到温室环境监测数据发送变化时,将监测数据进行封装,并通过短距离发射模块将监测数据无线发送给相连接的远程数据转发器;When the microcontroller analyzes the changes in the transmission of the greenhouse environment monitoring data, it encapsulates the monitoring data, and wirelessly sends the monitoring data to the connected remote data transponder through the short-distance transmission module;
当没有发生变化,微处理器进入休眠状态,定时被唤醒接收温室环境传感器组和GPS接收模块传递来的监测数据,执行步骤2d;When there is no change, the microprocessor enters the dormant state, wakes up regularly to receive the monitoring data transmitted by the greenhouse environment sensor group and the GPS receiving module, and executes step 2d;
(3)、所述的远程数据转发器进行监测数据GPRS无线通信网络传输过程,包括如下步骤:(3), the remote data transponder carries out the monitoring data GPRS wireless communication network transmission process, including the following steps:
3a.每个远程数据转发器接通电源后,微控制器初始化短距离无线接收模块、SD存储模块、LCD显示模块和GPRS无线传输模块,实时监测并控制各模块的运行状态;3a. After each remote data transponder is powered on, the microcontroller initializes the short-distance wireless receiving module, SD storage module, LCD display module and GPRS wireless transmission module, and monitors and controls the operating status of each module in real time;
3b.GPRS无线传输模块拨号上线,连接监测服务器与远端移动网握手实现点对点通信;3b. The GPRS wireless transmission module dials online, connects to the monitoring server and shakes hands with the remote mobile network to realize point-to-point communication;
3c.等待短距离数据接收模块获取温室环境监测仪器无线发送来的监测数据;3c. Waiting for the short-distance data receiving module to obtain the monitoring data sent by the greenhouse environment monitoring instrument wirelessly;
3d.将获取的监测数据自动连续存储到SD存储模块中;3d. Automatically and continuously store the acquired monitoring data into the SD storage module;
3e.将当前的监测数据、无线网络连接状态和电源状态数据信息在LCD显示模块上实时显示; 3e. Display the current monitoring data, wireless network connection status and power status data information on the LCD display module in real time;
3f.判断GPRS无线传输模块与监测服务器连接是否成功,如连接不成功则执行步骤b;3f. Judging whether the GPRS wireless transmission module is successfully connected with the monitoring server, if the connection is unsuccessful, step b is performed;
3g.判断SD存储模块中是否存在未发送数据,若存在未发送数据,将SD存储模块中未发送的监测数据进行用户数据包协议UDP封包,通过GPRS无线传输模块进行无线传输发送;3g. Judging whether there is unsent data in the SD storage module, if there is unsent data, the unsent monitoring data in the SD storage module is carried out User Data Packet Protocol UDP package, and wireless transmission is sent through the GPRS wireless transmission module;
h.将当前监测数据进行用户数据包协议UDP封包,通过GPRS无线传输模块进行无线传输发送。h. The current monitoring data is packaged in the user data packet protocol UDP, and transmitted wirelessly through the GPRS wireless transmission module.
有益效果:本发明采用温室环境监测仪器采集当前温室环境的气体温度、气体湿度、光照强度、二氧化碳浓度、土壤温度、土壤湿度、GPS定位和授时信息,并通过温室环境监测仪器的短距离无线发射模块发送给远程数据转发器的短距离无线接收模块,远程数据转发器通过SD数据存储模块、LCD显示模块和GPRS无线传输模块分别进行监测数据的自动存储、实时显示和无线传输。能够兼顾温室环境大范围离散和小范围密集分布的监测需求,可操作性强。 Beneficial effects: the present invention uses the greenhouse environment monitoring instrument to collect the gas temperature, gas humidity, light intensity, carbon dioxide concentration, soil temperature, soil humidity, GPS positioning and timing information of the current greenhouse environment, and transmits them through the short-distance wireless transmission of the greenhouse environment monitoring instrument. The module sends to the short-distance wireless receiving module of the remote data transponder, and the remote data transponder performs automatic storage, real-time display and wireless transmission of monitoring data through the SD data storage module, LCD display module and GPRS wireless transmission module respectively. It can take into account the monitoring needs of large-scale discrete and small-scale dense distribution of greenhouse environments, and has strong operability. the
优点:具有监测布点灵活、远程监测、自动存储、实时显示、无线传输的特点。其结构简单,成本低廉且低功耗; Advantages: It has the characteristics of flexible monitoring layout, remote monitoring, automatic storage, real-time display, and wireless transmission. Its structure is simple, low cost and low power consumption;
1、能够兼顾温室环境大范围离散和小范围密集分布的监测需求,在大范围离散分布时采用GPRS无线通信网络传输监测数据,在小范围密集分布时采用短距离无线收发传输监测数据。1. It can take into account the monitoring needs of large-scale discrete and small-scale dense distribution of greenhouse environments. When large-scale discrete distribution is used, GPRS wireless communication network is used to transmit monitoring data, and when small-scale dense distribution is used, short-distance wireless transmission and reception is used to transmit monitoring data.
2、每个温室环境中安置一个温室环境监测仪器,多个温室环境周围安置多个远程数据转发器,并以远程数据转发器为中心呈星型局域网拓扑结构无线互连组网,将监测数据由温室环境监测仪器的短距离无线发射模块发送给远程数据转发器的短距离无线接收模块,通信成本低廉且可扩展性强。 2. A greenhouse environment monitoring instrument is placed in each greenhouse environment, and multiple remote data transponders are placed around multiple greenhouse environments, and the remote data transponders are centered on a star-shaped local area network topology wireless interconnection network, and the monitoring data The short-distance wireless transmitting module of the greenhouse environment monitoring instrument is sent to the short-distance wireless receiving module of the remote data transponder, and the communication cost is low and the scalability is strong. the
3、远程数据转发器通过GPRS无线通信网络与监测服务器建立双向无线连接,既可无线实时连续获取监测数据,又可同时反馈客户的互联网访问控制,GPRS网络覆盖范围广。 3. The remote data transponder establishes a two-way wireless connection with the monitoring server through the GPRS wireless communication network, which can not only continuously obtain monitoring data in real time wirelessly, but also feed back the customer's Internet access control at the same time. The GPRS network covers a wide range. the
附图说明Description of drawings
图1是本发明基于星型局域网和GPRS的温室环境远程无线实时监测系统的结构图。 Fig. 1 is the structural diagram of the remote wireless real-time monitoring system of the greenhouse environment based on star LAN and GPRS in the present invention. the
图2是本发明监测服务器与远程数据转发器的GPRS连接图。 Fig. 2 is a GPRS connection diagram between the monitoring server and the remote data transponder of the present invention. the
图3是本发明远程数据转发器与温室环境监测仪器的星型局域网拓扑结构互连图。 Fig. 3 is a star LAN topology interconnection diagram of the remote data transponder and the greenhouse environment monitoring instrument of the present invention. the
图4是本发明温室环境监测仪器的模块连接图。 Fig. 4 is a module connection diagram of the greenhouse environment monitoring instrument of the present invention. the
图5是本发明温室环境的远程无线实时监测方法的流程图。 Fig. 5 is a flow chart of the remote wireless real-time monitoring method for the greenhouse environment of the present invention. the
图6是本发明温室环境监测仪器实时监测温室环境的状态变化过程的流程图。 Fig. 6 is a flow chart of the real-time monitoring process of the state change of the greenhouse environment by the greenhouse environment monitoring instrument of the present invention. the
图7是本发明远程数据转发器进行监测数据GPRS无线通信网络传输过程的流程图。 Fig. 7 is a flow chart of the transmission process of the remote data transponder in the present invention to the GPRS wireless communication network for monitoring data. the
图中:101、监测服务器;102、远程数据转发器;103、温室环境监测仪器;201、电源模块;202、微控制器;203、短距离无线接收模块;204、SD存储模块;205、LCD显示模块;206、GPRS无线传输模块;301、电源模块;302、微控制器;303、温室环境传感器组;304、GPS接收模块;305、短距离无线发射模块。 In the figure: 101, monitoring server; 102, remote data transponder; 103, greenhouse environment monitoring instrument; 201, power supply module; 202, microcontroller; 203, short-distance wireless receiving module; 204, SD storage module; 205, LCD Display module; 206, GPRS wireless transmission module; 301, power supply module; 302, microcontroller; 303, greenhouse environment sensor group; 304, GPS receiving module; 305, short-distance wireless transmitting module. the
具体实施方式Detailed ways
下面结合附图对本发明的一个实施例作进一步描述: An embodiment of the present invention will be further described below in conjunction with accompanying drawing:
实施例1:在图1中,本发明的一种温室环境远程无线实时监测系统,包括监测服务器101、分别与监测服务器101通过GPRS无线通信网络相连接的多个远程数据转发器102、以各个远程数据转发器102为中心呈星型局域网结构无线互连的多个温室环境监测仪器103。Embodiment 1: In Fig. 1, a kind of greenhouse environment remote wireless real-time monitoring system of the present invention comprises monitoring server 101, a plurality of remote data transponders 102 connected with monitoring server 101 by GPRS wireless communication network respectively, with each The remote data transponder 102 is a plurality of greenhouse environment monitoring instruments 103 wirelessly interconnected in a star-shaped local area network structure.
在图2中,远程数据转发器102包括:电源模块201、微控制器202、分别与微控制器202相连接的短距离数据接收模块203、SD存储模块204、LCD显示模块205和GPRS无线传输模块206。其中:电源模块201为远程数据转发器102提供电能;短距离无线接受模块203接受多个温室环境监测仪器103发送来的监测数据;SD存储模块204自动存储温室环境监测仪器103的监测数据;LCD显示模块205实时显示当前的监测数据、无线网络连接状态及电源状态信息;GPRS无线传输模块206采用支持全球移动通信系统/通用分组无线业务GSM/GPRS双频无线模块,以国际移动设备身份码IMEI作为唯一识别标识,将温室环境监测仪器103的监测数据无线连续传输到监测服务器101。 In Fig. 2, the remote data transponder 102 includes: a power supply module 201, a microcontroller 202, a short-distance data receiving module 203 connected to the microcontroller 202, an
在图3中,温室环境监测仪器103包括电源模块301、微控制器302、分别与微控制器302相连接的温室环境传感器组303、GPS接收模块304和短距离无线发射模块305;电源模块301为温室环境监测仪器103提供电能;温室环境传感器组303监测并采集温室环境的气体和土壤状况数据;GPS接收模块304远程接收温室环境的定位信息和授时信息,定时信息包括经度、纬度和高程,授时信息以格林尼治时间(世界时)表示;短距离无线发射模块305将监测数据发送给远程数据转发器102的短距离无线接收模块203。 In Fig. 3, the greenhouse environment monitoring instrument 103 comprises a power supply module 301, a microcontroller 302, a greenhouse environment sensor group 303 connected to the microcontroller 302, a
在图4中,温室环境传感器组303包括气体温度传感器、气体湿度传感器、光照强度传感器、二氧化碳传感器、土壤温度传感器和土壤湿度传感器。32位的微控制器302通过两线式串行总线I2C连接气体温度传感器、气体湿度传感器、光照强度传感器、土壤温度传感器和土壤湿度传感器;采用通用异步收发器UART连接二氧化碳传感器和GPS接收模块304;通过串口外设接口总线SPI连接短距离无线发射模块305。 In FIG. 4 , the greenhouse environment sensor group 303 includes a gas temperature sensor, a gas humidity sensor, a light intensity sensor, a carbon dioxide sensor, a soil temperature sensor and a soil moisture sensor. The 32-bit microcontroller 302 is connected to the gas temperature sensor, gas humidity sensor, light intensity sensor, soil temperature sensor and soil moisture sensor through the two-wire serial bus I2C; the carbon dioxide sensor and the
在图5中,温室环境的远程无线实时监测方法包括以下步骤: In Fig. 5, the remote wireless real-time monitoring method of the greenhouse environment includes the following steps:
a.每个温室环境中安置一个温室环境监测仪器103,多个温室环境周围安置多个远程数据转发器102,并以远程数据转发器102为中心,将多个温室环境监测仪器103以星型局域网拓扑结构进行无线互连组网;a. A greenhouse environment monitoring instrument 103 is placed in each greenhouse environment, and multiple remote data transponders 102 are placed around multiple greenhouse environments, and with the remote data transponder 102 as the center, a plurality of greenhouse environment monitoring instruments 103 are arranged in a star LAN topology structure for wireless interconnection networking;
b.每个温室环境监测仪器103实时监测温室环境的气体、土壤、GPS定位和授时等数据;b. Each greenhouse environment monitoring instrument 103 monitors data such as gas, soil, GPS positioning and timing of the greenhouse environment in real time;
c.在监测到温室环境的气体和土壤状况发生变化时,温室环境监测仪器103的短距离无线发射模块305将监测数据无线发射给远程数据转发器102的短距离无线接收模块203;c. When the gas and soil conditions in the greenhouse environment are monitored to change, the short-distance wireless transmitting module 305 of the greenhouse environment monitoring instrument 103 wirelessly transmits the monitoring data to the short-distance wireless receiving module 203 of the remote data transponder 102;
d.每个远程数据转发器102接受到来自于多个温室环境监测仪器103的监测数据后,由GPRS无线传输模块206将监测数据通过GPRS无线通信网络连续传输到监测服务器101;d. After each remote data transponder 102 receives the monitoring data from a plurality of greenhouse environment monitoring instruments 103, the GPRS
e.监测服务器101可部署在互联网的任意节点位置,负责从GPRS无线通信网络接收监测数据,同时提供客户的互联网访问;e. The monitoring server 101 can be deployed at any node position of the Internet, responsible for receiving monitoring data from the GPRS wireless communication network, and providing Internet access for customers;
在图6中,温室环境监测仪器103实时监测温室环境的状态变化过程,包括如下步骤:In Fig. 6, the greenhouse environment monitoring instrument 103 monitors the state change process of the greenhouse environment in real time, including the following steps:
2a.每个温室环境监测仪器103接通电源后,微处理器302对温室环境传感器组303、GPS定位模块304和短距离无线发射模块305进行初始化,实时监测并控制各模块的运行状态;2a. After each greenhouse environment monitoring instrument 103 is powered on, the microprocessor 302 initializes the greenhouse environment sensor group 303, the
2b.温室环境传感器组303包括:气体温度传感器、气体湿度传感器、光照强度、二氧化碳传感器、土壤温度传感器和土壤湿度传感器,实时监测温室环境的气体和土壤状态变化,并将监测数据传递给微控制器302;2b. The greenhouse environment sensor group 303 includes: gas temperature sensor, gas humidity sensor, light intensity, carbon dioxide sensor, soil temperature sensor and soil moisture sensor, real-time monitoring of gas and soil state changes in the greenhouse environment, and the monitoring data is transmitted to the microcontroller 302 ;
2c.GPS接收模块304实时获取当前温室环境的定位和授时信息,定时信息包括经度、纬度和高程,授时信息以格林尼治时间(世界时)表示,并将GPS接收数据传递给微控制器302;2c. The
2d.微控制器302实时对接收到的温室环境的气体、土壤和GPS等监测数据进行对比分析;2d. The microcontroller 302 compares and analyzes the received monitoring data such as gases, soils and GPS in the greenhouse environment in real time;
2e.判断温室环境的监测数据是否发生变化, 2e. Determine whether the monitoring data of the greenhouse environment has changed,
当微控制器302分析到温室环境监测数据发送变化时,将监测数据进行封装,并通过短距离发射模块305将监测数据无线发送给相连接的远程数据转发器102;When the micro-controller 302 analyzes the changes in the transmission of the greenhouse environment monitoring data, the monitoring data is packaged, and the monitoring data is wirelessly sent to the connected remote data transponder 102 through the short-distance transmission module 305;
当没有发生变化,微处理器302进入休眠状态,定时被唤醒接收温室环境传感器组303和GPS接收模块304传递来的监测数据,执行步骤2d。When there is no change, the microprocessor 302 enters a dormant state, wakes up regularly to receive monitoring data from the greenhouse environment sensor group 303 and the
图7中,远程数据转发器102进行监测数据GPRS无线通信网络传输过程,包括如下步骤: Among Fig. 7, remote data transponder 102 carries out monitoring data GPRS wireless communication network transmission process, comprises the following steps:
3a.每个远程数据转发器102接通电源后,微控制器202初始化短距离无线接收模块203、SD存储模块204、LCD显示模块205和GPRS无线传输模块206,实时监测并控制各模块的运行状态;3a. After each remote data transponder 102 is powered on, microcontroller 202 initializes short-distance wireless receiving module 203,
3b.GPRS无线传输模块206拨号上线,连接监测服务器101与远端移动网握手实现点对点通信;3b. The GPRS
3c.等待短距离数据接收模块203获取温室环境监测仪器103无线发送来的监测数据;3c. Waiting for the short-distance data receiving module 203 to obtain the monitoring data sent by the greenhouse environment monitoring instrument 103 wirelessly;
3d.将获取的监测数据自动连续存储到SD存储模块204中;3d. Automatically and continuously store the monitoring data obtained in the
3e.将当前的监测数据、无线网络连接状态和电源状态数据等信息在LCD显示模块205上实时显示; 3e. Display information such as current monitoring data, wireless network connection status and power status data on the
3f.判断GPRS无线传输模块206与监测服务器连接是否成功,如连接不成功则执行步骤3b;3f. Judging whether the GPRS
3g.判断SD存储模块204中是否存在未发送数据,若存在未发送数据,将SD存储模块204中未发送的监测数据进行用户数据包协议UDP封包,通过GPRS无线传输模块206进行无线传输发送;3g. Judging whether there is unsent data in the
h.将当前监测数据进行用户数据包协议UDP封包,通过GPRS无线传输模块206进行无线传输发送。 h. The current monitoring data is packaged with the UDP protocol, and then wirelessly transmitted through the GPRS
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210404003.2ACN102903219B (en) | 2012-10-23 | 2012-10-23 | Remote wireless real-time greenhouse environment monitoring system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210404003.2ACN102903219B (en) | 2012-10-23 | 2012-10-23 | Remote wireless real-time greenhouse environment monitoring system |
| Publication Number | Publication Date |
|---|---|
| CN102903219A CN102903219A (en) | 2013-01-30 |
| CN102903219Btrue CN102903219B (en) | 2014-06-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210404003.2AExpired - Fee RelatedCN102903219B (en) | 2012-10-23 | 2012-10-23 | Remote wireless real-time greenhouse environment monitoring system |
| Country | Link |
|---|---|
| CN (1) | CN102903219B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105632147A (en)* | 2016-02-26 | 2016-06-01 | 中国农业大学 | Wireless real-time monitoring system and method for greenhouse environmental parameters |
| CN108234558A (en)* | 2016-12-15 | 2018-06-29 | 博通无限(北京)物联科技有限公司 | A kind of agricultural greenhouse intelligent control method based on LoRa technologies |
| CN106843336B (en)* | 2017-03-16 | 2018-12-18 | 长春智信创联科技有限公司 | Greenhouse automated measurement &control equipment |
| CN106990769A (en)* | 2017-06-08 | 2017-07-28 | 辽宁省农业科学院 | A kind of greenhouse comprehensive test instrument and method |
| CN107036662A (en)* | 2017-06-22 | 2017-08-11 | 广西壮族自治区环境保护科学研究院 | A kind of carbon emission monitoring system |
| CN108710160A (en)* | 2018-08-17 | 2018-10-26 | 广东电网有限责任公司江门供电局 | Distribution line microclimate monitoring device based on MEMS sensor in electric system |
| CN109520013A (en)* | 2018-12-10 | 2019-03-26 | 北京德智恒辉合同能源管理有限公司 | A kind of heat supply monitoring apparatus and intelligent monitoring Physical Examination System |
| CN115979439B (en)* | 2023-03-17 | 2023-06-02 | 瑞熙恩电气(珠海)有限公司 | Temperature measurement data prepositive operation module and processing method of industrial temperature measurement device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| TWI429905B (en)* | 2009-11-19 | 2014-03-11 | Univ Nat Taiwan | Automated remote water quality monitoring system with wireless communication capabilities and the method thereof |
| CN201555837U (en)* | 2009-11-26 | 2010-08-18 | 杭州电子科技大学 | A sensor network based air quality monitoring equipment |
| CN202048933U (en)* | 2011-03-25 | 2011-11-23 | 西北农林科技大学 | Greenhouse monitoring system based on wireless sensor network |
| CN102353752B (en)* | 2011-06-28 | 2015-05-20 | 中国矿业大学 | Device and method for remotely monitoring carbon dioxide concentration in complex air environment in real time |
| Publication number | Publication date |
|---|---|
| CN102903219A (en) | 2013-01-30 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102903219B (en) | Remote wireless real-time greenhouse environment monitoring system | |
| CN102901536B (en) | Real-time monitoring system and method for carbon dioxide geological storage based on wireless sensor network | |
| JP6734322B2 (en) | Asset tracking management method | |
| CN102890871B (en) | Remote wireless real-time detection system for terrestrial magnetism parking space | |
| CN102655630B (en) | A kind of downhole intelligent mobile terminal system based on WiFi technology | |
| CN209488629U (en) | A LoRa-based Internet of Things device supervision system | |
| CN101742536A (en) | Cultural relic conservation environment multi-parameter intelligent real-time monitoring system and method thereof | |
| CN106817679B (en) | Network system for positioning service based on wireless communication technology | |
| US20140293855A1 (en) | Wireless communication system and wireless router | |
| CN104683945B (en) | A kind of localization method of mobile terminal, equipment and system | |
| CN102612170A (en) | Internet of Things logistics communication system based on master-slave node mode | |
| CN101281405A (en) | Tower crane automatic safety monitoring system and method based on ZigBee | |
| CN113784455B (en) | Bluetooth matrix networking method, system, terminal and storage medium | |
| CN202068585U (en) | Data acquisition and transmission system based on ZigBee protocol | |
| CN103645704B (en) | Agricultural greenhouse monitoring system and monitoring method thereof | |
| CN107911791A (en) | A kind of site staff's alignment system and method based on iBeacon | |
| CN102183930B (en) | Personnel location monitoring system and location method under chemical scene | |
| CN113068115A (en) | A thermal power plant staff positioning system and method based on positioning tags | |
| CN202617362U (en) | ZigBee intelligent fire-fighting monitoring and emergency rescue managing device | |
| CN205427671U (en) | Environmental information automatic monitoring device based on thing networking | |
| CN104036633A (en) | Taxi detection system and taxi information data acquisition method | |
| CN112654022A (en) | Electric power system thing networking data acquisition system based on loRa communication | |
| CN108696408A (en) | Barcode scanning method of network entry based on LoRa and its system | |
| CN109361732A (en) | A kind of integrated equipment measuring gradient and temperature and humidity | |
| CN106993007A (en) | Safety production monitoring system based on many intelligent sensing networks |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20140618 Termination date:20161023 | |
| CF01 | Termination of patent right due to non-payment of annual fee |