Movatterモバイル変換


[0]ホーム

URL:


CN102856827B - Omnibearing ground-space isomeric substation polling system - Google Patents

Omnibearing ground-space isomeric substation polling system
Download PDF

Info

Publication number
CN102856827B
CN102856827BCN201210310915.3ACN201210310915ACN102856827BCN 102856827 BCN102856827 BCN 102856827BCN 201210310915 ACN201210310915 ACN 201210310915ACN 102856827 BCN102856827 BCN 102856827B
Authority
CN
China
Prior art keywords
inspection
ground
module
robot subsystem
mobile robot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210310915.3A
Other languages
Chinese (zh)
Other versions
CN102856827A (en
Inventor
吴华
仇晓伟
杨国田
柳长安
刘春阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power UniversityfiledCriticalNorth China Electric Power University
Priority to CN201210310915.3ApriorityCriticalpatent/CN102856827B/en
Publication of CN102856827ApublicationCriticalpatent/CN102856827A/en
Application grantedgrantedCritical
Publication of CN102856827BpublicationCriticalpatent/CN102856827B/en
Expired - Fee Relatedlegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明公开了变电站巡检系统设计领域的一种地空异构式变电站全方位巡检系统。其技术方案是,所述系统包括地面巡检移动机器人子系统、空中巡检飞行机器人子系统、监控中心和能源补给站;地面巡检移动机器人子系统、空中巡检飞行机器人子系统和监控中心通过无线信号连接。本发明利用机器人组合进行变电站巡检,巡检角度灵活,视线全面,从而节省人力资源,降低恶劣地理条件与气象环境中的巡检难度,缩短巡检便利时间,提高日常检修效率,并且解决了独立机器人进行巡检时的误判误操作情况。本发明不仅适用于变电站巡检,可将其扩展,应用于更多领域的搜索与巡检。

The invention discloses a ground-air heterogeneous substation all-round inspection system in the field of substation inspection system design. Its technical solution is that the system includes ground inspection mobile robot subsystem, air inspection flying robot subsystem, monitoring center and energy supply station; ground inspection mobile robot subsystem, air inspection flying robot subsystem and monitoring center Connect via wireless signal. The invention uses a combination of robots to carry out substation inspections, with flexible inspection angles and comprehensive sightlines, thereby saving human resources, reducing the difficulty of inspections in harsh geographical conditions and meteorological environments, shortening the convenient time for inspections, improving the efficiency of daily inspections, and solving the problem of Misjudgments and misoperations when independent robots conduct inspections. The invention is not only applicable to substation inspection, but also can be extended to search and inspection in more fields.

Description

Translated fromChinese
地空异构式变电站全方位巡检系统All-round inspection system for ground-air heterogeneous substation

技术领域technical field

本发明属于变电站巡检系统设计领域,尤其涉及一种地空异构式变电站全方位巡检系统。The invention belongs to the field of substation inspection system design, in particular to a ground-air heterogeneous type substation omnidirectional inspection system.

背景技术Background technique

变电站设备巡检是为有效保证变电站设备安全运行、提高供电可靠性而进行的一项重要工作。长期以来,我国电力行业沿用的变电站设备人工巡检作业方式,由于变电站巡检线路长,范围广,部分变电站地域偏僻,海拔较高,地理条件与气象环境恶劣,经常出现大风、大雾、冰雪、雷雨等恶劣天气,这使得每天至少两次的例行巡检只靠人工巡检工作困难、效率低,管理成本高,完成质量不理想。且在高压、超高压条件下,人工巡检具有很大的危险性。因此人们开始向机器人巡检系统进行探索。Substation equipment inspection is an important task to effectively ensure the safe operation of substation equipment and improve the reliability of power supply. For a long time, my country's electric power industry has followed the manual inspection method of substation equipment. Due to the long inspection lines and wide range of substation inspections, some substations are remote and high in altitude, and the geographical conditions and weather conditions are harsh. Strong winds, fog, ice and snow often occur , thunderstorms and other bad weather, which makes routine inspections at least twice a day only manual inspections work difficult, low efficiency, high management costs, and unsatisfactory completion quality. And under high pressure and ultra-high pressure conditions, manual inspection is very dangerous. Therefore, people began to explore the robot inspection system.

目前,存在的变电站机器人巡检设计往往是地面移动机器人或飞行机器人单独完成巡检。由于变电站设备大小不一,用地面移动机器人无法全方位巡检所有设备;而飞行机器人虽然视角灵活可变,但飞行时间有限,很难一次性完成全程巡检。故将地面移动机器人与飞行机器人结合起来协作巡检,有助于在变电站中长期、全方位地巡检各类设备。At present, the existing substation robot inspection design is often the ground mobile robot or flying robot to complete the inspection alone. Due to the different sizes of substation equipment, mobile robots on the ground cannot inspect all equipment in an all-round way. Although the viewing angle of flying robots is flexible and variable, the flight time is limited, and it is difficult to complete the entire inspection at one time. Therefore, the combination of ground mobile robots and flying robots for collaborative inspections is helpful for long-term and comprehensive inspections of various equipment in substations.

发明内容Contents of the invention

针对上述背景技术中所述的目前变电站巡检方式存在的不足,本发明提出了一种地空异构式变电站全方位巡检系统。In view of the deficiencies in the current substation inspection methods described in the above background technology, the present invention proposes a ground-air heterogeneous substation omnidirectional inspection system.

一种地空异构式变电站全方位巡检系统,其特征在于,所述系统包括地面巡检移动机器人子系统、空中巡检飞行机器人子系统、监控中心和能源补给站;所述地面巡检移动机器人子系统包括多传感器数据采集及控制模块、导航模块、能源管理模块、运动控制模块、第一控制器、第一无线通信模块、任务分解与规划模块和降落平台;所述空中巡检飞行机器人子系统包括自主飞行控制模块、传感器模块、能源供给与管理模块、第二控制器、第二无线通信模块和图像采集模块;A ground-air heterogeneous substation all-round inspection system, characterized in that the system includes a ground inspection mobile robot subsystem, an air inspection flying robot subsystem, a monitoring center and an energy supply station; the ground inspection The mobile robot subsystem includes a multi-sensor data acquisition and control module, a navigation module, an energy management module, a motion control module, a first controller, a first wireless communication module, a task decomposition and planning module and a landing platform; the aerial inspection flight The robot subsystem includes an autonomous flight control module, a sensor module, an energy supply and management module, a second controller, a second wireless communication module and an image acquisition module;

其中,所述多传感器数据采集及控制模块、导航模块、能源管理模块、运动控制模块、第一无线通信模块和任务分解与规划模块分别与所述第一控制器连接;所述多传感器数据采集及控制模块用于实时数据的采集与控制,控制地面巡检移动机器人获得周围设备的状态;所述运动控制模块用于控制地面巡检移动机器人进行移动;所述导航模块用于对地面巡检移动机器人进行定位,实现精准避障和位置识别;所述能源管理模块用于补给地面巡检移动机器人自身能源以及空中巡检机器人能源;第一无线通信模块用于将采集到的实时数据在地面巡检移动机器人和空中巡检飞行机器人器人之间及地面巡检移动机器人与监控中心之间进行交互;所述任务分解与规划模块用于将监控中心发来的任务进行分解,将任务分成地面执行部分和空中执行部分,并规划出巡检路径和重点观察的设备,以及空中巡检飞行机器人起飞时间,观察视点和飞行轨迹;所述第一控制器通过发送控制指令对地面巡检机器人进行控制;Wherein, the multi-sensor data acquisition and control module, navigation module, energy management module, motion control module, first wireless communication module and task decomposition and planning module are respectively connected to the first controller; the multi-sensor data acquisition And the control module is used for the acquisition and control of real-time data, controls the ground inspection mobile robot to obtain the state of surrounding equipment; The motion control module is used to control the ground inspection mobile robot to move; The navigation module is used for the ground inspection The mobile robot performs positioning to realize accurate obstacle avoidance and position identification; the energy management module is used to supply the energy of the ground inspection mobile robot and the energy of the air inspection robot; the first wireless communication module is used to transfer the collected real-time data to the ground Interaction between the inspection mobile robot and the air inspection flying robot and between the ground inspection mobile robot and the monitoring center; the task decomposition and planning module is used to decompose the tasks sent by the monitoring center, and divide the tasks into The ground execution part and the air execution part, and plan the inspection path and key observation equipment, as well as the take-off time of the air inspection flying robot, observation viewpoint and flight trajectory; the first controller sends control instructions to the ground inspection robot to control;

所述自主飞行控制模块、传感器模块、能源供给与管理模块、第二无线通信模块和图像采集模块分别与所述第二控制器连接;所述自主飞行控制模块用于实时测量空中巡检飞行机器人的飞行姿态;所述传感器模块用于测量变电站中的气压、温度、湿度和风速;所述能源供给与管理模块用于为空中巡检飞行机器人测算飞行时间和提供所需能量;所述第二无线通信模块用于空中巡检飞行机器人与监控中心子以及地面巡检移动机器人子系统进行通信,交互任务信息,相对位置和能量水平及采集到的设备状态信息,并接受监控中心子系统发出的控制指令;所述图像采集模块用于采集设备状态信息;所述第二控制器通过发送控制指令对空中巡检飞行机器人进行控制;The autonomous flight control module, the sensor module, the energy supply and management module, the second wireless communication module and the image acquisition module are respectively connected to the second controller; the autonomous flight control module is used for real-time measurement of the aerial inspection flying robot The flight attitude; the sensor module is used to measure the air pressure, temperature, humidity and wind speed in the substation; the energy supply and management module is used to calculate the flight time and provide the required energy for the aerial inspection flying robot; the second The wireless communication module is used for the aerial inspection flying robot to communicate with the monitoring center subsystem and the ground inspection mobile robot subsystem, to exchange task information, relative position and energy level and the collected equipment status information, and to receive the information sent by the monitoring center subsystem Control instructions; the image acquisition module is used to collect equipment status information; the second controller controls the aerial inspection flying robot by sending control instructions;

所述第一无线通信模块分别与第二无线通信模块和监控中心通过无线信号连接;The first wireless communication module is respectively connected with the second wireless communication module and the monitoring center through wireless signals;

所述第二无线通信模块分别与所述第一无线通信模块和监控中心通过无线信号连接。The second wireless communication module is respectively connected with the first wireless communication module and the monitoring center through wireless signals.

所述监控中心包括数据存储服务器、巡检系统软件服务器和显示屏;所述数据存储服务器、巡检系统软件服务器和显示屏顺次连接;所述数据存储服务器用于将接收到的实时数据进行存储,并将实时数据传给巡检系统软件服务器;所述巡检系统软件服务器用于通过无线信号发送控制信息,并将接收的实时数据显示在显示屏上。The monitoring center includes a data storage server, an inspection system software server and a display screen; the data storage server, the inspection system software server and the display screen are connected in sequence; the data storage server is used to process the received real-time data Store and transmit the real-time data to the inspection system software server; the inspection system software server is used to send control information through wireless signals, and display the received real-time data on the display screen.

所述能源补给站包括两种充电方式;所述充电方式包括即到即充方式和定时充电方式;所述能源补给站用于为巡检机器人补给能源。The energy supply station includes two charging methods; the charging method includes an instant charging method and a regular charging method; the energy supply station is used to supply energy for the inspection robot.

所述能源补给站包括若干充电机柜;所述充电机柜侧面装有自动旋转除尘刷,用于为巡检机器人表面进行清理。The energy supply station includes several charging cabinets; the sides of the charging cabinets are equipped with automatic rotating dust removal brushes for cleaning the surface of the inspection robot.

所述能源补给站站顶部包括遮光罩,用于恶劣天气时,对巡检机器人进行保护。The top of the energy supply station includes a shading cover, which is used to protect the inspection robot in bad weather.

所述能源管理模块充电方式包括能源补给站补给方式和太阳能充电方式。The charging method of the energy management module includes the charging method of energy supply station and the charging method of solar energy.

本发明的有益效果是:The beneficial effects of the present invention are:

1.本发明利用机器人组合进行变电站巡检,巡检角度灵活,视线全面,从而节省人力资源,降低恶劣地理条件与气象环境中的巡检难度,缩短巡检便利时间,提高日常检修效率。1. The invention uses a combination of robots to conduct substation inspections, with flexible inspection angles and comprehensive sightlines, thereby saving human resources, reducing the difficulty of inspections in harsh geographical conditions and meteorological environments, shortening the convenient time for inspections, and improving the efficiency of daily maintenance.

2.本系统通过空地异构机器人协作,地面巡检移动机器人子系统、空中巡检飞行机器人子系统、监控中心子系统相互实时交互,精确进行定位,解决了独立机器人进行巡检时的误判误操作情况。2. Through the cooperation of space-ground heterogeneous robots, the ground inspection mobile robot subsystem, the air inspection flying robot subsystem, and the monitoring center subsystem interact with each other in real time to accurately locate and solve the misjudgment when independent robots conduct inspections mishandling situation.

3.本发明不仅适用于变电站巡检,可将其扩展,应用于更多领域的搜索与巡检。3. The present invention is not only applicable to substation inspection, but can be extended to search and inspection in more fields.

说明书附图Instructions attached

图1是本发明提供的一种地空异构式变电站全方位巡检系统的结构示意图;Fig. 1 is a schematic structural view of a ground-air heterogeneous substation all-round inspection system provided by the present invention;

图2是本发明提供的一种地空异构式变电站全方位巡检系统的系统结构方框图;Fig. 2 is a system structural block diagram of an all-round inspection system of a ground-air heterogeneous substation provided by the present invention;

图3是本发明提供的一种地空异构式变电站全方位巡检系统的地面巡检移动机器人子系统结构示意图;Fig. 3 is a schematic structural diagram of the ground inspection mobile robot subsystem of a ground-air heterogeneous substation omnidirectional inspection system provided by the present invention;

图4是本发明提供的一种地空异构式变电站全方位巡检系统的空中巡检飞行机器人子系统结构示意图;Fig. 4 is a schematic structural diagram of the aerial inspection flying robot subsystem of an all-round inspection system for ground-air heterogeneous substations provided by the present invention;

图5是本发明提供的一种地空异构式变电站全方位巡检系统的监控中心结构示意图;Fig. 5 is a schematic structural diagram of a monitoring center of a ground-air heterogeneous substation all-round inspection system provided by the present invention;

其中:1-空中巡检飞行机器人子系统;2-监控中心;3-降落平台;4-能源管理模块;5-地面巡检移动机器人子系统;6-能源补给站。Among them: 1-air inspection flying robot subsystem; 2-monitoring center; 3-landing platform; 4-energy management module; 5-ground inspection mobile robot subsystem; 6-energy supply station.

具体实施方式Detailed ways

下面结合附图,对优选实施例作详细说明。应该强调的是下述说明仅仅是示例性的,而不是为了限制本发明的范围及其应用。The preferred embodiments will be described in detail below in conjunction with the accompanying drawings. It should be emphasized that the following description is only exemplary and not intended to limit the scope of the invention and its application.

图1是本发明提供的一种地空异构式变电站全方位巡检系统的结构示意图。图1中,本发明提供的一种地空异构式变电站全方位巡检系统包括空中巡检飞行机器人子系统1、监控中心2、降落平台3、能源管理模块4、地面巡检移动机器人子系统5和能源补给站6。Fig. 1 is a schematic structural diagram of an all-round inspection system for a ground-air heterogeneous substation provided by the present invention. In Fig. 1, a ground-air heterogeneous substation comprehensive inspection system provided by the present invention includes an aerial inspection flying robot subsystem 1, a monitoring center 2, a landing platform 3, an energy management module 4, and a ground inspection mobile robot subsystem. System 5 and energy supply station 6.

图2是本发明提供的一种地空异构式变电站全方位巡检系统的系统结构方框图。图2中,本发明提供的一种地空异构式变电站全方位巡检系统的空中巡检飞行机器人子系统1、监控中心2和地面巡检移动机器人子系统5通过无线信号相互连接,实现了空中巡检飞行机器人与监控中心子以及地面巡检移动机器人子系统进行通信,交互任务信息,相对位置和能量水平及采集到的设备状态信息,并接受监控中心子系统发出的控制指令。Fig. 2 is a system structural block diagram of a ground-air heterogeneous substation all-round inspection system provided by the present invention. In Fig. 2, the aerial inspection flying robot subsystem 1, the monitoring center 2 and the ground inspection mobile robot subsystem 5 of a ground-air heterogeneous substation comprehensive inspection system provided by the present invention are connected to each other through wireless signals to realize The aerial inspection flying robot communicates with the monitoring center subsystem and the ground inspection mobile robot subsystem, exchanges task information, relative position and energy level, and collected equipment status information, and accepts control commands issued by the monitoring center subsystem.

图3是本发明提供的一种地空异构式变电站全方位巡检系统的地面巡检移动机器人子系统结构示意图。图3中,地面巡检移动机器人子系统包括多传感器数据采集及控制模块、导航模块、能源管理模块、运动控制模块、第一控制器、第一无线通信模块、任务分解与规划模块和降落平台。所述多传感器数据采集及控制模块、导航模块、能源管理模块、运动控制模块、第一无线通信模块和任务分解与规划模块分别与所述第一控制器连接。Fig. 3 is a schematic structural diagram of a ground inspection mobile robot subsystem of an all-round inspection system for a ground-air heterogeneous substation provided by the present invention. In Figure 3, the ground inspection mobile robot subsystem includes a multi-sensor data acquisition and control module, a navigation module, an energy management module, a motion control module, a first controller, a first wireless communication module, a task decomposition and planning module, and a landing platform . The multi-sensor data acquisition and control module, navigation module, energy management module, motion control module, first wireless communication module and task decomposition and planning module are respectively connected to the first controller.

所述多传感器数据采集及控制模块用于实时数据的采集与控制,控制地面巡检移动机器人获得周围设备的状态;所述运动控制模块用于控制地面巡检移动机器人进行移动;所述导航模块用于对地面巡检移动机器人进行定位,实现精准避障和位置识别;所述能源管理模块用于补给地面巡检移动机器人自身能源以及空中巡检机器人能源;第一无线通信模块用于将采集到的实时数据在地面巡检移动机器人和空中巡检飞行机器人器人之间及地面巡检移动机器人与监控中心之间进行交互;所述任务分解与规划模块用于将监控中心发来的任务进行分解,将任务分成地面执行部分和空中执行部分,并规划出巡检路径和重点观察的设备,以及空中巡检飞行机器人起飞时间,观察视点和飞行轨迹;所述第一控制器通过发送控制指令对地面巡检机器人进行控制。The multi-sensor data collection and control module is used for real-time data collection and control, and controls the ground inspection mobile robot to obtain the status of surrounding equipment; the motion control module is used to control the ground inspection mobile robot to move; the navigation module It is used to locate the mobile robot for ground inspection and realize accurate obstacle avoidance and position identification; the energy management module is used to supply the energy of the mobile robot for ground inspection and the energy of the robot for aerial inspection; the first wireless communication module is used to collect The real-time data obtained interacts between the mobile robot for ground inspection and the flying robot for air inspection and between the mobile robot for ground inspection and the monitoring center; the task decomposition and planning module is used to Decompose, divide the task into the ground execution part and the air execution part, and plan the inspection path and the equipment for key observation, as well as the take-off time of the air inspection flying robot, observation viewpoint and flight trajectory; Command to control the ground inspection robot.

图4是本发明提供的一种地空异构式变电站全方位巡检系统的空中巡检飞行机器人子系统结构示意图。图4中,空中巡检飞行机器人子系统包括自主飞行控制模块、传感器模块、能源供给与管理模块、第二控制器、第二无线通信模块和图像采集模块;所述自主飞行控制模块、传感器模块、能源供给与管理模块、第二无线通信模块和图像采集模块分别与所述第二控制器连接。Fig. 4 is a schematic structural diagram of an aerial inspection flying robot subsystem of a ground-air heterogeneous substation omnidirectional inspection system provided by the present invention. Among Fig. 4, aerial inspection flying robot subsystem comprises autonomous flight control module, sensor module, energy supply and management module, second controller, second wireless communication module and image acquisition module; Described autonomous flight control module, sensor module The energy supply and management module, the second wireless communication module and the image acquisition module are respectively connected to the second controller.

所述自主飞行控制模块用于实时测量空中巡检飞行机器人的飞行姿态;所述传感器模块用于测量变电站中的气压、温度、湿度和风速;所述能源供给与管理模块用于为空中巡检飞行机器人测算飞行时间和提供所需能量;所述第二无线通信模块用于空中巡检飞行机器人与监控中心子以及地面巡检移动机器人子系统进行通信,交互任务信息,相对位置和能量水平及采集到的设备状态信息,并接受监控中心子系统发出的控制指令;所述图像采集模块用于采集设备状态信息;所述第二控制器通过发送控制指令对空中巡检飞行机器人进行控制;The autonomous flight control module is used for real-time measurement of the flight attitude of the air patrol flying robot; the sensor module is used for measuring the air pressure, temperature, humidity and wind speed in the substation; the energy supply and management module is used for air patrol inspection The flying robot calculates the flight time and provides the required energy; the second wireless communication module is used for the aerial inspection flying robot to communicate with the monitoring center sub-system and the ground inspection mobile robot subsystem to exchange task information, relative position and energy level and The collected device status information is accepted by the monitoring center subsystem to send control instructions; the image acquisition module is used to collect device status information; the second controller controls the aerial inspection flying robot by sending control instructions;

图5是本发明提供的一种地空异构式变电站全方位巡检系统的监控中心结构示意图。图5中,所述监控中心包括数据存储服务器、巡检系统软件服务器和显示屏;所述数据存储服务器、巡检系统软件服务器和显示屏顺次连接;所述数据存储服务器用于将接收到的实时数据进行存储,并将实时数据传给巡检系统软件服务器;所述巡检系统软件服务器用于通过无线信号发送控制信息,并将接收的实时数据显示在显示屏上。Fig. 5 is a schematic structural diagram of a monitoring center of a ground-air heterogeneous substation all-round inspection system provided by the present invention. Among Fig. 5, described monitoring center comprises data storage server, inspection system software server and display screen; Described data storage server, inspection system software server and display screen are connected in sequence; Described data storage server is used for receiving The real-time data is stored, and the real-time data is transmitted to the software server of the inspection system; the software server of the inspection system is used to send control information through wireless signals, and display the received real-time data on the display screen.

实施例:Example:

巡检工作开始进行时,首先由监控中心2发出任务,通过无线通讯模块传输给地面巡检移动机器人子系统1。该子系统的任务分解与规划模块立即将所接收任务分解为地面执行部分和空中执行部分,地面机器人开始移动,规划出本次任务路径以及重点观察设备;同时空中执行部分信息被无线传输至空中巡检飞行机器人子系统5。空中巡检飞行机器人按照信息中所得到的起飞时间起飞,并规划出观察视点及飞行轨迹。When the inspection work starts, the monitoring center 2 sends out a task first, and transmits it to the ground inspection mobile robot subsystem 1 through the wireless communication module. The task decomposition and planning module of this subsystem immediately decomposes the received task into the ground execution part and the air execution part, and the ground robot starts to move, plans the mission path and key observation equipment; at the same time, the information of the air execution part is wirelessly transmitted to the air Inspect the flying robot subsystem 5. The aerial inspection flying robot takes off according to the take-off time obtained in the information, and plans the observation viewpoint and flight trajectory.

巡检过程中,地面巡检移动机器人子系统1与空中巡检飞行机器人子系统5不间断得通过无线通讯将实时信息共享并发回监控中心2。信息包括:环境数据采集信息、位置信息、自身能量水平信息和图像信息。变电站内每隔设定距离安装一个能源补给站6,当地面巡检移动机器人子系统通过和能源管理模块4监测到自身能源不足且当前太阳能不足以充满电时,其将自主前往站内进行充电;而当空中巡检飞行机器人需要补充能源时,则将寻到地面巡检移动机器人子系统5上的降落平台3,根据标识符确定降落地点和姿态位置,而后通过自主导航降落至地面巡检移动机器人降落平台上进行充电。During the inspection process, the ground inspection mobile robot subsystem 1 and the air inspection flying robot subsystem 5 continuously share real-time information through wireless communication and send it back to the monitoring center 2 . The information includes: environmental data collection information, location information, own energy level information and image information. An energy supply station 6 is installed at every set distance in the substation. When the ground inspection mobile robot subsystem and the energy management module 4 detect that its own energy is insufficient and the current solar energy is not enough to fully charge, it will autonomously go to the station for charging; And when the air inspection flying robot needs to replenish energy, it will find the landing platform 3 on the ground inspection mobile robot subsystem 5, determine the landing site and attitude position according to the identifier, and then land to the ground inspection mobile robot through autonomous navigation. The robot lands on the platform for charging.

当监控中心2发现传回图像或数据中出现异常情况,监控人员可向空中巡检飞行机器人子系统发出手控操作指令,对故障点进行全角度重复拍摄,并紧急调地面巡检移动机器人至故障点所在设备附近,做出可行性处理并为飞行机器人补充能量做准备。同时维护人员将根据所传回位置信息及时到达现场,对异常情况进行处理。When the monitoring center 2 finds that there is an abnormal situation in the returned image or data, the monitoring personnel can issue a manual operation command to the subsystem of the aerial inspection flying robot, repeat shooting at all angles of the fault point, and urgently dispatch the ground inspection mobile robot to The fault point is located near the equipment, and the feasible treatment is made to prepare for the supplementary energy of the flying robot. At the same time, the maintenance personnel will arrive at the scene in time according to the returned location information, and deal with the abnormal situation.

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。The above is only a preferred embodiment of the present invention, but the scope of protection of the present invention is not limited thereto. Any person skilled in the art within the technical scope disclosed in the present invention can easily think of changes or Replacement should be covered within the protection scope of the present invention. Therefore, the protection scope of the present invention should be determined by the protection scope of the claims.

Claims (6)

Translated fromChinese
1.一种地空异构式变电站全方位巡检系统,其特征在于,所述系统包括地面巡检移动机器人子系统、空中巡检飞行机器人子系统、监控中心和能源补给站;所述地面巡检移动机器人子系统包括多传感器数据采集及控制模块、导航模块、能源管理模块、运动控制模块、第一控制器、第一无线通信模块、任务分解与规划模块和降落平台;所述空中巡检飞行机器人子系统包括自主飞行控制模块、传感器模块、能源供给与管理模块、第二控制器、第二无线通信模块和图像采集模块;1. A ground-air heterogeneous substation all-round inspection system, characterized in that the system includes a ground inspection mobile robot subsystem, an air inspection flying robot subsystem, a monitoring center and an energy supply station; The inspection mobile robot subsystem includes a multi-sensor data acquisition and control module, a navigation module, an energy management module, a motion control module, a first controller, a first wireless communication module, a task decomposition and planning module, and a landing platform; The flight inspection robot subsystem includes an autonomous flight control module, a sensor module, an energy supply and management module, a second controller, a second wireless communication module and an image acquisition module;其中,所述多传感器数据采集及控制模块、导航模块、能源管理模块、运动控制模块、第一无线通信模块和任务分解与规划模块分别与所述第一控制器连接;所述多传感器数据采集及控制模块用于实时数据的采集与控制,控制地面巡检移动机器人子系统获得周围设备的状态;所述运动控制模块用于控制地面巡检移动机器人子系统进行移动;所述导航模块用于对地面巡检移动机器人子系统进行定位,实现精准避障和位置识别;所述能源管理模块用于补给地面巡检移动机器人子系统自身能源以及空中巡检飞行机器人子系统能源;第一无线通信模块用于将采集到的实时数据在地面巡检移动机器人子系统和空中巡检飞行机器人子系统之间及地面巡检移动机器人子系统与监控中心之间进行交互;所述任务分解与规划模块用于将监控中心发来的任务进行分解,将任务分成地面执行部分和空中执行部分,并规划出巡检路径和重点观察的设备,以及空中巡检飞行机器人子系统起飞时间,观察视点和飞行轨迹;所述第一控制器通过发送控制指令对地面巡检移动机器人子系统进行控制;Wherein, the multi-sensor data acquisition and control module, navigation module, energy management module, motion control module, first wireless communication module and task decomposition and planning module are respectively connected to the first controller; the multi-sensor data acquisition And the control module is used for the acquisition and control of real-time data, controls the ground inspection mobile robot subsystem to obtain the status of surrounding equipment; the motion control module is used to control the ground inspection mobile robot subsystem to move; the navigation module is used for Position the ground inspection mobile robot subsystem to achieve precise obstacle avoidance and position recognition; the energy management module is used to supply the energy of the ground inspection mobile robot subsystem itself and the air inspection flying robot subsystem; the first wireless communication The module is used to interact the collected real-time data between the ground inspection mobile robot subsystem and the air inspection flying robot subsystem and between the ground inspection mobile robot subsystem and the monitoring center; the task decomposition and planning module It is used to decompose the tasks sent by the monitoring center, divide the tasks into ground execution part and air execution part, and plan the inspection path and key observation equipment, as well as the take-off time, observation viewpoint and flight inspection of the flying robot subsystem in the air trajectory; the first controller controls the ground inspection mobile robot subsystem by sending control instructions;所述自主飞行控制模块、传感器模块、能源供给与管理模块、第二无线通信模块和图像采集模块分别与所述第二控制器连接;所述自主飞行控制模块用于实时测量空中巡检飞行机器人子系统的飞行姿态;所述传感器模块用于测量变电站中的气压、温度、湿度和风速;所述能源供给与管理模块用于为空中巡检飞行机器人子系统测算飞行时间和提供所需能量;所述第二无线通信模块用于空中巡检飞行机器人子系统与监控中心以及地面巡检移动机器人子系统进行通信,交互任务信息,相对位置和能量水平及采集到的设备状态信息,并接受监控中心发出的控制指令;所述图像采集模块用于采集设备状态信息;所述第二控制器通过发送控制指令对空中巡检飞行机器人子系统进行控制;The autonomous flight control module, the sensor module, the energy supply and management module, the second wireless communication module and the image acquisition module are respectively connected to the second controller; the autonomous flight control module is used for real-time measurement of the aerial inspection flying robot The flight attitude of the subsystem; the sensor module is used to measure the air pressure, temperature, humidity and wind speed in the substation; the energy supply and management module is used to calculate the flight time and provide the required energy for the aerial inspection flying robot subsystem; The second wireless communication module is used for the aerial inspection flying robot subsystem to communicate with the monitoring center and the ground inspection mobile robot subsystem, to exchange task information, relative position and energy level, and collected equipment status information, and accept monitoring The control command issued by the center; the image acquisition module is used to collect equipment status information; the second controller controls the aerial inspection flying robot subsystem by sending the control command;所述第一无线通信模块分别与第二无线通信模块和监控中心通过无线信号连接;The first wireless communication module is respectively connected with the second wireless communication module and the monitoring center through wireless signals;所述第二无线通信模块分别与所述第一无线通信模块和监控中心通过无线信号连接;The second wireless communication module is respectively connected to the first wireless communication module and the monitoring center through wireless signals;本巡检系统的工作方式为:The working mode of the inspection system is as follows:巡检工作开始进行时,首先由监控中心发出任务,通过第一无线通信模块传输给地面巡检移动机器人子系统;地面巡检移动机器人子系统的任务分解与规划模块立即将所接收任务分解为地面执行部分和空中执行部分,地面巡检移动机器人子系统开始移动,规划出本次任务路径以及重点观察设备;同时空中执行部分信息被无线传输至空中巡检飞行机器人子系统;空中巡检飞行机器人子系统按照空中执行部分信息中所得到的起飞时间起飞,并规划出观察视点及飞行轨迹;When the inspection work starts, the monitoring center first sends out a task, which is transmitted to the ground inspection mobile robot subsystem through the first wireless communication module; the task decomposition and planning module of the ground inspection mobile robot subsystem immediately decomposes the received task into The ground execution part and the air execution part, the ground inspection mobile robot subsystem starts to move, and plans the mission path and key observation equipment; at the same time, the information of the air execution part is wirelessly transmitted to the air inspection flying robot subsystem; the air inspection flight The robot subsystem takes off according to the take-off time obtained from the air execution part information, and plans the observation point and flight trajectory;巡检过程中,地面巡检移动机器人子系统与空中巡检飞行机器人子系统不间断得通过无线通讯将实时信息共享并发回监控中心;实时信息包括:环境数据采集信息、位置信息、自身能量水平信息和图像信息;变电站内每隔设定距离安装一个能源补给站,当地面巡检移动机器人子系统通过能源管理模块监测到自身能源不足且当前太阳能不足以充满电时,其将自主前往站内进行充电;而当空中巡检飞行机器人子系统需要补充能源时,则将寻到地面巡检移动机器人子系统上的降落平台,根据标识符确定降落地点和姿态位置,而后通过自主导航降落至地面巡检移动机器人子系统的降落平台上进行充电;During the inspection process, the ground inspection mobile robot subsystem and the air inspection flying robot subsystem continuously share real-time information through wireless communication and send it back to the monitoring center; real-time information includes: environmental data collection information, location information, and its own energy level Information and image information; an energy supply station is installed at a set distance in the substation. When the ground inspection mobile robot subsystem detects that its own energy is insufficient through the energy management module and the current solar energy is not enough to fully charge, it will autonomously go to the station to carry out charging; and when the aerial inspection flying robot subsystem needs to replenish energy, it will find the landing platform on the ground inspection mobile robot subsystem, determine the landing location and attitude position according to the identifier, and then land to the ground inspection robot subsystem through autonomous navigation. Charging is carried out on the landing platform of the detection mobile robot subsystem;当监控中心发现传回图像或数据中出现异常情况,监控人员向空中巡检飞行机器人子系统发出手控操作指令,对故障点进行全角度重复拍摄,并紧急调地面巡检移动机器人子系统至故障点所在设备附近,做出可行性处理并为空中巡检飞行机器人子系统补充能量做准备;同时维护人员将根据所传回位置信息及时到达现场,对异常情况进行处理。When the monitoring center finds that there is an abnormality in the returned image or data, the monitoring personnel will issue a manual operation command to the aerial inspection flying robot subsystem, repeat the shooting of the fault point from all angles, and urgently adjust the ground inspection mobile robot subsystem to Near the equipment where the fault point is located, make feasible treatment and prepare for the supplementary energy of the aerial inspection flying robot subsystem; at the same time, the maintenance personnel will arrive at the scene in time according to the returned location information, and deal with the abnormal situation.2.根据权利要求1所述的一种地空异构式变电站全方位巡检系统,其特征在于,所述监控中心包括数据存储服务器、巡检系统软件服务器和显示屏;所述数据存储服务器、巡检系统软件服务器和显示屏顺次连接;所述数据存储服务器用于将接收到的实时数据进行存储,并将实时数据传给巡检系统软件服务器;所述巡检系统软件服务器用于通过无线信号发送控制信息,并将接收的实时数据显示在显示屏上。2. The all-round inspection system of a ground-air heterogeneous substation according to claim 1, wherein the monitoring center includes a data storage server, an inspection system software server and a display screen; the data storage server 1. The inspection system software server and the display screen are connected in sequence; the data storage server is used to store the received real-time data, and transmit the real-time data to the inspection system software server; the inspection system software server is used for Send control information through wireless signals, and display the received real-time data on the display.3.根据权利要求1所述的一种地空异构式变电站全方位巡检系统,其特征在于,所述能源补给站包括两种充电方式;所述充电方式包括即到即充方式和定时充电方式;所述能源补给站用于为地面巡检移动机器人子系统补给能源。3. A ground-air heterogeneous substation all-round inspection system according to claim 1, characterized in that the energy supply station includes two charging methods; Charging mode; the energy supply station is used to supply energy for the ground inspection mobile robot subsystem.4.根据权利要求1所述的一种地空异构式变电站全方位巡检系统,其特征在于,所述能源补给站包括若干充电机柜;所述充电机柜侧面装有自动旋转除尘刷,用于为地面巡检移动机器人子系统表面进行清理。4. A ground-air heterogeneous substation all-round inspection system according to claim 1, wherein the energy supply station includes several charging cabinets; the sides of the charging cabinets are equipped with automatic rotating dust brushes for It is used to clean the surface of the mobile robot subsystem for ground inspection.5.根据权利要求1所述的一种地空异构式变电站全方位巡检系统,其特征在于,所述能源补给站站顶部包括遮光罩,用于恶劣天气时,对地面巡检移动机器人子系统进行保护。5. A ground-air heterogeneous substation all-round inspection system according to claim 1, characterized in that, the top of the energy supply station includes a shading cover, which is used to inspect the mobile robot on the ground in bad weather Subsystems are protected.6.根据权利要求1所述的一种地空异构式变电站全方位巡检系统,其特征在于,所述能源管理模块充电方式包括能源补给站补给方式和太阳能充电方式。6 . The all-round inspection system for ground-air heterogeneous substations according to claim 1 , wherein the charging mode of the energy management module includes an energy supply station charging mode and a solar charging mode. 7 .
CN201210310915.3A2012-08-282012-08-28Omnibearing ground-space isomeric substation polling systemExpired - Fee RelatedCN102856827B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN201210310915.3ACN102856827B (en)2012-08-282012-08-28Omnibearing ground-space isomeric substation polling system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN201210310915.3ACN102856827B (en)2012-08-282012-08-28Omnibearing ground-space isomeric substation polling system

Publications (2)

Publication NumberPublication Date
CN102856827A CN102856827A (en)2013-01-02
CN102856827Btrue CN102856827B (en)2015-06-10

Family

ID=47403145

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN201210310915.3AExpired - Fee RelatedCN102856827B (en)2012-08-282012-08-28Omnibearing ground-space isomeric substation polling system

Country Status (1)

CountryLink
CN (1)CN102856827B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN103149893B (en)*2013-01-292016-08-03中国人民解放军装备学院Motor-driven self-organization situation monitoring system
CN105449824A (en)*2015-12-252016-03-30上海电力学院Substation inspection robot system applying dual power supplies to supply power
CN105678856B (en)*2015-12-312017-11-21合肥大多数信息科技有限公司A kind of power industry scene method for inspecting based on smart mobile phone
CN107196410B (en)*2016-05-132020-01-31深圳市朗驰欣创科技股份有限公司ground transformer substation inspection system and method
CN106020189B (en)*2016-05-242018-10-16武汉科技大学Vacant lot heterogeneous robot system paths planning method based on neighborhood constraint
CN106443832A (en)*2016-08-312017-02-22杭州申昊科技股份有限公司System and method for monitoring transformer station meteorological data
CN106444607B (en)*2016-10-092018-09-18福州大学Polyisocyanate structure industrial machine personal data communicates and control method
CN106774427B (en)*2017-03-162020-07-14山东大学Unmanned aerial vehicle-based water area automatic inspection system and method
CN107045350B (en)*2017-05-022020-06-30百度在线网络技术(北京)有限公司Unmanned vehicle control method and device and server
EP3422502B1 (en)*2017-06-282021-04-07ABB Schweiz AGSubstation for medium or high voltage, containing switchgear or controlgear with unmanned operation and maintenance
EP3422501B1 (en)2017-06-282021-04-28ABB Schweiz AGRobot for unmanned operation and maintenance in an indoor medium or high voltage switchgear station
CN110832720B (en)2017-06-282022-06-24Abb瑞士股份有限公司Substation comprising unmanned and maintained switchgear or control device
CN108279003A (en)*2018-02-012018-07-13福州大学It is a kind of based on the unmanned plane high accuracy positioning cruising inspection system used suitable for substation
CN110554650A (en)*2019-09-182019-12-10创泽智能机器人股份有限公司Remote online monitoring robot system
CN112102514A (en)*2020-08-052020-12-18佛山职业技术学院Inspection system and inspection method for primary and secondary inspection robots of transformer substation
CN112748744A (en)*2020-12-292021-05-04广东极臻智能科技有限公司Transformer substation amphibious inspection device and inspection method thereof
CN115268486B (en)*2022-06-292024-09-06华能伊春热电有限公司 A factory area drone inspection method and system
CN115933750B (en)*2023-01-062023-05-16国网浙江省电力有限公司嵊州市供电公司 Power inspection method and power inspection system based on data processing
CN116755461A (en)*2023-05-152023-09-15深圳市喜悦智慧数据有限公司Method and system for identifying and monitoring flight environment of low-altitude aircraft

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1645284A (en)*2004-12-172005-07-27华北电力大学(北京)Power circuit scanning test robot airplane and controlling system
CN201765056U (en)*2010-08-262011-03-16中电国科(北京)科技有限公司Photoelectric detection system of power transmission line

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US8355830B2 (en)*2010-03-302013-01-15Aurora Flight Sciences CorporationAircraft health monitoring and design for condition
CN102055243A (en)*2010-12-152011-05-11北京交通大学High-voltage transmission line/ tower long-distance video on-line monitoring system
CN102621985A (en)*2012-04-112012-08-01中国农业大学Vision and electromagnet based fusion inspecting navigation control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN1645284A (en)*2004-12-172005-07-27华北电力大学(北京)Power circuit scanning test robot airplane and controlling system
CN201765056U (en)*2010-08-262011-03-16中电国科(北京)科技有限公司Photoelectric detection system of power transmission line

Also Published As

Publication numberPublication date
CN102856827A (en)2013-01-02

Similar Documents

PublicationPublication DateTitle
CN102856827B (en)Omnibearing ground-space isomeric substation polling system
CN105449876B (en)A kind of autonomous wireless charging system of power-line patrolling multi-rotor aerocraft
He et al.Research of multi-rotor UAVs detailed autonomous inspection technology of transmission lines based on route planning
CN108614274B (en)Cross type crossing line distance measuring method and device based on multi-rotor unmanned aerial vehicle
CN102510011B (en)Method for realizing the intelligent tour-inspection of power tower based on miniature multi-rotor unmanned helicopter
CN105835063B (en)Crusing robot system and its method for inspecting in a kind of substation room
CN108303995B (en) A substation inspection UAV flight safety system and its use method
CN204679793U (en)A kind of full-automatic remote distance power circuit unmanned plane inspection tour system
CN108819775A (en)A kind of power-line patrolling unmanned plane wireless charging relay system and charging method
CN106025930B (en)A kind of autonomous power grid inspection system of unmanned plane
CN103135550B (en)Multiple obstacle-avoidance control method of unmanned plane used for electric wire inspection
CN206348665U (en)A kind of heat distribution pipe network UAV Intelligent cruising inspection system based on Beidou navigation
CN109818416A (en)A kind of multi-functional transformer station intelligent robot inspection system
CN106099748A (en)A kind of power transmission line unmanned machine mapping system
WO2022242759A1 (en)Unmanned intelligent inspection system and method applied to offshore booster station
CN106025921A (en)Aerial-shooting line inspection device for unmanned aerial vehicle
CN108828399A (en)A kind of remote auto lookup power transmission line failure monitoring system
CN208873047U (en) A kind of inspection device based on multi-rotor UAV
CN106200680A (en)A kind of unmanned plane cluster management system and control method thereof
CN205685341U (en)A kind of combined track formula transformer station indoor crusing robot system
CN113568427B (en)Unmanned aerial vehicle autonomous landing mobile platform method and system
CN109283930A (en) A spherical intelligent inspection robot
CN108377034A (en)Polling transmission line based on multi-rotor unmanned aerial vehicle and line map drawing system
CN107140194A (en)A kind of many rotor railway automatic tour inspection systems of tracking for supporting automatic charging
CN107300398A (en)A kind of communicated based on WIFI supports the electric inspection process device of positioning and data transfer simultaneously

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20150610

Termination date:20160828

CF01Termination of patent right due to non-payment of annual fee

[8]ページ先頭

©2009-2025 Movatter.jp