技术领域technical field
本发明涉及通信领域,更具体地说,涉及一种超材料天线。The present invention relates to the communication field, and more specifically, relates to a metamaterial antenna.
背景技术Background technique
卡塞格伦天线由三部分组成,即主反射器、副反射器和辐射源。其中主反射器为旋转抛物面,副反射面为旋转双曲面反射器。在结构上,双曲面的一个焦点与抛物面的焦点重合,双曲面焦轴与抛物面的焦轴重合,而辐射源位于双曲面的另一焦点上。由副反射器对辐射源发出的电磁波进行的一次反射,将电磁波反射到主反射器上,然后再经主反射器反射后获得相应方向的平面波波束,以实现定向发射。The Cassegrain antenna consists of three parts, namely the main reflector, sub-reflector and radiation source. Wherein the main reflector is a rotating paraboloid, and the secondary reflecting surface is a rotating hyperboloid reflector. Structurally, one focus of the hyperboloid coincides with the focus of the paraboloid, the focal axis of the hyperboloid coincides with the focal axis of the paraboloid, and the radiation source is located at the other focus of the hyperboloid. The electromagnetic wave emitted by the radiation source is reflected by the sub-reflector once, and the electromagnetic wave is reflected to the main reflector, and then the plane wave beam in the corresponding direction is obtained after being reflected by the main reflector, so as to realize directional emission.
可见,传统的卡塞格伦天线的主反射器需要加工成精度很高的抛物面,但是,加工这样精度高的抛物面,难度非常大,而且成本相当的高。It can be seen that the main reflector of the traditional Cassegrain antenna needs to be processed into a high-precision paraboloid. However, it is very difficult to process such a high-precision paraboloid, and the cost is quite high.
发明内容Contents of the invention
本发明所要解决的技术问题是,针对现有的卡塞格伦天线加工不易、成本高的缺陷,提供一种加工简单、制造成本低的超材料天线。The technical problem to be solved by the present invention is to provide a metamaterial antenna with simple processing and low manufacturing cost in view of the defects of difficult processing and high cost of existing Cassegrain antennas.
本发明解决其技术问题所采用的技术方案是:提供一种超材料天线,包括具有中央通孔的超材料主反射器、设置在中央通孔中的馈源及设置在馈源前方的超材料副反射器,馈源辐射的电磁波依次经过超材料副反射器、超材料主反射器的反射后以平面波的形式出射,所述超材料主反射器包括第一核心层及设置在第一核心层后表面的第一反射层,所述第一核心层包括至少一个第一核心层片层,所述第一核心层片层包括第一基材以及设置在第一基材上的多个第一人造微结构的平面排布,所述超材料副反射器包括第二核心层及设置在第二核心层后表面的第二反射层,所述第二核心层包括至少一个第二核心层片层,所述第二核心层片层包括第二基材以及设置在第二基材上的多个第二人造微结构的平面排布,所述超材料副反射器具有与旋转椭球面类似的电磁波反射特性,所述超材料副反射器具有近焦点与远焦点,所述远焦点与所述馈源的相位中心重合,所述近焦点与超材料主反射器的焦点重合。The technical solution adopted by the present invention to solve the technical problem is to provide a metamaterial antenna, including a metamaterial main reflector with a central through hole, a feed source arranged in the central through hole, and a metamaterial secondary reflector arranged in front of the feed source The electromagnetic waves radiated by the feed source are reflected in the form of plane waves after being reflected by the metamaterial sub-reflector and the metamaterial main reflector in turn. The metamaterial main reflector includes a first core layer and is arranged on the rear surface of the first core layer. The first reflective layer, the first core layer includes at least one first core layer sheet, the first core layer sheet includes a first substrate and a plurality of first artificial microstructures disposed on the first substrate The planar arrangement of the structure, the metamaterial sub-reflector includes a second core layer and a second reflective layer arranged on the rear surface of the second core layer, the second core layer includes at least one second core layer sheet, so The second core layer sheet includes a second substrate and a planar arrangement of a plurality of second artificial microstructures disposed on the second substrate, and the metamaterial sub-reflector has electromagnetic wave reflection characteristics similar to those of a spheroid , the metamaterial sub-reflector has a near focus and a far focus, the far focus coincides with the phase center of the feed source, and the near focus coincides with the focus of the metamaterial main reflector.
进一步地,所述超材料副反射器的中心轴与超材料主反射器的中心轴重合。Further, the central axis of the metamaterial sub-reflector coincides with the central axis of the metamaterial main reflector.
进一步地,所述馈源为波纹喇叭,所述超材料副反射器的中心轴通过波纹喇叭的口径面的中心。Further, the feed source is a corrugated horn, and the central axis of the metamaterial sub-reflector passes through the center of the aperture surface of the corrugated horn.
进一步地,任一第一核心层片层的折射率分布满足如下公式:Further, the refractive index distribution of any first core layer satisfies the following formula:
其中,n(R)表示该第一核心层片层上半径为R处的折射率值,该第一核心层片层的折射率分布圆心即为超材料副反射器的中心轴与该第一核心层片层的交点;Among them, n(R) represents the refractive index value at the radius R on the first core layer sheet, and the center of the refractive index distribution circle of the first core layer sheet is the central axis of the metamaterial sub-reflector and the first Intersection points of core layer slices;
s为所述超材料副反射器的近焦点到超材料主反射器的前表面的距离;s is the distance from the near focal point of the metamaterial sub-reflector to the front surface of the metamaterial main reflector;
d1为第一核心层的厚度;d1 is the thickness of the first core layer;
nmax1表示第一核心层片层上的折射率最大值;nmax1 represents the maximum value of the refractive index on the first core layer sheet;
nmin1表示第一核心层片层上的折射率最小值;nmin1 represents the minimum value of the refractive index on the first core layer sheet;
λ表示天线中心频率对应的电磁波的波长;λ represents the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna;
floor表示向下取整数。floor means rounding down to an integer.
进一步地,任一第二核心层片层的折射率分布满足如下公式:Further, the refractive index distribution of any second core layer sheet satisfies the following formula:
其中,n(r)表示该第二核心层片层上半径为r处的折射率值,该第二核心层片层的折射率分布圆心即为超材料副反射器的中心轴与该第二核心层片层的交点;Among them, n(r) represents the refractive index value at the radius r on the second core layer sheet, and the center of the refractive index distribution circle of the second core layer sheet is the central axis of the metamaterial sub-reflector and the second Intersection points of core layer slices;
d2为第二核心层的厚度;d2 is the thickness of the second core layer;
nmax2表示第二核心层片层上的折射率最大值;nmax2 represents the maximum value of the refractive index on the second core layer sheet;
nmin2表示第二核心层片层上的折射率最小值;nmin2 represents the minimum value of the refractive index on the second core layer sheet;
λ表示天线中心频率对应的电磁波的波长;λ represents the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna;
a表示超材料副反射器的远焦点到超材料副反射器的垂直距离;即馈源相位中心到超材料副反射器FF的垂直距离;a represents the vertical distance from the far focus of the metamaterial subreflector to the metamaterial subreflector; that is, the vertical distance from the feed source phase center to the metamaterial subreflector FF;
b表示超材料副反射器的近焦点到超材料副反射器的垂直距离;b represents the vertical distance from the near focal point of the metamaterial sub-reflector to the metamaterial sub-reflector;
floor表示向下取整数。floor means rounding down to an integer.
进一步地,所述第一基材包括片状的第一前基板及第一后基板,所述多个第一人造微结构夹设在第一前基板与第一后基板之间,所述第一核心层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。Further, the first substrate includes a sheet-shaped first front substrate and a first rear substrate, the plurality of first artificial microstructures are interposed between the first front substrate and the first rear substrate, and the first The thickness of a core layer sheet is 0.21-2.5 mm, wherein the thickness of the first front substrate is 0.1-1 mm, the thickness of the first rear substrate is 0.1-1 mm, and the thickness of the plurality of first artificial microstructures is 0.01-0.5 mm.
进一步地,所述第二基材包括片状的第二前基板及第二后基板,所述多个第二人造微结构夹设在第二前基板与第二后基板之间,所述第二核心层片层的厚度为0.21-2.5mm,其中,第二前基板的厚度为0.1-1mm,第二后基板的厚度为0.1-1mm,多个第二人造微结构的厚度为0.01-0.5mm。Further, the second base material includes a sheet-shaped second front substrate and a second rear substrate, the plurality of second artificial microstructures are interposed between the second front substrate and the second rear substrate, and the first The thickness of the second core layer sheet is 0.21-2.5mm, wherein, the thickness of the second front substrate is 0.1-1mm, the thickness of the second back substrate is 0.1-1mm, and the thickness of multiple second artificial microstructures is 0.01-0.5 mm.
进一步地,所述第一人造微结构及第二人造微结构为金属微结构,所述金属微结构由一条或多条金属线组成,所述金属线为铜线、银线或者铝线,所述多个第一人造微结构及多个第二人造微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法分别形成在第一基材及第二基材上。Further, the first artificial microstructure and the second artificial microstructure are metal microstructures, and the metal microstructures are composed of one or more metal wires, and the metal wires are copper wires, silver wires or aluminum wires, so The plurality of first artificial microstructures and the plurality of second artificial microstructures are respectively formed on the first substrate and the second substrate by etching, electroplating, drilling, photolithography, electron etching or ion etching.
进一步地,所述第一基材上的多个第一人造微结构及第二基材上的多个第二人造微结构均由呈平面雪花状的金属微结构的拓扑图案的演变得到,所述呈平面雪花状的金属微结构具有相互垂直平分的第一金属线及第二金属线,所述第一金属线与第二金属线的长度相同,所述第一金属线两端连接有相同长度的两个第一金属分支,所述第一金属线两端连接在两个第一金属分支的中点上,所述第二金属线两端连接有相同长度的两个第二金属分支,所述第二金属线两端连接在两个第二金属分支的中点上,所述第一金属分支与第二金属分支的长度相等。Further, the plurality of first artificial microstructures on the first substrate and the plurality of second artificial microstructures on the second substrate are obtained from the evolution of topological patterns of metal microstructures in the shape of planar snowflakes, so The metal microstructure in the shape of a plane snowflake has a first metal wire and a second metal wire perpendicularly bisecting each other, the lengths of the first metal wire and the second metal wire are the same, and the two ends of the first metal wire are connected with the same Two first metal branches of the same length, the two ends of the first metal line are connected to the midpoint of the two first metal branches, and the two ends of the second metal line are connected to two second metal branches of the same length, The two ends of the second metal wire are connected to the middle point of the two second metal branches, and the lengths of the first metal branch and the second metal branch are equal.
进一步地,所述呈平面雪花状的金属微结构的每个第一金属分支及每个第二金属分支的两端还连接有完全相同的第三金属分支,相应的第三金属分支的中点分别与第一金属分支及第二金属分支的端点相连。Further, the two ends of each first metal branch and each second metal branch of the planar snowflake-shaped metal microstructure are also connected to identical third metal branches, and the midpoint of the corresponding third metal branch They are respectively connected to the terminals of the first metal branch and the second metal branch.
根据本发明的超材料天线,由板状的超材料主反射器代替了传统的抛物面形式的主反射器,由板状的超材料副反射器代替了传统的旋转双面形式的副反射器,因此制造加工更加容易,成本更加低廉。该超材料天线根据所选频率的不同,可应用在卫星天线、微波天线及雷达天线等领域。According to the metamaterial antenna of the present invention, the traditional parabolic main reflector is replaced by a plate-shaped metamaterial main reflector, and the traditional rotating double-sided secondary reflector is replaced by a plate-shaped metamaterial sub-reflector. Therefore, the manufacturing process is easier and the cost is lower. The metamaterial antenna can be applied in the fields of satellite antenna, microwave antenna and radar antenna according to the selected frequency.
附图说明Description of drawings
图1是本发明的超材料天线的结构示意图;Fig. 1 is the structural representation of metamaterial antenna of the present invention;
图2是本发明一种形式第一核心层片层的超材料单元的透视示意图;Fig. 2 is a schematic perspective view of a metamaterial unit of a form of the first core layer sheet of the present invention;
图3是本发明一种形式的第一核心层片层的折射率分布示意图;Fig. 3 is a schematic diagram of the refractive index distribution of the first core layer sheet in a form of the present invention;
图4是本发明的一种形式的第一核心层片层的结构示意图;Fig. 4 is a schematic structural view of a first core layer sheet in a form of the present invention;
图5是本发明的平面雪花状的金属微结构的拓扑图案的示意图;5 is a schematic diagram of a topological pattern of a plane snowflake-like metal microstructure of the present invention;
图6是图5所示的平面雪花状的金属微结构的一种衍生结构;Fig. 6 is a kind of derivation structure of the metal microstructure of plane snowflake shape shown in Fig. 5;
图7是图5所示的平面雪花状的金属微结构的一种变形结构;Fig. 7 is a kind of deformed structure of the metal microstructure of plane snowflake shape shown in Fig. 5;
图8是平面雪花状的金属微结构的拓扑图案的演变的第一阶段;Figure 8 is the first stage of the evolution of the topological pattern of the planar snowflake-like metal microstructure;
图9是平面雪花状的金属微结构的拓扑图案的演变的第二阶段;Figure 9 is the second stage of the evolution of the topological pattern of the planar snowflake-like metal microstructure;
图10是本发明的一种形式的第二核心层片层的结构示意图;Fig. 10 is a schematic structural view of a second core layer sheet in a form of the present invention;
图11是本发明一种形式第二核心层片层的超材料单元的透视示意图。Figure 11 is a schematic perspective view of a metamaterial unit of one form of second core layer sheet according to the present invention.
具体实施方式Detailed ways
如图1至4所示,根据本发明的超材料天线,包括具有中央通孔TK的超材料主反射器ZF、设置在中央通孔TK中的馈源1及设置在馈源1前方的超材料副反射器FF,馈源1辐射的电磁波依次经过超材料副反射器FF、超材料主反射器ZF的反射后以平面波的形式出射,所述超材料主反射器ZF包括第一核心层101及设置在第一核心层101后表面的第一反射层201,所述第一核心层101包括至少一个第一核心层片层10,所述第一核心层片层10包括第一基材JC1以及设置在第一基材JC1上的多个第一人造微结构JG1,所述超材料副反射器FF包括第二核心层102及设置在第一核心层102后表面的第二反射层202,所述第二核心层102包括至少一个第二核心层片层20,所述第一核心层片层20包括第二基材JC2以及设置在第二基材JC2上的多个第二人造微结构JG2,所述超材料副反射器FF具有与旋转椭球面类似的电磁波反射特性,所述超材料副反射器FF具有近焦点F1与远焦点F2,所述馈源1的相位中心与超材料副反射器的远焦点F2重合,所述近焦点F1与超材料主反射器的焦点重合。馈源1的相位中心即为电磁波在馈源中相位相等的点,也就是将馈源等效为理想点源,该理想点源所处的位置,即图中的F2点。此处,超材料副反射器FF具有与旋转椭球面类似的电磁波反射特性,是指由远焦点F2发出的电磁波经过超材料副反射器FF反射后,出射的电磁波在近焦点F1处聚焦,旋转椭球面恰好具备这个特性。As shown in Figures 1 to 4, the metamaterial antenna according to the present invention includes a metamaterial main reflector ZF with a central through hole TK, a feed source 1 arranged in the central through hole TK and a metamaterial secondary reflector arranged in front of the feed source 1 The electromagnetic waves radiated by the reflector FF and the feed source 1 are emitted in the form of plane waves after being reflected by the metamaterial sub-reflector FF and the metamaterial main reflector ZF in turn. The metamaterial main reflector ZF includes a first core layer 101 and a set The first reflective layer 201 on the rear surface of the first core layer 101, the first core layer 101 includes at least one first core layer sheet 10, and the first core layer sheet 10 includes a first base material JC1 and a set A plurality of first artificial microstructures JG1 on the first substrate JC1, the metamaterial sub-reflector FF includes a second core layer 102 and a second reflective layer 202 disposed on the back surface of the first core layer 102, the The second core layer 102 includes at least one second core layer sheet 20, the first core layer sheet 20 includes a second base material JC2 and a plurality of second artificial microstructures JG2 disposed on the second base material JC2, The metamaterial sub-reflector FF has electromagnetic wave reflection characteristics similar to those of a spheroid, the metamaterial sub-reflector FF has a near focal point F1 and a far focal point F2, and the phase center of the feed 1 and the metamaterial sub-reflector The far focus F2 coincides with the near focus F1 coincides with the focus of the metamaterial main reflector. The phase center of feed source 1 is the point where the phases of electromagnetic waves in the feed source are equal, that is, the feed source is equivalent to an ideal point source, and the position of the ideal point source is the point F2 in the figure. Here, the metamaterial sub-reflector FF has electromagnetic wave reflection characteristics similar to those of a spheroid, which means that after the electromagnetic wave emitted by the far focus F2 is reflected by the metamaterial sub-reflector FF, the outgoing electromagnetic wave is focused at the near focus F1 and rotates The ellipsoid just has this property.
本发明中,所述超材料副反射器的中心轴Z2与超材料主反射器的中心轴Z1重合。超材料副反射器的中心轴Z2即为焦轴,即为超材料副反射器的近焦点F1与远焦点F2连线所在的直线。近焦点F1靠近超材料副反射器FF,远焦点F2与馈源1的相位中心重合。In the present invention, the central axis Z2 of the metamaterial secondary reflector coincides with the central axis Z1 of the metamaterial main reflector. The central axis Z2 of the metamaterial sub-reflector is the focal axis, which is the straight line connecting the near focus F1 and the far focus F2 of the metamaterial sub-reflector. The near focal point F1 is close to the metamaterial sub-reflector FF, and the far focal point F2 coincides with the phase center of the feed 1 .
本发明中,优选地,所述馈源1为波纹喇叭,所述超材料副反射器的中心轴Z2通过波纹喇叭的口径面的中心。In the present invention, preferably, the feed source 1 is a corrugated horn, and the central axis Z2 of the metamaterial sub-reflector passes through the center of the aperture surface of the corrugated horn.
本发明中,第一反射层及第二反射层可以为具有光滑的表面的金属反射板,例如可以是抛光的铜板、铝板或铁板等,也可是PEC(理想电导体)反射面,当然也可以是金属涂层,例如铜涂层。本发明中,所述第一核心层片层10及第二核心层片层20任一纵截面具有相同的形状与面积,此处的纵截面是指第一核心层片层10、第二核心层片层20中与所述超材料副反射器的中心轴Z2垂直的剖面。所述第一核心层片层10及第二核心层片层20的纵截面可以是为方形,也可是圆形或者椭圆形,例如300X300mm或450X450mm的正方形,或者直径为250、300或450mm的圆形。In the present invention, the first reflective layer and the second reflective layer can be metal reflective plates with smooth surfaces, such as polished copper plates, aluminum plates or iron plates, etc., or PEC (Perfect Electric Conductor) reflective surfaces. It may be a metal coating, such as a copper coating. In the present invention, any longitudinal section of the first core layer sheet 10 and the second core layer sheet 20 has the same shape and area, where the longitudinal section refers to the first core layer sheet 10, the second core layer A section perpendicular to the central axis Z2 of the metamaterial sub-reflector in the ply layer 20 . The longitudinal section of the first core layer sheet 10 and the second core layer sheet 20 can be square, circular or elliptical, such as a square of 300X300mm or 450X450mm, or a circle with a diameter of 250, 300 or 450mm shape.
本发明中,为了便于理解,如图2、图4所示,可以将所述第一核心层片层10划分为矩形阵列排布的多个如图2所示的超材料单元D,每个超材料单元D包括前基板单元U、后基板单元V及设置在前基板单元U、后基板单元V之间的第一人造微结构JG1,通常超材料单元D的长、宽及厚度均不大于天线中心频率对应的电磁波的波长的五分之一,优选为十分之一,因此,根据天线的中心频率可以确定超材料单元D的尺寸。图2为透视的画法,以表示第人造微结构JG1在超材料单元D中的位置,如图2所示,所述第一人造微结构2夹于基板单元U、后基板单元V之间,其所在表面用SR表示。In the present invention, for ease of understanding, as shown in Figure 2 and Figure 4, the first core layer sheet 10 can be divided into a plurality of metamaterial units D as shown in Figure 2 arranged in a rectangular array, each The metamaterial unit D includes a front substrate unit U, a rear substrate unit V, and a first artificial microstructure JG1 arranged between the front substrate unit U and the rear substrate unit V. Generally, the length, width and thickness of the metamaterial unit D are not greater than The center frequency of the antenna corresponds to one-fifth, preferably one-tenth, of the wavelength of the electromagnetic wave. Therefore, the size of the metamaterial unit D can be determined according to the center frequency of the antenna. Fig. 2 is a perspective drawing to show the position of the first artificial microstructure JG1 in the metamaterial unit D, as shown in Fig. 2, the first artificial microstructure 2 is sandwiched between the substrate unit U and the rear substrate unit V , and its surface is denoted by SR.
同样,如图10及图11所示,也可以将第二核心层片层20划分为矩形阵列排布的多个如图11所示的超材料单元D。Similarly, as shown in FIGS. 10 and 11 , the second core layer sheet 20 can also be divided into a plurality of metamaterial units D arranged in a rectangular array as shown in FIG. 11 .
本发明中,任一第一核心层片层10的折射率分布满足如下公式:In the present invention, the refractive index distribution of any first core layer sheet 10 satisfies the following formula:
其中,n(R)表示该第一核心层片层上半径为R处的折射率值,该第一核心层片层的折射率分布圆心即为超材料副反射器的中心轴与该第一核心层片层的交点;Among them, n(R) represents the refractive index value at the radius R on the first core layer sheet, and the center of the refractive index distribution circle of the first core layer sheet is the central axis of the metamaterial sub-reflector and the first Intersection points of core layer slices;
s为所述超材料副反射器的近焦点到超材料主反射器的前表面的距离;s is the distance from the near focal point of the metamaterial sub-reflector to the front surface of the metamaterial main reflector;
d1为第一核心层的厚度;d1 is the thickness of the first core layer;
nmax1表示第一核心层片层上的折射率最大值;nmax1 represents the maximum value of the refractive index on the first core layer sheet;
nmin1表示第一核心层片层上的折射率最小值;nmin1 represents the minimum value of the refractive index on the first core layer sheet;
λ表示天线中心频率对应的电磁波的波长;λ represents the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna;
floor表示向下取整数;floor means rounding down to an integer;
例如,当(R处于某一数值范围)大于等于0小于1时,k取0,当(R处于某一数值范围)大于等于1小于2时,k取1,依此类推。For example, when (R is in a certain value range) greater than or equal to 0 and less than 1, k takes 0, when (R is in a certain value range) When it is greater than or equal to 1 and less than 2, k is 1, and so on.
由公式(1)至公式(3)所确定的第一核心层片层,沿其法线方向折射率保持不变,在垂直于法线的平面内其折射率分布如图3所示,其包括多个共心的环形区域,其圆心为图中的O点,优选地,圆心即为该平面的中心,图3中示意性的画出了环形区域H1至环形区域H6,每一环形区域内相同半径处的折射率相等,且随着半径的增大折射逐渐减小,且有相邻两个环形区域在其相接的位置折射率呈跳变形式,即相邻两个环形区域中,位于内侧的环形区域其最外侧的折射率为nmin,位于外侧的环形区域其最内侧的折射率为nmax,例如,图3中,环形区域H1最外侧的折射率为nmin,环形区域H2最内侧的折射率为nmax。应当注意,环形区域不一定是完整的,也可以是不完整的,例如图3中的环形区域H5及H6,只有当第一核心层片层的纵截面为圆形时,其得到的多个环形区域则均为完整的环形区域。The refractive index of the first core layer determined by formula (1) to formula (3) remains unchanged along its normal direction, and its refractive index distribution in the plane perpendicular to the normal line is shown in Figure 3, where Including a plurality of concentric annular areas, the center of which is the O point in the figure, preferably, the center of the circle is the center of the plane, and the annular area H1 to the annular area H6 are schematically drawn in Figure 3, each annular area The refractive index at the same radius is equal, and the refraction decreases gradually with the increase of the radius, and there are two adjacent annular areas where the refractive index jumps, that is, in the two adjacent annular areas , the outermost refractive index of the inner annular region is nmin , and the innermost refractive index of the outer annular region is nmax , for example, in Figure 3, the outermost refractive index of the annular region H1 is nmin , the annular The innermost refractive index of the region H2 is nmax . It should be noted that the annular region is not necessarily complete, and may also be incomplete, such as the annular regions H5 and H6 in Figure 3, only when the longitudinal section of the first core layer is circular, the resulting multiple The ring area is a complete ring area.
本发明中,上述的半径是指图3中的圆心O到每一超材料单元的表面中心的距离,上述的半径严格意义上并不是一个连续的变化范围,但是由于每一个超材料单元都是远远小于天线中心频率对应的电磁波的波长,所以可以近似的认为上述的半径是连续变化的。In the present invention, the above-mentioned radius refers to the distance from the center of circle O in Fig. 3 to the surface center of each metamaterial unit, and the above-mentioned radius is not a continuous range of variation in the strict sense, but since each metamaterial unit is It is far smaller than the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna, so it can be approximately considered that the above-mentioned radius changes continuously.
由公式(1)至公式(3)所确定的第一核心层片层,具有如图3所示的折射率分布规律,根据天线中心频率,合理设计第一核心层片层的层数(即第一核心层的厚度),即可以使得由所述超材料副反射器的近焦点F1发出的电磁波经超材料主反射器后能够以垂直于第一核心层片层的平面波的形式出射,即超材料主反射器的焦点与所述超材料副反射器的近焦点F1重合。The first core layer determined by formula (1) to formula (3) has the refractive index distribution law shown in Figure 3, according to the center frequency of the antenna, the number of layers of the first core layer is reasonably designed (i.e. The thickness of the first core layer), which can make the electromagnetic wave emitted by the near focal point F1 of the metamaterial sub-reflector pass through the metamaterial main reflector and exit in the form of a plane wave perpendicular to the first core layer sheet, that is The focal point of the metamaterial primary reflector coincides with the near focal point F1 of the metamaterial secondary reflector.
本发明中,任一第二核心层片层的折射率分布满足如下公式:In the present invention, the refractive index distribution of any second core layer sheet satisfies the following formula:
其中,n(r)表示该第二核心层片层上半径为r处的折射率值,该第二核心层片层的折射率分布圆心即为超材料副反射器的中心轴与该第二核心层片层的交点;Among them, n(r) represents the refractive index value at the radius r on the second core layer sheet, and the center of the refractive index distribution circle of the second core layer sheet is the central axis of the metamaterial sub-reflector and the second Intersection points of core layer slices;
d2为第二核心层的厚度;d2 is the thickness of the second core layer;
nmax2表示第二核心层片层上的折射率最大值;nmax2 represents the maximum value of the refractive index on the second core layer sheet;
nmin2表示第二核心层片层上的折射率最小值;nmin2 represents the minimum value of the refractive index on the second core layer sheet;
λ表示天线中心频率对应的电磁波的波长;λ represents the wavelength of the electromagnetic wave corresponding to the center frequency of the antenna;
a表示超材料副反射器的远焦点到超材料副反射器的垂直距离;即馈源相位中心到超材料副反射器FF的垂直距离;a represents the vertical distance from the far focus of the metamaterial subreflector to the metamaterial subreflector; that is, the vertical distance from the feed source phase center to the metamaterial subreflector FF;
b表示超材料副反射器的近焦点到超材料副反射器的垂直距离;b represents the vertical distance from the near focal point of the metamaterial sub-reflector to the metamaterial sub-reflector;
floor表示向下取整数。floor means rounding down to an integer.
由公式(4)至公式(6)所确定的第二核心层片层,根据天线中心频率,合理设计第二核心层片层的层数(即第二核心层的厚度),可以使得超材料副反射器具有与旋转椭球面类似的电磁波反射特性,即可以使得由远焦点F2(馈源相位中心)发出的电磁波经过超材料副反射器FF反射后,出射的电磁波在近焦点F1处聚焦。The second core layer sheet determined by formula (4) to formula (6), according to the center frequency of the antenna, rationally design the number of layers of the second core layer sheet (i.e. the thickness of the second core layer), which can make the metamaterial The sub-reflector has electromagnetic wave reflection characteristics similar to those of the spheroid, that is, it can make the electromagnetic wave emitted by the far focus F2 (the feed phase center) reflected by the metamaterial sub-reflector FF, and the outgoing electromagnetic wave is focused at the near focus F1.
综上,将近焦点F1设置为超材料主反射器的焦点就能够使得由馈源发出的电磁波经超材料副反射器一次反射、超材料主反射器二次反射后以平面波的形式出射;反之亦然,即垂直超材料主反射器入射的平面电磁波能够经超材料主射器一次反射、超材料副反射器二次反射后在馈源的相位中心处(也即远焦点F2处)聚焦。To sum up, setting the near focal point F1 as the focal point of the metamaterial main reflector can make the electromagnetic wave emitted by the feed source reflected by the metamaterial sub-reflector once, and the metamaterial main reflector reflect twice, and then exit in the form of a plane wave; vice versa However, the incident planar electromagnetic wave perpendicular to the metamaterial main reflector can be focused at the phase center of the feed source (that is, the far focus point F2) after being reflected once by the metamaterial main reflector and secondly reflected by the metamaterial sub-reflector.
本发明中,优选地,所述超材料副反射器的形状与尺寸适应主反射器的形状与尺寸,即如图1所示,使得由超材料副反射器边缘出射的电磁波刚好到达超材料主反射器的边缘。In the present invention, preferably, the shape and size of the metamaterial sub-reflector are adapted to the shape and size of the main reflector, that is, as shown in Figure 1, so that the electromagnetic wave emitted from the edge of the metamaterial sub-reflector just reaches the metamaterial main reflector. the edge of the reflector.
本发明中,如图3及图4所示,所述第一基材JC1包括片状的第一前基板13及第一后基板15,所述多个第一人造微结构JG1夹设在第一前基板13与第一后基板15之间,所述第一核心层片层的厚度为0.21-2.5mm,其中,第一前基板的厚度为0.1-1mm,第一后基板的厚度为0.1-1mm,多个第一人造微结构的厚度为0.01-0.5mm。In the present invention, as shown in FIG. 3 and FIG. 4 , the first base material JC1 includes a sheet-shaped first front substrate 13 and a first rear substrate 15, and the plurality of first artificial microstructures JG1 are interposed on the second substrate. Between a front substrate 13 and the first rear substrate 15, the thickness of the first core layer is 0.21-2.5 mm, wherein the thickness of the first front substrate is 0.1-1 mm, and the thickness of the first rear substrate is 0.1 mm. -1 mm, the thickness of the plurality of first artificial microstructures is 0.01-0.5 mm.
作为一个例子,所述第一核心层片层的厚度为0.818mm,其中,第一前基板与第一后基板的厚度均为0.4mm,多个第一人造微结构的厚度为0.018mm。As an example, the thickness of the first core layer sheet is 0.818 mm, wherein the thickness of the first front substrate and the first rear substrate are both 0.4 mm, and the thickness of the plurality of first artificial microstructures is 0.018 mm.
本发明中,如图10及图11所示,所述第二基材JC2包括片状的第二前基板14及第二后基板16,所述多个第二人造微结构JG2夹设在第一前基板14与第一后基板16之间,所述第二核心层片层的厚度为0.21-2.5mm,其中,第二前基板的厚度为0.1-1mm,第二后基板的厚度为0.1-1mm,多个第二人造微结构的厚度为0.01-0.5mm。In the present invention, as shown in FIG. 10 and FIG. 11 , the second base material JC2 includes a sheet-shaped second front substrate 14 and a second rear substrate 16, and the plurality of second artificial microstructures JG2 are interposed on the second substrate. Between a front substrate 14 and the first rear substrate 16, the thickness of the second core layer is 0.21-2.5 mm, wherein the thickness of the second front substrate is 0.1-1 mm, and the thickness of the second rear substrate is 0.1 mm. -1 mm, the thickness of the plurality of second artificial microstructures is 0.01-0.5 mm.
作为一个例子,所述第二核心层片层的厚度为0.818mm,其中,第二前基板与第二后基板的厚度均为0.4mm,多个第二人造微结构的厚度为0.018mm。As an example, the thickness of the second core layer sheet is 0.818 mm, wherein the thickness of the second front substrate and the second rear substrate are both 0.4 mm, and the thickness of the plurality of second artificial microstructures is 0.018 mm.
所述第一核心层片层、第二核心层片层的厚度确定了,则可以根据需要设定不同的层数,从而形成具有厚度d1的第一核心层及具有厚度d2的第二核心层。Once the thicknesses of the first core layer and the second core layer are determined, different numbers of layers can be set as required, thereby forming a first core layer with a thicknessd1 and a second core layer with a thicknessd2. core layer.
本发明中,所述第一基材及第二基材由陶瓷材料、聚苯乙烯、聚丙烯、聚酰亚胺、聚乙烯、聚醚醚酮或聚四氟乙烯制得。例如,聚四氟乙烯板(PS板),其具有很好的电绝缘性,不会对电磁波的电场产生干扰,并且具有优良的化学稳定性、耐腐蚀性,使用寿命长。In the present invention, the first substrate and the second substrate are made of ceramic materials, polystyrene, polypropylene, polyimide, polyethylene, polyether ether ketone or polytetrafluoroethylene. For example, polytetrafluoroethylene board (PS board), which has good electrical insulation, will not interfere with the electric field of electromagnetic waves, and has excellent chemical stability, corrosion resistance, and long service life.
本发明中,优选地,所述第一人造微结构及第二人造微结构均为金属微结构,所述金属微结构由一条或多条金属线组成,所述金属线为铜线、银线或者铝线,所述第一基材上的多个第一人造微结构通过蚀刻、电镀、钻刻、光刻、电子刻或离子刻的方法得到。例如图4所示的第一核心层片层10,可以先通过在第一前基板13或第一后基板15中的其中一个上覆铜,再通过蚀刻等工艺去掉不需要的铜,即得到了多个第一人造微结构JG1的平面排布,最后用热熔胶将第一前基板13与第一后基板15粘合在一起即形成了第一核心层片层10。通过上述方法可以形成多个第一核心层片层10,将各个第一核心层片层10用热熔胶粘接即可得到多层结构的第一核心层101。热熔胶的材料最好与第一核心层片层的材料保持一致。In the present invention, preferably, the first artificial microstructure and the second artificial microstructure are metal microstructures, and the metal microstructures are composed of one or more metal wires, and the metal wires are copper wires, silver wires Or aluminum wires, the plurality of first artificial microstructures on the first substrate are obtained by etching, electroplating, drilling, photolithography, electron etching or ion etching. For example, the first core layer sheet 10 shown in FIG. 4 can be coated with copper on one of the first front substrate 13 or the first rear substrate 15, and then remove unnecessary copper by etching or other processes to obtain Planar arrangement of a plurality of first artificial microstructures JG1 is carried out, and finally the first front substrate 13 and the first rear substrate 15 are bonded together with hot melt adhesive to form the first core layer 10. A plurality of first core layer sheets 10 can be formed by the above method, and the first core layer 101 with a multi-layer structure can be obtained by bonding each first core layer sheet 10 with a hot melt adhesive. The material of the hot melt adhesive is preferably consistent with that of the first core layer.
以上述方法同样可以得到第二核心层片层及第二核心层。The second core layer sheet and the second core layer can also be obtained by the above method.
本发明中,优选地,所述第一基材上的多个第一人造微结构及第二基材上的第二人造微结构均由图5所示的呈平面雪花状的金属微结构的拓扑图案的演变得到。即图5所示的金属微结构的拓扑图案为呈平面雪花状的金属微结构的基本平面拓扑图案,同一第一基材及第二基材上的所有金属微结构的拓扑图案均由图5所示的图案演变得到。In the present invention, preferably, the plurality of first artificial microstructures on the first base material and the second artificial microstructures on the second base material are composed of the plane snowflake-shaped metal microstructures shown in FIG. The evolution of topological patterns is obtained. That is, the topological pattern of the metal microstructure shown in Figure 5 is the basic planar topological pattern of the metal microstructure in the shape of a plane snowflake, and the topological patterns of all metal microstructures on the same first substrate and the second substrate are shown in Figure 5 The patterns shown were evolved.
如图5所示,所述呈平面雪花状的金属微结构具有相互垂直平分的第一金属线J1及第二金属线J2,所述第一金属线J1与第二金属线J2的长度相同,所述第一金属线J1两端连接有相同长度的两个第一金属分支F1,所述第一金属线J1两端连接在两个第一金属分支F1的中点上,所述第二金属线J2两端连接有相同长度的两个第二金属分支F2,所述第二金属线J2两端连接在两个第二金属分支F2的中点上,所述第一金属分支F1与第二金属分支F2的长度相等。As shown in FIG. 5 , the metal microstructure in the shape of a plane snowflake has a first metal line J1 and a second metal line J2 that are perpendicular to each other, and the lengths of the first metal line J1 and the second metal line J2 are the same. Both ends of the first metal line J1 are connected to two first metal branches F1 of the same length, both ends of the first metal line J1 are connected to the midpoint of the two first metal branches F1, and the second metal The two ends of the line J2 are connected with two second metal branches F2 of the same length, the two ends of the second metal line J2 are connected at the midpoint of the two second metal branches F2, the first metal branch F1 and the second The lengths of the metal branches F2 are equal.
图6是图5所示的平面雪花状的金属微结构的一种衍生结构。其在每个第一金属分支F1及每个第二金属分支F2的两端均连接有完全相同的第三金属分支F3,并且相应的第三金属分支F3的中点分别与第一金属分支F1及第二金属分支F2的端点相连。依此类推,本发明还可以衍生出其它形式的金属微结构。同样,图6所示的只是基本平面拓扑图案。FIG. 6 is a derivative structure of the planar snowflake-like metal microstructure shown in FIG. 5 . Both ends of each first metal branch F1 and each second metal branch F2 are connected to identical third metal branches F3, and the midpoints of the corresponding third metal branches F3 are respectively connected to the first metal branch F1. and the terminal of the second metal branch F2 are connected. By analogy, the present invention can also derive other forms of metal microstructures. Again, what is shown in Figure 6 is only the basic planar topological pattern.
图7是图5所示的平面雪花状的金属微结构的一种变形结构,此种结构的金属微结构,第一金属线J1与第二金属线J2不是直线,而是弯折线,第一金属线J1与第二金属线J2均设置有两个弯折部WZ,但是第一金属线J1与第二金属线J2仍然是垂直平分,通过设置弯折部的朝向与弯折部在第一金属线与第二金属线上的相对位置,使得图7所示的金属微结构绕垂直于第一金属线与第二金属线交点的轴线向任意方向旋转90度的图形都与原图重合。另外,还可以有其它变形,例如,第一金属线J1与第二金属线J2均设置多个弯折部WZ。同样,图7所示的只是基本平面拓扑图案。FIG. 7 is a deformed structure of the plane snowflake-shaped metal microstructure shown in FIG. Both the metal wire J1 and the second metal wire J2 are provided with two bending parts WZ, but the first metal wire J1 and the second metal wire J2 are still perpendicularly bisected. The relative position of the metal line and the second metal line makes the pattern of the metal microstructure shown in FIG. 7 rotated 90 degrees in any direction around the axis perpendicular to the intersection of the first metal line and the second metal line coincide with the original figure. In addition, other deformations are also possible, for example, the first metal line J1 and the second metal line J2 are both provided with a plurality of bent portions WZ. Likewise, what is shown in Figure 7 is only the basic planar topological pattern.
已知折射率其中μ为相对磁导率,ε为相对介电常数,μ与ε合称为电磁参数。实验证明,电磁波通过折射率非均匀的介质材料时,会向折射率大的方向偏折。在相对磁导率一定的情况下(通常接近1),折射率只与介电常数有关,在第一基材选定的情况下,利用只对电场响应的第一人造微结构可以实现超材料单元折射率的任意值(在一定范围内),在该天线中心频率下,利用仿真软件,如CST、MATLAB、COMSOL等,通过仿真获得某一特定形状的第一人造微结构(如图5所示的平面雪花状的金属微结构)的介电常数随着拓扑图案的变化折射率变化的情况,即可列出一一对应的数据,即可设计出我们需要的特定折射率分布的第一核心层片层。同样,可设计出我们需要的特定折射率分布的第二核心层片层。known refractive index Among them, μ is the relative magnetic permeability, ε is the relative permittivity, and μ and ε are collectively called electromagnetic parameters. Experiments have proved that when electromagnetic waves pass through a dielectric material with a non-uniform refractive index, they will be deflected toward the direction with a large refractive index. In the case of a certain relative magnetic permeability (usually close to 1), the refractive index is only related to the dielectric constant. In the case of the first substrate selected, metamaterials can be realized by using the first artificial microstructure that only responds to the electric field. Any value of the unit refractive index (within a certain range), under the center frequency of the antenna, using simulation software, such as CST, MATLAB, COMSOL, etc., to obtain the first artificial microstructure of a specific shape through simulation (as shown in Figure 5 The dielectric constant of the planar snowflake-like metal microstructure) changes with the change of the topological pattern, and the data corresponding to each other can be listed, and the first one of the specific refractive index distribution we need can be designed. Core layer lamellae. Likewise, the second core layer sheet can be designed with the specific refractive index profile we need.
本实施例中,第一核心层片层上的第一人造微结构的平面排布可通过计算机仿真(例如CST仿真)得到,具体如下:In this embodiment, the planar arrangement of the first artificial microstructure on the first core layer sheet can be obtained by computer simulation (such as CST simulation), as follows:
(1)确定第一人造微结构的附着第一基材。例如介电常数为2.7的介质基板,该介质基板的材料可以是FR-4、F4b或PS。(1) Determining the attached first substrate of the first artificial microstructure. For example, a dielectric substrate with a dielectric constant of 2.7, the material of the dielectric substrate may be FR-4, F4b or PS.
(2)确定超材料单元的尺寸。超材料单元的尺寸由天线的中心频率得到,利用频率得到其波长,再取小于波长的五分之一的一个数值做为超材料单元D的长度CD与宽度KD,再取小于波长的十分之一的一个数值做为超材料单元D厚度。例如对应于11.95G的天线中心频率,所述超材料单元D为如图2所示的长CD与宽KD均为2.8mm、厚度HD为0.543mm的方形小板。(2) Determine the size of the metamaterial unit. The size of the metamaterial unit is obtained from the center frequency of the antenna, its wavelength is obtained by using the frequency, and then a value less than one-fifth of the wavelength is taken as the length CD and width KD of the metamaterial unit D, and then a value less than one-fifth of the wavelength is taken as A value of one of is used as the thickness of the metamaterial element D. For example, corresponding to the antenna center frequency of 11.95G, the metamaterial unit D is a small square plate with a length CD and a width KD of 2.8 mm and a thickness HD of 0.543 mm as shown in FIG. 2 .
(3)确定第一人造微结构的材料及其基本平面拓扑图案。本发明中,第一人造微结构为金属微结构,所述金属微结构的材料为铜,金属微结构的基本平面拓扑图案为图5所示的平面雪花状的金属微结构,其线宽W各处一致;此处的基本平面拓扑图案,是指同一第一基材上的所有第一人造微结构的拓扑图案的演变基础。(3) Determining the material of the first artificial microstructure and its basic planar topological pattern. In the present invention, the first artificial microstructure is a metal microstructure, and the material of the metal microstructure is copper, and the basic plane topological pattern of the metal microstructure is a plane snowflake-like metal microstructure shown in Figure 5, and its line width W consistent everywhere; the basic planar topological pattern here refers to the evolution basis of the topological patterns of all the first artificial microstructures on the same first substrate.
(4)确定第一人造微结构的拓扑图案参数。如图5所示,本发明中,平面雪花状的金属微结构的拓扑图案参数包括金属微结构的线宽W,第一金属线J1的长度a,第一金属分支F1的长度b,及金属微结构的厚度HD,本发明中,厚度不变,取为0.018mm。(4) Determining the topological pattern parameters of the first artificial microstructure. As shown in Figure 5, in the present invention, the topological pattern parameter of the metal microstructure of plane snowflake shape comprises the line width W of metal microstructure, the length a of the first metal line J1, the length b of the first metal branch F1, and the metal microstructure. The thickness HD of the microstructure, in the present invention, does not change, and is taken as 0.018mm.
(5)确定金属微结构的拓扑图案的演变限制条件。本发明中,金属微结构的拓扑图案的演变限制条件有,金属微结构之间的最小间距WL(即如图5所示,金属微结构与超材料单元的长边或宽边的距离为WL/2),金属微结构的线宽W,超材料单元的尺寸;由于加工工艺限制,WL大于等于0.1mm,同样,线宽W也是要大于等于0.1mm。第一次仿真时,WL可以取0.1mm,W可以取0.3mm,超材料单元的尺寸为长与宽为2.8mm,厚度为0.818mm(金属微结构的厚度为0.018mm,第一基材的厚度为0.8mm),此时金属微结构的拓扑图案参数只有a和b两个变量。金属微结构的拓扑图案通过如图8至图9所示的演变方式,对应于某一特定频率(例如11.95GHZ),可以得到一个连续的折射率变化范围。(5) To determine the evolution constraints of the topological pattern of the metal microstructure. In the present invention, the evolution constraint condition of the topological pattern of the metal microstructure has, the minimum spacing WL between metal microstructures (that is, as shown in Figure 5, the distance between the metal microstructure and the long side or wide side of the metamaterial unit is WL /2), the line width W of the metal microstructure, and the size of the metamaterial unit; due to the limitation of the processing technology, WL is greater than or equal to 0.1mm, and similarly, the line width W must also be greater than or equal to 0.1mm. During the first simulation, WL can be 0.1mm, W can be 0.3mm, the size of the metamaterial unit is 2.8mm in length and width, and 0.818mm in thickness (the thickness of the metal microstructure is 0.018mm, and the thickness of the first substrate Thickness is 0.8mm), at this time the topological pattern parameters of the metal microstructure only have two variables a and b. The topological pattern of the metal microstructure corresponds to a specific frequency (for example, 11.95GHZ) through the evolution as shown in FIG. 8 to FIG. 9 , and a continuous range of refractive index variation can be obtained.
具体地,所述金属微结构的拓扑图案的演变包括两个阶段(拓扑图案演变的基本图案为图5所示的金属微结构):Specifically, the evolution of the topological pattern of the metal microstructure includes two stages (the basic pattern of topological pattern evolution is the metal microstructure shown in Figure 5):
第一阶段:根据演变限制条件,在b值保持不变的情况下,将a值从最小值变化到最大值,此演变过程中的金属微结构均为“十”字形(a取最小值时除外)。本实施例中,a的最小值即为0.3mm(线宽W),a的最大值为(CD-WL)。因此,在第一阶段中,金属微结构的拓扑图案的演变如图8所示,即从边长为W的正方形JX1,逐渐演变成最大的“十”字形拓扑图案JD1。在第一阶段中,随着金属微结构的拓扑图案的演变,与其对应的超材料单元的折射率连续增大(对应天线一特定频率)。The first stage: According to the evolution constraints, under the condition that the value of b remains unchanged, the value of a is changed from the minimum value to the maximum value. except). In this embodiment, the minimum value of a is 0.3 mm (line width W), and the maximum value of a is (CD-WL). Therefore, in the first stage, the evolution of the topological pattern of the metal microstructure is shown in Figure 8, that is, from a square JX1 with side length W to the largest topological pattern JD1 of a "cross". In the first stage, as the topological pattern of the metal microstructure evolves, the refractive index of the corresponding metamaterial unit increases continuously (corresponding to a specific frequency of the antenna).
第二阶段:根据演变限制条件,当a增加到最大值时,a保持不变;此时,将b从最小值连续增加到最大值,此演变过程中的金属微结构均为平面雪花状。本实施例中,b的最小值即为0.3mm,b的最大值为(CD-WL-2W)。因此,在第二阶段中,金属微结构的拓扑图案的演变如图9所示,即从最大的“十”字形拓扑图案JD1,逐渐演变成最大的平面雪花状的拓扑图案JD2,此处的最大的平面雪花状的拓扑图案JD2是指,第一金属分支J1与第二金属分支J2的长度b已经不能再伸长,否则第一金属分支与第二金属分支将发生相交。在第二阶段中,随着金属微结构的拓扑图案的演变,与其对应的超材料单元的折射率连续增大(对应天线一特定频率)。The second stage: According to the evolution constraints, when a increases to the maximum value, a remains unchanged; at this time, b is continuously increased from the minimum value to the maximum value, and the metal microstructure in this evolution process is planar snowflake shape. In this embodiment, the minimum value of b is 0.3 mm, and the maximum value of b is (CD-WL-2W). Therefore, in the second stage, the evolution of the topological pattern of the metal microstructure is shown in Fig. 9, that is, from the largest "cross" topological pattern JD1, to the largest planar snowflake-like topological pattern JD2, where The largest planar snowflake-like topological pattern JD2 means that the length b of the first metal branch J1 and the second metal branch J2 can no longer be extended, otherwise the first metal branch and the second metal branch will intersect. In the second stage, as the topological pattern of the metal microstructure evolves, the refractive index of the corresponding metamaterial unit increases continuously (corresponding to a specific frequency of the antenna).
通过上述演变得到超材料单元的折射率变化范围如果包含了nmin至nmax的连续变化范围,则满足设计需要。如果上述演变得到超材料单元的折射率变化范围不满足设计需要,例如最大值太小或最小值过大,则变动WL与W,重新仿真,直到得到我们需要的折射率变化范围。Through the above evolution, if the refractive index variation range of the metamaterial unit includes the continuous variation range from nmin to nmax , it will meet the design requirements. If the range of refractive index variation of the metamaterial unit obtained from the above evolution does not meet the design requirements, for example, the maximum value is too small or the minimum value is too large, then change WL and W, and re-simulate until the desired range of refractive index variation is obtained.
根据公式(1)至(3),将仿真得到的一系列的超材料单元按照其对应的折射率排布以后(实际上就是不同拓扑图案的多个第一人造微结构在第一基材上的排布),即能得到本发明的第一核心层片层。According to formulas (1) to (3), after a series of metamaterial units obtained by simulation are arranged according to their corresponding refractive indices (actually, multiple first artificial microstructures with different topological patterns on the first substrate arrangement), that is, the first core layer sheet of the present invention can be obtained.
同理,根据公式(4)至(8),将仿真得到的一系列的超材料单元按照其对应的折射率排布以后(实际上就是不同拓扑图案的多个第二人造微结构在第二基材上的排布),即能得到本发明的第二核心层片层。Similarly, according to formulas (4) to (8), after a series of metamaterial units obtained by simulation are arranged according to their corresponding refractive indices (actually, multiple second artificial microstructures with different topological patterns in the second Arrangement on the substrate), that is, the second core layer sheet of the present invention can be obtained.
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。Embodiments of the present invention have been described above in conjunction with the accompanying drawings, but the present invention is not limited to the above-mentioned specific implementations, and the above-mentioned specific implementations are only illustrative, rather than restrictive, and those of ordinary skill in the art will Under the enlightenment of the present invention, many forms can also be made without departing from the gist of the present invention and the protection scope of the claims, and these all belong to the protection of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210268554.0ACN102800995B (en) | 2012-07-31 | 2012-07-31 | A metamaterial antenna |
| EP13826029.4AEP2882038B1 (en) | 2012-07-31 | 2013-07-31 | Cassegrain-type metamaterial antenna |
| PCT/CN2013/080576WO2014019524A1 (en) | 2012-07-31 | 2013-07-31 | Cassegrain-type metamaterial antenna |
| US14/607,463US9742074B2 (en) | 2012-07-31 | 2015-01-28 | Cassegrain-type metamaterial antenna |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210268554.0ACN102800995B (en) | 2012-07-31 | 2012-07-31 | A metamaterial antenna |
| Publication Number | Publication Date |
|---|---|
| CN102800995A CN102800995A (en) | 2012-11-28 |
| CN102800995Btrue CN102800995B (en) | 2015-07-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210268554.0AActiveCN102800995B (en) | 2012-07-31 | 2012-07-31 | A metamaterial antenna |
| Country | Link |
|---|---|
| CN (1) | CN102800995B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014019524A1 (en)* | 2012-07-31 | 2014-02-06 | 深圳光启创新技术有限公司 | Cassegrain-type metamaterial antenna |
| CN105305096B (en)* | 2015-09-28 | 2018-08-03 | 上海师范大学 | The design method of compact planar structure parabolic reflector antenna based on Meta Materials |
| CN108306111B (en)* | 2017-12-15 | 2020-11-10 | 西安电子科技大学 | Gregory antenna based on super surface |
| CN108923130B (en)* | 2018-06-08 | 2021-01-05 | 西安电子科技大学 | Vortex field reflecting surface antenna based on super surface |
| CN108832311B (en)* | 2018-06-08 | 2020-08-11 | 西安电子科技大学 | Metasurface-based planar Cassegrain vortex field antenna |
| CN108808250B (en)* | 2018-06-08 | 2020-06-16 | 西安电子科技大学 | Convex conformal Gregorian antenna based on super surface |
| CN108808252B (en)* | 2018-06-08 | 2020-11-03 | 西安电子科技大学 | Metasurface-based Gregorian antenna |
| CN108983337B (en)* | 2018-07-23 | 2021-08-27 | 南方科技大学 | Main mirror and auxiliary mirror with super-structure surface, preparation method of main mirror and auxiliary mirror and optical system |
| CN111987473B (en)* | 2020-09-17 | 2021-06-01 | 西安电子科技大学 | A Polarization Reconfigurable Vortex Multibeam Metasurface Cassegrain Antenna |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011014919A9 (en)* | 2009-08-04 | 2011-12-29 | Bae Systems Australia Limited | A multi-band antenna |
| CN102480030A (en)* | 2011-07-26 | 2012-05-30 | 深圳光启高等理工研究院 | Feed-forward type microwave antenna |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2011014919A9 (en)* | 2009-08-04 | 2011-12-29 | Bae Systems Australia Limited | A multi-band antenna |
| CN102480030A (en)* | 2011-07-26 | 2012-05-30 | 深圳光启高等理工研究院 | Feed-forward type microwave antenna |
| Title |
|---|
| 林曙光等."用于"C/KU波段双馈源卫星通信天线副反射面"的FSS设计",林曙光等,《2009年全国微波毫米波会议论文集(上册)》.《2009年全国微波毫米波会议论文集(上册)》.2009,第505页第2栏第1段至第507页第2栏第1段,图1、2、4.* |
| Publication number | Publication date |
|---|---|
| CN102800995A (en) | 2012-11-28 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102800995B (en) | A metamaterial antenna | |
| US9742074B2 (en) | Cassegrain-type metamaterial antenna | |
| CN102800994B (en) | Cassegrain type metamaterial antenna | |
| CN102593611B (en) | Point focusing flat lens antenna | |
| CN102856664B (en) | Cassegrain type metamaterial antenna | |
| CN103094701B (en) | A kind of flat-plate lens and there is the lens antenna of these lens | |
| CN102820555B (en) | Cassegrain metamaterial antenna | |
| CN102593606B (en) | Metamaterial antenna of inclined reflect sheet and satellite television receiving system | |
| CN103682665B (en) | A kind of metamaterial microwave antenna | |
| CN102680802B (en) | Compact range generation device | |
| CN103036064B (en) | A kind of Cassegrain metamaterial antenna | |
| CN103094711B (en) | A kind of lens antenna | |
| CN102683811B (en) | Metamaterial satellite antenna and satellite receiving system | |
| CN102842766B (en) | Metamaterial microwave antenna | |
| CN103036065B (en) | A kind of Cassegrain metamaterial antenna | |
| CN103293393B (en) | Compact range generating device | |
| CN103682663B (en) | A kind of metamaterial microwave antenna | |
| CN103293392B (en) | A kind of Compact range generation device | |
| CN103296458B (en) | A kind of antenna for satellite communication in motion | |
| CN102683815B (en) | Metamaterial satellite antenna and satellite receiving system | |
| CN103682671B (en) | A kind of metamaterial microwave antenna | |
| CN103296475B (en) | A kind of radar antenna | |
| CN103293394B (en) | A kind of Compact range generation device | |
| CN103293395B (en) | Compact range generating device | |
| CN102709707B (en) | Metamaterial satellite antenna and satellite receiving system |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| TR01 | Transfer of patent right | ||
| TR01 | Transfer of patent right | Effective date of registration:20210507 Address after:2 / F, software building, No.9, Gaoxin Zhongyi Road, Nanshan District, Shenzhen City, Guangdong Province Patentee after:KUANG-CHI INSTITUTE OF ADVANCED TECHNOLOGY Address before:18B, building a, CIC international business center, 1061 Xiangmei Road, Futian District, Shenzhen, Guangdong 518034 Patentee before:KUANG-CHI INNOVATIVE TECHNOLOGY Ltd. |