技术领域technical field
本发明涉及生物医用金属植入材料或介入技术领域,具体涉及一种提高医用镁合金生物活性的复合陶瓷膜层的制备方法。The invention relates to the field of biomedical metal implant materials or interventional technology, in particular to a method for preparing a composite ceramic film layer for improving the bioactivity of medical magnesium alloys.
背景技术Background technique
镁及镁合金有着较好的生物相容性和力学相容性,成为近年来可生物降解金属材料的研究重点。作为新一代的医用植入材料,其适中的弹性模量能有效缓解应力遮挡效应,对骨折愈合、种植体稳定具有重要作用。动物实验研究结果表明,镁合金作为骨植入材料在动物体内存在的时间太短,不能满足骨骼生长对其力学性能和耐蚀性能的要求。因此,通过对镁合金进行表面改性来改善镁合金的耐蚀性能,减缓氢气的释放速率,是镁及镁合金在人体内植入领域获得应用的关键。此外,通过提高镁合金的耐蚀性能,可延长在体内发挥功用的时间,从而达到生物可降解和治疗的双重目标。Magnesium and magnesium alloys have good biocompatibility and mechanical compatibility, and have become the research focus of biodegradable metal materials in recent years. As a new generation of medical implant materials, its moderate elastic modulus can effectively alleviate the stress shielding effect and play an important role in fracture healing and implant stability. The results of animal experiments show that magnesium alloys as bone implant materials exist in animals for too short a time, which cannot meet the requirements of bone growth for its mechanical properties and corrosion resistance. Therefore, improving the corrosion resistance of magnesium alloys and slowing down the release rate of hydrogen gas by surface modification of magnesium alloys is the key to the application of magnesium and magnesium alloys in the field of human implantation. In addition, by improving the corrosion resistance of magnesium alloys, the time to function in the body can be prolonged, thereby achieving the dual goals of biodegradability and treatment.
微弧氧化通过电化学氧化和溶液中高压下的电火花放电处理,在镁合金基体表面原位生长一种陶瓷膜层,能较好地提高镁合金的耐腐蚀性能,是一种具有应用前景的镁合金表面处理技术。通常情况下,镁合金经微弧氧化处理后得到的涂层中MgO的成分相对偏多,而MgO在水溶液中的稳定性较差,在一定程度上限制了氧化膜对基体的进一步保护作用。有关研究表明,氧原子比高的酸根离子较容易吸附到镁合金基体或氧化膜表面,形成杂质放电中心,使氧化膜表面击穿放电,从而在镁合金表面产生一层含氧酸盐膜层,可有效改善膜层的耐蚀性能。近年来,研究和应用最多的电解液体系有硅酸盐电解液、磷酸盐电解液和铝酸盐电解液等。考虑到Al元素对人体的毒性作用,在生物材料应用领域大多不考虑使用铝酸盐电解液体系。而在硅酸盐体系中,微弧氧化膜层的生长速度相对较慢,膜层也较为致密,因此,膜层的耐腐蚀性能相对较好,但生物活性一般;磷酸盐体系中的膜层生长速度较快,但获得的氧化膜中疏松层比例较大,其中的孔洞和微裂纹相互交错,为腐蚀液的侵入提供通道,严重影响膜层的抗腐蚀性能。Micro-arc oxidation, through electrochemical oxidation and electric spark discharge treatment under high pressure in the solution, grows a ceramic film in situ on the surface of the magnesium alloy substrate, which can better improve the corrosion resistance of magnesium alloys, and is a promising method. Magnesium alloy surface treatment technology. Usually, the MgO component in the coating obtained by micro-arc oxidation treatment of magnesium alloy is relatively high, and the stability of MgO in aqueous solution is poor, which limits the further protective effect of the oxide film on the substrate to a certain extent. Relevant studies have shown that acid radical ions with a high oxygen atomic ratio are more likely to be adsorbed on the surface of the magnesium alloy substrate or oxide film, forming impurity discharge centers, causing breakdown discharge on the surface of the oxide film, and thus forming a layer of oxo-acid salt film on the surface of the magnesium alloy. , can effectively improve the corrosion resistance of the film. In recent years, the most researched and applied electrolyte systems are silicate electrolyte, phosphate electrolyte and aluminate electrolyte. Considering the toxic effect of Al element on the human body, the use of aluminate electrolyte system is mostly not considered in the application field of biomaterials. In the silicate system, the growth rate of the micro-arc oxidation film is relatively slow, and the film is relatively dense. Therefore, the corrosion resistance of the film is relatively good, but the biological activity is average; the film in the phosphate system The growth rate is fast, but the proportion of loose layer in the obtained oxide film is relatively large, and the holes and microcracks in it are interlaced, providing channels for the intrusion of corrosive liquid, which seriously affects the corrosion resistance of the film.
发明内容Contents of the invention
本发明的目的在于:一种提高医用镁合金生物活性的复合陶瓷膜层的制备方法,在医用镁合金表面原位生长具有高耐蚀性和优良生物活性的自封孔复合陶瓷膜层,提高医用镁合金的生物活性和抗腐蚀性能,为应用于人体医用骨组织替代材料。The purpose of the present invention is to: a method for preparing a composite ceramic film layer for improving the bioactivity of medical magnesium alloys, in situ growing a self-sealing composite ceramic film layer with high corrosion resistance and excellent biological activity on the surface of medical magnesium alloys, and improving the bioactivity of medical magnesium alloys. The biological activity and anti-corrosion properties of magnesium alloy are bone tissue substitute materials used in human medicine.
本发明的技术角度方案是:采用微弧氧化技术,通过在硅酸盐/磷酸盐电解液中添加纳米羟基磷灰石颗粒,在医用镁合金表面原位生长自封孔复合陶瓷膜层;每升电解液由以下成分组成:10~15g/L硅酸钠,15~20g/L磷酸钠,2~4g/L氢氧化钠,1~4g/L纳米羟基磷灰石,其余为去离子水。The technical perspective scheme of the present invention is: using micro-arc oxidation technology, by adding nano-hydroxyapatite particles in the silicate/phosphate electrolyte, growing a self-sealing composite ceramic film layer on the surface of the medical magnesium alloy in situ; The electrolyte is composed of the following components: 10-15g/L sodium silicate, 15-20g/L sodium phosphate, 2-4g/L sodium hydroxide, 1-4g/L nano-hydroxyapatite, and the rest is deionized water.
其中,所述的纳米羟基磷灰石的平均粒径为5-100nm。Wherein, the average particle size of the nano-hydroxyapatite is 5-100nm.
其中,所述的医用镁合金为纯Mg、Mg-Al-Zn、Mg-Zn-Ca、ZE41A、AE21镁合金。Wherein, the medical magnesium alloy is pure Mg, Mg-Al-Zn, Mg-Zn-Ca, ZE41A, AE21 magnesium alloy.
其中,具体步骤如下:Among them, the specific steps are as follows:
(1)将镁合金表面打磨光亮,用无水乙醇去油;(1) Polish the surface of the magnesium alloy brightly, and degrease with absolute ethanol;
(2)用铜电极固定镁合金后浸入电解液中,进行微弧氧化处理;(2) Fix the magnesium alloy with a copper electrode and immerse it in the electrolyte for micro-arc oxidation treatment;
(3)生长后的复合陶瓷膜层经去离子水和无水乙醇依次清洗、晾干。(3) The grown composite ceramic film layer is washed with deionized water and absolute ethanol in sequence, and dried in the air.
其中,微弧氧化电源采用恒压式脉冲电源,其参数为:正向加载电压范围200~320V,频率范围500~1500Hz,占空比30~60%,氧化时间10~30min。Among them, the micro-arc oxidation power supply adopts a constant voltage pulse power supply, and its parameters are: forward loading voltage range 200-320V, frequency range 500-1500Hz, duty cycle 30-60%, oxidation time 10-30min.
本发明具有以下优点:The present invention has the following advantages:
1、本发明所采用的微弧氧化技术对镁或镁合金的形状、尺寸无特殊要求,采用的电解液不含对环境和人体有害的化学元素。1. The micro-arc oxidation technology used in the present invention has no special requirements on the shape and size of magnesium or magnesium alloys, and the electrolyte used does not contain chemical elements harmful to the environment and human body.
2、采用磷酸盐和硅酸盐电解液可以制备出兼备较高耐蚀性和良好生物相容性的陶瓷膜层,而通过在电解液中添加纳米羟基磷灰石颗粒,在医用镁合金表面原位生长一种具有高耐蚀性和优良生物活性的自封孔复合陶瓷膜层,则可进一步提高陶瓷层的生物活性和抗腐蚀性能,广泛应用于人体医用骨组织。2. A ceramic film with high corrosion resistance and good biocompatibility can be prepared by using phosphate and silicate electrolytes, and by adding nano-hydroxyapatite particles in the electrolyte, the surface of the medical magnesium alloy In situ growth of a self-sealing composite ceramic membrane with high corrosion resistance and excellent biological activity can further improve the biological activity and corrosion resistance of the ceramic layer, and is widely used in human medical bone tissue.
具体实施方式Detailed ways
下面结合具体实施例进一步说明本发明的技术解决方案,这些实施例不能理解为是对技术方案的限制。 The technical solutions of the present invention will be further described below in conjunction with specific examples, and these examples should not be construed as limitations on the technical solutions.
实施例1:Example 1:
第一步:配制电解液10L,充分混合后将其加入电解槽中,采用机械搅拌方式保持电解液自由流动;每升电解液的组分为:10g/L硅酸钠,15g/L磷酸钠,2g/L氢氧化钠,纳米羟基磷灰石1g/L,其余为去离子水;其中,纳米羟基磷灰石的平均粒径为5nm;电解液的pH值为8;Step 1: Prepare 10L of electrolyte, mix it thoroughly and add it to the electrolytic cell, and use mechanical stirring to keep the electrolyte flowing freely; the components of each liter of electrolyte are: 10g/L sodium silicate, 15g/L sodium phosphate , 2g/L sodium hydroxide, 1g/L nano-hydroxyapatite, and the rest are deionized water; wherein, the average particle size of nano-hydroxyapatite is 5nm; the pH value of the electrolyte is 8;
第二步:在微弧氧化设备上进行复合陶瓷膜层的生长,材料选用纯镁,其表面经砂纸打磨、除油、清洗、干燥处理后固定在铜电极上作为阳极,不锈钢电解槽为阴极;采用恒压控制条件进行微弧氧化,其主要参数为:正向加载电压范围为200V,频率范围为500Hz,占空比为30%,氧化时间为10min;The second step: grow the composite ceramic film layer on the micro-arc oxidation equipment. The material is pure magnesium. After the surface is sanded, degreased, cleaned and dried, it is fixed on the copper electrode as the anode, and the stainless steel electrolytic cell is the cathode. ;Using constant voltage control conditions for micro-arc oxidation, the main parameters are: the forward loading voltage range is 200V, the frequency range is 500Hz, the duty cycle is 30%, and the oxidation time is 10min;
第三步:将生长有复合陶瓷膜层的纯镁材料经去离子水和无水乙醇依次清洗、晾干。Step 3: washing and drying the pure magnesium material with the composite ceramic film layer sequentially with deionized water and absolute ethanol.
实施例2:Example 2:
第一步:配制电解液10L,充分混合后将其加入电解槽中,采用空气搅拌方式保持电解液自由流动;每升电解液的组分为:12g/L硅酸钠,16g/L磷酸钠,2g/L氢氧化钠,纳米羟基磷灰石2g/L,其余为去离子水;其中,纳米羟基磷灰石的平均粒径为20nm;电解液的pH值为10;Step 1: Prepare 10L of electrolyte solution, mix it thoroughly and add it to the electrolytic cell, and use air stirring to keep the electrolyte solution flowing freely; the components of each liter of electrolyte solution are: 12g/L sodium silicate, 16g/L sodium phosphate , 2g/L sodium hydroxide, 2g/L nano-hydroxyapatite, and the rest are deionized water; wherein, the average particle size of nano-hydroxyapatite is 20nm; the pH value of the electrolyte is 10;
第二步:在微弧氧化设备上进行复合陶瓷膜层的生长,镁合金选用AZ31,其表面经砂纸打磨、除油、清洗、干燥处理后固定在铜电极上作为阳极,不锈钢电解槽为阴极;采用恒压控制条件进行微弧氧化,其主要参数为:正向加载电压范围为240V,频率范围为750Hz,占空比为40%,氧化时间为15min;The second step: grow the composite ceramic film layer on the micro-arc oxidation equipment. The magnesium alloy is AZ31. The surface is sanded, degreased, cleaned and dried, and then fixed on the copper electrode as the anode, and the stainless steel electrolytic cell is the cathode. ;Using constant voltage control conditions for micro-arc oxidation, the main parameters are: the forward loading voltage range is 240V, the frequency range is 750Hz, the duty cycle is 40%, and the oxidation time is 15min;
第三步:将生长有复合陶瓷膜层的AZ31材料经去离子水和无水乙醇依次清洗、晾干。Step 3: Wash and dry the AZ31 material with the composite ceramic film layer in sequence with deionized water and absolute ethanol.
实施例3:Example 3:
第一步:配制电解液10L,充分混合后将其加入电解槽中,采用机械搅拌方式保持电解液自由流动;每升电解液的组分为:12g/L硅酸钠,17.5g/L磷酸钠,4g/L氢氧化钠,纳米羟基磷灰石3g/L,其余为去离子水;其中,纳米羟基磷灰石的平均粒径为50nm;电解液的pH值为12;Step 1: Prepare 10L of electrolyte, mix it well and add it to the electrolytic cell, and use mechanical stirring to keep the electrolyte flowing freely; the components of each liter of electrolyte are: 12g/L sodium silicate, 17.5g/L phosphoric acid Sodium, 4g/L sodium hydroxide, nano-hydroxyapatite 3g/L, and the rest are deionized water; wherein, the average particle size of nano-hydroxyapatite is 50nm; the pH value of the electrolyte is 12;
第二步:在微弧氧化设备上进行复合陶瓷膜层的生长,镁合金选用ZE41,其表面经砂纸打磨、除油、清洗、干燥处理后固定在铜电极上作为阳极,不锈钢电解槽为阴极;采用恒压控制条件进行弧氧化工艺,其主要参数为:正向加载电压范围为280V,频率范围为1000Hz,占空比为50%,氧化时间为20min;The second step: grow the composite ceramic film layer on the micro-arc oxidation equipment. The magnesium alloy is ZE41. The surface is sanded, degreased, cleaned and dried, and then fixed on the copper electrode as the anode, and the stainless steel electrolytic cell is used as the cathode. ;The arc oxidation process is carried out under constant voltage control conditions, and its main parameters are: the forward loading voltage range is 280V, the frequency range is 1000Hz, the duty cycle is 50%, and the oxidation time is 20min;
第三步,将生长有复合陶瓷膜层的ZE41材料经去离子水和无水乙醇依次清洗、晾干。In the third step, the ZE41 material on which the composite ceramic film layer is grown is washed with deionized water and absolute ethanol in sequence, and dried.
实施例4:Example 4:
第一步:配制电解液10L,充分混合后将其加入电解槽中,采用空气搅拌方式保持电解液自由流动;每升电解液组分为:15g/L硅酸钠,20g/L磷酸钠,4g/L氢氧化钠,纳米羟基磷灰石4g/L,其余为去离子水;其中,纳米羟基磷灰石的平均粒径为100nm;电解液的pH值为14;Step 1: Prepare 10L of electrolyte solution, mix it thoroughly and add it to the electrolytic cell, and use air stirring to keep the electrolyte solution flowing freely; the components of each liter of electrolyte solution are: 15g/L sodium silicate, 20g/L sodium phosphate, 4g/L sodium hydroxide, 4g/L nano-hydroxyapatite, and deionized water for the rest; wherein, the average particle size of nano-hydroxyapatite is 100nm; the pH value of the electrolyte is 14;
第二步:在微弧氧化设备上进行复合陶瓷膜层的生长,镁合金选用AE21,其表面经砂纸打磨、除油、清洗、干燥处理后固定在铜电极上作为阳极,不锈钢电解槽为阴极;采用恒压控制条件进行弧氧化工艺,其主要参数为:正向加载电压范围为320V,频率范围为1500Hz,占空比为60%,氧化时间为30min;The second step: grow the composite ceramic film layer on the micro-arc oxidation equipment. The magnesium alloy is selected as AE21. After the surface is sanded, degreased, cleaned and dried, it is fixed on the copper electrode as the anode, and the stainless steel electrolytic cell is used as the cathode. ;The arc oxidation process is carried out under constant voltage control conditions, and its main parameters are: the forward loading voltage range is 320V, the frequency range is 1500Hz, the duty cycle is 60%, and the oxidation time is 30min;
第三步,将生长有复合陶瓷膜层的AE21材料经去离子水和无水乙醇依次清洗、晾干。In the third step, the AE21 material on which the composite ceramic film layer is grown is washed and dried in sequence with deionized water and absolute ethanol.
本发明的所述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明实施方式的限定。对于所属领域的普通技术人员来说,还可在上述说明的基础上做出其它不同形式的变化或变动,这里无需也无法对所有实施方式予以穷举,而这些属于本发明的精神所引申出的显而易见的变化或变动仍处于本发明的保护范围内。The embodiments of the present invention are only examples for clearly illustrating the present invention, rather than limiting the implementation of the present invention. For those of ordinary skill in the art, other different forms of changes or changes can also be made on the basis of the above description, and it is not necessary and impossible to exhaustively list all the implementation modes here, and these are derived from the spirit of the present invention. Obvious changes or modifications are still within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012102257177ACN102747405A (en) | 2012-07-03 | 2012-07-03 | Preparation method of composite ceramic coating for improving bioactivity of medical magnesium alloy |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2012102257177ACN102747405A (en) | 2012-07-03 | 2012-07-03 | Preparation method of composite ceramic coating for improving bioactivity of medical magnesium alloy |
| Publication Number | Publication Date |
|---|---|
| CN102747405Atrue CN102747405A (en) | 2012-10-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2012102257177APendingCN102747405A (en) | 2012-07-03 | 2012-07-03 | Preparation method of composite ceramic coating for improving bioactivity of medical magnesium alloy |
| Country | Link |
|---|---|
| CN (1) | CN102747405A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105274603A (en)* | 2015-11-27 | 2016-01-27 | 福州大学 | Compound modified coating of magnesium or magnesium alloy surface carbon-containing nano tube and preparation method of compound modified coating |
| CN106119750A (en)* | 2016-06-22 | 2016-11-16 | 浙江工业大学 | Laser-impact and differential arc oxidation are combined in Mg alloy surface and prepare biological coating method |
| CN107435160A (en)* | 2017-08-18 | 2017-12-05 | 山东省科学院新材料研究所 | A kind of short process making method of the anti-corrosion antimicrobial composite coating of magnesium alloy and titanium alloy |
| CN108950652A (en)* | 2018-08-17 | 2018-12-07 | 蔡文剑 | A kind of ceramic pan and preparation method thereof of differential of arc on metal surface oxidation |
| CN109023465A (en)* | 2018-08-17 | 2018-12-18 | 蔡文剑 | A kind of ceramic manual casing and preparation method thereof of differential of arc on metal surface oxidation |
| CN109440166A (en)* | 2018-12-19 | 2019-03-08 | 西安交通大学 | A kind of magnesium lithium alloy surface raising wear resistance and corrosion resistance micro-arc oxidation compound treatment method |
| CN110195248A (en)* | 2019-06-24 | 2019-09-03 | 哈尔滨工业大学 | A kind of metal material of modification and the method for modifying of metal surface |
| CN110528048A (en)* | 2019-08-30 | 2019-12-03 | 广东省新材料研究所 | A kind of titanium alloy implant Bio-surface active coating and preparation method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1236954A (en)* | 1968-04-26 | 1971-06-23 | Bristol Aerojet Ltd | Improvements in and relating to electrodeposited composite coatings |
| CN101185777A (en)* | 2007-12-14 | 2008-05-28 | 天津理工大学 | Biodegradable nano-hydroxyapatite/magnesium alloy intravascular stent material |
| CN101298677A (en)* | 2008-01-16 | 2008-11-05 | 吉林大学 | Preparation of wear resistant corrosion resistant nano-composite deposit on magnesium alloy surface |
| CN101330933A (en)* | 2005-12-14 | 2008-12-24 | Gkss-盖斯特哈赫特研究中心有限责任公司 | Biocompatible magnesium material |
| CN101524559A (en)* | 2009-03-11 | 2009-09-09 | 重庆大学 | Biodegradable nano hydroxylapatite-magnesium metallic matrix composite |
| CN102191530A (en)* | 2011-04-27 | 2011-09-21 | 哈尔滨工业大学 | A Micro-arc Oxidation Method for Magnesium Alloy Based on Carbonate Additives Inducing CO2 Enhanced Gassing to Modulate Film Structure |
| CN102304745A (en)* | 2011-09-26 | 2012-01-04 | 长安大学 | Method for preparing bio-ceramic film on surface of magnesium/magnesium alloy through micro-arc oxidation |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB1236954A (en)* | 1968-04-26 | 1971-06-23 | Bristol Aerojet Ltd | Improvements in and relating to electrodeposited composite coatings |
| CN101330933A (en)* | 2005-12-14 | 2008-12-24 | Gkss-盖斯特哈赫特研究中心有限责任公司 | Biocompatible magnesium material |
| CN101185777A (en)* | 2007-12-14 | 2008-05-28 | 天津理工大学 | Biodegradable nano-hydroxyapatite/magnesium alloy intravascular stent material |
| CN101298677A (en)* | 2008-01-16 | 2008-11-05 | 吉林大学 | Preparation of wear resistant corrosion resistant nano-composite deposit on magnesium alloy surface |
| CN101524559A (en)* | 2009-03-11 | 2009-09-09 | 重庆大学 | Biodegradable nano hydroxylapatite-magnesium metallic matrix composite |
| CN102191530A (en)* | 2011-04-27 | 2011-09-21 | 哈尔滨工业大学 | A Micro-arc Oxidation Method for Magnesium Alloy Based on Carbonate Additives Inducing CO2 Enhanced Gassing to Modulate Film Structure |
| CN102304745A (en)* | 2011-09-26 | 2012-01-04 | 长安大学 | Method for preparing bio-ceramic film on surface of magnesium/magnesium alloy through micro-arc oxidation |
| Title |
|---|
| FRANK WITTE等: ""Biodegradable magnesium–hydroxyapatite metal matrix composites"", 《BIOMATERIALS》* |
| 刘亚萍等: ""镁合金微弧氧化陶瓷膜的微观结构、相成分和耐腐蚀性能"", 《材料保护》* |
| 吴庆利: ""超声-电沉积Ni-纳米Al2O3复合镀层耐蚀性能研究"", 《表面技术》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105274603A (en)* | 2015-11-27 | 2016-01-27 | 福州大学 | Compound modified coating of magnesium or magnesium alloy surface carbon-containing nano tube and preparation method of compound modified coating |
| CN106119750A (en)* | 2016-06-22 | 2016-11-16 | 浙江工业大学 | Laser-impact and differential arc oxidation are combined in Mg alloy surface and prepare biological coating method |
| CN107435160A (en)* | 2017-08-18 | 2017-12-05 | 山东省科学院新材料研究所 | A kind of short process making method of the anti-corrosion antimicrobial composite coating of magnesium alloy and titanium alloy |
| CN107435160B (en)* | 2017-08-18 | 2019-03-05 | 山东省科学院新材料研究所 | A kind of short flow process of magnesium alloy and the anti-corrosion antimicrobial composite coating of titanium alloy |
| CN108950652A (en)* | 2018-08-17 | 2018-12-07 | 蔡文剑 | A kind of ceramic pan and preparation method thereof of differential of arc on metal surface oxidation |
| CN109023465A (en)* | 2018-08-17 | 2018-12-18 | 蔡文剑 | A kind of ceramic manual casing and preparation method thereof of differential of arc on metal surface oxidation |
| CN109440166A (en)* | 2018-12-19 | 2019-03-08 | 西安交通大学 | A kind of magnesium lithium alloy surface raising wear resistance and corrosion resistance micro-arc oxidation compound treatment method |
| CN110195248A (en)* | 2019-06-24 | 2019-09-03 | 哈尔滨工业大学 | A kind of metal material of modification and the method for modifying of metal surface |
| CN110528048A (en)* | 2019-08-30 | 2019-12-03 | 广东省新材料研究所 | A kind of titanium alloy implant Bio-surface active coating and preparation method thereof |
| Publication | Publication Date | Title |
|---|---|---|
| CN102747405A (en) | Preparation method of composite ceramic coating for improving bioactivity of medical magnesium alloy | |
| Zhao et al. | Preparation and properties of composite MAO/ECD coatings on magnesium alloy | |
| CN101461964B (en) | Bioactivity surface modification method of biological medical degradable magnesium alloy | |
| CN102677126B (en) | Process for preparing compact magnesium oxide/hydroxyapatite nano fiber double-layer coating on surface of magnesium base | |
| CN101643929B (en) | Pulse electrodeposition preparation method of hydroxyapatite coating on pure magnesium or magnesium alloy surface | |
| CN101570874B (en) | The Method of Forming TiO2/HA/CaCO3 Gradient Film Layer in Situ | |
| CN103194782A (en) | Method for preparing magnesium-based ceramic coating by micro-arc oxidation-electrophoretic deposition | |
| CN105671612B (en) | Porous metal implants and preparation method with differential arc oxidation coating | |
| CN102747403B (en) | Method of preparing magnesium-doped hydroxyapatite/titania active film on surface of medical titanium alloy | |
| CN103643274B (en) | A kind of method and application thereof preparing graphene oxide layer by being electrodeposited in titanium surface | |
| CN105274603B (en) | Composite modified coating of magnesium or Mg alloy surface carbon nanotubes and preparation method thereof | |
| CN101709496A (en) | Micro-arc oxidation-electrodeposition preparation method of magnesium-based bioactive coating | |
| CN103451706B (en) | A kind of titanium surface directly generates the preparation method of hydroxyl apatite bioceramic film | |
| CN106702238A (en) | Surface modified magnesium alloy material as well as preparation method thereof and application thereof | |
| CN104888271A (en) | Method for preparing strontium-containing hydroxyapatite coating on surface of biodegradable magnesium alloy | |
| CN105420789A (en) | Hydrophobic composite biological activity coating on surface of pure-magnesium or magnesium alloy and preparation method of hydrophobic composite biological activity coating | |
| CN101560685B (en) | A method for preparing bioactive coating on the surface of titanium alloy | |
| CN108434517A (en) | Antibacterial dental implant and preparation method thereof | |
| CN103361702A (en) | Method for surface modification of dental implant | |
| CN103834945A (en) | Titanium oxide composite coating and preparation method thereof | |
| CN102286767A (en) | Composite coating on surface of magnesium alloy biological implant material and preparation method thereof | |
| CN102039408A (en) | Method for preparing bioactive ceramic coating on surface of porous titanium | |
| CN101555616B (en) | Method for preparing hydroxyapatite/titanium dioxide composite coating on nickel-titanium surface | |
| CN105536062A (en) | Method for preparing silicon-doped hydroxyapatite nanofiber bioactive coating | |
| CN108950651B (en) | Preparation method of magnesium alloy surface micro-arc electrophoresis HA-containing biological composite film |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication | Application publication date:20121024 |