

技术领域technical field
本发明涉及有机电致发光器件技术领域,特别是一种传输层、主体材料均采用双极性材料的有机电致发光器件,本发明还涉及该有机电致发光器件的制备方法。The invention relates to the technical field of organic electroluminescent devices, in particular to an organic electroluminescent device in which bipolar materials are used for both the transport layer and the main body material. The invention also relates to a preparation method of the organic electroluminescent device.
背景技术Background technique
有机电致发光器件(OLED)以其超薄、视角宽、主动发光等优点,可应用于显示及照明领域。其中发光效率及寿命是制约OLED产品化的主要瓶颈。OLED是有机半导体材料在电场作用下,通过电子与空穴的注入和复合发光的技术。其原理是用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子传输层和空穴传输层,然后迁移到有机发光层,二者相遇形成激子并导致有机分子发光。其中,电荷的注入及传输直接影响复合区域载流子的浓度和载流子平衡,是决定器件性能的重要因素。因此,改善电荷的注入效率及平衡,对于提高器件发光效率、延长器件寿命具有重要意义。Organic electroluminescent devices (OLEDs) can be used in the fields of display and lighting due to their advantages such as ultra-thin, wide viewing angle, and active light emission. Among them, luminous efficiency and lifetime are the main bottlenecks restricting the commercialization of OLEDs. OLED is a technology in which organic semiconductor materials emit light through the injection and recombination of electrons and holes under the action of an electric field. The principle is to use the ITO transparent electrode and the metal electrode as the anode and cathode of the device respectively. Under a certain voltage drive, electrons and holes are injected from the cathode and anode into the electron transport layer and the hole transport layer respectively, and then migrate to the organic light-emitting layer. , the two meet to form excitons and cause organic molecules to emit light. Among them, the injection and transport of charges directly affect the concentration and balance of carriers in the recombination region, which is an important factor determining the performance of the device. Therefore, improving the charge injection efficiency and balance is of great significance for improving the luminous efficiency of the device and prolonging the life of the device.
中国专利文献200810113673.2公开了一种有机材料及其在有机电致发光器件中的应用,该文献中公开了双极性材料可以应用于电子传输层。Chinese patent document 200810113673.2 discloses an organic material and its application in organic electroluminescent devices, which discloses that bipolar materials can be applied to the electron transport layer.
中国专利文献CN101321755A公开了一种有机电致发光元件用化合物及有机电致发光元件,该有机电致发光元件采用如下化合物作为发光层的主体材料,从而改善了元件的发光效率同时充分确保驱动时的稳定性:Chinese patent document CN101321755A discloses a compound for an organic electroluminescent element and an organic electroluminescent element. The organic electroluminescent element uses the following compound as the host material of the light-emitting layer, thereby improving the luminous efficiency of the element while fully ensuring The stability of:
然而,上述两篇对比文件中公开的有机电致发光器件的使用寿命和效率都还有很大改进空间。原因在于:众所周知,有机发光器件为电子与空穴注入、传输、复合发光型器件。电荷的有效注入及平衡是影响器件效率及稳定性的关键。早在1999年,H.Aziz,et al等研究表明,空穴进入电子传输层,是导致OLED器件衰减的重要原因,人们一直研究电化学性能稳定的电子传输材料,但是效果不尽如人意。同时也有人提出在发光层与电子传输层间加入空穴阻挡层的方法,但该方案,增加了器件的复杂度,且加入的材料一般能级宽,容易造成器件工作电压高。综上所述,现有技术尚不能完善地解决电荷注入及平衡问题,从而导致现有技术中的有机电致发光器件的使用寿命和效率较低。However, there is still much room for improvement in the service life and efficiency of the organic electroluminescent devices disclosed in the above two reference documents. The reason is that as we all know, organic light-emitting devices are electron and hole injection, transport, and composite light-emitting devices. The effective injection and balance of charge is the key to the efficiency and stability of the device. As early as 1999, studies by H.Aziz, et al and others showed that holes entering the electron transport layer are an important reason for the attenuation of OLED devices. People have been studying electron transport materials with stable electrochemical properties, but the effect is not satisfactory. At the same time, a method of adding a hole-blocking layer between the light-emitting layer and the electron-transporting layer has also been proposed, but this solution increases the complexity of the device, and the added material generally has a wide energy level, which is likely to cause a high operating voltage of the device. To sum up, the prior art cannot perfectly solve the problem of charge injection and balance, which leads to the low service life and efficiency of the organic electroluminescent device in the prior art.
发明内容Contents of the invention
本发明解决的技术问题在于提供一种使用寿命较高且效率较高的有机电致发光器件。The technical problem to be solved by the invention is to provide an organic electroluminescent device with long service life and high efficiency.
为此,本发明提供一种有机电致发光器件,包括依次设置的阳极、空穴传输层、发光功能层、电子传输层、电子注入层以及阴极,其特征在于:所述空穴传输层和电子传输层采用电子轨道与空穴轨道分布在相同基团上的双极性材料,所述空穴传输层和所述电子传输层采用的所述双极性材料的空穴及电子迁移率均在1×10-4与1×10-2cm2V-1s-1之间。For this reason, the present invention provides a kind of organic electroluminescence device, comprises anode, hole transport layer, luminescent function layer, electron transport layer, electron injection layer and negative electrode arranged in order, it is characterized in that: described hole transport layer and The electron transport layer adopts a bipolar material in which electron orbits and hole orbits are distributed on the same group, and the hole and electron mobility of the bipolar material used in the hole transport layer and the electron transport layer are both Between 1×10-4 and 1×10-2 cm2 V-1 s-1 .
所述发光功能层的主体材料采用电子轨道及空穴轨道分布在不同基团上或电子轨道与空穴轨道分布在相同基团上的双极性材料,所述主体材料采用的双极性材料的空穴及电子迁移率均在1×10-5与1×10-2cm2V-1s-1之间。The host material of the light-emitting functional layer adopts a bipolar material in which electron orbits and hole orbits are distributed on different groups or electron orbits and hole orbits are distributed on the same group. The bipolar material used in the host material The hole and electron mobilities are between 1×10-5 and 1×10-2 cm2 V-1 s-1 .
所述空穴传输层和所述电子传输层采用的所述双极性材料的空穴及电子迁移率均在5×10-4与5×10-3cm2V-1s-1之间。The hole and electron mobilities of the bipolar material used in the hole transport layer and the electron transport layer are both between 5×10-4 and 5×10-3 cm2 V-1 s-1 .
所述主体材料采用的双极性材料的空穴及电子迁移率均在1×10-4与5×10-3cm2V-1s-1之间。The hole and electron mobilities of the bipolar material used in the host material are both between 1×10-4 and 5×10-3 cm2 V-1 s-1 .
包括依次设置的阳极、空穴传输层、发光功能层、电子传输层、电子注入层以及阴极,其特征在于:所述空穴传输层和电子传输层采用电子轨道与空穴轨道分布在相同基团上的双极性材料。It includes an anode, a hole transport layer, a light-emitting functional layer, an electron transport layer, an electron injection layer and a cathode arranged in sequence, and is characterized in that: the hole transport layer and the electron transport layer adopt electron orbits and hole orbits distributed on the same basis bipolar material on the blob.
所述发光功能层的主体材料采用电子轨道及空穴轨道分布在不同基团上或电子轨道与空穴轨道分布在相同基团上的双极性材料。The host material of the light-emitting functional layer is a bipolar material in which electron orbits and hole orbits are distributed on different groups or electron orbits and hole orbits are distributed on the same group.
所述空穴传输层或电子传输层包含式(I)所示的蒽衍生物,或式(II)所示的1,2-苯并[a]蒽衍生物:The hole transport layer or electron transport layer comprises an anthracene derivative represented by formula (I), or a 1,2-benzo[a] anthracene derivative represented by formula (II):
所述式(I)和所述式(II)中,X和Y分别独自选自4~20个碳原子的环合亚芳香基团或4~20个碳原子的取代环合亚芳香基团,A1和A2分别独自选自氢原子或分别独自选自2~50个碳原子的取代或未取代的乙烯基、取代或未取代的氨基、取代或未取代的芳胺基、取代或未取代的咔唑基,且A1和A2不同时选自氢原子;所述式(I)中的R7和R8分别选自氢原子、甲基、乙基、丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、正已基、正庚基、正辛基、环丙基、环丁基、环戊基、环已基、4-甲基环已基、甲氧基、乙氧基、苯基、2-甲基苯基、3-甲基苯基、4-甲基苯基、2,4-二甲基苯基、2,5-二甲基苯基、2,6-二甲基苯基、对叔丁基苯基、对甲氧基苯基、联苯基、1-萘基、2-萘基、4-甲基-1-萘基、3-甲基-2-萘基、4-甲基-1-蒽基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基、1-并四苯基、2-并四苯基、9-并四苯基、、1-芘基、2-芘基或4-芘基中的一种。In the formula (I) and the formula (II), X and Y are independently selected from a cycloarylene group with 4 to 20 carbon atoms or a substituted cycloarylene group with 4 to 20 carbon atoms , A1 and A2 are independently selected from a hydrogen atom or independently selected from a substituted or unsubstituted vinyl group, a substituted or unsubstituted amino group, a substituted or unsubstituted arylamino group, a substituted or unsubstituted Carbazolyl, and A1 and A2 are not selected from hydrogen atoms at the same time; R7 and R8 in the formula (I) are respectively selected from hydrogen atoms, methyl, ethyl, propyl, isopropyl, n-butyl, Isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, methoxy Base, ethoxy, phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-Dimethylphenyl, p-tert-butylphenyl, p-methoxyphenyl, biphenyl, 1-naphthyl, 2-naphthyl, 4-methyl-1-naphthyl, 3- Methyl-2-naphthyl, 4-methyl-1-anthracenyl, 1-anthracenyl, 2-anthracenyl, 9-anthracenyl, 1-phenanthrenyl, 2-phenanthrenyl, 3-phenanthrenyl, 4- One of phenanthrenyl, 9-phenanthrenyl, 1-naphthacene, 2-naphthacene, 9-naphthacene, 1-pyrenyl, 2-pyrenyl or 4-pyrenyl.
所述通式(I)中的X和Y分别独自选自亚苯基、2-甲基亚苯基、2,3-二甲基亚苯基、2,5-二甲基亚苯基、2,6-二甲基亚苯基、亚萘基、2-甲基亚萘基、3-甲基亚萘基、5-甲基亚萘基、6-甲基亚萘基、1,3-二甲基亚萘基、1,4-二甲基亚萘基、1,5-二甲基亚萘基、1,6-二甲基亚萘基、1,7-二甲基亚萘基、2,3-二甲基亚萘基、2,4-二甲基亚萘基、2,5-二甲基亚萘基、2,6-二甲基亚萘基、2,7-二甲基亚萘基,亚蒽基,甲基亚蒽基,二甲基亚蒽基,三甲基亚蒽基,四甲基亚蒽基,亚荧蒽基,甲基亚荧蒽基,二甲基亚荧蒽基,三甲基亚荧蒽基,四甲基亚荧蒽基,亚菲基,甲基亚菲基,二甲基亚菲基,三甲基亚菲基,四甲基亚菲基,亚并四苯基,甲基亚并四苯基,二甲基亚并四苯基,亚芘基,甲基亚芘基,二甲基亚芘基,三甲基亚芘基或四甲基亚芘基中的一种。X and Y in the general formula (I) are independently selected from phenylene, 2-methylphenylene, 2,3-dimethylphenylene, 2,5-dimethylphenylene, 2,6-dimethylnaphthylene, naphthylene, 2-methylnaphthylene, 3-methylnaphthylene, 5-methylnaphthylene, 6-methylnaphthylene, 1,3 -Dimethylnaphthylene, 1,4-dimethylnaphthylene, 1,5-dimethylnaphthylene, 1,6-dimethylnaphthylene, 1,7-dimethylnaphthylene 2,3-dimethylnaphthylene, 2,4-dimethylnaphthylene, 2,5-dimethylnaphthylene, 2,6-dimethylnaphthylene, 2,7- Dimethylnaphthylene, Anthracenylene, Methylanthracenylene, Dimethylanthracenylene, Trimethylanthracenylene, Tetramethylanthracenylene, Fluoranthenylene, Methylfluoranthenylene, Dimethylfluoranthylene, Trimethylfluoranthylene, Tetramethylfluoranthylene, Phenanthrene, Methylphenanthrene, Dimethylphenanthrene, Trimethylphenanthrene, Tetramethyl Chrysene, tetraphenylene, methylpyrene, dimethylpyrene, pyrenylene, methylpyrene, dimethylpyrene, trimethylpyrene One of the groups or tetramethylpyrenylene groups.
所述通式(I)中的A1和A2分别独立选自式(1)至式(8)所示基团:A1 and A2 in the general formula (I) are independently selected from groups represented by formula (1) to formula (8):
R1~R5选自氢原子、甲基、乙基、丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、正已基、正庚基、正辛基、环丙基、环丁基、环戊基、环已基、4-甲基环已基、甲氧基、乙氧基、苯基、2-甲基苯基、3-甲基苯基、4-甲基苯基、2,4-二甲基苯基、2,5-二甲基苯基、2,6-二甲基苯基、对叔丁基苯基、对甲氧基苯基、联苯基、1-萘基、2-萘基、4-甲基-1-萘基、3-甲基-2-萘基、4-甲基-1-蒽基、1-蒽基、2-蒽基、9-蒽基、1-菲基、2-菲基、3-菲基、4-菲基、9-菲基、1-并四苯基、2-并四苯基、9-并四苯基、、1-芘基、2-芘基或4-芘基中的一种。R1~R5 are selected from hydrogen atom, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, ring Propyl, cyclobutyl, cyclopentyl, cyclohexyl, 4-methylcyclohexyl, methoxy, ethoxy, phenyl, 2-methylphenyl, 3-methylphenyl, 4- Methylphenyl, 2,4-dimethylphenyl, 2,5-dimethylphenyl, 2,6-dimethylphenyl, p-tert-butylphenyl, p-methoxyphenyl, biphenyl Phenyl, 1-naphthyl, 2-naphthyl, 4-methyl-1-naphthyl, 3-methyl-2-naphthyl, 4-methyl-1-anthracenyl, 1-anthracenyl, 2- Anthracenyl, 9-Anthracenyl, 1-Phenanthryl, 2-Phenanthryl, 3-Phenanthryl, 4-Phenanthryl, 9-Phenanthryl, 1-Nacenetetraphenyl, 2-Nacenetetraphenyl, 9-Phenanthryl One of tetraphenyl, 1-pyrenyl, 2-pyrenyl or 4-pyrenyl.
所述电子传输层或空穴传输层中包含结构式为下述C1-C6中任一种的化合物:The electron transport layer or the hole transport layer comprises a compound having a structural formula of any one of the following C1-C6:
所述空穴传输层或电子传输层包含结构式为下述E1-E49中任一种的化合物:The hole transport layer or the electron transport layer comprises a compound having a structural formula of any one of the following E1-E49:
所述发光功能层的所述主体材料包含通式(III)的化合物:The host material of the light-emitting functional layer includes a compound of general formula (III):
其中,R11-R14分别独自选自氮、氢或甲基中的一种,X1-X4分别独自选自三嗪基、苯基、吡啶基或菲基的一种。Wherein, R11-R14 are independently selected from nitrogen, hydrogen or methyl, and X1-X4 are independently selected from triazinyl, phenyl, pyridyl or phenanthrenyl.
所述发光功能层的所述主体材料包含通式III的化合物,所述通式III为:The host material of the luminescent functional layer comprises a compound of the general formula III, and the general formula III is:
其中Ar1为缺电子的杂环芳香基团或富电子的芳香胺或杂环芳香基团,Ar2、Ar3、Ar4分别选自C6-C60的芳香基团或杂环芳香基团,所述芳香基团或所述杂环芳香基团选自C1-C60的烷基、烷氧基、芳基、芳氧基、芳杂环基或二芳基胺基取代基中的一种。Wherein Ar1 is electron-deficient heterocyclic aromatic group or electron-rich aromatic amine or heterocyclic aromatic group, Ar2, Ar3, Ar4 are respectively selected from C6-C60 aromatic group or heterocyclic aromatic group, said aromatic group The group or the heterocyclic aromatic group is selected from one of C1-C60 alkyl, alkoxy, aryl, aryloxy, aromatic heterocyclic or diarylamine substituents.
所述Ar1选自以下基团中的一种:The Ar1 is selected from one of the following groups:
所述主体材料为具有下述PH-1到PH-4中的任一种结构式的化合物:The host material is a compound with any one of the following PH-1 to PH-4 structural formulas:
所述发光功能层的主体材料选自具有下述YH-1到YH-7中任一种结构式的化合物:The host material of the luminescent functional layer is selected from compounds having any one of the following structural formulas from YH-1 to YH-7:
所述发光功能层为红黄、绿光、黄光、蓝光或橙光的单色发光层或其中两种或两种以上单色发光层形成的复合发光层。The light-emitting functional layer is a red-yellow, green, yellow, blue or orange monochromatic light-emitting layer or a composite light-emitting layer formed of two or more monochromatic light-emitting layers.
所述发光功能层包括从空穴传输层至电子传输层依次设置的蓝色光发光层、激子阻挡层和黄色光发光层。The light-emitting functional layer includes a blue light-emitting layer, an exciton blocking layer and a yellow light-emitting layer arranged sequentially from the hole transport layer to the electron transport layer.
所述发光功能层包括从空穴传输层至电子传输层依次设置黄色光发光层、激子阻挡层和蓝色光发光层。The light-emitting functional layer includes a yellow light-emitting layer, an exciton blocking layer and a blue light-emitting layer arranged sequentially from the hole transport layer to the electron transport layer.
所述发光功能层中的客体材料占发光功能层材料的0.5-20wt%。The guest material in the luminescent functional layer accounts for 0.5-20wt% of the material of the luminescent functional layer.
制备权利要所述的有机电致发光器件的方法,包括以下步骤:The method for preparing the organic electroluminescence device described in claim, comprises the following steps:
步骤一:对玻璃基板进行清洗、烘干后,在该玻璃基板上镀上一层阳极材料;Step 1: After cleaning and drying the glass substrate, coat a layer of anode material on the glass substrate;
步骤二:在所述阳极材料上依次镀上空穴传输层、发光功能层、电子传输层、电子注入层、阴极,所述空穴传输层、所述电子传输层以及所述发光功能层的主体材料都为双极性材料。Step 2: sequentially coating a hole transport layer, a luminescent functional layer, an electron transport layer, an electron injection layer, and a cathode on the anode material, the main body of the hole transport layer, the electron transport layer, and the luminescent functional layer The materials are all bipolar materials.
本发明提供的有机电致发光器件,具有以下优点:The organic electroluminescent device provided by the present invention has the following advantages:
1.本发明提供的有机电致发光器件,包括依次设置的阳极、空穴传输层、发光功能层、电子传输层、电子注入层以及阴极,所述空穴传输层和电子传输层采用电子轨道与空穴轨道分布在相同基团上的双极性材料,所述空穴传输层和所述电子传输层采用的所述双极性材料的空穴及电子迁移率均在1×10-4与1×10-2cm2V-1s-1之间。有机电致发光器件中,载流子传输及复合不平衡,会造成器件性能的降低。例如当空穴的能力要比电子能力强时部分空穴容易传递到电子传输层,破坏了电子传输材料的分子结构,从而影响了器件的寿命与稳定性。本发明的所述空穴传输层和电子传输层采用电子轨道与空穴轨道分布在相同基团上的双极性材料,并且所述空穴传输层和所述电子传输层采用的所述双极性材料的空穴及电子迁移率均在1×10-4与1×10-2cm2V-1s-1之间,即本发明采用电子传输性能与空穴传输迁移率相近双极性材料,确保了有效的电荷复合平衡性能相近,从而保证了电荷的复合平衡;同时该类双极性材料的电化学性能稳定,即使空穴进入该层,也不会造成破坏,从而提高了所述有机电致发光器件的使用寿命和效率。1. The organic electroluminescent device provided by the present invention comprises an anode, a hole transport layer, a light-emitting functional layer, an electron transport layer, an electron injection layer and a cathode arranged in sequence, and the hole transport layer and the electron transport layer adopt electron orbits and holes A bipolar material whose hole orbits are distributed on the same group, and the hole and electron mobilities of the bipolar material used in the hole transport layer and the electron transport layer are both between 1×10-4 and 1 ×10-2 cm2 V-1 s-1 between. In organic electroluminescent devices, carrier transport and recombination are unbalanced, which will reduce the performance of the device. For example, when the ability of holes is stronger than that of electrons, some holes are easily transferred to the electron transport layer, which destroys the molecular structure of the electron transport material, thus affecting the life and stability of the device. The hole transport layer and the electron transport layer of the present invention adopt bipolar materials in which electron orbits and hole orbits are distributed on the same group, and the bipolar materials used in the hole transport layer and the electron transport layer The hole and electron mobilities of polar materials are both between 1×10-4 and 1×10-2 cm2 V-1 s-1 , that is, the present invention adopts bipolar Polar materials, which ensure that the effective charge recombination balance performance is similar, thereby ensuring the recombination balance of charges; at the same time, the electrochemical performance of this type of bipolar material is stable, even if holes enter the layer, it will not cause damage, thereby improving The lifetime and efficiency of the organic electroluminescent device.
2.本发明提供的有机电致发光器件,所述发光功能层的主体材料采用电子轨道及空穴轨道分布在不同基团上或电子轨道与空穴轨道分布在相同基团上的双极性材料,所述主体材料采用的双极性材料的空穴及电子迁移率均在1×10-5与1×10-2cm2V-1s-1之间。发光功能层的主体材料选用电子轨道及空穴轨道分布在不同基团上的双极性材料,并且所述主体材料采用的双极性材料的空穴及电子迁移率均在1×10-5与1×10-2cm2V-1s-1之间,从而使得空穴及电子的传输及复合更加匹配,从而使得复合区域分布宽,激子浓度低,有效防止了发光淬灭。2. In the organic electroluminescent device provided by the present invention, the host material of the light-emitting functional layer adopts a bipolar structure in which electron orbits and hole orbits are distributed on different groups or electron orbits and hole orbits are distributed on the same group. The hole and electron mobilities of the bipolar material used in the host material are both between 1×10-5 and 1×10-2 cm2 V-1 s-1 . The host material of the light-emitting functional layer is a bipolar material whose electron orbit and hole orbit are distributed on different groups, and the hole and electron mobilities of the bipolar material used in the host material are both within 1×10-5 Between 1×10-2 cm2 V-1 s-1 , so that the transport and recombination of holes and electrons are more matched, so that the distribution of the recombination area is wide, the concentration of excitons is low, and the luminescence quenching is effectively prevented.
附图说明Description of drawings
图1为对比例2-1至2-3以及实施例2-4至2-9中的有机电致发光器件结构示意图;Fig. 1 is a schematic structural view of organic electroluminescent devices in Comparative Examples 2-1 to 2-3 and Examples 2-4 to 2-9;
图2为对比例3-1至3-3以及实施例3-4至3-9中的有机电致发光器件结构示意图。Fig. 2 is a schematic structural view of the organic electroluminescent devices in Comparative Examples 3-1 to 3-3 and Examples 3-4 to 3-9.
具体实施方式Detailed ways
本发明的有机电致发光器件,阳极可以采用无机材料或有机导电聚合物。无机材料一般为氧化铟锡(ITO)、氧化锌(ZnO)、氧化铟锌(IZO)等金属氧化物或金、铜、银等功函数较高的金属,优选ITO;有机导电聚合物优选为聚噻吩/聚乙烯基苯磺酸钠(以下简称PEDOT/PSS)、聚苯胺(以下简称PANI)中的一种。In the organic electroluminescence device of the present invention, the anode can be made of inorganic materials or organic conductive polymers. Inorganic materials are generally metal oxides such as indium tin oxide (ITO), zinc oxide (ZnO), and indium zinc oxide (IZO), or metals with high work functions such as gold, copper, and silver, preferably ITO; organic conductive polymers are preferably One of polythiophene/sodium polyvinylbenzenesulfonate (hereinafter referred to as PEDOT/PSS) and polyaniline (hereinafter referred to as PANI).
电子注入层采用金属单质或金属的氧族元素或者卤族元素的化合物,或者金属合金。The electron injection layer adopts a metal single substance or a compound of a metal oxygen group element or a halogen group element, or a metal alloy.
阴极一般采用铝、银等导电性好的金属材料,或者金属导电氧化物。The cathode is generally made of metal materials with good conductivity such as aluminum and silver, or metal conductive oxides.
发光染料可以为荧光染料,也可以为磷光染料,或者两者的组合。The luminescent dye can be a fluorescent dye, a phosphorescent dye, or a combination of both.
所述基板可以是硬质基板,如玻璃,或是柔性基片,所述柔性基片可采用聚酯类、聚酰亚胺类化合物材料或者薄金属片。所述器件封装可采用本领域技术人员已知的任意合适方法。The substrate can be a hard substrate, such as glass, or a flexible substrate, and the flexible substrate can be made of polyester, polyimide compound materials or thin metal sheets. Any suitable method known to those skilled in the art may be used for the device packaging.
本发明可以为白光OLED器件,也可以为单色OLED器件,可用于照明或者显示领域。The invention can be a white light OLED device or a monochromatic OLED device, and can be used in the field of illumination or display.
下面将给出若干实施例,并结合附图具体解释本发明的技术方案。应当注意到,下面的实施例仅用于帮助理解发明,而不是对本发明的限制。Several embodiments will be given below, and the technical solution of the present invention will be explained in detail in conjunction with the accompanying drawings. It should be noted that the following examples are only used to help understanding of the invention, not to limit the invention.
对比例1-1至对比例1-3、实施例1-4至实施例1-9为绿光器件,其中,对比例1-1到1-3是现有技术,实施例1-4至1-9是本发明提供的绿光器件的实施例。Comparative example 1-1 to comparative example 1-3, embodiment 1-4 to embodiment 1-9 are green light devices, wherein, comparative example 1-1 to 1-3 is the prior art, embodiment 1-4 to 1-9 are embodiments of the green light device provided by the present invention.
对比例2-1至对比例2-3、实施例2-4至实施例2-9为白光器件,其中,对比例2-1到2-3是现有技术,实施例2-4至2-9是本发明提供的白光器件的实施例,其结构如附图1所示,所述发光功能层包括从空穴传输层至电子传输层依次设置的蓝色光发光层、激子阻挡层和黄色光发光层。Comparative Examples 2-1 to 2-3, and Examples 2-4 to 2-9 are white light devices, wherein Comparative Examples 2-1 to 2-3 are prior art, and Examples 2-4 to 2 -9 is an embodiment of the white light device provided by the present invention, its structure is shown in Figure 1, the light-emitting functional layer includes a blue light-emitting layer, an exciton blocking layer and an exciton blocking layer arranged in sequence from the hole transport layer to the electron transport layer Yellow light emitting layer.
对比例3-1至对比例3-3、实施例3-4至实施例3-20为另一种白光器件,其中对比例3-1到3-3是现有技术,实施例3-4至3-20是本发明提供的白光器件的实施例,其结构如附图2所示,所述发光功能层包括从空穴传输层至电子传输层依次设置黄色光发光层、激子阻挡层和蓝色光发光层。Comparative Example 3-1 to Comparative Example 3-3, Example 3-4 to Example 3-20 are another white light device, wherein Comparative Examples 3-1 to 3-3 are prior art, and Example 3-4 To 3-20 is an embodiment of the white light device provided by the present invention. Its structure is shown in Figure 2. The light-emitting functional layer includes a yellow light-emitting layer and an exciton blocking layer arranged in sequence from the hole transport layer to the electron transport layer. and blue light glowing layer.
本发明的所有实施例中空穴传输层和电子传输层采用电子轨道与空穴轨道分布在相同基团上的双极性材料,空穴传输层和电子传输层采用的所述双极性材料的空穴及电子迁移率均在1×10-4与1×10-2cm2V-1s-1之间,优选地,所述主体材料采用的双极性材料的空穴及电子迁移率均在5×10-4与5×10-3cm2V-1s-1之间。In all embodiments of the present invention, the hole transport layer and the electron transport layer adopt bipolar materials whose electron orbits and hole orbits are distributed on the same group, and the bipolar materials used in the hole transport layer and the electron transport layer Both hole and electron mobility are between 1×10-4 and 1×10-2 cm2 V-1 s-1 , preferably, the hole and electron mobility of the bipolar material used in the host material They are all between 5×10-4 and 5×10-3 cm2 V-1 s-1 .
本发明的所有实施例中所述发光功能层的主体材料采用电子轨道及空穴轨道分布在不同基团上或电子轨道与空穴轨道分布在相同基团上的双极性材料,所述主体材料采用的双极性材料的空穴及电子迁移率均在1×10-5与1×10-2cm2V-1s-1之间,优选地,所述主体材料采用的双极性材料的空穴及电子迁移率均在1×10-4与5×10-3cm2V-1s-1之间。In all embodiments of the present invention, the host material of the light-emitting functional layer adopts a bipolar material in which electron orbits and hole orbits are distributed on different groups or electron orbits and hole orbits are distributed on the same group. The hole and electron mobilities of the ambipolar material used in the material are both between 1×10-5 and 1×10-2 cm2 V-1 s-1 , preferably, the ambipolar material used in the host material The hole and electron mobilities of the material are both between 1×10-4 and 5×10-3 cm2 V-1 s-1 .
本发明的发光功能层可以是红黄、绿光、黄光、蓝光或橙光的单色发光层,也可以是其中两种或两种以上单色发光层形成的复合发光层,以下实施例中对发光功能层颜色的选择并不构成对本发明的限制。The luminescent functional layer of the present invention can be a monochromatic luminescent layer of red, yellow, green, yellow, blue or orange, or a composite luminescent layer formed of two or more monochromatic luminescent layers. The following examples The selection of the color of the light-emitting functional layer does not constitute a limitation to the present invention.
对比例1-1Comparative example 1-1
本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:ITO(150nm)/TCTA(40nm)/CBP(30nm):10%GD/Alq3(20nm)/LiF(0.5nm)/Al(150nm)。The organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is: ITO (150nm)/TCTA (40nm)/CBP (30nm): 10%GD/Alq3 (20nm)/LiF (0.5nm)/Al (150nm).
本对比例中,TCTA的结构式为:In this comparative example, the structural formula of TCTA is:
本对比例中,CBP的结构式为:In this comparative example, the structural formula of CBP is:
本对比例中,GD的结构式为:In this comparative example, the structural formula of GD is:
本对比例中,Alq3的结构式为:In this comparative example, the structural formula of Alq3 is:
对比例1-2Comparative example 1-2
本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is:
ITO(150nm)/TCTA(40nm)/YH-1(30nm):10%GD/Alq3(20nm)/LiF(0.5nm)/Al(150nm)。ITO (150nm)/TCTA (40nm)/YH-1 (30nm): 10%GD/Alq3 (20nm)/LiF (0.5nm)/Al (150nm).
在本实施例中,所述TCTA、所述及GD所述的结构式与对比例1中的相同。YH-1结构如下:In this example, the structural formulas of TCTA, GD and GD are the same as those in Comparative Example 1. The structure of YH-1 is as follows:
对比例1-3Comparative example 1-3
本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is:
ITO(150nm)/E3(40nm)/YH-1(30nm):10%GD/Alq3(20nm)/LiF(0.5nm)/Al(150nm)。ITO (150nm)/E3 (40nm)/YH-1 (30nm): 10%GD/Alq3 (20nm)/LiF (0.5nm)/Al (150nm).
在本实施例中,所述YH-1、GD\NPB及Alq3的结构式与对比例1中的相同。E3的结构式如下:In this example, the structural formulas of YH-1, GD\NPB and Alq3 are the same as those in Comparative Example 1. The structural formula of E3 is as follows:
实施例1-4Example 1-4
本实施例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this embodiment includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is:
ITO(150nm)/TCTA(40nm)/YH-1(30nm):10%GD/C1(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/TCTA(40nm)/YH-1(30nm): 10%GD/C1(20nm)/LiF(0.5nm)/Al(150nm).
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E3薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E3 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法蒸镀绿色发光层,YH-1与GD的蒸镀速率比为10:1,YH-1与GD的重量百分比浓度为10%,蒸镀膜厚为30nm;C. The green light-emitting layer is evaporated by double-source co-evaporation, the evaporation rate ratio of YH-1 and GD is 10:1, the weight percentage concentration of YH-1 and GD is 10%, and the evaporation film thickness is 30nm;
D.在绿色发光层之上,继续蒸镀一层C1材料作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;D. On top of the green light-emitting layer, continue to evaporate a layer of C1 material as an electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
E.在上述电子传输层C1之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。E. LiF layer and Al layer are sequentially evaporated on the above electron transport layer C1 as the cathode layer of the device, wherein the evaporation rate of the LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of the Al layer is It is 2.0nm/s, and the thickness is 150nm.
实施例1-5Example 1-5
本实施例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this embodiment includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is:
ITO(150nm)/E10(40nm)/YH-2(30nm):10%GD/C3(20nm)/LiF(0.5nm)/Al(150nm)。ITO (150nm)/E10 (40nm)/YH-2 (30nm): 10%GD/C3 (20nm)/LiF (0.5nm)/Al (150nm).
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E10薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E10 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法蒸镀绿色发光层,YH-2与GD的蒸镀速率比为10:1,YH-2与GD的重量百分比浓度为10%,蒸镀膜厚为30nm;C. Adopt the double-source co-evaporation method to evaporate the green light-emitting layer again, the evaporation rate ratio of YH-2 and GD is 10:1, the weight percentage concentration of YH-2 and GD is 10%, and the evaporation film thickness is 30nm;
D.在绿色发光层之上,继续蒸镀一层C3材料作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;D. On top of the green light-emitting layer, continue to vapor-deposit a layer of C3 material as an electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
E.在上述电子传输层C3之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。E. LiF layer and Al layer are sequentially evaporated on the above electron transport layer C3 as the cathode layer of the device, wherein the evaporation rate of the LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of the Al layer is It is 2.0nm/s, and the thickness is 150nm.
实施例1-6Examples 1-6
本实施例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this embodiment includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is:
ITO(150nm)/E15(40nm)/YH-3(30nm):10%GD/C4(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E15(40nm)/YH-3(30nm): 10%GD/C4(20nm)/LiF(0.5nm)/Al(150nm).
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E15薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E15 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法蒸镀绿色发光层,YH-3与GD的蒸镀速率比为10:1,YH-3与GD的重量百分比浓度为10%,蒸镀膜厚为30nm;C. The green light-emitting layer is evaporated by double-source co-evaporation, the evaporation rate ratio of YH-3 and GD is 10:1, the weight percentage concentration of YH-3 and GD is 10%, and the evaporation film thickness is 30nm;
D.在绿色发光层之上,继续蒸镀一层C4材料作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;D. On top of the green light-emitting layer, continue to evaporate a layer of C4 material as an electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
E.在上述电子传输层C4之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。E. Evaporate LiF layer and Al layer as the cathode layer of the device in sequence on the above electron transport layer C4, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, the evaporation rate of Al layer It is 2.0nm/s, and the thickness is 150nm.
实施例1-7Example 1-7
本实施例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this embodiment includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is:
ITO(150nm)/E17(40nm)/YH-4(30nm):10%GD/C4(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E17(40nm)/YH-4(30nm): 10%GD/C4(20nm)/LiF(0.5nm)/Al(150nm).
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E17薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E17 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法蒸镀绿色发光层,YH-4与GD的蒸镀速率比为10:1,YH-4与GD的重量百分比浓度为10%,蒸镀膜厚为30nm;C. Adopt the double-source co-evaporation method to evaporate the green light-emitting layer again, the evaporation rate ratio of YH-4 and GD is 10:1, the weight percentage concentration of YH-4 and GD is 10%, and the evaporation film thickness is 30nm;
D.在绿色发光层之上,继续蒸镀一层C4材料作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;D. On top of the green light-emitting layer, continue to evaporate a layer of C4 material as an electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
E.在上述电子传输层C4之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。E. Evaporate LiF layer and Al layer as the cathode layer of the device in sequence on the above electron transport layer C4, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, the evaporation rate of Al layer It is 2.0nm/s, and the thickness is 150nm.
实施例1-8Examples 1-8
本实施例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this embodiment includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. Thickness is:
ITO(150nm)/E20(40nm)/YH-5(30nm):10%GD/C6(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E20(40nm)/YH-5(30nm): 10%GD/C6(20nm)/LiF(0.5nm)/Al(150nm).
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E20薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E20 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法蒸镀绿色发光层,YH-5与GD的蒸镀速率比为10:1,YH-5与GD的重量百分比浓度为10%,蒸镀膜厚为30nm;C. The green light-emitting layer is evaporated by double-source co-evaporation, the evaporation rate ratio of YH-5 and GD is 10:1, the weight percentage concentration of YH-5 and GD is 10%, and the evaporation film thickness is 30nm;
D.在绿色发光层之上,继续蒸镀一层C6材料作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;D. On top of the green light-emitting layer, continue to vapor-deposit a layer of C6 material as an electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
E.在上述电子传输层C6之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。E. Evaporate LiF layer and Al layer on the above-mentioned electron transport layer C6 as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is It is 2.0nm/s, and the thickness is 150nm.
实施例1-9Examples 1-9
本实施例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、绿色发光层、电子传输层、电子注入层、金属阴极、以及其中各层采用的材料以及各层的厚度为:The organic electroluminescent device provided in this embodiment includes the following layers in sequence: transparent anode, hole transport layer, green light-emitting layer, electron transport layer, electron injection layer, metal cathode, and the materials used in each layer and the composition of each layer. The thickness is:
ITO(150nm)/E32(40nm)/YH-6(30nm):10%GD/C6(20nm)/LiF(0.5nm)/Al(150nm)。ITO (150nm)/E32 (40nm)/YH-6 (30nm): 10%GD/C6 (20nm)/LiF (0.5nm)/Al (150nm).
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E32薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E32 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法蒸镀绿色发光层,YH-6与GD的蒸镀速率比为10:1,YH-6与GD的重量百分比浓度为10%,蒸镀膜厚为30nm;C. The green light-emitting layer is evaporated by double-source co-evaporation, the evaporation rate ratio of YH-6 and GD is 10:1, the weight percentage concentration of YH-6 and GD is 10%, and the evaporation film thickness is 30nm;
D.在绿色发光层之上,继续蒸镀一层C6材料作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;D. On top of the green light-emitting layer, continue to vapor-deposit a layer of C6 material as an electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
E.在上述电子传输层C6之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。E. Evaporate LiF layer and Al layer on the above-mentioned electron transport layer C6 as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is It is 2.0nm/s, and the thickness is 150nm.
表一1-1至1-9的实验数据Table 1. Experimental data from 1-1 to 1-9
由上表可以看出,当空穴传输层、电子传输层以及发光功能层的主体材料同时选用双极性材料时,器件具有较好的效率及寿命。It can be seen from the above table that when the host materials of the hole transport layer, the electron transport layer and the light-emitting functional layer are selected from bipolar materials at the same time, the device has better efficiency and lifetime.
对比例2-1Comparative example 2-1
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layers and metal cathodes. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/NPB(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/Alq3(20nm)/LiF(0.5nm)/Al(150nm)。ITO (150nm)/NPB (40nm)/ADN (10nm):5%BD (10nm)/YH-3 (6nm)/YH-3 (30nm):10%YD/Alq3 (20nm)/LiF (0.5nm )/Al (150nm).
本对比例中NPB、AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of NPB, AND, BD and YD in this comparative example are the same as those in Comparative Example 1-1.
对比例2-2Comparative example 2-2
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layers and metal cathodes. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/NPB(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/C1(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/NPB(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/C1(20nm)/LiF(0.5nm) /Al (150nm).
本对比例中NPB、AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of NPB, AND, BD and YD in this comparative example are the same as those in Comparative Example 1-1.
对比例2-3Comparative example 2-3
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layers and metal cathodes. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E3(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/Alq3(20nm)/LiF(0.5nm)/Al(150nm)。ITO (150nm)/E3 (40nm)/ADN (10nm):5%BD (10nm)/YH-3 (6nm)/YH-3 (30nm):10%YD/Alq3 (20nm)/LiF (0.5nm )/Al (150nm).
本对比例中NPB、AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of NPB, AND, BD and YD in this comparative example are the same as those in Comparative Example 1-1.
实施例2-4Example 2-4
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E33(40nm)/ADN(10nm):5%BD(10nm)/YH-1(6nm)/YH-1(30nm):10%YD/E7(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E33(40nm)/ADN(10nm):5%BD(10nm)/YH-1(6nm)/YH-1(30nm):10%YD/E7(20nm)/LiF(0.5nm) /Al (150nm).
本对比例中AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of AND, BD and YD in this Comparative Example are the same as those in Comparative Example 1-1.
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E33薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as E33 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行蓝色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the blue light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在蓝色发光层之上蒸镀单独的YH-1材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-1 material on the blue light-emitting layer as a light-emitting functional layer with a thickness of 6nm;
E.在激子阻挡层上蒸镀黄色发光层,采用两源共蒸的方法进行,YH-1与YD的蒸镀速率比为10:1,YH-1与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate a yellow light-emitting layer on the exciton blocking layer, using two sources of co-evaporation, the evaporation rate ratio of YH-1 and YD is 10:1, and the weight percentage concentration of YH-1 and YD is 10% , the evaporated film thickness is 30nm;
F.在黄色发光层之上,继续蒸镀一层改为E7作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the yellow light-emitting layer, continue to vapor-deposit one layer and change it to E7 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例2-5Example 2-5
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E39(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/E40(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E39(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/E40(20nm)/LiF(0.5nm) /Al (150nm).
本对比例中AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of AND, BD and YD in this Comparative Example are the same as those in Comparative Example 1-1.
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E39薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as E39 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行蓝色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the blue light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在蓝色发光层之上蒸镀单独的YH-2材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-2 material as a light-emitting functional layer on the blue light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀黄色发光层,采用两源共蒸的方法进行,YH-2与YD的蒸镀速率比为10:1,YH-2与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate a yellow light-emitting layer on the exciton blocking layer, using two sources of co-evaporation, the evaporation rate ratio of YH-2 and YD is 10:1, and the weight percentage concentration of YH-2 and YD is 10% , the evaporated film thickness is 30nm;
F.在黄色发光层之上,继续蒸镀一层改为E40作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the yellow light-emitting layer, continue to vapor-deposit one layer and change it to E40 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例2-6Example 2-6
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/C5(40nm)/ADN(10nm):5%BD(10nm)/YH-5(6nm)/YH-5(30nm):10%YD/E13(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/C5(40nm)/ADN(10nm):5%BD(10nm)/YH-5(6nm)/YH-5(30nm):10%YD/E13(20nm)/LiF(0.5nm) /Al (150nm).
本对比例中AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of AND, BD and YD in this Comparative Example are the same as those in Comparative Example 1-1.
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如C5薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as a C5 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行蓝色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the blue light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在蓝色发光层之上蒸镀单独的YH-5材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-5 material on the blue light-emitting layer as a light-emitting functional layer with a thickness of 6nm;
E.在激子阻挡层上蒸镀黄色发光层,采用两源共蒸的方法进行,YH-5与YD的蒸镀速率比为10:1,YH-5与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate a yellow light-emitting layer on the exciton blocking layer, using two sources of co-evaporation, the evaporation rate ratio of YH-5 and YD is 10:1, and the weight percentage concentration of YH-5 and YD is 10% , the evaporated film thickness is 30nm;
F.在黄色发光层之上,继续蒸镀一层改为E13作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the yellow light-emitting layer, continue to vapor-deposit one layer and change it to E13 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例2-7Example 2-7
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E37(40nm)/ADN(10nm):5%BD(10nm)/YH-7(6nm)/YH-7(30nm):10%YD/E41(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E37(40nm)/ADN(10nm):5%BD(10nm)/YH-7(6nm)/YH-7(30nm):10%YD/E41(20nm)/LiF(0.5nm) /Al (150nm).
本对比例中AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of AND, BD and YD in this Comparative Example are the same as those in Comparative Example 1-1.
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E37薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as E37 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行蓝色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the blue light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在蓝色发光层之上蒸镀单独的YH-7材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-7 material as a light-emitting functional layer on the blue light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀黄色发光层,采用两源共蒸的方法进行,YH-7与YD的蒸镀速率比为10:1,YH-7与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate a yellow light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-7 and YD is 10:1, and the weight percentage concentration of YH-7 and YD is 10% , the evaporated film thickness is 30nm;
F.在黄色发光层之上,继续蒸镀一层改为E41作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the yellow light-emitting layer, continue to vapor-deposit a layer and change it to E41 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例2-8Example 2-8
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/C2(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/E42(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/C2(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/E42(20nm)/LiF(0.5nm) /Al (150nm).
本对比例中AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of AND, BD and YD in this Comparative Example are the same as those in Comparative Example 1-1.
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如C2薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as a C2 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行蓝色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the blue light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在蓝色发光层之上蒸镀单独的YH-2材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-2 material as a light-emitting functional layer on the blue light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀黄色发光层,采用两源共蒸的方法进行,YH-2与YD的蒸镀速率比为10:1,YH-2与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate a yellow light-emitting layer on the exciton blocking layer, using two sources of co-evaporation, the evaporation rate ratio of YH-2 and YD is 10:1, and the weight percentage concentration of YH-2 and YD is 10% , the evaporated film thickness is 30nm;
F.在黄色发光层之上,继续蒸镀一层改为E42作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the yellow light-emitting layer, continue to vapor-deposit one layer and change it to E42 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposition film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例2-9Example 2-9
如图1所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、蓝色发光层、激子阻挡层、黄色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 1, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, blue light-emitting layer, exciton blocking layer, yellow light-emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E38(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/E43(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E38(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/E43(20nm)/LiF(0.5nm) /Al (150nm).
本对比例中AND、BD以及YD的结构式与对比例1-1中的相同。The structural formulas of AND, BD and YD in this Comparative Example are the same as those in Comparative Example 1-1.
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如C2薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as a C2 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行蓝色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the blue light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在蓝色发光层之上蒸镀单独的YH-2材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-2 material as a light-emitting functional layer on the blue light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀黄色发光层,采用两源共蒸的方法进行,YH-2与YD的蒸镀速率比为10:1,YH-2与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate a yellow light-emitting layer on the exciton blocking layer, using two sources of co-evaporation, the evaporation rate ratio of YH-2 and YD is 10:1, and the weight percentage concentration of YH-2 and YD is 10% , the evaporated film thickness is 30nm;
F.在黄色发光层之上,继续蒸镀一层改为E42作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the yellow light-emitting layer, continue to vapor-deposit one layer and change it to E42 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposition film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
表二2-1至2-9的实验数据Experimental data from Table 2 2-1 to 2-9
由上表可以看出,当空穴传输层、电子传输层以及发光功能层的主体材料同时选用双极性材料时,器件具有较好的效率及寿命。It can be seen from the above table that when the host materials of the hole transport layer, the electron transport layer and the light-emitting functional layer are selected from bipolar materials at the same time, the device has better efficiency and lifetime.
对比例3-1Comparative example 3-1
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)TAPC(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/Alq3(20nm)/LiF(0.5nm)/Al(150nm)。ITO (150nm)TAPC (40nm)/ADN (10nm):5%BD (10nm)/YH-3 (6nm)/YH-3 (30nm):10%YD/Alq3 (20nm)/LiF (0.5nm) /Al (150nm).
本对比例中,NPB的结构式为:In this comparative example, the structural formula of NPB is:
本对比例中,AND的结构式为:In this comparative example, the structural formula of AND is:
本对比例中,BD的结构式为:In this comparative example, the structural formula of BD is:
本对比例中,YD的结构式为:In this comparative example, the structural formula of YD is:
本对比例中,TAPC的结构式为:In this comparative example, the structural formula of TAPC is:
本对比例中,YH-3的结构式为:In this comparative example, the structural formula of YH-3 is:
对比例3-2Comparative example 3-2
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/TAPC(40nm)/AND(10nm):5%BD(10nm)/YH-3(6nm)/YH-1(30nm):10%YD/C1(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/TAPC(40nm)/AND(10nm):5%BD(10nm)/YH-3(6nm)/YH-1(30nm):10%YD/C1(20nm)/LiF(0.5nm) /Al (150nm).
在本对比例中,所述NPB、所述AND、所述BD以及所述YD的结构式与对比例2-1中的相同,YH-1的结构式为:In this comparative example, the structural formulas of the NPB, the AND, the BD and the YD are the same as those in Comparative Example 2-1, and the structural formula of YH-1 is:
对比例3-3Comparative example 3-3
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:ITO(150nm)/E3(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/Alq3(20nm)/LiF(0.5nm)/Al(150nm)。As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are: ITO (150nm)/E3 (40nm)/ADN (10nm):5%BD (10nm)/YH-3 (6nm)/YH-3 (30nm): 10 %YD/Alq3 (20nm)/LiF (0.5nm)/Al (150nm).
在本对比例中,所述AND、所述BD、所述YD以及所述YH-3的结构式与对比例2-1中的相同。In this comparative example, the structural formulas of the AND, the BD, the YD and the YH-3 are the same as those in the comparative example 2-1.
实施例3-4Example 3-4
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:ITO(150nm)/E33(40nm)/ADN(10nm):5%BD(10nm)/YH-1(6nm)/YH-1(30nm):10%YD/E8(20nm)/LiF(0.5nm)/Al(150nm)。As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are: ITO (150nm)/E33 (40nm)/ADN (10nm):5%BD (10nm)/YH-1 (6nm)/YH-1 (30nm): 10 %YD/E8(20nm)/LiF(0.5nm)/Al(150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体方法如下:The specific method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E33薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as E33 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-1材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-1 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-1与YD的蒸镀速率比为10:1,YH-1与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-1 and YD is 10:1, and the weight percent concentration of YH-1 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E8作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit one layer and change it to E8 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-5Example 3-5
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:ITO(150nm)/E34(40nm)/ADN(10nm):5%BD(10nm)/PH-2(6nm)/YH-2(30nm):10%YD/E9(20nm)/LiF(0.5nm)/Al(150nm)。As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are: ITO (150nm)/E34 (40nm)/ADN (10nm):5%BD (10nm)/PH-2 (6nm)/YH-2 (30nm): 10 %YD/E9(20nm)/LiF(0.5nm)/Al(150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E34薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E34 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-2材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-2 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-2与YD的蒸镀速率比为10:1,YH-2与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, adopt the method of co-evaporation of two sources, the evaporation rate ratio of YH-2 and YD is 10:1, and the weight percent concentration of YH-2 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E9作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E9 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-6Example 3-6
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:ITO(150nm)/C5(40nm)/ADN(10nm):5%BD(10nm)/YH-5(6nm)/YH-5(30nm):10%YD/E11(20nm)/LiF(0.5nm)/Al(150nm)。As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are: ITO (150nm)/C5 (40nm)/ADN (10nm):5%BD (10nm)/YH-5 (6nm)/YH-5 (30nm): 10 %YD/E11(20nm)/LiF(0.5nm)/Al(150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如C5薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as a C5 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-5材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-5 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-5与YD的蒸镀速率比为10:1,YH-5与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-5 and YD is 10:1, and the weight percent concentration of YH-5 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E11作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On top of the blue light-emitting layer, continue to vapor-deposit a layer and change it to E11 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-7Example 3-7
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:ITO(150nm)/E36(40nm)/ADN(10nm):5%BD(10nm)/YH-7(6nm)/YH-7(30nm):10%YD/E41(20nm)/LiF(0.5nm)/Al(150nm)。As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are: ITO (150nm)/E36 (40nm)/ADN (10nm):5%BD (10nm)/YH-7 (6nm)/YH-7 (30nm): 10 %YD/E41(20nm)/LiF(0.5nm)/Al(150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E36薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E36 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-7材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-7 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-7与YD的蒸镀速率比为10:1,YH-7与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-7 and YD is 10:1, and the weight percent concentration of YH-7 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E41作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E41 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-8Example 3-8
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:ITO(150nm)/EC2(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/E42(20nm)/LiF(0.5nm)/Al(150nm)。As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are: ITO (150nm)/EC2 (40nm)/ADN (10nm):5%BD (10nm)/YH-2 (6nm)/YH-2 (30nm): 10 %YD/E42(20nm)/LiF(0.5nm)/Al(150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如C2薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as a C2 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-2材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-2 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-2与YD的蒸镀速率比为10:1,YH-2与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, adopt the method of co-evaporation of two sources, the evaporation rate ratio of YH-2 and YD is 10:1, and the weight percent concentration of YH-2 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E42作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E42 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-9Example 3-9
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E38(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/E43(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E38(40nm)/ADN(10nm):5%BD(10nm)/YH-3(6nm)/YH-3(30nm):10%YD/E43(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E38薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E38 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-3材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-3 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-3与YD的蒸镀速率比为10:1,YH-3与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-3 and YD is 10:1, and the weight percent concentration of YH-3 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E43作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E43 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-10Example 3-10
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E39(40nm)/ADN(10nm):5%BD(10nm)/YH-7(6nm)/YH-7(30nm):10%YD/E44(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E39(40nm)/ADN(10nm):5%BD(10nm)/YH-7(6nm)/YH-7(30nm):10%YD/E44(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E39薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as E39 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-7材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-7 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-7与YD的蒸镀速率比为10:1,YH-7与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-7 and YD is 10:1, and the weight percent concentration of YH-7 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E44作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit one layer and change it to E44 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-11Example 3-11
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E12(40nm)/ADN(10nm):5%BD(10nm)/YH-6(6nm)/YH-6(30nm):10%YD/E45(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E12(40nm)/ADN(10nm):5%BD(10nm)/YH-6(6nm)/YH-6(30nm):10%YD/E45(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E12薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E12 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-6材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-6 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-6与YD的蒸镀速率比为10:1,YH-6与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-6 and YD is 10:1, and the weight percent concentration of YH-6 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E45作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E45 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-12Example 3-12
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E13(40nm)/ADN(10nm):5%BD(10nm)/YH-4(6nm)/YH-4(30nm):10%YD/E46(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E13(40nm)/ADN(10nm):5%BD(10nm)/YH-4(6nm)/YH-4(30nm):10%YD/E46(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E13薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E13 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-4材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-4 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-4与YD的蒸镀速率比为10:1,YH-4与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, adopt the method of co-evaporation of two sources, the evaporation rate ratio of YH-4 and YD is 10:1, and the weight percent concentration of YH-4 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E46作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E46 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-13Example 3-13
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E14(40nm)/ADN(10nm):5%BD(10nm)/YH-7(6nm)/YH-7(30nm):10%YD/E47(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E14(40nm)/ADN(10nm):5%BD(10nm)/YH-7(6nm)/YH-7(30nm):10%YD/E47(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E14薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E14 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-7材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-7 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-7与YD的蒸镀速率比为10:1,YH-7与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-7 and YD is 10:1, and the weight percent concentration of YH-7 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E47作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit one layer and change it to E47 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-14Example 3-14
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/C4(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/E21(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/C4(40nm)/ADN(10nm):5%BD(10nm)/YH-2(6nm)/YH-2(30nm):10%YD/E21(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如C4薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as a C4 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-2材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-2 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-2与YD的蒸镀速率比为10:1,YH-2与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, adopt the method of co-evaporation of two sources, the evaporation rate ratio of YH-2 and YD is 10:1, and the weight percent concentration of YH-2 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E21作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E21 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-15Example 3-15
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E16(40nm)/ADN(10nm):5%BD(10nm)/PH-4(6nm)/PH-4(30nm):10%YD/E22(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E16(40nm)/ADN(10nm):5%BD(10nm)/PH-4(6nm)/PH-4(30nm):10%YD/E22(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E16薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10 -5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E16 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-1材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-1 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-1与YD的蒸镀速率比为10:1,YH-1与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-1 and YD is 10:1, and the weight percent concentration of YH-1 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E22作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E22 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposition film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-16Example 3-16
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E17(40nm)/ADN(10nm):5%BD(10nm)/YH-4(6nm)/YH-4(30nm):10%YD/E23(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E17(40nm)/ADN(10nm):5%BD(10nm)/YH-4(6nm)/YH-4(30nm):10%YD/E23(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E17薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E17 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-4材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-4 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-4与YD的蒸镀速率比为10:1,YH-4与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, adopt the method of co-evaporation of two sources, the evaporation rate ratio of YH-4 and YD is 10:1, and the weight percent concentration of YH-4 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E23作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E23 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-17Example 3-17
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E18(40nm)/ADN(10nm):5%BD(10nm)/YH-1(6nm)/YH-1(30nm):10%YD/E24(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E18(40nm)/ADN(10nm):5%BD(10nm)/YH-1(6nm)/YH-1(30nm):10%YD/E24(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E18薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E18 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-1材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-1 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-1与YD的蒸镀速率比为10:1,YH-1与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-1 and YD is 10:1, and the weight percent concentration of YH-1 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E24作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E24 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-18Example 3-18
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/C1(40nm)/ADN(10nm):5%BD(10nm)/YH-4(6nm)/YH-4(30nm):10%YD/E25(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/C1(40nm)/ADN(10nm):5%BD(10nm)/YH-4(6nm)/YH-4(30nm):10%YD/E25(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如C1薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as a C1 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-4材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-4 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-4与YD的蒸镀速率比为10:1,YH-4与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, adopt the method of co-evaporation of two sources, the evaporation rate ratio of YH-4 and YD is 10:1, and the weight percent concentration of YH-4 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E25作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E25 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposited film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-19Example 3-19
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layer and metal cathode. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E35(40nm)/ADN(10nm):5%BD(10nm)/YH-1(6nm)/YH-1(30nm):10%YD/E26(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E35(40nm)/ADN(10nm):5%BD(10nm)/YH-1(6nm)/YH-1(30nm):10%YD/E26(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E35薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as an E35 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-1材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-1 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-1与YD的蒸镀速率比为10:1,YH-1与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-1 and YD is 10:1, and the weight percent concentration of YH-1 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E26作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On top of the blue light-emitting layer, continue to vapor-deposit a layer and change it to E26 as the electron transport layer, the vapor-deposition rate is 0.2nm/s, and the vapor-deposition film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
实施例3-20Example 3-20
如图2所示,本对比例提供的有机电致发光器件依次包括以下各层:透明阳极、空穴传输层、黄色发光层、激子阻挡层、蓝色发光层、电子传输层、电子注入层及金属阴极。其中各层采用的材料以及各层的厚度为:As shown in Figure 2, the organic electroluminescent device provided in this comparative example includes the following layers in sequence: transparent anode, hole transport layer, yellow light emitting layer, exciton blocking layer, blue light emitting layer, electron transport layer, electron injection layer layers and metal cathodes. The materials used in each layer and the thickness of each layer are:
ITO(150nm)/E37(40nm)/ADN(10nm):5%BD(10nm)/YH-6(6nm)/YH-6(30nm):10%YD/E27(20nm)/LiF(0.5nm)/Al(150nm)。ITO(150nm)/E37(40nm)/ADN(10nm):5%BD(10nm)/YH-6(6nm)/YH-6(30nm):10%YD/E27(20nm)/LiF(0.5nm) /Al (150nm).
在本实施例中,所述AND,所述BD以及所述YD的结构式与对比例2-1中的相同。In this example, the structural formulas of AND, BD and YD are the same as those in Comparative Example 2-1.
制备本实施例有机电致发光器件的具体制备方法如下:The specific preparation method for preparing the organic electroluminescent device of this embodiment is as follows:
A.利用去离子水超声的方法对玻璃基片进行清洗,并放置在红外灯下烘干,在玻璃基片上蒸镀一层ITO阳极材料,膜厚为150nm;A. Use deionized water to ultrasonically clean the glass substrate, place it under an infrared lamp and dry it, and evaporate a layer of ITO anode material on the glass substrate with a film thickness of 150nm;
B.把上述带有阳极的玻璃基片置于真空腔内,抽真空至1×10-5Pa,在上述阳极层膜上继续蒸镀空穴传输层,如E37薄膜,速率为0.1nm/s,蒸镀膜厚为40nm;B. Place the above-mentioned glass substrate with an anode in a vacuum chamber, evacuate to 1×10-5 Pa, and continue to evaporate a hole transport layer on the above-mentioned anode layer film, such as E37 film, at a rate of 0.1nm/ s, the evaporated film thickness is 40nm;
C.再采用双源共蒸的方法进行黄色发光层的蒸镀掺杂,AND和BD的蒸镀速率比为100:5,蒸镀膜厚为10nm;C. Then use the double-source co-evaporation method to do the evaporation and doping of the yellow light-emitting layer. The evaporation rate ratio of AND and BD is 100:5, and the evaporation film thickness is 10nm;
D.在黄色发光层之上蒸镀单独的YH-6材料作为发光功能层,厚度6nm;D. Evaporate a separate YH-6 material as a light-emitting functional layer on the yellow light-emitting layer, with a thickness of 6nm;
E.在激子阻挡层上蒸镀蓝色发光层,采用两源共蒸的方法进行,YH-6与YD的蒸镀速率比为10:1,YH-6与YD的重量百分比浓度为10%,蒸镀膜厚为30nm;E. Evaporate the blue light-emitting layer on the exciton blocking layer, using the method of co-evaporation of two sources, the evaporation rate ratio of YH-6 and YD is 10:1, and the weight percent concentration of YH-6 and YD is 10 %, the evaporated film thickness is 30nm;
F.在蓝色发光层之上,继续蒸镀一层改为E27作为电子传输层,其蒸镀速率为0.2nm/s,蒸镀膜厚为20nm;F. On the blue light-emitting layer, continue to vapor-deposit a layer and change it to E27 as the electron transport layer, the evaporation rate is 0.2nm/s, and the evaporation film thickness is 20nm;
G.在上述电子传输层之上依次蒸镀LiF层和Al层作为器件的阴极层,其中LiF层的蒸镀速率为0.01~0.02nm/s,厚度为0.5nm,Al层的蒸镀速率为2.0nm/s,厚度为150nm。G. Evaporate LiF layer and Al layer sequentially on the above electron transport layer as the cathode layer of the device, wherein the evaporation rate of LiF layer is 0.01-0.02nm/s, the thickness is 0.5nm, and the evaporation rate of Al layer is 2.0nm/s, the thickness is 150nm.
表三3-1至3-20的实验数据Experimental data from Table 3 3-1 to 3-20
由上表可以看出,当空穴传输层、电子传输层以及发光功能层的主体材料同时选用双极性材料时,器件具有较好的效率及寿命。It can be seen from the above table that when the host materials of the hole transport layer, the electron transport layer and the light-emitting functional layer are selected from bipolar materials at the same time, the device has better efficiency and lifetime.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之内。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. However, the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210198869.2ACN102738413B (en) | 2012-06-15 | 2012-06-15 | A kind of organic electroluminescence device and preparation method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201210198869.2ACN102738413B (en) | 2012-06-15 | 2012-06-15 | A kind of organic electroluminescence device and preparation method thereof |
| Publication Number | Publication Date |
|---|---|
| CN102738413Atrue CN102738413A (en) | 2012-10-17 |
| CN102738413B CN102738413B (en) | 2016-08-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201210198869.2AActiveCN102738413B (en) | 2012-06-15 | 2012-06-15 | A kind of organic electroluminescence device and preparation method thereof |
| Country | Link |
|---|---|
| CN (1) | CN102738413B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN103435597A (en)* | 2013-09-04 | 2013-12-11 | 中国科学院理化技术研究所 | 1,3, 5-triazine derivative and application thereof in white organic electroluminescent diode |
| CN104183299A (en)* | 2013-05-23 | 2014-12-03 | 海洋王照明科技股份有限公司 | Flexible conductive graphene film and manufacturing method and application thereof |
| CN106062127A (en)* | 2014-03-07 | 2016-10-26 | 九州有机光材股份有限公司 | Light-emitting materials, organic light-emitting elements and compounds |
| CN106883215A (en)* | 2017-01-24 | 2017-06-23 | 瑞声科技(南京)有限公司 | Triaizine compounds and luminescent device |
| CN104854723B (en)* | 2012-12-17 | 2018-06-12 | 默克专利有限公司 | Inorganic barrier layer |
| WO2018232801A1 (en)* | 2017-06-22 | 2018-12-27 | 深圳市华星光电技术有限公司 | Flexible display device and white organic electroluminescent device thereof |
| US10424756B2 (en) | 2017-06-22 | 2019-09-24 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Flexible display apparatus and its white light organic electroluminescent device |
| US10461260B2 (en) | 2014-06-03 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
| CN111933813A (en)* | 2020-08-18 | 2020-11-13 | 昆山工研院新型平板显示技术中心有限公司 | Display panel and display device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101321755A (en)* | 2005-12-01 | 2008-12-10 | 新日铁化学株式会社 | Compound for organic electroluminescent device and organic electroluminescent device |
| CN101407493A (en)* | 2008-05-29 | 2009-04-15 | 清华大学 | Organic material and use thereof in organic EL device |
| CN101445422A (en)* | 2008-12-31 | 2009-06-03 | 清华大学 | Organic electroluminescent material and application thereof |
| CN101641340A (en)* | 2007-03-26 | 2010-02-03 | 新日铁化学株式会社 | Compound for organic electroluminescent device and organic electroluminescent device |
| CN102082230A (en)* | 2010-09-16 | 2011-06-01 | 昆山维信诺显示技术有限公司 | Infrared organic electroluminescent device |
| CN103187531A (en)* | 2011-12-30 | 2013-07-03 | 昆山维信诺显示技术有限公司 | Organic light-emitting device and purpose of double-polarity organic compound |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101321755A (en)* | 2005-12-01 | 2008-12-10 | 新日铁化学株式会社 | Compound for organic electroluminescent device and organic electroluminescent device |
| CN101641340A (en)* | 2007-03-26 | 2010-02-03 | 新日铁化学株式会社 | Compound for organic electroluminescent device and organic electroluminescent device |
| CN101407493A (en)* | 2008-05-29 | 2009-04-15 | 清华大学 | Organic material and use thereof in organic EL device |
| CN101445422A (en)* | 2008-12-31 | 2009-06-03 | 清华大学 | Organic electroluminescent material and application thereof |
| CN102082230A (en)* | 2010-09-16 | 2011-06-01 | 昆山维信诺显示技术有限公司 | Infrared organic electroluminescent device |
| CN103187531A (en)* | 2011-12-30 | 2013-07-03 | 昆山维信诺显示技术有限公司 | Organic light-emitting device and purpose of double-polarity organic compound |
| Title |
|---|
| H TSUJI, C MITSUI, Y SATO, E NAKAMURA.: "Bis(carbazolyl)benzodifuran:a high-mobility ambipolar material for homojunction organic light-emitting diode devices", 《ADVANCED MATERIALS》* |
| L DUAN,J QIAO,YD SUN,Y QIU: "Strategies to design bipolar small molecules for OLEDs:donor-acceptor structure and non-donor-acceptor structure", 《ADVANCED MATERIALS》* |
| W NAKANISHI, S HITOSUGI, A PISKAREVA, Y SHIMADA, H TAKA, H KIA,: "Disilanyl double-pillared bisanthracene: a bipolar carrier transport material for organic light-emitting diode devices", 《ANGEW.CHEM.INT.ED》* |
| 刘倩: "有机电致发光器件电子注入材料及相关机理研究", 《中国博士学位论文全文数据库信息科技击辑》* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN104854723B (en)* | 2012-12-17 | 2018-06-12 | 默克专利有限公司 | Inorganic barrier layer |
| CN104183299A (en)* | 2013-05-23 | 2014-12-03 | 海洋王照明科技股份有限公司 | Flexible conductive graphene film and manufacturing method and application thereof |
| CN103435597A (en)* | 2013-09-04 | 2013-12-11 | 中国科学院理化技术研究所 | 1,3, 5-triazine derivative and application thereof in white organic electroluminescent diode |
| CN106062127A (en)* | 2014-03-07 | 2016-10-26 | 九州有机光材股份有限公司 | Light-emitting materials, organic light-emitting elements and compounds |
| US9773982B2 (en) | 2014-03-07 | 2017-09-26 | Kyulux, Inc. | Light-emitting material, organic light-emitting device, and compound |
| US10043981B2 (en) | 2014-03-07 | 2018-08-07 | Kyulux, Inc. | Light-emitting material, organic light-emitting device, and compound |
| US10461260B2 (en) | 2014-06-03 | 2019-10-29 | Universal Display Corporation | Organic electroluminescent materials and devices |
| CN106883215A (en)* | 2017-01-24 | 2017-06-23 | 瑞声科技(南京)有限公司 | Triaizine compounds and luminescent device |
| WO2018232801A1 (en)* | 2017-06-22 | 2018-12-27 | 深圳市华星光电技术有限公司 | Flexible display device and white organic electroluminescent device thereof |
| US10424756B2 (en) | 2017-06-22 | 2019-09-24 | Shenzhen China Star Optoelectronics Technology Co., Ltd | Flexible display apparatus and its white light organic electroluminescent device |
| CN111933813A (en)* | 2020-08-18 | 2020-11-13 | 昆山工研院新型平板显示技术中心有限公司 | Display panel and display device |
| Publication number | Publication date |
|---|---|
| CN102738413B (en) | 2016-08-03 |
| Publication | Publication Date | Title |
|---|---|---|
| CN102738413B (en) | A kind of organic electroluminescence device and preparation method thereof | |
| CN106164216B (en) | organic light emitting device | |
| KR101387738B1 (en) | Compound for organic photoelectric device and organic photoelectric device including the same | |
| CN102803437B (en) | Compounds for organic photoelectric devices and organic photoelectric devices | |
| CN105980521B (en) | organic light emitting device | |
| CN103827257B (en) | Organic light emitting diode | |
| KR100904070B1 (en) | Compound for organic photoelectric device and organic photoelectric device using same | |
| TWI643373B (en) | Organic light emitting device | |
| CN105612237B (en) | organic light emitting device | |
| CN102227485B (en) | Novel compound for organic photoelectric device and organic photoelectric device containing the compound | |
| KR101907750B1 (en) | Organic light emitting diode | |
| CN104245697B (en) | Nitrogen-containing heterocyclic compounds and organic electronic devices containing them | |
| KR20170073567A (en) | Organic Electroluminescent Element | |
| CN101939401B (en) | Luminescent element material and luminescent element | |
| CN106467553A (en) | A boron-containing organic electroluminescent compound and its application in OLED devices | |
| CN106467554A (en) | A kind of boracic organic electroluminescent compounds and its application | |
| CN112005393B (en) | Organic light-emitting devices | |
| KR20160029634A (en) | Fused cyclic compound including nitrogen and organic light emitting device using the same | |
| KR20090008736A (en) | Azaboraphenanthrin or oxaborafenins derivatives and organic electronic devices using the same | |
| KR20110079197A (en) | Compound for organic photoelectric device and organic photoelectric device comprising same | |
| CN113372370B (en) | Organic compound and application thereof | |
| CN108884075A (en) | Heterocyclic compound and organic light-emitting device containing same | |
| CN108963099A (en) | A kind of composition and organic electroluminescent device for organic electroluminescent device | |
| KR101405725B1 (en) | The organic light emitting diode and manufacturing method thereof | |
| CN110828678B (en) | Organic light emitting element |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C41 | Transfer of patent application or patent right or utility model | ||
| TA01 | Transfer of patent application right | Effective date of registration:20160203 Address after:065500 Guan County, Hebei Province emerging industry demonstration park Applicant after:GU'AN YEOLIGHT TECHNOLOGY CO., LTD. Applicant after:Tsinghua University Address before:215300 Suzhou Province, Kunshan City, Kunshan hi tech Zone, Feng Feng Road, No. 188, No. Applicant before:Weixinnuo Display Tech Co., Ltd. Applicant before:Tsinghua University Applicant before:Weixinnuo Science and Technology Co., Ltd., Beijing | |
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant |